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ABSTRACT

Given the sustained growth in both training data and model parameters, the prob-
lem of finding the most useful training data has become of primary importance for
training state-of-the-art and next generation models.
We work in the context of data selection and consider the problem of finding the
best representative subset of a dataset to train a machine learning model. As-
suming embedding representation of the data (coming for example from either a
pre-trained model or a generic all-purpose embedding) and that the model loss
is Hölder continuous with respect to these embeddings, we provide a new data
selection approach based on k-means clustering and sensitivity sampling.
We prove that our new approach allows to select a set of “typical” k + 1/ε2 el-
ements whose average loss corresponds to the average loss of the whole dataset,
up to a multiplicative (1 ± ε) factor and an additive ελΦk, where Φk represents
the k-means cost for the input data and λ is the Hölder constant. Our approach
is particularly efficient since it only requires k inferences from the model. We
furthermore demonstrate the performance of our approach on classic datasets and
show that it outperforms state-of-the-art methods.
We also show that our sampling strategy can be used to define new sampling scores
for regression, leading to a new active learning strategy that is comparatively sim-
pler and faster than previous ones like leverage score.

1 INTRODUCTION

The rise of both massive data and massive models has led to a new generation of machine learning
models with astonishing performances. Yet, the sizes of the models and data make their training
extremely difficult, costly, time-consuming, and so nearly impossible for most academic institutions
or small-scale companies. On the other hand, a complete dataset is often not needed to reach nearly
optimal performances (up to a small increase in error percentage). A central question then becomes
how to identify the most important elements for the training process. When dealing with complex,
unbalanced data, one may need to depart from uniformly choosing a sample of the data. To achieve
this, data selection and active learning methods use the model to iteratively provide (possibly noisy)
information about which data elements are the most relevant for training, based on what the model
has already learned. There exist several heuristics or greedy approaches for active learning and data
selection (see e.g. Dasgupta (2004) or references in Ren et al. (2021)). Successful data selection
strategies include margin or entropy scores with the objective of identifying elements for which
the model is the less certain about, and so focusing the training on these elements to improve the
performances.

In a celebrated result, Sener & Savarese (2018) showed that active learning strategies are difficult to
use in modern training frameworks for the following reasons:

1. The training proceeds in batches, which requires the active learning strategy to not pick
only one training element at a time but a batch of training elements. However, to make the
most out of the batch, it is needed to ensure some diversity in the set of elements sampled,
which often unfortunately anti-correlates with, for example, the margin objective (see the
discussion in Sener & Savarese (2018) for more details).
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2. The score (i.e. value) of the training elements are obtained through the model. This requires
running the model on the data elements to determine which ones to pick next. Unfortu-
nately, modern models are often very large and the inference time is particularly costly.

The impressively successful approach of Sener & Savarese (2018) consists in using the notion of
coreset to make the selection. A coreset is a subset of the data defined such that optimizing the
model for the coreset yields a good model for the entire data (i.e., good generalization bounds for
the whole dataset). In more formal terms, the average loss function for the coreset elements is the
same as for the whole dataset and so learning on the coreset elements has the same effect as learning
on the whole data. Unfortunately, to implement this approach one would need to obtain the loss of
all the input elements, which implies running the model on all the input elements. To cirumvent
this problem, Sener and Savarese show that, given some embedding representation of the input and
some set of assumptions relating the embeddings to the network loss, some form of coreset can be
computed using a heuristic to the k-center objective. Their embedding assumption is a fairly natural
one since the embeddings can be obtained from the network itself (after some basic pre-training) or
from a generic embedding model (e.g., BERT Devlin et al. (2018), word2vec Mikolov et al. (2013)).

The above approach has, however, the following suboptimal behaviors:

1. The first practical issue is that the k-center objective is particularly sensitive to outliers, and
in particular the greedy 2-approximation algorithm in the work of Sener & Savarese (2018)
since it iteratively picks the training elements that are the furthest away (in the embedding
space) from the already selected training elements. This tends to select outliers. We ask:
Can we find a more robust way of selecting a set of elements which is both diverse and that
precisely covers the most important traits of the data?

2. A second theoretical drawback is that the bounds proven are quite weak and require strong
assumptions on the relationship between the embeddings of the training elements and the
model loss, in particular on the spread of the data elements (see Section 2.1 for more
details). We ask: Can we provide a theoretical solution that would require a minimal set of
assumptions on our data and model?

3. The approach requires to first query a pool of uniformly chosen examples (that is enriched
at a later stage). We ask: Can we better select this pool of elements to get the most value
out of the sampling mechanism?

4. Finally, and maybe most importantly, their approach is limited to classification tasks. We
ask: can we provide a more generic data-selection algorithm, working for a more general
loss function?

1.1 OUR APPROACH AND CONTRIBUTION

We propose a new data selection algorithm that relies on clustering and sketching methods. Our
new approach provides both strong theoretical bounds and significant practical improvements over
state-of-the-art data selection methods on classic datasets.

We start from the fact that the (k, z)-clustering objective (e.g., k-median for z = 1 and k-means
for z = 2) provides a more robust clustering measure than k-center as it is much less sensitive to
outliers. Hence, we start by computing such a clustering, and sample a batch of elements using
sensitivity sampling, meaning sampling each element with probability proportional to its distance
to the closest mean plus the mean’s loss (see Feldman & Langberg (2011) for the introduction of
that probability distribution for clustering coreset, see also Bachem et al. (2018)) Our experiments
indeed show that this yields a better sample in practice than what was previously known, both for
neural network and for regression tasks.

Next, we provide theoretical guarantees on this sampling strategy. First, assuming that the model
loss is Hölder with respect to the embeddings – a fairly common and well-motivated assumption,
more general than the Lipschitz assumption also made by Sener & Savarese (2018) – we can prove
that the samples do provide a strong proxy for the loss of all the data elements. More specifically,
we show that by using sensitivity sampling we obtain a coreset with respect to the loss of the model,
plus an additive term corresponding to the loss of the (k, z)-clustering objective. This implies that
if the embeddings of the data exhibit some clusterability property, we obtain an actual coreset for
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the model loss with only few inferences. Moreover, for classification tasks, expecting that the model
embeddings will be clusterable is not an unrealistic assumption: we do expect that points from the
same class have closer model-embedding distance than points in different classes. Formally, under
the assumption that the loss function ℓ is (z, λ)-Hölder continuous, namely for all x, y, |ℓ(x) −
ℓ(y)| ≤ λ∥x− y∥z , we get:

Theorem 1. [See formal statement in theorem 5] Let ε, z, λ > 0. Let D be a dataset and ℓ a loss
function that is (z, λ)-Hölder continuous. Then there exists an algorithm that makes k queries to ℓ
and outputs a sample S of size O(ε−2) and a weight function w such that

|
∑
e∈D

ℓ(e)−
∑
e∈S

w(e)ℓ(e)| ≤ ε

(∑
e∈D

ℓ(e) + 2λΦk,z(X)

)
,

with constant probability where Φk,z(D) is the (k, z)-clustering cost of D.

In this theorem, we assume (z, λ)-Hölder continuity, for some z. For instance, when z = 1, this
encapsulates Lipschitzness and Φk,1(D) is the k-median cost of D. Therefore, we believe this
condition to be quite weak; furthermore, we show that there exist loss functions that are not Hölder
continuous for which it is necessary to query the whole dataset in order to get meaningful results.
Thus, this answers question 2 raised above.

Except for this assumption, the loss function and the structure of the problem can be quite general:
therefore, this answers question 4. We complement this with a similar theorem for linear regression.
This completes the answer for question 4.

Second, the (k, z)-clustering cost is defined as min|C|=k

∑
e∈D minc∈C ∥e − c∥z . Instead, the

k-center guarantee of Sener & Savarese (2018) would translate here into an upper bound n · λ ·
min|C|=k maxe∈D minc∈C ∥e− c∥. Therefore, depending on the choice of z, our upper-bound can
be made more or less robust to outliers: the smaller the z the more resilient to outliers it becomes;
for large z the objective becomes the k-center objective of Sener & Savarese (2018). This addresses
question 1 raised above.

Finally, our initial batch of query consists of the k points selected by minimizing the (k, z)-clustering
cost of D. Instead of a uniform sampling, we therefore select some form of representatives of the
dataset, which may give a better representation of it – especially when the dataset admits some
clustered structure.

We further demonstrate that the resulting sampling strategy outperforms classic data selection ap-
proaches, namely, training the model using the set S obtained via theorem 1 gives a better accuracy
than using other methods. Similarly, for linear regression, we show empirically that our sampling
strategy is competitive and sometimes outperforms more sophisticated state-of-the-art methods, such
as leverage score sampling, adding a fundamentally new sampling strategy to the growing body of
work on active regression Chen & Price (2019); Chen & Derezinski (2021); Parulekar et al. (2021);
Musco et al. (2022); Woodruff & Yasuda (2023).

We defer a detailed survey of related work to appendix A.1

2 PROBLEM FORMULATION

Given a dataset D and a machine learning model, the high-level goal is to find a subset S of D such
that training the model on S yields approximately the same model as training the model on D, while
the time taken to compute S and train the model on S should be much smaller than the time taken
to train the model on D.

We focus here on the general data selection problem, and dedicate section 4 to the special case of
linear regression.

2.1 OUR MODEL

We assume that we are given a dataset D of size n, together with a loss function ℓ such that ℓ(e) is
the loss of the model on instance e. The goal is to sample S ⊆ D of limited size, and associate a
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weight function w : S 7→ R+ such that

∆(S) := |
∑
e∈D

ℓ(e)−
∑
e∈S

w(e)ℓ(e)| ≤ δ,

for the smallest possible δ. Note that ℓ(e) can be queried simply by running the model on e and
computing the loss for e, so the goal is to compute S without having to compute ℓ(e) for all e ∈ D.

We now provide a complete formulation of the problem.
Definition 2 (Data Selection, Sener & Savarese (2018)). The data selection problem is defined as
follows:

• Input: A dataset D, an oracle access to a function ℓ : D 7→ R+, and a target size s.

• Output: A sample S ⊆ D of size at most s together with a weight function w : S 7→ R+

such that

– The number of queries to ℓ (i.e.: inferences) is at most s.
– S minimizes

∆(S) := |
∑
e∈D

ℓ(e)−
∑
e∈S

w(e)ℓ(e)|. (1)

Note two differences with the the original definition of Sener & Savarese (2018). (A) First, they use
uniform weights, namely ∀s ∈ S,w(s) = |D|

|S| (in which case, minimizing eq. (1) means that the
average ℓ(e) in the sample should be close to the average ℓ(e) for the whole data). We slightly gen-
eralize the definition to allow for different sampling strategies, while keeping an unbiased estimator.

(B) Second, Sener & Savarese (2018) consider the loss after re-training the model with S, namely∣∣ 1
n

∑
e∈D ℓ(e,A(S))−

∑
e∈S w(e)ℓ(e,A(S))

∣∣. In words, the loss of the model trained on S is
roughly the same evaluated on S than on D. In order to bound this quantity, Sener and Savarese
make strong assumptions on the distribution of the dataset, namely the labels are drawn randomly
from a structured distribution, and it is further assumed that the training loss is 0 on their sample.
Instead, we stay more general and focus on the loss on the current model. Our underlying assumption
is that, if S approximates the loss well, then it contains typical elements of the dataset (with respect
to the current model), and therefore updating the model based on S should be similar as if trained
on D. This formulation allows us to show strong theoretical results for the data selection problem,
without any assumption on D. Furthermore, our objective is more challenging than the one from
Sener and Savarese: proving a bound on ∆(S) implies the result of Sener & Savarese (2018) (under
their assumption abound the model loss). Therefore, we focus here on ∆(S).

2.2 ASSUMPTIONS ON ℓ

Limits to the general case The above formulation places us in the sublinear (in |D|) query time
regime. Thus, as long as s = o(|D|) it is impossible to bound ∆(S) without further assumptions on
ℓ or D, which can be seen by the following worst-case instance: The adversary chooses uniformly at
random (u.a.r.) an element e∗ ∈ D and define ℓ(e∗) = 1 and ℓ(e) = 0 for all e ̸= e∗. Then comput-
ing with constant success probability a sample S of size s = o(D) such that ∆(S) = o(

∑
e∈D ℓ(e))

with o(|D|) queries to ℓ is impossible.

Hölder continuity However, in practice we can assume that each element e in D could be asso-
ciated with a vector ve in Rd for some d, possibly coming from the model, that is “well-behaved”
with respect to the loss function of the model . More formally, the embeddings of the data elements
can either be obtained from a generic embedding of the input dataset D, for example, the BERT or
word2vec embeddings for words Devlin et al. (2018); Mikolov et al. (2013), or an embedding ob-
tained through the last layers of the model being trained. The last assumption is particularly realistic
in the warm start regime where the model has already be partially trained and we are interested in
fine-tuning it or training with a sample of the rest of the data.

Our unique assumption is that the loss ℓ is (z, λ)-Hölder continuous with respect to the collection
{ve}e∈D, i.e., there exist real-valued constants z ≥ 1, λ > 0 such that for any e, e′ ∈ D

|ℓ(e)− ℓ(e′)| ≤ λ||ve − ve′ ||z2.
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We will work in particular with z = 2 in our experiments, but our theoretical analysis holds for
general z – i.e., when z = 1 and the function is Lipschitz. Lipschitzness is a common assumption,
and is theoretically grounded for some embeddings (see e.g. Lemma 1 in Sener & Savarese (2018)
for CNN). Our assumption relaxes slightly Lipschitzness, and our theoretical finding are therefore
more general.

For simplicity, we will assimilate in the following each element e ∈ D with its embedding in Rd:
we will and denote e the embedding of e (instead of ve).

The problem we consider throughout the rest of the paper is the Data Selection under (z, λ)-Hölder
Continuity problem, which is the problem of definition 2 when the loss function ℓ is (z, λ)-Hölder
continuous.

This definition can be extended to the active learning setting where the objective is to iteratively
choose a set of elements to sample based on the model updates.

Definition 3 (r-Adaptive Active learning under (z, λ)-Hölder Continuity). The r-adaptive active
learning problem under (z, λ)-Hölder Continuity is defined as follows:

• Input: A set of elements D ⊂ Rd, an oracle access to a function ℓ : D 7→ R+ that is
(z, λ)-Hölder continous, a target size s and an adaptivity parameter r.

• Adaptivity: There are r rounds. At round i, the algorithm can query ℓ on a set Qi of size at
most s. Qi can only be defined based on the results of ℓ on ∪j<iQj and D.

• Output: For all i ∈ [r], a sample Si ⊆ D of size at most s together with a weight function
wi : S 7→ R+ such that

– For each i the number of queries to ℓ is at most s.
– Si minimizes

∆(S) := |
∑
e∈D

ℓ(e)−
∑
e∈Si

wi(e)ℓ(e)|.

2.3 CLUSTERING PRELIMINARIES

We defer a discussion on clustering preliminaries to appendix A.2. Most importantly, the
(k, z)-clustering cost of C on D as Φz(D, C) :=

∑
x∈D minc∈C ∥x − c∥z and Φk,z(D) :=

minC⊂Rd, |C|≤k Φz(D, C). For z = 1, this objective corresponds to k-median, while for z = 2
it corresponds to k-means.

3 ALGORITHMIC RESULTS

We now present a sampling procedure for the active learning problem defined in the previous section.

Our goal is to build a sampling strategy such that
∑

s∈S w(s)ℓ(s) is an unbiased estimator of∑
e∈D ℓ(e), and show that the estimator is tightly concentrated around its mean.

3.1 ALGORITHM AND LOWER BOUND FOR THE NON-ADAPTIVE CASE

We first focus on the context where the algorithm cannot query function ℓ at all. In this case, if one
only assumes the loss function to be Hölder continuous the error must scale linearly with both the
size of the dataset and its diameter, and this can be achieved by a random sample of the data points,
as we show in the following theorem. The proof is deferred to appendix B.1

Theorem 4. Let ε, λ > 0. There is a constant c, a dataset D and a loss function ℓ that is (z, 1)-
Hölder such that, when S is a uniform sample of size 1/ε2 with weight function w(e) = n/s, it
holds with constant probability that

∆(S) = |
∑
e∈D

ℓ(e)−
∑
e∈S

w(e)ℓ(e)| ≥ cεn sup
e∈D

ℓ(e).
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Furthermore, this lower bound is tight: for all dataset D and loss function ℓ, a uniform sample
S of size s = O(1/ε2) with weights w(e) = n/s satisfies with constant probability ∆(S) ≤
εn supe∈D ℓ(e).

3.2 ADAPTIVE ALGORITHMS

The lower bound on ∆(S) in theorem 4 shows is that one must sample more carefully if good
guarantees are desired. As explained in the introduction, we present a sampling strategy that queries
at most O(k) many points, and reduce the additive error to ελΦk(D). This is always better than
εn∆, and, in case the embedding of D has a clustered structured, can be drastically smaller.

3.2.1 1-ROUND ALGORITHM

In this section, we rephrase theorem 1 more precisely and state the 1-round algorithm. The proof of
theorem 5 is deferred to appendix B.2
Theorem 5. Let ε, λ > 0. Let (D, ℓ) be any input to the 1-adaptive active learning problem under
(z, λ)-Hölder continuity. Then there exists a constant c and an algorithm that makes k queries to ℓ
and outputs a sample S of size ⌈ε−2(2 + 2ε/3)⌉ and a weight function w such that

∆(S) = |
∑
e∈D

ℓ(e)−
∑
s∈S

w(s)ℓ(s)| ≤ ε

(∑
e∈D

ℓ(e) + 2λΦk(X)

)
,

with constant probability where Φk(D) is the (k, z)-clustering cost of D.

Algorithm 1 Data-Selection(D, k, ε)

1: Compute a O(1)-approximation A to the (k, z)-Clustering objective on D, and query ℓ on every
element of A.

2: For e ∈ D, define A(e) = argmina∈A ∥e − a∥ the element of A that is the closest to e,
ℓ̂(e) := ℓ(A(e)) and v(e) := ∥e−A(e)∥z .

3: Let s := ⌈ε−2(2 + 2ε/3)⌉. For e ∈ D define pe :=
ℓ̂(e)+λv(e)

λΦ(D,A)+
∑

x∈D ℓ̂(x)
and w(e) = s−1p−1

e .

4: Compute a sample S of s points, picked independently following the distribution pe.
5: Output: the set S with weights w.

3.2.2 r-ROUND ALGORITHM

We now turn to obtain better guarantees than the above bounds by phrasing the error in terms of the
k-means loss
Theorem 6. Let ε, λ, r > 0. Let (D, ℓ) be any input to the active learning problem under (z, λ)-
Hölder continuity. Then there exists a constant c and an algorithm that for each round i ∈ [r],
queries k elements per round and outputs a sample Si of size at most O(1/ε2) and a weight function
wi such that

∆(Si) = |
∑
e∈D

ℓ(e)−
∑
s∈S

wi(s)ℓ(s)| ≤ ε

(∑
e∈D

ℓ(e) + λΦk·i(D)

)

Note that the above algorithm allows to trade-off the round complexity and sample size and reaches
optimality in the limit: when r ·k = |D|, we obtain an exact algorithm. The algorithm is very similar
to algorithm 1: We defer the presentation to appendix B.3.

4 DATA SELECTION FOR REGRESSION

In this section, we specialize our method – sampling according to (k, z)-clustering cost – to the
setting of linear regression. Ideally, given a matrix A, our goal is to compute a sketching and
rescaling diagonal matrix S with as few as possible non-zero entries such that computing the optimal
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regression on S is equivalent to computing it on A. For this, we are seeking a coreset guarantee,
namely we want ∥SAx− b∥ ≈ ∥Ax− b∥, for all x. In the following ai denotes the i-th row of A.

Therefore, we define the data selection problem for regression as follows:
Definition 7. The data selection problem for linear regression is defined as follows:

• Input: a n× d matrix A and a n-dimensional vector b, and a target number of queries k.

• Output: A sample S ⊆ [n] of size at most s together with a weight function w : S→R+

such that
∣∣∑

s∈S w(s)(⟨as, x⟩ − bs)
2 − ∥Ax− b∥22

∣∣ is as small as possible, for all x.

We do not achieve such a general statement, and need to make several assumptions, both on A, b
and to restrict the set of possible x. Our first set of assumptions is the following:
Assumption 8. For all i, ∥ai∥2 = O(1) and bi = O(1). Furthermore, there is a constant ζ such
that for all i, j, |bi − bj | ≤ ζ∥ai − aj∥2.

The above assumption is similar to the Lipschitz (or more generally Hölder) assumption we made
for theorem 1: it formalizes that the labels (i.e., bis) must be close when the embeddings (i.e., the
ais) are close. As before, it necessary to get any result querying a sublinear number of labels bi.
This assumption is also related to that of Sener & Savarese (2018) who assume the labels of the data
are drawn randomly, following distributions that are Lipschitz.

The basic idea of our algorithm is to interpret each row of A as a point in Rd and cluster these
points using k-median. Then we compute the optimal regression x0 for the dataset consisting of all
centers, each weighted by the size of its cluster, and use x0 to define a probability distribution over
all points. Sampling s points according to this distribution gives a set S together with a suitable
weight function

Algorithm 2 Data-Selection-Regression(A, k, ε, ζ)

1: Compute a O(1)-approximation A to k-median on A.
2: For all i ∈ [n], let j be such that aj is the closest center to ai in A: define âi = aj , b̂i = bj and

v(ai, x0) = (⟨âi, x0⟩ − b̂i)
2.

3: Compute the optimal regression x0 for the dataset {â1, ..., ân}, i.e., the dataset where each
center of A is weighted by the size of its cluster.

4: Define pi :=
ζ∥ai−âi∥+v(ai,x0)∑

j∈[n] ζ∥aj−A(aj)∥+v(aj ,x0)
, and w(i) = s−1p−1

i .
5: Compute a sample S of s points, picked independently following the distribution pi.
6: Output: the set S with weights w.

Our main theorem for regression is stated next. The proof is deferred to appendix B.4.
Theorem 9. Let ζ ≥ 1, A and b respecting assumption 8 with ζ being constant, and let âi and x0

as computed by algorithm 2.

Let X be the set of vectors x such that ∥x∥2 = O(1) and ∀i, |⟨âi, x− x0⟩| ≤ ζ∥ai − âi∥2.

For s = O(d/ε2 log(1/δ)), it holds with probability 1− δ that, for all x ∈ X ,∣∣∣∣∣∑
s∈S

w(s)(⟨as, x⟩ − bs)
2 − ∥Ax− b∥22

∣∣∣∣∣ ≤ ε(∥Ax− b∥22 + ζΦk,1(A)))

5 EXPERIMENTS

We consider the setting of data selection, in which the goal is to train a model on a new dataset in a
runtime-efficient and data-efficient way. Runtime efficiency means that we prefer an algorithm with
low total runtime and a sublinear number of queries to a model inference oracle, and data efficiency
means that there is a bound on the number of data points that can be used for training because labels
are costly or hard to obtain.

In Section 5.1 we present experiments on a linear regression task, and in Section 5.2 we present
results on some common neural network benchmark tasks.
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5.1 EXPERIMENTS ON LINEAR REGRESSION

Following our theoretical analysis in Section 4, we validate our coreset sampling algorithm on a
linear regression task. We present our results on the UCI gas sensor dataset1 Vergara et al. (2012);
Rodriguez-Lujan et al. (2014) in Figure 1.
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Figure 1: Experimental results on the gas sensor regression dataset. We plot the 1−R2 error on the
training and validation set (lower is better). To minimize variation, we independently run each data
point 100 times and average the results.

Our algorithm. We run algorithm 2, with a couple of differences: i) We run k-medoids, which is
a variant of k-median, and ii) we set ζ → ∞, which has the effect that we only look at distances
and not losses. We set the number of clusters to be 10% of the total number of data points in the
training set. After computing the clustering, we randomly sample each data point with probability
pe proportional to the distance from the nearest cluster center, and re-weigh each sampled term in
the regression objective by 1/pe. After computing the regression solution, we evaluate it on the full
training and validation datasets.

We compare with uniform sampling and leverage score sampling. Leverage score sampling is the de
facto sampling algorithm for linear regression, and it is known to have extremely good performance
but high runtime cost, since it requires solving a full-dimensional linear system per example data
point. Surprisingly, we find that our clustering-based algorithm performs almost on par with leverage
score sampling, while being drastically faster – the k-medoids solution can be computed in linear
time.

5.2 EXPERIMENTS ON NEURAL NETWORKS

For our neural network experiments, our setting is as follows: Given a target number of data points
k that we need to sample, we first train an initial model using a uniformly random subset of k′ < k
data points, and then run a model-based sampling algorithm that uses this initial model to sample
the remaining k− k′ data points. Finally, we train a model on all the k data points and evaluate it on
a held-out validation set. For our experiments, we chose k′ = 0.2k.

Our algorithms. We consider two instantiations of the sensitivity sampling algorithm presented
in Algorithm 1: loss-based sampling and gradient-based sampling.

• Loss-based sampling (“loss”): we set ℓ(e) := L(y,modelθ(e)) to be the loss of the model
on example e with respect to the true label y, where θ are the model parameters.

• Gradient-based sampling (“grad”): we set ℓ(e) := ∥∇θL(y,modelθ(e))∥22 to be equal to
the squared ℓ2 norm of the gradient update.

For the clustering required in Algorithm 1, we run k′′-means clustering using python’s sklearn im-
plementation, for some k′′ < k on the model’s last layer embeddings. For our experiments, we

1https://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+
Dataset+at+Different+Concentrations
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chose k′′ = 0.2k. Since the k′′ cluster centers might not be actual data points from the dataset,
we replace each center with the closest data point from the dataset in ℓ2 norm (note that by triangle
inequalities, this loses only a factor 4 in the k-means cost). After computing ℓ(e) for each center
and extrapolating to the whole dataset using the approximation ℓ̃(e) := ℓ(A(e)) + λ ∥e−A(e)∥22,
we sample the remaining k − k′ − k′′ data points proportional to ℓ̃.

We present our results in Figure 2, where we compare with two algorithms: i) uniform sampling
(“uniform”), which samples a subset of examples uniformly at random, which is the simplest possi-
ble baseline for data selection, and ii) the k-center coreset algorithm of Sener & Savarese (2018)
(“[SS18]”). We notice that the loss- and gradient-based sampling algorithms from algorithm 1
perform best when the number of samples is relatively small. In addition, based on the runtime
comparison in figures 2 and 3, the loss-based algorithm performs best in terms of runtime.
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(a) Plots of experimental results for different datasets. For each algorithm, we plot the accuracy on the validation
dataset for different values of k (number of samples). We also provide a runtime comparison on CIFAR10.

Algorithm MNIST Fashion MNIST CIFAR10

uniform 0.9130 0.8091 0.4587
coreset Sener & Savarese (2018) 0.9134 0.7692 0.4491

Loss-based Algorithm 1 0.9203 0.8140 0.4590
Gradient-based Algorithm 1 0.9207 0.8107 0.4598

(b) Experimental results for k = 2000 and different datasets. For each algorithm, we show the accuracy on the
validation dataset.

Figure 2: The experimental comparison. To minimize variation, we independently run each data
point 100 times, and present the mean with bands of one standard deviation.

6 CONCLUSIONS

We presented a fast, high-quality algorithm for selecting a training set. We showed that it has strong
theoretical bounds and also performs very well in our empirical evaluation comparing it to slower,
state-of-the-art active learning algorithms.
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A PRELIMINARIES

A.1 FURTHER RELATED WORK

We present related work in data selection and active learning. For extensive and recent survey, we
refer to Ren et al. (2021), and detail here some of the most relevant point for comparison.

Our work departs from previous work in the following ways: We work in the regime where we have
a budget on both the number of elements selected (i.e.: labeled) and the number of inferences of
the model. Moreover, we present a rigorous analysis of our sampling mechanism that works for a
variety of machine learning models, as long as we are provided with embeddings that are Lipshitz
with respect to the loss of the model.

Given an unlabeled set of points, the active learning problem asks to identify the most relevant points
to label (Settles (2009); Cohn et al. (1996)). In the era of big data, labeling a big dataset is often too
expensive. We are thus given a budget of, say, k elements that we can label. The question becomes
how to pick these k elements so as to maximize the performance of the final model (that will be
trained on these elements).

From a theoretical standpoint, Dasgupta (2004) demonstrated that greedy active learning heuristics
perform poorly if agnostic to both data and learning algorithm. To circumvent these negative results,
other works have made assumptions on the data-dependent realizability of the hypothesis space like
(Gonen et al. (2013)) or on a data dependent measure of the concept space called disagreement
coefficient (Hanneke (2007)).

Related to ours, several successful works have brought together unsupervised techniques such as
clustering and information from the model (such as margin scores), see e.g.: Citovsky et al. (2021).
The work of Sener & Savarese (2018) brings together clustering, and sketching techniques (coresets
in this case).

Another line of works consists of bayesian active learning methods which use a non-parametric
model, like a Gaussian process, to obtain an estimate of the expected improvement on the model
after each query (Kapoor et al. (2007)), or alternatively the expected error after a set of queries (Roy
& McCallum (2001)). It seems that an important drawback is that these approaches do not scale to
large models (see the discussion in Sener & Savarese (2018)).

Uncertainty based methods form another important family of active learning algorithm. They aim
at finding relevant examples using heuristics like highest entropy (Joshi et al. (2009)), or geometric
distance to decision boundaries (Tong & Koller (2001); Brinker (2003)).

Batch-active learning based on uncertainty may lead to a useless batch, where all queries are very
similar (when the highest uncertainty is concentrated in a small region). To cope with this, several
methods that aim at trading-off diversity and uncertainty to select the points. The way the ele-
ments are iteratively selected can vary depending on the application from mini-batches to one-shot
(e.g.: Hoi et al. (2006); Guo & Schuurmans (2007); Chakraborty et al. (2014); Citovsky et al. (2021);
Amin et al. (2020)) Specifically in the context of mini-batch active learning, a common approach is
to use unsupervised machine learning techniques to extract information from the data. Such methods
include k- Medoid (Schubert & Rousseeuw (2019)), or MaxCover (Hochbaum & Pathria (1998)) to
select a set of data points that maximally cover the dataset with respect to some objective. Elhamifar
et al. (2013) and Yang et al. (2015) design a discrete optimization problem for this purpose, that
they solve using convex optimization methods. Unfortunately, the running time of these methods is
quadratic in the input data size and so highly impractical for large data.

Covering or clustering approaches have also been tried in the past Joshi et al. (2010); Wang & Ye
(2015). The former does not provide any theoretical guarantee associated to its approach. The
latter uses empirical risk minimization to minimize the difference between the maximum mean
discrepancy between iid. samples from the dataset and the actively selected samples (instead of the
loss we work with).

Active learning has also been studied when tailored to some specific machine learning problems
such as nearest neighbors, logistic regression or linear regression with Gaussian noise (Wei et al.
(2015); Hoi et al. (2006); Guo & Schuurmans (2007); Yu et al. (2006)).
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Recently, active learning was also extended to ℓp-regression for all p ≥ 1 without any assumptions
on the data, resulting in a number of optimal bounds Chen & Price (2019); Chen & Derezinski
(2021); Parulekar et al. (2021); Musco et al. (2022); Woodruff & Yasuda (2023). These works are
based on using sampling probabilities defined from the design matrix (agnostic to the label vector),
and range from leverage scores (p = 2) to ℓp-sensitivities to ℓp-Lewis weights, the latter achieving
optimal bounds for all p ≥ 1. Our work adds a new set of scores to this growing literature for regres-
sion, namely, scores that are proportional to the cost of clustering individual points. We note that in
practice, computing an approximate k-median solution may be much faster than approximating the
Lewis weights or leverage scores of a matrix since it does not involve computing the inverse of any
matrices.

If the model can be run on all input data, and so the confidence of the model is known for all the
input data elements, then several set-cover based methods that aims at best covering the hypothesis
space have been designed (Guillory & Bilmes (2010); Golovin & Krause (2011); Esfandiari et al.
(2021). The key distinguishing factor of our approach compared to these works is that we do not
require the model to be run on all the input data. Furthermore, as we demonstrate, our sampling
technique applies more generally to problems other than regression.

Coresets Our ideas are inspired from the coreset literature. Coreset were introduced initially for
k-median and k-means clustering: the goal is to compute a (weighted) set S of points such that, for
any set of k centers, evaluating its cost on S is almost the same as evaluating it on the full dataset
Har-Peled & Mazumdar (2004). Coresets with optimal size (which is O(kε−2 min(ε−2,

√
k)) exist

Cohen-Addad et al. (2021; 2022); Huang et al. (2023), and one of the most standard tool to build
a coreset is sensitivity sampling, namely sampling according to the cost in a constant-factor (k, z)-
clustering solution.

Ideas from the literature on coreset for clustering have already spread to other domains: Tukan et al.
(2023) presents coresets for Radial basis function neural networks of small sizes, and Tukan et al.
(2020b) for near-convex functions. Mussay et al. (2020); Tukan et al. (2022) showed how to use
coreset for prunning and compressiong neural networks, and Maalouf et al. (2022) used coreset for
fast least-square linear regression. For machine-learning tasks, Tukan et al. (2020a) present coresets
for Support Vector Machines.

A.2 CLUSTERING PRELIMINARIES

In the following, we are given a set of points D in the Euclidean Space Rd with ℓ2 norm. We
let µz(D) be the power mean of X , namely the point p that minimizes

∑
x∈D ∥x − p∥z . We let

Dispz(D) :=
∑

x∈X ∥x− µ(D)∥z .

Given a set of k points C ∈ (Rd)k, we denote the (k, z)-clustering cost of C on D as Φz(D, C) :=∑
x∈D minc∈C ∥x − c∥z and Φk,z(D) := minC⊂Rd, |C|≤k Φz(D, C). For z = 1, this objective

corresponds to k-median, while k-means is for z = 2. Note that Dispz(D) = Φ1,z(D).

We say that a set C of k points is an α-approximation to (k, z)-clustering on D when Φz(C,D) ≤
αΦk,z(D). An ordered list of centers c1, ..., cn is an α-approximation to Prefix-z-clustering when,
for all 1 ≤ k ≤ n, (c1, ..., ck) is an α-approximation to (k, z)-clustering on D. An O(1)-
approximation to prefix (k, z)-clustering can be computed using the algorithm of Mettu & Plaxton
(2003). Dz-sampling (which is k-means++ for z = 2) gives an O(log k)-approximation, which is
fast and performs extremely well in practice.

B DEFERRED PROOFS

In this section, we use Bernstein’s concentration inequality:

Theorem 10 (Bernstein’s inequality). Let X1, . . . , Xn be independent random variables and let
M > 0 be such that, for all i, |Xi| ≤ M . Then, for all t > 0,

Pr[|
∑
i

Xi − E[
∑
i

Xi]| ≥ t] ≤ exp(− t2

2
∑

x∈X E[X2
x] + 2Mt/3

)
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B.1 PROOF FOR THE NON-ADAPTIVE CASE

Proof of theorem 4. We denote for simplicity R = supe∈D ℓ(e). The upper-bound is a simple ap-
plication of Bernstein’s inequality and is included for completeness.

The algorithm chooses successively s uniformly random samples S1, ..., Ss from D (with re-
placement) and gives each sampled element weight n/s. Let Xi = w(Si)ℓ(Si). It holds that
E[Xi] =

n
s

∑
e∈D

ℓ(e)
n =

∑
e∈D ℓ(e)

s , and, thus, E[
∑

e∈S w(e)ℓ(e)] = E[
∑

Xi] =
∑

e∈D ℓ(e).

To show that this sum of random variables is concentrated, we aim at applying Bernstein’s inequality.
For this, we need to bound E[X2

i ]: we have

E[X2
i ] =

∑
e∈D

(n
s
ℓ(e)

)2
Pr[e = Si] ≤

∑
e∈D

n

s2
ℓ(e)2 ≤ n2

s2
R2.

Summed over all i, we therefore have
∑s

i=1 E[X2
i ] ≤ n2R2/s. Furthermore, for any i, |Xi| ≤ n

sR
with probability 1. Plugging this result into Bernstein’s inequality yields

Pr[∆(S) ≥ εnR] = Pr

[∣∣∣∣∣∑
i

Xi − E[
∑
i

Xi]

∣∣∣∣∣ ≥ εnR

]
≤ exp

(
− ε2n2R2 · s
2n2R2 + 2nR · εnR/3

)
≤ exp(−ε2 · s/(2 + ε)).

With s = O(1/ε2), this gives the desired probability bound.

For the lower bound, consider a multiset D ⊂ R with n/2 copies of −1 and n/2 copies of 1, and
ℓ being the identify function ℓ(x) = x, implying that

∑
e∈D ℓ(e) = 0. Then, the estimator is a

sum of Rademacher random variables, and anti-concentration bound states that for any fixed value
x,
∑

s∈S ℓ(s) = x with probability at most O(1/
√

|S|) Littlewood & Offord (1939). Therefore, for
some constant c (which depends on the previous big-O constant), Pr[|

∑
s∈S ℓ(s)| ≥ c

√
|S|] ≥ 1/2.

Multiplying with n/|S|, this implies that our estimator is bigger than cn√
|S|

with probability at least

1/2. When |S| ≤ 1/ε2, this gives the desired statement.

B.2 PROOF OF THEOREM 5

Proof. We prove that algorithm 1 yields the desired result. Let S1, ..., Ss be the successive random
samples, and define Xi = ℓ(Si)w(Si). Note that Φz(D,A) =

∑
e∈D v(e).

Using the Hölder continuity of ℓ, we get that ℓ(e) ≤ ℓ̂(e) + λv(e) and ℓ̂(e) ≤ ℓ(e) + λv(e).
Therefore,

E[X2
i ] =

∑
e∈D

(ℓ(e)w(e))2 · pe =
∑
e∈D

ℓ(e)2
1

pes2

=
1

s2
·
∑
e∈D

ℓ(e)2 ·
λΦz(D,A) +

∑
x∈D ℓ̂(x)

ℓ̂(e) + λv(e)

≤ 1

s2
·
∑
e∈D

ℓ(e) · (ℓ̂(e) + λv(e)) ·
λΦz(D,A) +

∑
x∈D ℓ̂(x)

ℓ̂(e) + λv(e)

=
1

s2
·
∑
e∈D

ℓ(e) ·

(
λΦz(D,A) +

∑
x∈D

ℓ̂(x)

)

≤ 1

s2
·

(∑
e∈D

ℓ(e)

)
·

(
2λΦz(D,A) +

∑
x∈D

ℓ(x)

)

≤ 1

s2
·

(
2λΦz(D,A) +

∑
e∈D

ℓ(e)

)2

.
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We let M := maxe∈D ℓ(e)w(e) = maxe ℓ(e) ·
λΦz(D,A)+

∑
x ℓ̂(x)

s(ℓ̂(e)+λv(e))
. As previously, we have M ≤

1
s

(
λΦz(D,A) +

∑
e∈D ℓ̂(e)

)
≤ 1

s ·
(
2λΦz(D,A) +

∑
e∈D ℓ(e)

)
.

Now, the Bernstein inequality (see theorem 10) implies, for t = 2λΦz(D,A) +
∑

e∈D ℓ(e):

Pr [∆(S) > εt]

≤ exp

(
−ε2t2

2
∑s

i=1 E[X2
i ] + 2Mεt/3

)

Using M ≤ t/s and E[Xi]
2 ≤ 1

s2 · t2, we get:

Pr [∆(S) > εt] ≤ exp

(
−ε2

t2 · s
2t2 + 2εt2/3

)
= exp

(
−ε2

s

2 + 2ε/3

)
≤ exp(−1),

where the last inequality holds by the choice of s = ⌈ε−2(2 + 2ε/3)⌉.

B.3 ADAPTIVE ACTIVE LEARNING

We present here the algorithm used to prove theorem 6. The proof follows directly from the proof
for theorem 5.

Algorithm 3 Adaptive-active-learning(D, r, λ, ε)

1: Compute a O(1)-approximation to prefix-z-clustering on D, i.e., an ordering of the points in D
such that any prefix of length k0 is an O(1)-approximation to (k0, z)-clustering on D.

2: for each round i = 1, ..., r do
3: query ℓ for the points at position in [(i− 1)k + 1, ik] in the ordering, and define A to be the

set of elements at position at most ik in the ordering.
4: For e ∈ D, define A(e) = argmina∈A ∥e − a∥ the element of A that is the closest to x,

ℓ̂(e) := ℓ(A(e)) and v(e) := ∥e−A(x)∥.
5: Define pe :=

ℓ̂(e)+λv(e)

λΦz(D,A)+
∑

x∈D ℓ̂(x)
.

6: Let s := ⌈ε−2(2 + 2ε/3)⌉. For e ∈ D define pe := ℓ̂(e)+λv(e)

λΦz(D,A)+
∑

x∈D ℓ̂(x)
and wi(e) =

s−1p−1
e .

7: Compute a sample Si of s points, picked independently following the distribution pe.
8: end for
9: Output: Si, wi for each round i.

B.4 REGRESSION

To show theorem 9, we first prove that for any fixed x ∈ X , the desired bound hold with probability
1 − exp(−ε2s). It is standard to extend this result to all x ∈ X , using discretization techniques to
find a set N of size ε−O(d) such that preserving the cost for all vectors in N is enough to extend
the result for all candidate x (N is called a net for X ). Hence, it is enough to show the following
lemma:
Lemma 11. Let ζ, κ ≥ 1, and A and b that respects assumption 8 with constant ζ and âi and x0 as
computed by algorithm 2.

Let x ∈ X , namely x such that ∥x∥2 = O(1) and there is some ζ ≥ 1 such that ∀i, |⟨âi, x− x0⟩| ≤
κ∥ai − âi∥2. Then, with probability 1− δ, it holds that for s = 8ε−2 log(1/δ),∣∣∣∣∣∑

s∈S

w(s)(⟨as, x⟩ − bs)
2 − ∥Ax− b∥22

∣∣∣∣∣ ≤ ε(∥Ax− b∥22 + ζΦk,1(A)))
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Proof. Let S1, ..., Ss be the successive random samples, and define Xt = w(St)(⟨aSt
, x⟩ − bSt

)2.
By choice of w, it holds that E[

∑
Xt] = ∥Ax−b∥22. We will show concentration using the Bernstein

inequality.

We first focus on bounding the second moment of Xt. We have:

E[X2
t ] =

n∑
i=1

(⟨ai, x⟩ − bi)
4

s2pi

=
1

s2
·

n∑
i=1

(⟨ai, x⟩ − bi)
4 ·
∑

j∈[n] ζ∥aj −A(aj)∥+ v(aj , x0)

ζ∥ai − âi∥+ v(ai, x0)

To bound this term, we first note that

(⟨ai, x⟩ − bi)
2 − (⟨âi, x⟩ − b̂i)

2

=(⟨ai + âi, x⟩ − bi − b̂i)(⟨ai − âi, x⟩ − bi + b̂i)

=⟨ai + âi, x⟩⟨ai − âi, x⟩+ ⟨ai + âi, x⟩ · (b̂i − bi)− (bi + b̂i)⟨ai − âi, x⟩ − (b̂i + bi)(b̂i − bi)

≤∥ai + âi∥ · ∥ai − âi∥ · ∥x∥2 + ∥ai + âi∥ · ∥x∥|b̂i − bi| − |bi + b̂i| · ∥ai − âi∥ · ∥x∥+ |bi + b̂i| · |bi − b̂i|
=O(ζ∥ai − âi∥), (2)

where the last two lines follow from Cauchy-Schwarz and assumption 8.

We now relate this to the term v(ai, x0) = (⟨âi, x0⟩ − b̂i)
2 of the denominator:

(⟨âi, x⟩ − b̂i)
2 − (⟨âi, x0⟩ − b̂i)

2 = ⟨âi, x− x0⟩ · (âi, x− x0⟩+ 2b̂i)

= ⟨âi, x+ x0⟩⟨âi, x− x0⟩ − 2b̂i⟨âi, x− x0⟩
= O(|⟨âi, x− x0⟩|) = O(κ∥ai − âi∥),

where the last line uses our assumption |⟨âi, x − x0⟩| ≤ κ∥ai − âi∥. Thus, combining those
equations:

(⟨ai, x⟩ − bi)
2 ≤ O(ζ∥ai − âi∥) + (⟨âi, x0⟩ − b̂i)

2 +O(κ∥ai − âi∥)
= O((ζ + κ)∥ai − âi∥+ v(ai, x0)).

Thus, we can now finish our bound on the second moment of Xt:

E[X2
t ] =

1

s2
·

n∑
i=1

(⟨ai, x⟩ − bi)
4 ·
∑

j∈[n] ζ∥aj −A(aj)∥+ v(aj , x0)

ζ∥ai − âi∥+ v(ai, x0)

≤ 1

s2
·

n∑
i=1

(⟨ai, x⟩ − bi)
2 ·O((ζ + κ)∥ai − âi∥+ v(ai, x0)) ·

∑
j∈[n] ζ∥aj −A(aj)∥+ v(aj)

ζ∥ai − âi∥+ v(ai, x0)

≤
∑

j∈[n] ζ∥aj −A(aj)∥+ v(aj , x0)

s2
·

n∑
i=1

O
(
(⟨ai, x⟩ − bi)

2
)

Using the same upper bounds, we get that for all i,

w(i)(⟨ai, x⟩ − bi)
2 =

1

s
· (⟨ai, x⟩ − bi)

2 ·
∑

j∈[n] ζ∥aj −A(aj)∥+ v(aj , x0)

ζ∥ai − âi∥+ v(ai, x0)

≤
∑

j∈[n] ζ∥aj −A(aj)∥+ v(aj , x0)

s
.

Therefore, for T = ε(∥Ax − b∥22 + ζΦk,1(A) +
∑

i v(ai, x0)) we get that 2
∑

t E[X2
t ] ≤ T 2/s,

and with probability 1 each Xt is verifies 2|Xt|T/3 ≤ T 2/s. Furthermore, using eq. (2) and the
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optimality of x0 for the dataset {â1, ..., ân}, we have that:∑
i

v(ai, x0) =
∑
i

(⟨âi, x0⟩ − b̂i)
2 ≤

∑
i

(⟨âi, x⟩ − b̂i)
2

≤
∑
i

(⟨ai, x⟩ − bi)
2 +O(ζ)∥ai − âi∥ = ∥Ax− b∥22 +O(ζ)Φk,1(A).

Hence, the Bernstein inequality ensures that

Pr

[∣∣∣∣∣∑
e∈S

w(e)(⟨ae, x⟩ − bs)
2 − ∥Ax− b∥22

∣∣∣∣∣ ≥ ε(∥Ax− b∥22 + ζΦk,1(A)))

]

Pr

[∣∣∣∣∣∑
e∈S

w(e)(⟨ae, x⟩ − be)
2 − ∥Ax− b∥22

∣∣∣∣∣ ≥ ε/2 · (∥Ax− b∥22 + ζΦk,1(A) +
∑
i

v(ai, x0))

]
≤ exp

(
−ε2s/8

)
.

Therefore, using that s = 8ε−2 log(1/δ) concludes the lemma.

C MORE EXPERIMENTAL DETAILS

Datasets and models. We largely follow the dataset and model setup used in DISTIL. The datasets
we consider are MNIST, Fashion MNIST and CIFAR10. For the first two we use a neural network
with one 128-dimensional hidden layer, and for the last one we use convolutional neural network
with three convolutional layers and three dense layers. We train each model for 10 epochs, a batch
size of 32, and use Adam optimizer with a learning rate of 10−3.

Runtime comparison. In Figure 3, we show a comparison between the runtimes of our loss- and
gradient-based algorithms, and the coreset algorithm of Sener & Savarese (2018). All algorithms
were implemented in python using the tensorflow framework and the runtime calculation experi-
ments ran on CPU, on a cloud VM with 24 CPUs and 100GB of RAM. It should be noted that a sig-
nificant advantage of our loss- and gradient-based sampling is that they can rely on a pre-computed
metric and clustering that is not updated during the sampling process. In most applications, this will
be a fixed metric generated by an upstream model, that is easy to generate and compute distances.
As a result, most of the runtime will be spent running model inferences at the cluster center points.

Runtime comparison on regression. In Table 1 we compare the runtimes of computing the lever-
age scores of a matrix and computing a k-medoid clustering (a variant of k-median). As the results
show, even on matrices with i.i.d. normal entries, the standard k-medoid implementation from
python’s scikit-learn library is significantly faster than computing the leverage scores. This is ex-
pected, since leverage score computation takes time O(nnz + nω), where nnz is the number of
non-zeros in the data matrix and ω ≥ 2 is the runtime exponent of matrix multiplication, while
O(1)-approximate k-median takes time O(nnz + n).

n 5,000 10,000 20,000 30,000
Leverage runtime (sec) 36.62 250.64 1890.73 6098.31
k-medoid runtime (sec) 19.74 105.29 858.5 2712.09

Table 1: Comparing the runtime for computing all leverage scores and a k-medoids clustering for
k = 0.2n, of an n× n matrix with i.i.d. standard normal entries.

Algorithms for data selection. We list some of the best-performing algorithms in literature, and
mention their advantages and disadvantages. Out of these, margin and entropy sampling are the top
performing methods in the DISTIL2 benchmark.

2https://github.com/decile-team/distil
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Figure 3: We present runtime comparisons between different algorithms, for MNIST and CIFAR10.
The results for Fashion MNIST are analogous to those of MNIST, since the model and dataset have
the same size.

• Uniform sampling: We uniformly sample data points up to the budget k. This is the sim-
plest and fastest way to sample k data points.

• Margin/Least confidence/Entropy sampling: These methods aim to select the examples
with the lowest confidence. Specifically, if p1, . . . , pC are the per-class output proba-
bilities of the model, we select the data points that either minimize maxi∈[C] pi, min-
imize pi∗ − maxi∈[C]\{i∗} pi, where i∗ = argmaxi∈[C]pi, or maximize the entropy
−
∑C

i=1 pi log pi. Unfortunately, these methods require an inference call for each data
point, in order to evaluate its the classification uncertainty, and so are not considered run-
time efficient.

• k-center CoreSet [SS18]: The k-center algorithm from Sener & Savarese (2018). This
algorithm does not require any model inferences, but instead requires maintaining a nearest-
neighbor data structure under insertions of data points.

In Figure 4 we provide more detailed experiments, including multiple algorithms from previous
work.
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Figure 4: The experimental results for different datasets and algorithms. To minimize variation, we
independently run each data point 100 times.
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