
Under review as a conference paper at ICLR 2023

IMPROVING ACCURACY AND EXPLAINABILITY
OF ONLINE HANDWRITING RECOGNITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Handwriting recognition technology allows recognizing a written text from a
given data. The recognition task can target letters, symbols, or words, and the
input data can be a digital image or recorded by various sensors. A wide range
of applications from signature verification to electronic document processing can
be realized by implementing efficient and accurate handwriting recognition algo-
rithms. Over the years, there has been an increasing interest in experimenting
with different types of technology to collect handwriting data, create datasets,
and develop algorithms to recognize characters and symbols. More recently, the
OnHW-chars dataset has been published that contains multivariate time series data
of the English alphabet collected using a ballpoint pen fitted with sensors. The au-
thors of OnHW-chars also provided some baseline results through their machine
learning (ML) and deep learning (DL) classifiers.
In this paper, we develop handwriting recognition models on the OnHW-chars
dataset and improve the accuracy of previous models. More specifically, our ML
models provide 11.3%-23.56% improvements over the previous ML models, and
our optimized DL models with ensemble learning provide 3.08%-7.01% improve-
ments over the previous DL models. In addition to our accuracy improvements
over the spectrum, we aim to provide some level of explainability for our models
to provide more logic behind chosen methods and why the models make sense
for the data type in the dataset. Our source codes, data, and models will be made
publicly available for verifiability and reproducibility of our results.

1 INTRODUCTION

1.1 PROBLEM STATEMENT AND RELATED WORK

Handwriting is defined to be the writing characteristics of an individual Priya et al. (2016). Hand-
writing recognition is the process of converting written text (whether that be letters, numbers, words,
symbols, etc.) into a form which can be interpreted and recognized by a computer. One major goal
in handwriting recognition analysis involves a computer interpreting letters or words that have been
written by hand. Handwriting data can be interpreted by a machine (computer) in two distinct cate-
gories: online and offline.

Offline handwriting recognition tries to recognize a handwritten text from its static digital image that
has been produced at the time of writing. Online handwriting data is captured at run time, by some
sort of sensor. This sensor can be in the pen used, such as in Ott et al. (2020) or through the device
it was captured on a tablet or digitizer, as in LaViola & Zeleznik (2007). The sensor records spatio-
temporal signals in the form of a multivariate time series throughout the process. This provides
a large advantage for online handwriting over offline for certain applications or implementations.
Recording characters through a sensor, as opposed to digital images, as is in online handwriting
recognition, has the added benefit of capturing more information. The sensor captures additional
pieces of information such as the time it takes to write, cadence, and unique stylizations in the
way it is written, all of which may not be able to be captured by a static image. These dynamic
readings can produce more favourable results in certain applications as there is more information
to be obtained. Applications such as signature verification Fahmy (2010) and e-security or e-health
Faundez-Zanuy et al. (2020) can make use of online handwriting recognition particularly well.

1



Under review as a conference paper at ICLR 2023

Over the years, there has been an increasing interest to experiment with different types of technology
to collect handwriting data, to create datasets, and to develop algorithms to perform recognition
of characters and symbols Alpaydin (1997); Wang & Chuang (2012); Guyon et al. (1994). More
recently, the OnHW-chars dataset Ott et al. (2020) has been published that contains multivariate
time series data of the English alphabet collected using a ballpoint pen fitted with sensors. The
pen used to collect this data was the STABILO DigiPen, which is fitted with various sensors: 2
accelerometers, 1 gyroscopes, 1 magnetometers and a force sensor. Each letter in OnHW-chars is
an n× 14 vector, where n is the amount of timesteps collected. For each timestep, 14 features were
collected as follows: for each of the two accelerometers, gyroscopes and magnetometers, x, y and z
values were collected, as well as one feature representing time and the final feature is a binary value
of whether or not force was applied with the pen on the paper. The dataset OnHW-chars provides
a basis to develop algorithms to correctly identify which letter is being written based on sensor
data. While publishing a dataset, the authors of Ott et al. (2020) also provided some baseline results
through their machine learning (ML) and deep learning (DL) classifiers. DL classifiers, trained on
the same dataset OnHW-chars, have later been improved in a more recent paper Ott et al. (2022a).
In addition, Ott et al. (2022a) reports on the accuracy of classifiers trained on other new datasets,
such as OnHW-equations, OnHW-symbols and OnHW-words. There have been a sequence of other
papers published, exploring other topics and models, such as in Ott et al. (2022b;c;d); Klaß et al.
(2022), however we will focus on Ott et al. (2020; 2022a) as these are the most accurate reported
results. To our knowledge, source codes of algorithms and models used in Ott et al. (2022a) have
not been released to public yet.

A brief description of OnHW-chars Being the most recent and publicly available online hand-
writing dataset with some state-of-the-art classifiers trained on it, we focus on developing classifiers
for OnHW-chars. OnHW-chars contains multiple versions of each letter from a to z, collected from
119 unique users. Left handed writers were excluded from the dataset.

There is a separate dataset for lowercase and uppercase letters as well as a combined dataset of
both lowercase and uppercase letters. Additionally, the data was pre-split in Ott et al. (2020) into
5 folds of train and test split for each of the lowercase, uppercase and combined datasets. For each
of these, a writer independent (WI) and a writer dependent (WD) version of the split is provided in
Ott et al. (2020). In WI, writer sets of the train and the test split of a fold are disjoint. If a writer
appears in the training (test) data, they are not in the test (train). However, in WD, a writer’s data
will be split between the training and test data. All in all, this gives 6 datasets (3 cases and 2 writer
dependency) further split into 5 folds each. In all this yields 30 datasets. When reporting on the
accuracy of OnHW-chars classifiers in Ott et al. (2020; 2022a), they average over 5 folds. Thus, they
present classifier accuracies on 6 datasets, which we denote by lowercase-WD (L-WD), lowercase-
WI (L-WI), uppercase-WD (U-WD), uppercase-WI (U-WI), combined-WD (C-WD), combined-WI
(C-WI).

1.2 CONTRIBUTIONS

Our contributions in this paper are twofold:

Improving on the accuracy of classifiers on OnHW-chars To our knowledge, the best accuracy
results of ML classifiers and DL classifiers for the OnHW-chars dataset are the ones reported in Ott
et al. (2020) and Ott et al. (2022a), respectively. As mentioned before, Ott et al. (2022a) improves
DL classifiers in Ott et al. (2020). Our ML and DL models yield, respectively, 11.3%-23.56% and
2.17%-4.34% improvements over the accuracy of the best ML and DL models reported in Ott et al.
(2020; 2022a). We obtain these improvements thanks to the use of state-of-the-art feature extraction
algorithms and optimizations of the models. We further utilize the ensemble learning method to
achieve 3.08%-7.01% improvements over the best results reported in Ott et al. (2020; 2022a). We
refer the reader to Table 2 for a summary of our results, and to Sections 3 and 4 for more details about
the models and workflows used. Additionally, we refer the reader to the Figure 4 for an overview of
our workflow.

Providing verifiable and reproducible results with some level of explainability In addition to
providing improvements to accuracy across the spectrum, this paper aims to provide some level of
explainability of these models so as to provide more logic as to why these methods are chosen and

2



Under review as a conference paper at ICLR 2023

why the models make sense for the type of data in the dataset. In addition to prediction accuracy,
it is important to assess ML models on how they come to their decisions Fauvel et al. (2020). One
goal is to explain the reason as to why it makes sense to use the models used for the specific data
at hand. For the DL models we extend the local interpretable model-agnostic explanations (LIME)
Ribeiro et al. (2016) architecture to add explainability to our multivariable time series (MTS) data.
We refer the reader to Sections 4 and 5 for more details.

Finally, we would like to add some transparency to the process. Along with the paper, a public
repository will be provided containing all the preprocessing and code for each model, so that it is
reproducible and verifiable. Some models, specifically some DL models contain a level of random-
ness, which will alter the results slightly from one run of the model to the next. For these situations,
a loadable encoded representation of the model will be provided as well. With this, we would like
to make the model generation process public, so that others can have access to these models, as well
as verify, reproduce, and improve our results.

2 PROCESSING THE ONHW-CHARS DATASET

2.1 PREPROCESSING AND FILTERING

The OnHW-chars dataset is provided publicly in its raw form. In Ott et al. (2020), detailed explana-
tions are provided for preprocessing OnHW-chars. However, to our knowledge, the pre-processed
versions are not publicly available, which introduces some challenge for reproducing results and
providing fair comparisons. According to Ott et al. (2020), a high pass filter is applied to the data
with a cutoff frequency of 1 (Hz) to remove the gravitational acceleration from the accelerometer
recordings. Also, a moving filter with a window of size 11 is used and that acts as a low pass fil-
ter, allowing high-frequency noise removal from the data. It is noted in Ott et al. (2020) that the
filtering is used when applying ML models and only trimming is applied for the DL models. Our
pre-processing steps on raw data also vary depending on the choice of the classification algorithm.
We will provide the details of changes in pre-processing steps for each methodology.

Table 1: Statistical characteristics of the OnHW-chars dataset subsets in terms of mean (µ) and
standard deviation (σ) of the total number of timestamps for each sample of data.

Subset µ σ
Lowercase (L) 44.05 29.93
Uppercase (U) 52.85 42.82
Combined (C) 48.45 37.20

As mentioned before in Section 1, OnHW-chars contains 6 datasets: L-WD, L-WI, U-WD, U-WI,
U-WD, C-WD, and C-WI with different characteristics. Table 1 presents statistical characteristics
of the OnHW-chars subsets in terms of mean (µ) and standard deviation (σ) of the total number of
samples for each instance of data. The σ for each subset in relation to their respected µ indicates
that the number of samples for each instance in OnHW-chars is notably spread out and confirms
the presence of outliers. In order to reduce the impact of outliers on the data and make the data
more coherent, we discard instances based on the statistical characteristics of the lowercase subset.
This is because only between 2%–4% of normal English literature characters are written in capitals
depending on the text and the genre. Therefore, considering real-life applications in practice, the
lowercase subset can be a better candidate for detecting and removing outliers. Using µ and σ of the
lowercase subset as given in Table 1, we remove any data sample with sequence length more than
µ+ 2σ ≈ 104. Considering that µ− 2σ yields a negative value, we determine, based on inspecting
the dataset, that any sequence of length less than 10 should be discarded.

2.2 EXTRACTING STATISTICAL FEATURES FROM ONHW-CHARS

The OnHW-chars contains variable length time-series data points. On the other hand, ML algorithms
commonly accept fixed length data points for their training. Therefore, for each variable-length data
point in OnHW-chars, we are motivated to extract a fixed number of features that carry as much
information as possible about the data.

3



Under review as a conference paper at ICLR 2023

We first pre-process OnHW-chars as mentioned in Section 2.1, which is then provided as input to
the tsfresh software package Christ et al. (2018). Tsfresh is the main component used in our feature
extraction process. Tsfresh applies the feature extraction and scalable hypothesis testing (FRESH)
algorithm Christ et al. (2016) to extract features from variable length time series data, and further
selects (and filters) relevant features based on their significance to the classification task at hand
Christ et al. (2018). It computes a total of 794 time series features, obtained from the combination of
63 different time series characterization methods. The features range from simple statistical features
such as the mean, and standard deviation to more complex ones including Fourier coefficients.

After applying tsfresh’s feature extraction algorithm to OnHW-chars, there were a total of 10231
features extracted for every letter recording. This comes as a result of 787 features extraction per
dimension for the 13-dimensional OnHW-chars dataset. These features are then further filtered using
tsfresh’s feature selection step, which conducts a series of scalable hypothesis tests and significantly
drops the number of features. For example, 1571 features are extracted from the first fold of L-WI
in the OnHW-chars dataset. We should emphasize that, in order to control leakage of information
from the test set, we applied the feature selection step only on the training set. Once we have the
selected features from the training set, those same features are directly extracted from the test set.
The reader can find a flowchart depicting this in the in Figure 5.

In our experiments, we observe that accuracy of ML classifiers is significantly affected by the choice
of the parameter n significant in tsfresh. The parameter n significant represents the number of
classes a feature should be able to predict. In the case of classifying lowercase or uppercase let-
ters, each feature we select should be able to predict any of the 26 classes. This is where the trade
off comes in. When selecting n significant to be high, only a very small set of features will be
selected. This tends to lead to low classification accuracy due to the high amount of information
loss. Counter to that, when selecting n significant to be low, we get many features but they may
not predict the majority of class labels. This trade off is later visualized in Figure 6. Through ex-
perimentation with the k-nearest neighbors (kNN) model, we chose to use n significant = 17 in our
feature extraction step. We note that this choice may not be optimal and a better choice may exist.
Once feature extraction and selection steps are completed, we use the extracted features to train our
ML models. During training, other transformations may be applied to data, which we explain in the
following.

3 DEVELOPING MODELS ON THE ONHW-CHARS DATASET

3.1 MACHINE LEARNING (ML) ALGORITHMS

For developing ML models, we follow two strategies. In both strategies, the OnHW-chars dataset
is preprocessed and filtered as described in Section 2.1. In our first strategy, we extract fixed-length
features from the preprocessed and filtered OnHW-chars dataset, as explained in Section 2.2, and
that these features are provided as input to the training of ML models, where we use Decision
Tree, Random Forest, Extra Trees, Logistic Regression, k-Nearest Neighbours, and Support Vector
Machines. In our second strategy, we investigate elastic similarity measures for classification, by
using the preprocessed and filtered OnHW-chars for training kNN using Dynamic Time Warping
(DTW). In Section C.1, we provide details about our ML models, and we refer the reader to Table 2
for our results and a comparison with the results from Ott et al. (2020). In particular, we obtain
11.3%-23.56% improvements over the ML models in Ott et al. (2020).

3.2 DEEP LEARNING (DL) ALGORITHMS

In order to provide a comparison with the (baseline) results in Ott et al. (2020; 2022a), we first train
DL models considered in Ott et al. (2020; 2022a) using the software package tsai Oguiza (2020) Our
trained models include fully convolutional network (FCN), residual neural network (ResNet), long
short-term memory (LSTM), bidirectional LSTM (BiLSTM), inception time (InceptionTime), xcep-
tion time (XceptionTime), and explainable convolutional neural network (CNN) for multivariate
time series (XCM). We explain each DL methodology that we train on OnHW-chars in Section C.2.
We refer the reader to Table 2 for our results and a comparison with the best of the results from Ott
et al. (2020; 2022a). Our baseline models yield 2.17%-3.91% improvements over the DL models
in Ott et al. (2020; 2022a). Our DL models have been developed using the software package tsai

4



Under review as a conference paper at ICLR 2023

Table 2: A summary of our results in comparison with Ott et al. (2020; 2022a). Columns labeled
with “OnHW” show the best of best results from Table 4 in Ott et al. (2020) and Table 6 in Ott
et al. (2022a). Values in bold font indicate the best result of their column in their group in the table.
Values in bold font that are also underlined indicate the best result in their groups in the table. There
are 5 groups: ML Baseline, DL Baseline, DL Optimized, Ensemble Learning, and Best Overall.

Lowercase Uppercase Combined
WD WI WD WI WD WI

Proposed OnHW Proposed OnHW Proposed OnHW Proposed OnHW Proposed OnHW Proposed OnHW

ML Baseline 5NN with NCA 77 - 68.35 - 81.51 - 74.72 - 64.96 - 55.73 -
5NN with PCA 57.7 - 44.42 - 59.49 - 48.7 - 36.1 - 23.5 -
DT 49.34 30.49 44.85 22.89 55.91 33.23 51.48 24.32 37.39 20.32 33.06 20.33
ET 70.49 - 61.81 - 73.83 - 66.15 - 56.8 - 48.2 -
KNN-DTW 65.41 - 54.62 - 72.08 - 62.72 - 50.69 - 41.14 -
LogReg 71.98 56.16 66.54 49.6 77.36 62.59 73.55 53.26 60.68 43.95 54.87 41.66
RFC 71.45 58.02 64.97 45.55 75.32 63.19 69.25 45.96 58.33 43.6 51.65 43.62
Linear SVM 75.64 62.09 68.1 51.8 80.75 70.61 74.67 54 66.24 48.77 58.04 46.56
RBF SVM 78.42 - 71.08 - 81.91 - 76.82 - 66.89 - 59.87 -
KNN 67.61 49.17 55.96 34.09 70.29 57.49 61.42 36.68 50.33 38.3 39.57 33.08

ML Improvements 16.33 19.28 11.3 23.56 18.12 13.31

DL Baseline FCN 86.93 81.62 73.67 71.48 88.16 85.37 78.71 77.24 77.39 67.41 62.15 58
InceptionTime 92.74 84.14 83.44 75.28 94.54 87.8 88.43 81.62 83.17 70.43 70.49 61.68
BiLSTM-FCN 86.53 - 73.74 - 88.11 - 79.54 - 77.89 - 63.31 -
LSTM-FCN 86.5 81.43 74.36 71.41 88.28 85.43 79.91 77.07 77.92 67.34 63.26 57.93
LSTM 88.33 79.83 78.33 73.03 90.83 88.68 84.59 81.91 79.15 67.83 67.61 60.29
BiLSTM 88.69 82.43 78.5 75.72 91.3 89.15 84.37 81.09 79.42 69.37 67.5 63.38
(Bi)MLSTM-FCN 86.7 - 74.49 - 89.2 - 80.74 - 79.15 - 65.1 -
MLSTM-FCN 86.63 80.21 74.15 71.9 89.16 85.25 80.89 77.44 79.12 69.33 64.82 60.14
ResCNN 90.23 82.52 78.26 72 91.53 86.91 82.41 78.64 80.22 67.55 65.43 58.67
ResNet 92.48 83.01 81.64 71.93 94.11 86.41 86.28 78.03 82.84 68.56 68.65 58.74
XCM 81.94 74.39 72.36 68.12 84.11 81.67 76.41 74.32 70.99 58.18 61.82 51.99
XceptionTime 91.95 81.41 82.86 70.76 94.02 85.94 87.93 78.23 83.32 66.7 71.8 56.92
CNN-BiLSTM - 89.66 - 80 - 92.58 - 85.64 - 78.98 - 68.44

DL Optimized InceptionTime 92.79 - 83.91 - 94.75 - 88.74 - 82.71 - 71.82 -
LSTM-FCN 85.27 - 75.87 - 89.44 - 81.82 - 77.72 - 65.8 -
LSTM 89.49 - 80.86 - 91.32 - 85.26 - 79.16 - 70.51 -
MLSTM-FCN 87.35 - 76.36 - 87.35 - 80.65 - 79.19 - 67.83 -

DL Improvements 3.13 3.91 2.17 3.1 4.34 3.38

Ensemble Learning Plurality (top 3) 93.47 - 84.95 - 94.98 - 89.27 - 85.08 - 74.13 -
Soft (top 2 + opt.) 93.66 - 85.39 - 95.14 - 89.74 - 85.36 - 74.56 -
Weighted Soft 94.18 - 86.12 - 95.66 - 90.34 - 85.99 - 74.8 -
Soft (all) 93.34 - 84.52 - 94.76 - 89.01 - 85.49 - 73.77 -

Best Overall 94.18 89.66 86.12 80 95.66 92.58 90.34 85.64 85.99 78.98 74.8 68.44
Overall Improvements 4.52 6.12 3.08 4.7 7.01 6.36

Oguiza (2020), where we used the default architectural parameters as in tsai Oguiza (2020) while
setting the epoch number to 50 and the learning rate to 0.001.

4 OPTIMIZATIONS

In the following sections, we discuss architectural parameter and hyperparameter optimization of
some of our DL models and also the use of ensemble learning to further improve the accuracy of our
DL models. Even though we observed similar accuracy after parameter optimizations, the use of
ensemble learning provided up to 2.98% improvements over our DL models, whence 3.08%-7.01%
improvements over the results reported in Ott et al. (2020; 2022a); see Table 2. For DL baseline
methods in Ott et al. (2020; 2022a), as indicated in Table 2, CNN-BiLSTM had the best perfor-
mance among all other DL models. However, we could not implement the same model due to the
lack of detailed information about CNN architecture, such as the total number of layers, the total
number of filters in each layer, and filter sizes. CNN, as a class of artificial neural networks, can take
different structures leading to different performances and dramatically affecting the results for com-
parison purposes. Nevertheless, compared to CNN-BiLSTM, our InceptionTime implementation
had a better performance overall.

4.1 OPTIMIZING ACRHITECTURAL PARAMETERS AND HYPERPARAMETERS

Since the InceptionTime model did better overall among our base DL models, we decided to opti-
mize it. Due to a large choice of architectural parameters in LSTM, we also decided to optimize
LSTM, LSTM-FCN, and MLSTM-FCN. Of course, other models could be optimized but we leave
this for future work. We used the optuna framework Akiba et al. (2019) with 100 number of trials
in our study. Across all of the optimization studies, our search space for the “learning rate” is set

5



Under review as a conference paper at ICLR 2023

between 0.00001 and 0.01 with logarithmic increments and the “epoch number” is exhausted from
25 to 100 with increments of 25. In our study, search space for InceptionTime parameters are as fol-
lows: “nf” takes 4, 8, 16, 32, 40, 48, 56, 64, 128; “depth” takes values from 1 to 15 with increments
of 1 and “fc dropout” takes values from 0 to 0.9 with increments of 0.1 The search space for LSTM
parameters are as follows: “n layers” takes values from 1 to 5 with increments of 1; “rnn dropout”
and “fc dropout” take values from 0 to 0.9 with increments of 0.1; “bidirectional” takes True or
False. The search space for LSTM-FCN and MLSTM-FCN parameters are as follows: “rnn layers”
takes values from 1 to 5 with increments of 1; “rnn dropout” and “fc dropout” takes values from
0 to 0.9 with increments of 0.1; “bidirectional” takes True or False. We first optimized the model
parameters independently on the L-WI, U-WI, and C-WI datasets. We used the same parameter
sets when training our models on the respective WD datasets. Therefore, for a small number of
cases, our models trained on WD underperform in comparison with the base DL models, where the
most significant drop is observed for MLSTM-FCN trained on the U-WD dataset. One could ideally
optimize the parameters independently on WD as well, but we do not pursue this path mainly be-
cause of the high cost of optimizing parameters and the minor performance gains due to parameter
optimization over our base models (e.g. compare the accuracy of InceptionTime in Table 2 for DL
Baseline vs. DL Optimized). More details, including the optimized models and their parameters
will be publically available and the accuracy of the optimized results are presented in Table 2. Our
optimization efforts resulted in similar accuracy in comparison with our base DL models.

4.2 OPTIMIZING VIA THE USE OF ENSEMBLE LEARNING

While the models above outperform the previously best published results and the optimizations of
these models yield even more accurate results, we wanted to find a way to increase the accuracy even
more. We begin by analyzing how the models make predictions and specifically, how each model
differs from each other when making predictions. We look at the data where (the best) models make
incorrect predictions and see how other models perform in these points. This analysis leads us to
believe that combining the predictions of these models, in an ensemble method, may be able to help
lead us to increased accuracy Dietterich (2000). We present the findings of our analysis, as well as
results below.

4.2.1 FAILURE SPACE

We will define the failure space of a classification model as the space of input data where the model
makes an incorrect predictive classification. We examined how the failure spaces of each of the
16 models trained above (12 base models and the 4 optimized models), compared to one another. It
was hypothesized that given the different architectures and even parameters (on a small scale) would
cause different models to fail in different places. In other words, the intersection of the failure spaces
of these models does not fully overlap. If this were to be the case, then there would be reason to
believe that the models may be focusing on different aspects of the MTS and that there is potential
for a combination of models to be used to collectively produce an output. Below, are two seperate
analyses, exploring the failure spaces of the 16 models.

First, we explore how each of the models perform in comparison to one another. The dataset is fixed
to the C-WI, fold 0 dataset. We then fix a letter, say “Z” and examine all test data points that are
actually “Z”s. For each piece of test data, we determine whether each model predicted it correctly
or incorrectly. The results are displayed in a heatmap in Figure 1. Each row corresponds to the
prediction of a different model, and each column corresponds to a unique test data. The colour
represents a correct or incorrect prediction, with a correct prediction being white and an incorrect
prediction being black. We call this type of an analysis the prediction space analysis. We notice
that the map looks very spotted. There are a few columns that are all black, but there are also many
columns that are split between correct and incorrect predictions. This tells us that there may be a
use to combining these models in such a way to diminish the incorrect predictions. The prediction
space analysis shows us that oftentimes, when even the best performing models are incorrect, other
models may predict the data point correctly.

After examining the failure spaces of each of the models, it was found that the models were failing in
different places. What this means is that for a given test case, a portion of the 16 models can fail, but
oftentimes others will succeed. From here we hypothesized that there may exist some combination
of models, which can work together to make predictions more accurately than individual models.

6



Under review as a conference paper at ICLR 2023

Figure 1: The prediction space analysis in the both independent fold 0 dataset. The models are
numbered as follows: 0:XceptionTime,1:InceptionTime, 2: ResNet, 3: LSTM FCN, 4: BiLSTM
FCN, 5:LSTM, 6:BiLSTM, 7:MLSTM FCN, 8:BiMLSTM FCN, 9:FCN, 10:ResCNN, 11:XCM,
12: Optimized InceptionTime, 13: Optimized LSTM, 14: Optimized LSTM FCN, 15:Optimized
MLSTM FCN.

4.2.2 PLURALITY VOTING

Through our failure space analysis, we wanted to try to find a way to combine multiple models
to make one single prediction. The first attempt at this is plurality voting, where each model will
make a prediction on a piece of data and vote on the predicted class. The final output class is the
class which receives the most votes Zhou (2012). A tie in plurality voting is broken arbitrarily.
This method produced results slightly worse than our best performing models. This however is not
unexpected since the best models and worst models all have an equal say in the output. One way to
resolve this will be weighted voting and will be explored in the section below. Another resolution is
to drop the poorly performing models and only consider the top tier (best 3 models) for the plurality
voting. This resulted in an increase of up to 1% on the best performing algorithm for each dataset.

4.2.3 WEIGHTED VOTING

In cases where the individual classifiers are of unequal performance, it can be valuable to give more
voting power to the stronger performing models and less voting power to the weaker models Zhou
(2012). As can be seen in Table 2, we trained 16 models with varying levels of performance and
accuracy. In the Plurality voting method, the top 4 best models were considered in the voting pro-
cess for the best results. For better accuracy, we tried to include more models in a weighted voting
method, with lower weights. The models were divided into 3 categories: top, middle, and bot-
tom tier. Out of the 16 models considered, 4 belonged in the top tier (InceptionTime, Optimized
InceptionTime, XceptionTime and ResNet), 4 in the middle tier (ResCNN, Optimized LSTM, Op-
timized MLSTM FCN and Optimized LSTM FCN) and 8 in the bottom tier (LSTM, BILSTM,
MLSTM FCN, BIMLSTM FCN, FCN, BILSTM FCN, LSTM FCN,XCM). The weights were es-
tablished so that the top tier models are considered first and lower tier models are considered only
in the events of a tie. The bottom tier of models get a weight of 1 applied to their vote, the middle
tier gets a weight of 9 applied to their vote and the top tier gets a weight of 45 applied to their vote.
If all 4 bottom tier models agree on a class, their vote is still outweighed by a single middle tier
model. Similarly, if all middle tier models agree on a class, their vote is outweighed by a single top
tier model.

4.2.4 SOFT VOTING

The models trained above provide a probability that a given input belongs to each of the letter classes.
The class with the highest probability becomes the predicted class from the model and up until now
is all that has been considered. In soft voting, for each class, the probabilities of each prediction
class are averaged. The class with the highest average is outputted. Soft voting was implemented,
with an improvement on both plurality voting and weighted voting.

4.2.5 WEIGHTED SOFT VOTING

The strongest approach we have found is the weighted soft voting model. This combines the benefits
of soft voting, with those of weighted voting. Provided here is a soft model, that gives weights to the
probabilities depending on the quality of model. This model, using the same weights asabove was
the best performing of the ensemble methods tried and yielded between a 0.91% and 2.98% increase

7



Under review as a conference paper at ICLR 2023

0 20 40 60 80 100

Channel 0

0 20 40 60 80 100

Channel 1

0 20 40 60 80 100

Channel 2

0 20 40 60 80 100

Channel 3

0 20 40 60 80 100

Channel 4

0 20 40 60 80 100

Channel 5

0 20 40 60 80 100

Channel 6

0 20 40 60 80 100

Channel 7

0 20 40 60 80 100

Channel 8

0 20 40 60 80 100

Channel 9

0 20 40 60 80 100

Channel 10

0 20 40 60 80 100

Channel 11

0 20 40 60 80 100

Channel 12

LSTM Optimized Explanation

Figure 2: Explanation of LSTM Optimized on the both independent fold 0 dataset, for a test letter
“B”. Blue lines represent 13-dimensional data with respect to time.

4.2.6 ENSEMBLE LEARNING IN PRACTICE

As seen above in Table 2, the accuracy of the ensemble learning techniques are competitive with or
improved upon existing methods. An increase in accuracy when using ensemble methods is consis-
tent with the literature Yang (2011); Yerima et al. (2015); Raza (2019); Li et al. (2017). However,
we should explore the impact of implementing a protocol like this in a practical application.

It is important to examine the accuracy vs. training-time trade-off Wasay et al. (2020); Yang (2011)
of using ensemble learning models. Not only do ensemble learning models take longer to train, but
they are also larger in size and require more time to infer predictions. The size of the ensemble
learning model and time it takes to run are both combinations of the models used to build them,
plus some small overhead. The time required to make an inference and the size of the models
must both be considered when using ensemble models in practice. We hypothesize that user-device
based prediction may not be practical with ensemble methods. To use ensemble methods, it may be
useful or even required to use server-based predictions as the models can be housed on a server with
sufficient storage and computing power.

5 FURTHER EXPLAINING DL MODELS

It is important to not treat these DL models as black box, but to gain some intuition as to why
predictions are being made in these ways. We already provided some explanations regarding failure
spaces of the models, which motivated the use of ensemble learning. In this section, we use an
interpretation of LIME Ribeiro et al. (2016) for time series data, lime-for-timeMetzenthin (2020).
In this interpretation, the time series is divided into 20 “slices” and the importance of each slice is
determined by the LIME algorithm. Additionally, since we are working with MTS data, each of
the 13 signals (channels) will be analyzed separately. The top 30 signals and slices, in terms of
importance, will be examined. A green bar, indicating a score greater than 0, represents that this
section of the data has a positive impact on the model output and a red bar, indicating a score less
than 0, represents that this section of the data has a negative impact on the model output. The graphs
below show all 13 channels of the raw data with an importance bar overlayed on top of it. The
darkness of colour indicates how much influence that slice of the data has on the classification.

We show two examples of this explanation analysis, to give some backing and explanation as to the
predictions being made. The first is an example of where a model predicts correctly and is fairly
certain about its prediction. This is shown in Figure 2 regarding the explanation of the Optimized
LSTM model correctly predicting a letter “B” in the C-WI fold 0 dataset. As we can see, the green
and red bars are primarily on the 6th, 8th and 12th channel. This means that these channels have
more influence (or importance) on the overall prediction. Each channel corresponds to a signal from
a sensor and thus different dimension of the MTS.

8



Under review as a conference paper at ICLR 2023

0 20 40 60 80 100

Channel 0

0 20 40 60 80 100

Channel 1

0 20 40 60 80 100

Channel 2

0 20 40 60 80 100

Channel 3

0 20 40 60 80 100

Channel 4

0 20 40 60 80 100

Channel 5

0 20 40 60 80 100

Channel 6

0 20 40 60 80 100

Channel 7

0 20 40 60 80 100

Channel 8

0 20 40 60 80 100

Channel 9

0 20 40 60 80 100

Channel 10

0 20 40 60 80 100

Channel 11

0 20 40 60 80 100

Channel 12

InceptionTime Explanation

0 20 40 60 80 100

Channel 0

0 20 40 60 80 100

Channel 1

0 20 40 60 80 100

Channel 2

0 20 40 60 80 100

Channel 3

0 20 40 60 80 100

Channel 4

0 20 40 60 80 100

Channel 5

0 20 40 60 80 100

Channel 6

0 20 40 60 80 100

Channel 7

0 20 40 60 80 100

Channel 8

0 20 40 60 80 100

Channel 9

0 20 40 60 80 100

Channel 10

0 20 40 60 80 100

Channel 11

0 20 40 60 80 100

Channel 12

XceptionTime Explanation

Figure 3: The first image on the left is the explanation of a correct InceptionTime prediction of
the letter “M”. The second image on the right is the explanation of an incorrect XceptionTime
prediction of the same letter. XceptionTime predicts “A”. Blue lines represent 13-dimensional data
with respect to time.

The second example we show the explanation of two different (yet both strong) models, which
disagree about the output class. This is shown in Figure 3. As we can see both of these models
inherit influence from different places. One example of this is that XceptionTime puts influence
into the first channel for this prediction whereas InceptionTime does not, while InceptionTime puts
influence into the 4th channel and XceptionTime does not. Additionally, we see different sections
of the 6th, 8th and 12th channels being highlighted. What this tells us is that not only are different
models making different predictions from each other, but they are deriving importance from different
parts of the MTS. This leads us to believe that by combining these models, we may be able to take
advantage of different models inheriting importance from different areas, thus improving the overall
“catchment” of the models chosen. Along with the failure space analysis, showing that the 16
models fail in different places, these explanations show that the models also value different parts of
the signal to have different levels of importance. These two pieces of analysis provide even more
motivation on the previous section on ensemble learning, as this provides reason to believe that there
may be potential in combining these models to produce a signal output, with better success than any
individual model.

6 CONCLUDING REMARKS

We developed various handwriting recognition models on the OnHW-chars dataset Ott et al. (2020).
Our ML models improved the accuracy of the previously known ML models Ott et al. (2020) up
to 23.56% and our DL models (coupled with ensemble methods) improved the accuracy of the
previously known DL models Ott et al. (2022a) up to 7.01%. We also provided some level of
explainability for our models. Our explanations motivated the use of ensemble learning to boost
the accuracy of our models and justified its success. Our results can be reproduced and verified via
our source code which will be made public. Being the most recent and publicly available online
handwriting dataset with some state-of-the-art classifiers trained on it, we have chosen to develop
our models on the OnHW-chars dataset. We expect that our techniques would be applicable to other
datasets in a more general context.

An interesting future work would be to develop better ensemble methods. For example, one could
try to optimize the weights in the voting stage using meta learners or combinatorial approaches Cruz
et al. (2014). Another approach would be to consider Bayesian model averaging Monteith et al.
(2011). Finally, it would be interesting to run a deeper analysis on the explainability of models,
and to understand the importance of features as this would provide some insight to improve the
performance and efficiency of the models.

9



Under review as a conference paper at ICLR 2023

REFERENCES

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A Next-generation Hyperparameter
Optimization Framework. In KDD’19: Proceedings of the 25rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 2623–2631, 2019.

E. Alpaydin. Combining Multiple Representations and Classifiers for Pen-based Handwritten Digit
Recognition. Proceedings of the Fourth International Conference on Document Analysis and
Recognition, pp. 637–640, 1997.

J. Caiado, N. Crato, and D. Pena. Comparison of Times Series with Unequal Length in the Frequency
Domain. Communications in Statistics - Simulation and Computation, 38(3):527–540, 2009.

M. Christ, A. W. Kempa-Liehr, and M. Feindt. Distributed and Parallel Time Series Feature Ex-
traction for Industrial Big Data Applications. Asian Machine Learning Conference. Workshop on
Learning on Big Data, 2016. https://arxiv.org/abs/1610.07717v1.

M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-Liehr. Time Series Feature Extraction on Basis
of Scalable Hypothesis Tests (tsfresh - A Python Package). Neurocomputing, 307:72–77, 2018.

R. Cruz, R. Sabourin, and G. Cavalcanti. On meta-learning for dynamic ensemble selection. In 2014
22nd International Conference on Pattern Recognition, pp. 1230–1235. IEEE, 2014.

T. Dietterich. Ensemble Methods in Machine Learning. MCS 2000: Multiple Classifier Systems -
First International Workshop, 1857:1–15, 2000.

M. Fahmy. Online Handwritten Signature Verification System based on DWT Features Extraction
and Neural Network Classification. Ain Shams Engineering Journal, 1(1):59–70, 2010.

M. Faundez-Zanuy, J. Fierrez, M. Ferrer, M. Diaz, R. Tolosana, and R. Plamondon. Handwriting
Biometrics: Applications and Future Trends in e-security and e-health. Cognitive Computation,
12(5):940–953, 2020.

K. Fauvel, T. Lin, V. Masson, È. Fromont, and A. Termier. XCM: An Explainable Convolutional
Neural Network for Multivariate Time Series Classification, 2020. https://arxiv.org/
abs/2009.04796.

H.I Fawaz, B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar,
P. Muller, and F. Petitjean. InceptionTime: Finding AlexNet for Time Series Classification. Data
Mining and Knowledge Discovery, 34(6):1936–1962, 2020.

P. Geurts, D. Ernst, and L. Wehenkel. Extremely Randomized Trees. Machine Learning, 63(1):
3–42, 2006.

A. Graves and J. Schmidhuber. Framewise Phoneme Classification with Bidirectional LSTM Net-
works. Proceedings of IEEE International Joint Conference on Neural Networks, 2005, 4:2047–
2052, 2005.

I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and S. Janet. UNIPEN Project of Online Data
Exchange and Recognizer Benchmarks. Proceedings of the 12th IAPR International Conference
on Pattern Recognition, 2:29–33, 1994.

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735–
1780, 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

F. Karim, S. Majumdar, H. Darabi, and S. Chen. LSTM Fully Convolutional Networks for Time
Series Classification. IEEE Access, 6:1662–1669, 2018.

F. Karim, S. Majumdar, H. Darabi, and S. Harford. Multivariate LSTM-FCNs for Time Series
Classification. Neural Networks, 116:237–245, 2019.

E. Keogh and C. Ratanamahatana. Exact Indexing of Dynamic Time Warping. Knowl-
edge and Information Systems, 7(3):358–386, 2005. https://doi.org/10.1007/
s10115-004-0154-9.

10

https://arxiv.org/abs/1610.07717v1
https://arxiv.org/abs/2009.04796
https://arxiv.org/abs/2009.04796
https://doi.org/10.1007/s10115-004-0154-9
https://doi.org/10.1007/s10115-004-0154-9


Under review as a conference paper at ICLR 2023

A. Klaß, S. Lorenz, M. Lauer-Schmaltz, D. Rügamer, B. Bischl, C. Mutschler, and F. Ott.
Uncertainty-aware evaluation of time-series classification for online handwriting recognition with
domain shift, 2022. URL https://arxiv.org/abs/2206.08640.

J. LaViola and R. Zeleznik. A Practical Approach for Writer-Dependent Symbol Recognition Using
a Writer-Independent Symbol Recognizer. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(11):1917–1926, 2007.

J. Li, N. Song, G. Yang, M. Li, and Q. Cai. Improving Positioning Accuracy of Vehicular Navigation
System During GPS Outages Utilizing Ensemble Learning Algorithm. Information Fusion, 35:
1–10, 2017.

E. Metzenthin. LIME For Time, 2020. https://github.com/emanuel-metzenthin/
Lime-For-Time.

K. Monteith, J. Carroll, K. Seppi, and T. Martinez. Turning bayesian model averaging into bayesian
model combination. In The 2011 International Joint Conference on Neural Networks, pp. 2657–
2663, 2011. doi: 10.1109/IJCNN.2011.6033566.

I. Oguiza. tsai - A State-of-the-art Deep Learning Library for Time Series and Sequential Data,
2020. https://github.com/timeseriesAI/tsai.

F. Ott, M. Wehbi, T. Hamann, J. Barth, B. M. Eskofier, and C. Mutschler. The OnHW Dataset:
Online Handwriting Recognition from IMU-Enhanced Ballpoint Pens with Machine Learning.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(3):
1–20, 2020.

F. Ott, D. Rügamer, L. Heublein, T. Hamann, J. Barth, B. Bischl, and C. Mutschler. Benchmark-
ing Online Sequence-to-Sequence and Character-based Handwriting Recognition from IMU-
Enhanced Pens. International Journal on Document Analysis and Recognition (IJDAR), pp.
1433–2825, 2022a. doi: 10.1007/s10032-022-00415-6. https://arxiv.org/abs/2202.
07036.

F. Ott, D. Rügamer, L. Heublein, B. Bischl, and C. Mutschler. Joint classification and trajectory
regression of online handwriting using a multi-task learning approach. In 2022 IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), pp. 1244–1254, 2022b. doi: 10.1109/
WACV51458.2022.00131.

F. Ott, D. Rügamer, L. Heublein, B. Bischl, and C. Mutschler. Domain adaptation for time-series
classification to mitigate covariate shift, 2022c. URL https://arxiv.org/abs/2204.
03342.

F. Ott, D. Rügamer, L. Heublein, B. Bischl, and C. Mutschler. Cross-modal common representation
learning with triplet loss functions, 2022d. URL https://arxiv.org/abs/2202.07901.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

A. Priya, S. Mishra, S. Raj, S. Mandal, and S. Datta. Online and Offline Character Recognition: A
Survey. In 2016 International Conference on Communication and Signal Processing (ICCSP),
pp. 0967–0970, 2016.

E. Rahimian, S. Zabihi, S.F. Atashzar, A. Asif, and A. Mohammadi. XceptionTime: A Novel Deep
Architecture based on Depthwise Separable Convolutions for Hand Gesture Classification, 2019.
http://arxiv.org/abs/1911.03803.

K. Raza. Chapter 8 - Improving the Prediction Accuracy of Heart Disease with Ensemble Learning
and Majority Voting Rule. In U-Healthcare Monitoring Systems, Advances in Ubiquitous Sensing
Applications for Healthcare, pp. 179–196. Academic Press, 2019.

11

https://arxiv.org/abs/2206.08640
https://github.com/emanuel-metzenthin/Lime-For-Time
https://github.com/emanuel-metzenthin/Lime-For-Time
https://github.com/timeseriesAI/tsai
https://arxiv.org/abs/2202.07036
https://arxiv.org/abs/2202.07036
https://arxiv.org/abs/2204.03342
https://arxiv.org/abs/2204.03342
https://arxiv.org/abs/2202.07901
http://arxiv.org/abs/1911.03803


Under review as a conference paper at ICLR 2023

OnHW Dataset
Ott et al. (2020)

Variable length
time series data

Fixed length
feature vectors

DL Models

DL Models
Optimized

ML Models
–

Imp: 11.3%-23.56%

Ensemble Learning
Models

–
Imp: 3.08%-7.01%

preprocessing

DL, baseline

DL, optimized

feature
extrac ti on
(tsfresh)

ML, baseline

ensemble

Figure 4: Our workflow for training machine learning (ML) and deep learning (DL) models, and
utilizing the ensemble method. Feature extraction is performed using tsfresh Christ et al. (2018).
Average accuracy improvements (Imp) are reported with respect to the previous ML and DL models
in Ott et al. (2020; 2022a).

M. Ribeiro, S. Singh, and C. Guestrin. “Why Should I Trust You?”: Explaining the Predictions
of any Classifier. Proceedings of the Demonstrations Session, NAACL HLT 2016, The 2016
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 97–101, 2016.

S. Seto, W. Zhang, and Y. Zhou. Multivariate Time Series Classification Using Dynamic Time
Warping Template Selection for Human Activity Recognition, 2015. https://arxiv.org/
abs/1512.06747.

J. Wang and F. Chuang. An Accelerometer-based Digital Pen with a Trajectory Recognition Algo-
rithm for Handwritten Digit and Gesture Recognition. IEEE Transactions on Industrial Electron-
ics, 59(7):2998–3007, 2012.

Z. Wang, W. Yan, and T. Oates. Time Series Classification from Scratch with Deep Neural Networks:
A Strong Baseline, 2016. http://arxiv.org/abs/1611.06455.

A. Wasay, B. Hentschel, Y. Liao, S. Chen, and S. Idreos. MotherNets: Rapid
Deep Ensemble Learning. Proceedings of Machine Learning and Systems, 2:
199–215, 2020. https://proceedings.mlsys.org/paper/2020/file/
3ef815416f775098fe977004015c6193-Paper.pdf.

K. Weinberger and L. Saul. Distance Metric Learning for Large Margin Nearest Neighbor Classifi-
cation. Journal of Machine Learning Research, 10(2):207–244, 2009.

L. Yang. Classifiers Selection for Ensemble Learning based on Accuracy and Diversity. Procedia
Engineering, 15:4266–4270, 2011.

S. Yerima, S. Sezer, and I. Muttik. High Accuracy Android Malware Detection Using Ensemble
Learning. IET Information Security, 9(6):313–320, 2015.

Z. Zhou. Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC, 2012.

X. Zou, Z. Wang, Q. Li, and W. Sheng. Integration of Residual Network and Convolutional Neural
Network along with Various Activation Functions and Global Pooling for Time Series Classifica-
tion. Neurocomputing, 367:39–45, 2019.

A APPENDIX - WORK FLOWCHART

Included in Figure 4, is a chart describing the workflow of how our framework.

12

https://arxiv.org/abs/1512.06747
https://arxiv.org/abs/1512.06747
http://arxiv.org/abs/1611.06455
https://proceedings.mlsys.org/paper/2020/file/3ef815416f775098fe977004015c6193-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/3ef815416f775098fe977004015c6193-Paper.pdf


Under review as a conference paper at ICLR 2023

B APPENNDIX - TSFRESH FLOWCHART

Included in Figure 5 is a flowchart describing the feature extraction process through tsfresh.

Figure 5: Feature extraction flowchart.

Test Set

Train set
Feature 

Extraction (Extracts all 
features)

Feature 
Selection (Filters relevant 

features)

Train set 
features

Feature 
Extraction 

(Extracts relevant 
features

Test set 
features

C APPENDIX - MODELS TRAINED

C.1 MACHINE LEARNING ALGORITHMS

C.1.1 STRATEGY 1: ML MODELS TRAINED ON FIXED-LENGTH FEATURE VECTORS

As explained in Section 2.2, we utilize tsfresh Christ et al. (2018) to extract fixed-length feature
vectors, which are then used as input in training some ML models. To our knowledge this is the
first instance in which tsfresh has been applied to the OnHW-chars dataset. In order to provide a
fair comparison with the accuracy results as reported in Table 4 in Ott et al. (2020), we train Ran-
dom Forest, Decision Tree, Logistic Regression, Linear Support Vector Machines, and k-Nearest
Neighbor algorithms. To further improve accuracy, we implement metric learning as described in
Weinberger & Saul (2009) for kNN. Additionally, we train the Extra-Trees classifier implemented
using scikit-learn Pedregosa et al. (2011), based off of Geurts et al. (2006), and SVM with non-
linear kernels. Our implementation mainly uses the software package scikit-learn Pedregosa et al.
(2011). In the following, we provide an overview and explanation for each algorithm we implement
following Strategy 1.

Decision tree: Decision Trees are tree-like structures where each branch represents a test on a
feature, and the leaf nodes represent classes. Starting at the root node, we perform a sequence of tests
to move along the tree. The prediction is based on the leaf node we end up on. To establish a baseline
comparison with the results in Ott et al. (2020), we use decision trees with default parameters as in
scikit-learn Pedregosa et al. (2011), and no additional preproccessing is applied on the extracted
feature set.

Random forest: Random Forests are a collection of individual decision trees. This collection
operates together as an ensemble where each tree gets a vote for the end label/class. The class with
the most votes is the one that is chosen in the end. As before, we would like a baseline comparison
with Ott et al. (2020) to outline the effects tsfresh had on the end classification accuracy. We choose
scikit-learn’s default parameters: 100 trees, no defined max depth, minimal sample split of 2, and
minimal samples leaf of 1.

Extra trees: Extra Trees outlined in Geurts et al. (2006) is implemented in scikit-learn Pedregosa
et al. (2011), and they are similar to a Random Forests with a few key differences. These are not
implemented in Ott et al. (2020). We implement them with the default parameters of scikit-learn,

13



Under review as a conference paper at ICLR 2023

similiar to the above mentioned models. This gives us 100 trees, no defined maximum depth, a
minimum sample split of 2 and no specified max leaf nodes.

Logistic regression: Logistic Regression is also a baseline we would like to establish to further
outline the effects tsfresh has on the end classification accuracy. First the QuantileTransformer
Pedregosa et al. (2011) is fitted to the selected feature set with 1000 quantiles and a uniform output
distribution. After fitting the transformer it is applied to both the test and train sets to scale each
of the features. When running logistic regression we choose default parameters as in scikit-learn
Pedregosa et al. (2011), except that we changed the default maximum iterations parameter from 100
to 1000.

kNN: kNN is a simple non-parametric algorithm which classifies new observations based on the
distance from known observations. We use scikit-learn’s default parameter k = 5 to show the impact
of our feature extraction method in comparison with the one in Ott et al. (2020). Using the selected
features from Section 2.2, we scale the feature set using QuantileTransformer Pedregosa et al. (2011)
in the same way we did previously for logistic regression. No dimensionality reduction is performed.
To find an appropriate level of n significant, we construct a series of models with varying levels of
n significant, as seen in Figure 6. Here we take n significant = 17 for the feature selection step of
all our models. We note that this choice may not be optimal and a better choice may exist.

Supervised metric learning with kNN: As an extension to the previously mentioned kNN algo-
rithm, we apply metric learning in a supervised fashion to improve accuracy scores. The pipeline re-
mains identical, but instead of using QuantileTransformer, neighborhood component analysis (NCA)
from scikit-learn Pedregosa et al. (2011) is implemented to learn a distance metric and reduce the
dimensionality of the test and train sets. NCA improves kNN accuracy by directly maximizing the
stochastic variant of the leave-one-out kNN score on the training set. When in use, NCA requires
standardized data, so StandardScalar Pedregosa et al. (2011) was first applied to the selected fea-
tures. For NCA, we specify the parameters “init = LDA”, so that LDA (i.e., linear discriminant
analysis) is used to initialize the linear transformation, and “n components = 20”, reducing the in-
putted feature space down to 20 features. This choice of n components is obtained from the accuracy
of kNN models over different levels of n components, as seen in Figure 7.

SVM: Similiar to kNN, SVM aims to group observations based on their distance from known
groups. QuantileTransformer is applied to the feature set in the same fashion as we used it be-
fore. When running SVM, we used the same parameters as in Ott et al. (2020). Furthermore, we
implement SVM with both a linear and Gaussian kernel.

C.1.2 STRATEGY 2: ML MODELS TRAINED ON VARIABLE-LENGTH TIME SERIES DATA

As opposed to some ML models that receive fixed-length feature vectors as input, some ML models
can directly work with variable length time-series data. In our second strategy, we train dynamic time
warping (DTW) models based on the preprocessed and filtered OnHW-chars dataset as explained in
Section 2.1.

DTW: DTW is a technique to measure the optimal alignment between 2 time series. Keogh &
Ratanamahatana (2005). One main advantage to using DTW as a similarity measure, as opposed
to Euclidean distance, is that DTW supports vectors of differing lengths. One downside to DTW,
however, is that it is not a distance metric as it does not satisfy the triangle inequality and it is not
positive definite Keogh & Ratanamahatana (2005). Despite this, it is still often used to measure
(or approximate) the distance between two time series. DTW has grown in use for time series data
clustering Seto et al. (2015).

Having support for differing length vectors is important for time series data and particularly crucial
for sensor data such as the OnHW-chars dataset Ott et al. (2020), since these vectors will often
have different lengths. One approach is to zero-pad the time series and determine the distance
between these zero-padded vectors using Euclidean distance, however Euclidean distance compares
the points in each vector in sequence Caiado et al. (2009). This is problematic for the OnHW-chars
dataset because the actual length it takes to write each letter is inconsistent and slight inconsistencies
in the timing will massively affect the similarity and particularly problematic when there are large

14



Under review as a conference paper at ICLR 2023

Figure 6: kNN accuracy with various levels of n significant, using lowercase writer-independent
(L-WI) data.

0 10 20 30 40 50
Value of k in kNN

0.62

0.64

0.66

0.68
Av

er
ag

e 
Te

st
in

g 
Ac

cu
ra

cy
 (5

-fo
ld

 C
ro

ss
 V

al
id

at
io

n)

kNN Performance

nsig=12
nsig=13
nsig=14
nsig=15
nsig=16
nsig=17
nsig=18
nsig=19
nsig=20
nsig=21

Figure 7: kNN accuracy over various levels of n components, using lowercase writer-independent
(L-WI) data.

0 10 20 30 40 50
Value of k in kNN

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Av
er

ag
e 

Te
st

in
g 

Ac
cu

ra
cy

 (5
-fo

ld
 C

ro
ss

 V
al

id
at

io
n)

NCA+kNN Performance

ncomp=8
ncomp=12
ncomp=16
ncomp=20
ncomp=21
ncomp=22
ncomp=24
ncomp=32
ncomp=64
ncomp=128
ncomp=256

differences in lengths. Variable length can also be attributed to issues with the sensor. Similarity
measures which are flexible to variable length vectors, such as DTW, are preferred in this case. For
our purposes, these similarity measures will be used in a kNN algorithm to classify the vectors.

C.2 DEEP LEARNING ALGORITHMS

FCN: FCN has been shown to achieve state-of-the-art performance on the task of classifying time
series sequences Wang et al. (2016). The basic block of FCN is a convolutional layer followed by
a batch normalization layer and a ReLU activation layer. The final network is built by stacking
three convolution blocks. Like ResNet, the FCN architecture excludes pooling operations to prevent
overfitting Wang et al. (2016). In order to improve generalization, batch normalization is applied to

15



Under review as a conference paper at ICLR 2023

speed up convergence speed. After the convolution blocks, the features are fed into a global average
pooling layer instead of a fully connected layer, reducing the number of weights. The final label is
produced by a softmax layer Wang et al. (2016).

LSTM: An LSTM is a type of RNN that can learn long-term dependencies between time steps
of sequential data. Contrary to CNN, an LSTM can remember the state of the network between
predictions. The essential components of an LSTM network are a sequence input layer to incorporate
time-series data into the network and an LSTM layer to learn long-term dependencies between time
steps of sequence data. The LSTM layer contains hidden units providing inputs to memory cells and
their corresponding gate units. All units (except for gate units) have connections to all units in the
next layer Hochreiter & Schmidhuber (1997). In our implementation, we set the LSTM parameter
n layers in tsai Oguiza (2020) to 2.

BiLSTM: The BiLSTM network extends the traditional LSTM networks. While the LSTM layer
considers the time sequence in a forward direction, the BiLSTM layer considers it both backward
and forwards Graves & Schmidhuber (2005). Indeed, the BiLSTM network trains two LSTM net-
works on the input sequence. During this process, the first recurrent layer is replicated in the net-
work, and therefore two layers are created side-by-side. The input sequence will be an input to the
first layer; meanwhile, its reversed replica will be an input to the second layer. This approach adds
additional context to the network, resulting in faster and better model learning.

LSTM-FCN & BiLSTM-FCN: It has been shown that the performance of FCN for time series
classification can enhance by adding LSTM sub-modules Karim et al. (2018). The fully convolu-
tional part of this architecture consists of three temporal convolutional blocks. Each block contains
a temporal convolutional layer, accompanied by batch normalization followed by a ReLU activation
function. Following the final convolution block, global average pooling is applied. In parallel, the
time-series input is fed into a dimension shuffle layer. Next, the transformed time series as the out-
put of the shuffle layer is passed into the LSTM block containing the LSTM layer, followed by a
dropout. Finally, the output of the global pooling layer (from the fully convolutional part) and the
LSTM block are concatenated and passed onto a softmax classification layer Karim et al. (2018).

MLSTM-FCN & MBiLSTM-FCN: MLSTM-FCN and MBiLSTM-FCN are multivariate time
series classification models whose architecture is based on the univariate time series classification
models, including LSTM-FCN and Attention LSTM-FCN. The fully convolutional part in both
groups (i.e., univariate and multivariate time series classification models) consists of three tem-
poral convolutional blocks. However, compared to LSTM-FCN, the first two convolutional blocks
conclude with a squeeze-and-excite block that adaptively recalibrates the input feature maps. This
process can be considered as a form of learned self-attention on the output feature maps of prior
layers Karim et al. (2019).

ResNet: Similar to FCN, the architecture of ResNet consists of three residual blocks, followed by
a global average pooling layer and a softmax layer. The presence of a shortcut connection in each
residual block makes the structure of Resnet very deep and enables the gradient to flow directly
through the bottom layers. The filters in both architectures of FCN and ResNet are very similar.
While the convolution extracts the local features in the temporal axis, the sliding filters take into ac-
count the dependencies among different time intervals and frequencies. Compared to FCN, ResNet
is claimed to be a better candidate to be applied to larger and more complex data because it is more
likely to strike a good trade-off between generalization and interpretability Wang et al. (2016).

ResCNN: ResCNN is a hybrid scheme for time series classification that integrates a residual net-
work with a CNN. In ResCNN, the strength of ResNet and CNN are combined. ResNet can learn
highly complex patterns in the data due to the presence of a shortcut connection technique. However,
this technique is computationally expensive and can easily cause overfitting. On the other hand, al-
though CNN is capable of learning the temporal and spatial patterns from raw data, it cannot recover
the complex patterns in the data because of few levels of the network. The architecture of ResCNN
is constructed by facilitating a residual learning block at the first three convolutional layers to in-
corporate the strength of both networks. Additionally, batch normalization and diverse activation
functions are adopted in different layers of ResCNN to enhance the nonlinear abstraction capacity.

16



Under review as a conference paper at ICLR 2023

Moreover, in order to avoid overfitting, the pooling operation is removed, and the features are fed
into a global average pooling instead of a fully connected layer Zou et al. (2019).

InceptionTime: Inspired by the Inception-v4 architecture, the InceptionTime is an ensemble of 5
Inception networks, with each prediction given an even weight. Each Inception network contains
only two residual blocks compare to ResNet, with three residual blocks. Each block in the inception
network comprises three Inception modules rather than traditional fully convolutional layers. The
first principal component of the Inception module is the “bottleneck” layer which allows the In-
ception network to have much longer filters than ResNet (almost ten times), with roughly the same
number of parameters to be learned. The second major component of the Inception module is sliding
multiple filters of different lengths simultaneously on the same input time series Fawaz et al. (2020).

XceptionTime: Inspired by InceptionTime, XceptionTime is designed to be independent of the
time window. The use of adaptive average pooling in this architecture makes XceptionTime more
robust to the temporal translation of the inputs as the temporal information will sum out. One key
difference between the XceptionTime module and InceptionTime module previously proposed in
Fawaz et al. (2020), is adopting depthwise separable convolutions, which significantly mitigates the
required number of parameters in the network and also can lead to higher accuracy Rahimian et al.
(2019).

XCM: Compared to typical CNN architectures, XCM extracts observed variables features (2D
convolution filters) and time features (1D convolution filters) directly from the input data. Features
related to time fully incorporate the timing information from the input data, not from the processed
features related to observed variables (features maps from 2D convolution filters). Therefore, on
average, this process can lead to a better classification performance than the 2D/1D sequential ap-
proach. XCM uses 1D global average pooling followed by a softmax layer for classification, which
reduces the number of trainable parameters and improves the network’s generalization ability Fauvel
et al. (2020).

17


	Introduction
	Problem statement and related work
	Contributions

	Processing the OnHW-chars dataset
	Preprocessing and filtering
	Extracting statistical features from OnHW-chars

	Developing models on the OnHW-chars dataset
	Machine learning (ML) algorithms
	Deep learning (DL) algorithms

	Optimizations
	Optimizing acrhitectural parameters and hyperparameters
	Optimizing via the use of ensemble learning
	Failure space
	Plurality voting 
	Weighted voting 
	Soft voting
	Weighted soft voting 
	Ensemble learning in practice


	Further explaining DL models
	Concluding remarks
	Appendix - Work Flowchart
	Appenndix - TSFRESH Flowchart
	Appendix - Models trained
	Machine Learning Algorithms
	Strategy 1: ML models trained on fixed-length feature vectors
	Strategy 2: ML models trained on variable-length time series data

	Deep Learning Algorithms


