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ABSTRACT

Multimodal music generation aims to produce music from
diverse input modalities such as text, videos, and im-
ages. Existing methods typically rely on a shared em-
bedding space, but face challenges such as insufficient
cross-modal data, weak cross-modal alignment, and lim-
ited controllability. This paper addresses these issues by
introducing explicit bridges of text and music for im-
proved alignment. We propose a novel pipeline for con-
structing multimodal music datasets, yielding two new
datasets, namely MTV-24K and MT-512K, all annotated
with rich musical attributes. Additionally, we propose
MTM, a Multimodal-to-Text-to-Music framework based
on these bridges. Experiments on video-to-music, image-
to-music, text-to-music, and controllable music generation
tasks demonstrate that MTM significantly improves music
quality, modality alignment, and user controllability com-
pared to existing methods.

1. INTRODUCTION

Recent advances in generative models have made notable
progress in text-to-music generation [1–3], but multimodal
music generation (from text, images, or videos) remains
challenging. Existing methods rely on common embed-
ding spaces for alignment [4–6] but struggle to maintain
accurate, high-quality cross-modal correlations.

We argue that key limitations of multimodal music gen-
eration include: (1) scarce large-scale multimodal mu-
sic datasets, with existing ones lacking fine-grained musi-
cal annotations; (2) over-reliance on low-level visual cues
without semantic understanding of mood or themes; (3)
under-utilization of distinct, complementary modality con-
tributions (e.g., text for semantics, videos for temporal dy-
namics); (4) poor interpretability and controllability over
musical attributes in joint embedding approaches.
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To address these, we propose using text and music as
explicit alignment bridges. Text bridge converts visu-
als to detailed music descriptions via a multimodal model,
guiding generation. Music bridge introduces retrieval-
augmented generation (RAG) for thematic alignment and
attribute control. These bridges complement each other
and help to enhance controllability.

Based on this principle, we present MTM, a novel
method generating music from text, video, or images, with
four core components: (1) a 24K multimodal video-music-
text dataset with rich musical annotations; (2) a multi-
modal music description model (based on InternVL2 [7])
translating visuals to structured musical descriptions; (3)
dual-track retrieval (broad for fine-grained guidance, tar-
geted for attribute control); (4) explicitly conditioned gen-
eration integrating both bridges via a diffusion transformer.
The overview of our framework is shown in Fig. 1.

We conduct extensive experiments on video, text, and
image-to-music, visual-to-description, and controllable
music generation tasks. Results show that MTM en-
hances music quality, strengthens cross-modal alignment,
and improves controllability, making it a robust and flexi-
ble framework with broad multimedia applications.

2. RELATED WORK

Multimodal Music Generation. Conditional music gen-
eration has advanced in symbolic and audio domains,
with text-to-music systems improving fidelity and diver-
sity [1–3, 8–11]. For video-to-music, MIDI-based meth-
ods map visual rhythm to symbolic patterns [12–15], while
audio-based models leverage large corpora and encoders
to learn richer correspondences [16, 17]. Yet data scarcity
weakens alignment and control. Any-to-music work such
as NExT-GPT [5] and CoDi [6] treats music as generic au-
dio, and MuMu-LLaMA [4] fuses modality features via
an LLM, but these feature-level schemes underuse musical
structure and offer little user control.
Retrieval-augmented Generation. Retrieval-augmented
generation (RAG) has become a common technique to en-
hance the fidelity and diversity of language models with
an additional knowledge base in the field of natural lan-
guage processing [18–21]. Due to its effectiveness, RAG



Figure 1: Overview of the MTM framework. We employ text and music as two explicit bridges for multimodal music
generation. Text-form music description is obtained with the Multimodal Music Description model. Reference music is
retrieved with the Dual-track Music Retrieval module. The two bridges are fed into the Explicitly Conditioned Music
Generation module to generate output music.

is further generalized to a range of fields and tasks, such as
visual recognition [22, 23], image generation [24, 25], 3D
generation [26, 27], and drug discovery [28]. To the best
of our knowledge, we propose the first RAG pipeline for
multimodal music generation.

3. METHODOLOGY

In this section, we present our multimodal music gen-
eration framework (Fig. 1.), including the following key
components: (1) a Multimodal Music Dataset which ef-
fectively aligns music, video and text; (2) a Multimodal
Music Description Model (MMDM), which generates
textual descriptions for emotional and thematic framing,
providing the textual bridge; (3) a Dual-track Music
Retrieval (DMR) module, which retrieves relevant mu-
sic tracks based on input criteria, providing the musical
bridge; and (4) an Explicitly Conditioned Music Gener-
ation (ECMG) module, which uses both bridges to gener-
ate the final music composition.

3.1 Multimodal Music Dataset

High-quality datasets that effectively align music, video,
and text remain a critical bottleneck in multimodal music
generation research. Existing datasets (Tab. 1) are small,
weakly annotated, or single-modal, failing to capture the
intricate relationships between audio, visual, and textual
elements. To address this gap, we introduce MTV-24K, a
dataset of 24K music-video-text triplets with fine-grained
musical attributes and descriptions. This dataset opens new
possibilities for training and evaluating advanced genera-
tive models conditioned on multimodal inputs. With the
same pipeline we further collect MT-512K, 512k music-
text pairs that fine-tune the T2M model further demonstrat-
ing the high quality and reliability of our data construction
process. See the Appendix for construction details.

3.2 Multimodal Music Description Model

To bridge the gap between multimodal information and
the music modality, our approach employs textual descrip-

Dataset Genre Desc. SrcSep. Attr. Size

SymMV [13] ! % % ! 1,140
DISCO-MV [29] % % % % 2200K
MUVideo [4] % Coarse % % 14.5K
BGM909 [15] ! Fine ! ! 909
V2M [17] % % % % 360K
MTV-24K (Ours) ! Fine ! ! 24K

Table 1: Comparison between different multimodal
music datasets. This table compares datasets based on
their genre, music description (Desc.), source separation
(SrcSep), music attributes (Attr.), and size.

tions as the first explicit bridge, effectively linking com-
plex multimodal inputs with music generation. Leverag-
ing the cross-modal understanding and generation ability
of multimodal large language models (MLLMs) [30–32],
we introduce the Multimodal Music Description Model
(MMDM), which is built on InternVL2 [7] with MTV-24K
to map multimodal signals into textual music description
to guide the music generation process.

3.3 Dual-track Music Retrieval

Musicians composing for multimedia often start by ref-
erencing existing music—an approach AI can mirror via
retrieval-augmented generation, especially when datasets
are limited. To enhance multimodal music generation and
address alignment challenges (e.g., text-to-music models
struggling with chord progressions or rhythm), we intro-
duce Dual-track Music Retrieval, using music as an ex-
plicit bridge to mitigate language-music gaps.

We use music embeddings to form an in-domain link
between diverse inputs (text, images) and target audio. As
shown in Fig. 2, our pipeline combines two retrieval strate-
gies on the MTV-24K dataset:
Broad retrieval for Fine-grained Control. For each con-
ditional modality, we first retrieve relevant music by com-
puting similarities using CLIP [33] or CLAP [34] embed-
dings. Given a target music, we directly use CLAP to
compute audio embeddings and compare them with em-



Figure 2: Framework of Dual-track Music Retrieval and Explicitly Conditioned Music Generation. The left part
illustrates the Dual-track Music Retrieval process, which leverages our multimodal dataset to perform both broad and
targeted retrieval. The right part shows the Explicitly Conditioned Music Generation pathway, where music is generated
through a ControlFormer block integrating embeddings from selected music bridge, text bridge, and noisy inputs.

beddings in our music database. The retrieved music mi∗

provides fine-grained conditions (e.g., melody, rhythm).
At inference, CLIP embeddings of text/visuals can replace
audio inputs to align with semantic context.
Targeted retrieval for Coarse-Grained Control. In parallel
to the broad retrieval, we conduct a targeted retrieval based
on musical attributes labeled in MTV-24K. For instance,
the tempo partition is categorized into “fast”, “medium”,
and “slow” subsets. This allows users to flexibly select
songs that match specific attributes among genre, tempo,
or mood partition. To retrieve a fast-paced song, we query
directly within the “fast” subset in the tempo partition. In
each subset, the most suitable music piece is determined
by computing the cosine similarity between the CLAP em-
beddings of the desired textual attribute. The embedding
of the retrieved music is fed into the subsequent modules.

3.4 Explicitly Conditioned Music Generation

Our base model uses a latent diffusion transformer
(DiT) [35], built on Stable Audio Open [3]. Music is
encoded into a latent space via a pre-trained VAE, with
Gaussian noise added. Transformer blocks process the
noisy input, incorporating T5-encoded text features and
timestep via cross-attention, optimized with the diffusion
v-prediction objective [36].
Music ControlFormer. To integrate fine-grained guid-
ance from broad retrieval, we adapt ControlNet princi-
ples [37, 38] for diffusion transformers (Fig. 2). Instead of
full model duplication, we replicate early transformer lay-
ers to form a ControlFormer branch, balancing efficiency
and structural alignment. At each layer, the main branch
produces a hidden state, and the ControlFormer produces
another. We combine these hidden states by element-wise
addition To ensure stable training and prevent disrupting
the extracted representations from the pretrained model,
we initialize the input and output convolution layers of the
ControlFormer to zero.
Stylization Module. For coarse-grained attribute control

via targeted retrieval, we fuse retrieved music features into
generation by: (1) appending attribute descriptions to the
prompt; (2) concatenating CLAP embeddings of retrieved
music with text/timestep embeddings to form a unified
conditional representation (adjusted to text-embedding di-
mensions); (3) using cross-attention to integrate this into
noisy music, aligning with specified attributes.

4. EXPERIMENTS

In this section, we comprehensively evaluate MTM on
video-to-music (V2M), text-to-music (T2M), and ablation
studies. For details of our dataset and full experimental
setup, and additional results on image-to-music generation,
visual-to-description, and controllable generation, please
refer to the appendix.

We use objective metrics including KLpasst [39],
FDopenl3 [40], CLAPScore [34], ImageBind score
(IB) [41], and BeatMSE. KLpasst and FDopenl3 evalu-
ate the music quality from its statistical similarity with
real music data and perceptual audio quality. CLAPScore
and IB measure the cross-modal semantic alignment be-
tween text, videos or images and the corresponding gen-
erated music. BeatMSE calculates the Mean Squared Er-
ror (MSE) between the ground truth and generated music,
specifically evaluating the alignment of rhythmic patterns.

4.1 Video-to-music Generation

We evaluate the proposed MTM model on the V2M task,
where the goal is to generate background music for in-
put videos with both high-quality audio and strong video-
music alignment. We benchmark the performance of
MTM on SymMV [13] dataset against several state-of-
the-art methods, including symbolic methods (CMT [12],
Video2music [14] and Diff-BGM [15]) and audio meth-
ods (VidMuse [17] and MuMu-LLaMA [4]). Apart from
objective metrics, we also conduct subjective evalua-
tion to ask participants to rate music tracks on Musi-
cal Pleasantness (MP), Emotional Correspondence (EC),



Method Output Objective Metrics Subjective Metrics↑
KLpasst↓ FDopenl3↓ IB↑ BeatMSE ↓ MP EC TC RC

CMT [12] MIDI 52.76 269.63 8.54 1748.1 3.06 2.68 2.72 3.04
Video2music [14] MIDI 103.56 533.46 5.26 943.4 2.93 2.53 2.59 2.53
Diff-BGM [15] MIDI 104.28 472.53 10.29 1842.3 3.10 2.92 2.77 2.74
MuMu-LLaMA [4] Audio 60.41 180.72 15.58 1388.1 2.98 2.44 2.44 2.71
VidMuse [17] Audio 56.48 187.13 22.09 1427.2 3.21 2.98 3.06 3.16
MTM (ours) Audio 47.12 101.43 22.93 1172.1 3.85 3.40 3.40 3.64

Table 2: Video-to-music generation performance on SymMV.

Method Objective Metrics Subjective Metrics↑
KLpasst↓ FDopenl3↓ CLAPScore↑ IB↑ MP TMA

AudioLDM [11] 99.85 293.86 17.61 20.01 2.31 2.65
MusicGen [2] 46.89 181.59 33.95 22.46 3.12 3.33
MuMu-LLaMA [4] 49.03 188.84 28.76 16.70 3.21 3.19
Stable Audio Open [3] 42.89 183.09 40.92 24.67 3.42 3.51
MTM (ours) 38.28 134.34 41.28 29.36 3.78 3.57

Table 3: Text-to-music generation performance on SongDescriber dataset.

B T KL↓ FD↓ IB↑

! ! 75.3 177.3 24.7
! × 91.9 199.7 20.7
× ! 91.1 387.1 20.5
× × 96.4 360.3 14.7

(a)

Method KL↓ FD↓ CLAPScore↑

Retrieval 56.6 163.0 37.0

Full 38.3 134.3 41.3

(b)

Table 4: (a) Effect of broad (B) and target (T) retrieval on
video-to-music performance. (b) Comparison of retrieval-
only and full models.

Thematic Correspondence (TC), and Rhythmic Correspon-
dence (RC) using a 5-point Likert scale. A total of 80 valid
responses were gathered. More details are in the appendix.
Results. As shown in Tab. 2, MTM achieves the best per-
formance across all objective metrics excluding BeatMSE,
indicating superior realism, perceptual quality, and strong
semantic alignment with video content. Subjective evalua-
tions highlight MTM’s ability to enhance video narratives
emotionally and thematically, thanks to the DMR mod-
ule, which dynamically synchronizes music with visuals.
While MTM does not explicitly optimize local rhythmic
accuracy, it achieves better global rhythm coherence than
baselines, avoiding overfitting to local beats observed in
CMT and Diff-BGM. This balance ensures natural musi-
cal flow, enhancing both immersion and storytelling.

4.2 Text-to-music Generation

We evaluate the MTM model on the T2M task, where the
goal is to generate music that aligns with a given text de-
scription. We use the SongDescriber [42], a curated collec-
tion specifically for this task, excluding samples with vo-
cal parts to maintain instrumental coherence. We compare
MTM with several state-of-the-art text-to-music models:
AudioLDM [11], MusicGen [2], Stable Audio Open [3]
and MuMu-LLaMA [4].

Results. As presented in Tab. 3, MTM outperforms base-
line models across the objective metrics. It achieves the
lowest KLpasst and FDopenl3, indicating that the music
generated by MTM is statistically closer to real-world mu-
sic distributions and exhibits higher perceptual quality.
MTM also achieves a highest CLAPScore and ImageBind-
Score, further validating its robust performance in aligning
text with music. Subjectively, MTM excels with the high-
est MP and TMA score, suggesting it generates musically
coherent and contextually accurate compositions.

4.3 Ablation Studies

We assess the contributions of broad and targeted retrieval
(BR/TR) in the video-to-music task using the SymMV
dataset. As shown in Tab. 4(a), combining BR and TR
achieves the best performance across metrics, demonstrat-
ing their complementary roles in music generation. Re-
moving either component degrades performance, under-
scoring their complementary roles in music generation.

As shown in Tab. 4(b), the retrieval-only model directly
uses retrieved music as output, leading to weak alignment
with input descriptions and higher KL and FD scores. In
contrast, the full model outperforms it across all metrics,
showing the necessity of generation.

5. CONCLUSION

We presented MTM, a multimodal music generator that
treats text and retrieved music as explicit bridges to align
and control generation from text, images, and video. Built
on the new MTV-24K dataset and a dual-track retrieval
module, MTM delivers state-of-the-art audio quality and
fine-grained controllability on V2M, I2M, and T2M bench-
marks. These results point to MTM’s potential as a scal-
able engine for personalised, context-aware soundtracks in
entertainment, XR, and other interactive media.
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A. CONSTRUCTION OF THE MTV-24K DATASET

A.1 Data Collection and Annotation

We design a pipeline to collect diverse music-video pairs
and produce high-quality, context-rich textual annotations.
The pipeline consists of three primary stages: MV collec-
tion, auto-tagging, and ground truth generation, as sum-
marized in Fig. 3. This multi-stage approach was designed
to ensure comprehensive coverage of music modalities and
robust alignment between audiovisual content and associ-
ated descriptions.
Music Video Data Collection. Data collection phase tar-
gets music videos (MVs) since they exhibit strong corre-
spondence between visual content and musical expression.
Each entry in the dataset contains:

• Video frames capturing key scenes and transitions.

• Music tracks processed with hybrid Demucs [43]
for source separation to isolate instrumentals.

• Metadata such as titles, artist information, and
video descriptions from platforms like YouTube and
Shazam, providing supplementary context for each
music-video pair.

Automatic Music Description Generation. After con-
structing the initial MV dataset, we proceed to generate
music descriptions from the raw data. This process be-
gins with an auto-tagging method that annotates each au-
dio file across dimensions such as emotional tone and mu-
sic theory elements. Subsequently, large language models
are employed to formulate unstructured metadata and tags
into detailed music descriptions in natural language.

The auto-tagging process is grounded in a comprehen-
sive label set developed by music experts, covering essen-
tial categories such as instruments, genres, and emotions
for standardized and interpretable tagging. CLAP [34] em-
beddings of candidate tags are extracted and align candi-
date tags with audio CLAP embeddings through cosine
similarity. To ensure high precision in labeling, we use
carefully calibrated similarity thresholds to filter out low-
alignment tags.

To generate detailed music descriptions, we combine
auto-generated tags and metadata with an LLM used as
a paraphraser. We design detailed, structured prompts to
constrain generation scope, ensuring outputs remain se-
mantically faithful to the original data. This strategy pro-
duces grounded descriptions that mitigate hallucinations
and improve text-audio alignment.

A.2 Quality Validation

Quality assurance combines automatic filtering and ex-
pert review. CLAP similarity removes low-alignment tags;
PAMScore [44] and outlier detection drop noisy pairs; a
manual audit of 10% of samples tunes thresholds. This
two-tier protocol yields finer multimodal consistency than
prior MV datasets that rely solely on raw metadata. More
details are provided in the supplementary.

Method KLpasst↓ FDopenl3↓ IB↑
CoDi [6] 216.48 251.52 9.60
MuMu-LLaMA [4] 128.33 247.42 2.28
MTM (ours) 98.78 116.71 12.10

Table 5: Image-to-music generation performance.

Model CLAPScore↑

GPT-4V [45] 44.41
InternVL [7] 44.21
MuMu-LLaMA [4] 41.91
MMDM 50.88

Table 6: Video-to-description generation performance.

B. ADDITIONAL EXPERIMENTS

B.1 Image-to-music Generation

To demonstrate the versatility of our proposed framework,
we evaluate the MTM model on the image-to-music (I2M)
generation task. In this setting, models are required to gen-
erate music that aligns semantically and emotionally with a
given image. Evaluations are conducted using the MUIm-
age [4] dataset, a high-quality collection of image-music
pairs curated for nuanced cross-modal generation. We use
1,500 image-music pairs as the test set.
Baselines. We benchmark MTM against state-of-the-
art models, including CoDi [6] and MuMu-LLaMA [4].
CoDi, an any-to-any generation model, supports image-to-
music, making it a strong baseline for comparison.
Results.Tab. 5 summarizes the performance of MTM,
CoDi, and MuMu-LLaMA on the I2M task. MTM demon-
strates a substantially lower KLpasst and FDopenl3 com-
pared to the baselines, alongside a higher ImageBind Score
(IB), indicating its ability to generate music that aligns
closely with real-world distributions. Notably, although
MTM is not explicitly trained on images, it effectively
captures both the semantic and emotional content of vi-
sual inputs, underscoring its strong generalizability and its
capacity to produce perceptually high-quality music from
images.

B.2 Visual-to-Description Generation

We evaluate our MMDM model on a subset of 8,042 dy-
namic videos filtered from the DISCO-200K-high-quality
dataset [29]. To assess the quality of the generated de-
scriptions, we use the CLAPScore to measure the similar-
ity between the original and generated textual descriptions
in terms of their alignment with the corresponding music.
Since MuMu-LLaMA [4] focuses on user interaction, the
output typically begins with ’Here is a piece of music that
is [music description].’ We then parse the output and filter
out any abnormal results.

In Tab. 6, MMDM achieves highest CLAPScore. While
both excel in multimodal tasks, they are not specialized
for music-text generation, leading to lower performance.



Figure 3: Pipeline of constructing MTV-24K and the Multimodal Music Description Model (MMDM). This process
starts with the collection of music videos, followed by automated tagging to refine audio annotations using CLAP em-
bedding similarities. Metadata and thematic descriptions are paraphrased by LLM to create training targets. The training
utilizes LoRA fine-tuning in the MMDM to transform multimodal inputs into targeted music descriptions that align with
the visual content’s themes.

Attribute ∆

Instrument +11.46
Genre +3.03
Mood +4.14

Table 7: Average change in CLAPScore when controlling
different attributes.

Metric Mood Genre Instrument Beat

Agreement (%) 95.2 91.0 94.3 92.8
Likert Score (1–5) 4.2 3.8 4.2 4.1

Table 8: User study of controllability.

MuMu-LLaMA struggles with multimodal fusion and rea-
soning, further limiting its effectiveness. These results
highlight MMDM’s superior ability to generate accurate
and contextually relevant music descriptions.

B.3 Controllable Generation

To evaluate MTM’s controllability, we examine its abil-
ity to modify music attributes. For each attribute we de-
fine a binary contrast, for example “happy” versus “non-
happy” for mood, and randomly select 20 songs that do
not fall clearly on either side. From every seed we gen-
erate 10 variants conditioned only on the target attribute
while keeping the rest of the prompt unchanged. We then
compute the mean change in CLAPScore, ∆, between each
controlled output and its baseline, using the target-attribute
text as the CLAP query. The results, listed in Tab. 7, show
that a larger positive ∆ corresponds to closer alignment
with the requested attribute.

To further evaluate the controllability of our model, we
test its ability to adjust the tempo of the generated music.
Similar to other music attributes such as genre, instrument,
and mood, we report the average change in tempo on the
generated variations to quantify the model’s performance.

For this experiment, we categorize the dataset into dis-
tinct beats per minute (BPM) groups: “Fast,” “Medium,”
and “Slow.” We randomly sample 20 songs for each BPM
group and generate 10 variations for each song, condi-
tioned on the sampled song itself. This setup allows us
to assess the model’s capability to independently control
tempo while maintaining the overall coherence of the gen-
erated music.

We calculate the average BPM across the 200 generated
songs per group (20 songs × 10 variations) to measure how
well the generated music aligns with the expected tempo
adjustments. The results are summarized in Tab. 9.

Model Average BPM

Fast 143.55
Medium 122.64
Slow 93.88

Table 9: Average BPM of music generated under varying
tempo conditions.

B.4 Additional Ablation Studies

For efficiency, we trained models for this ablation study
using only half the standard training epochs. However,
we observed that performance trends remained consistent
with full-epoch training, ensuring the validity of our con-
clusions.

We also remove the text modification when exclude tar-
get retrieval, and results are shown in Tab. 10. The results
are similar since user attributes are randomly sampled dur-
ing whole experiment.

We further conduct experiments on the scale of retriev-
ing set. As shown in Tab. 11, performance consistently
improves with larger retrieval sets. Compared to 1% and
0.1% subsets, using the full retrieval pool achieves the
best results across all metrics—lower KL and FD, and
higher IB. This confirms that broader retrieval coverage



enhances both semantic alignment and audio quality, high-
lighting the importance of retrieval scale in the video-to-
music task. Notably, even under extremely low-resource
conditions (e.g., 0.1%), our model still maintains reason-
able performance, demonstrating its robustness in limited
retrieval scenarios.

Text Modification KL↓ FD↓ IB↑

× 96.4 360.3 14.7
✓ 97.1 364.3 14.5

Table 10: Ablation of text modification.

Dataset KLpasst↓ FDopenl3↓ IB↑
1%(247 pieces) 47.43 132.16 21.72
0.1%(25 pieces) 50.28 150.82 19.09
Full 47.12 101.43 22.93

Table 11: Low-resource setting on video-to-music task.

C. ANALYSIS OF GENERATED SAMPLES

C.1 Samples of V2M Generation

In a comparative evaluation with existing models, our
MTM framework displayed notable advancements in the
stability and thematic alignment of music generation
across various video contexts. Unlike CMT, which ex-
cels at matching music to minute changes in video content,
our model prioritizes broader narrative coherence. This ap-
proach ensures a stronger, long-term narrative connection
with the video, even if it occasionally sacrifices the preci-
sion of minor video-to-music correspondences that CMT
might capture more explicitly.

When compared to VidMuse, another leading model in
the field, the MTM framework stands out significantly in
terms of musical clarity and completeness. The music gen-
erated by our model not only demonstrated superior clarity
but also showed a better correspondence with the overar-
ching themes of the videos. For example, in an “Anime”
video clip where the challenge lay in capturing the com-
plex emotion of sorrow masked by cheerful sounds, i.e.,
a nuance rooted in the original score, MTM was uniquely
successful. Our model adeptly generated a sorrowful major
key composition that maintained the cheerful impression
while subtly conveying the underlying sadness, mirroring
the complex emotional layering of the original music.

Furthermore, in a scene depicting a forest at the start
of a film, MTM distinguished itself by producing a piece
with a long melodic line that naturally began to fade in, en-
hancing the scene’s mysterious and vague ambiance. This
capability to align musical elements with the intended at-
mospheric qualities of a scene underscored our model’s ad-
vanced understanding of contextual and thematic elements,
setting it apart from other models which failed to capture
this nuanced musical requirement.

These examples underscore the MTM framework’s ca-
pacity to generate music that not only complements but en-
hances the storytelling of visual media, offering a more im-
mersive and contextually appropriate auditory experience
than its contemporaries.

C.2 Samples of Visual-to-Description Generation

To evaluate our model’s performance, we sampled
10 frames from each video and provided the fol-
lowing prompt to the models: Based on the
emotional tone, pacing, and visuals of
this video, how would you compose the
music? Provide a one-sentence summary
of the key musical elements that you
use. This method ensures that the generated music
aligns well with the emotional and visual characteristics
of the video. Samples of these music descriptions are
displayed in Tab. 12. Additionally, the content shown in
Figure 1 of the main paper, which illustrates how a poem
by P.B. Shelley, “The Flower that Smiles Today,” can also
be transformed into a music description, is also generated
using our model.

C.3 Conclusion

Compared to other models, our model captures musical de-
tails, including style and emotion curves more effectively.

D. DATASET ANALYSIS

We utilize four self-curated datasets for the following pur-
poses: 1) training the ECMG module (MT-512K); 2) con-
structing the DMR retrieval dataset (MTV-24K); 3) con-
ducting subjective and qualitative evaluations; and 4) as-
sessing the performance of the MMDM module. Addition-
ally, we document modifications made to existing datasets,
namely SymMV [13] and SongDescriber [42].

D.1 MT-512K

We collect a total of 512K music tracks. Tracks contain-
ing vocal components are identified using PANN [46] and
CLAP [34], based on pre-defined tags such as vocal,
choir, and human voice. Scores are computed be-
tween each track and the target tags, and a threshold of
0.1 is selected to identify tracks with vocal components.
This threshold is determined through a manual review pro-
cess, where we listen to a subset of music tracks to ensure
the balance between accurately identifying vocal parts and
minimizing false positives. The decision to remove tracks
with human voices follows previous works [17], and is
guided by three key considerations: 1) to lower the com-
plexity of modeling voice components; 2) to enable the
model to focus more effectively on instrumental music;
and 3) to align with the primary goal of video background
music generation [12, 13], which typically excludes vocal
elements. Additionally, we filter out low-quality tracks by
applying the PAM [44] score with a threshold of 0.95. Af-
ter filtering, we obtain 54,112 high-quality tracks. The dis-



Image Description GPT-4 Evaluation

A vibrant, energetic, and epic soundtrack
featuring a dynamic blend of strings,
brass, and orchestral elements, perfectly
capturing a sense of adventure and
excitement.

Score: 5 / 5
Reason:
Emotion Match: The energy and vibrancy of the
description match perfectly with the lively festival scene.
Scene Association: The use of “strings, brass, and
orchestral elements” effectively aligns with the
celebratory and grand setting.
Conclusion: The description is highly appropriate for
this image, requiring no further improvement.

A dynamic and emotive soundtrack
featuring a mix of guitar, bass, strings, and
orchestra, perfectly capturing a range of
moods from action-packed and
adventurous to melancholic and romantic.

Score: 4.5 / 5
Reason:
Emotion Match: The description’s adventurous tone
works well for the desert landscape. However, the
“melancholic and romantic” portion slightly detracts
from the overall alignment.
Scene Association: The instrumentation (guitar, bass,
and orchestra) complements the sense of vastness and
exploration in the desert.
Conclusion: A more focused description on adventure
and solitude could enhance the fit.

A fast-paced, dynamic electronic
soundtrack featuring pulsating rhythms,
vibrant synthwave beats.

Score: 5 / 5
Reason:
Emotion Match: The fast-paced, electronic, and vibrant
tone perfectly reflects the energy, dynamism, and
modernity of the urban night scene.
Scene Association: The use of “synthwave beats” aligns
exceptionally well with the futuristic, neon-lit visuals.
Conclusion: The updated description captures the
essence of the image flawlessly, making it an excellent
match.

A gentle piano melody, accompanied by
soft strings, to evoke a sense of tenderness.

Score: 5 / 5
Reason:
Emotion Match: The gentle piano melody perfectly
evoke the tenderness and nostalgia expressed in the
characters’ emotional moment.
Scene Association: The use of “soft strings” aligns with
the intimate and heartfelt nature of the scene, enhancing
the emotional depth.
Conclusion: The description is highly appropriate for
this image, requiring no further improvement.

A gentle, melancholic melody, featuring
soft piano and strings, to evoke the serene
yet poignant atmosphere.

Score: 4.5 / 5
Reason:
Emotion Match: The melancholic melody matches the
serene and poignant atmosphere of the comet-lit sky.
Scene Association: The inclusion of “soft piano” and
“strings” reflects the calmness and wonder of the scene
but does not fully emphasize the awe-inspiring grandeur
of the comet.
Conclusion: While the description aligns well with the
scene, adding a sense of scale and majesty could
enhance the match.

A sense of awe and wonder, using a
combination of orchestral strings, and
electronic soundscapes.

Score: 5 / 5
Reason:
Emotion Match: The energy and vibrancy of the
description match perfectly with the lively festival scene.
Scene Association: The use of “strings, brass, and
orchestral elements” effectively aligns with the
celebratory and grand setting.
Conclusion: The description is highly appropriate for
this image, requiring no further improvement.

A slow, eerie, and melancholic melody,
using a combination of dissonant chords
and a haunting vocal line to evoke the
sense of despair and isolation.

Score: 5 / 5
Reason:
Emotion Match: The slow, eerie melody and dissonant
chords align seamlessly with the despair and isolation
depicted in The Scream.
Scene Association: The “dissonant chords” effectively
complements the painting’s unsettling and surreal nature.
Conclusion: The description accurately reflects the
psychological intensity of the image, requiring no
further improvement.

Table 12: Samples of visual-to-description generation.



Figure 4: Distribution of PAM Scores across the raw train-
ing dataset.

Figure 5: Histogram of music duration in the training
dataset.

tribution of PAM score in the whole dataset is illustrated in
Fig. 4.

The selected tracks are annotated using the methodol-
ogy described in MMDM. Candidate tags are pre-defined
by musicians who serve as domain experts to align with
commonly used labels in music generation while minimiz-
ing the effect of long-tail distribution. The detailed anno-
tations are provided in the file label.json.

We use instrument tagging as an example to illustrate
the experts’ taxonomy. Instruments are first categorized
into five primary groups: strings, keyboards, wind instru-
ments, percussion instruments, and others. To address
the issue of long-tail distributions, rare tags are combined
into broader categories. For instance, instruments like the
double bass, which are seldom played independently, are
treated as indivisible units. Therefore, we use strings to
replace double bass. This approach ensures robust cate-
gorization while accurately reflecting the practical usage
of instruments in compositions. Other tagging principles,
which align with the general design philosophy of instru-
ment categorization, are omitted here for brevity.

To generate natural descriptions, we employ the Llama-
3.1-8B-Instruct [47] model to generate one-sentence de-
scriptions for each music track. The system prompt is: You
are a professional music expert. Here are tags about this
music. You need to generate a one-sentence description
for this music. Only generate the description without any
other information. Metadata tags were supplied via the
user prompt.

Fig. 5 and Fig. 6 illustrate the distribution of music du-
rations and the corresponding descriptions, providing in-
sight into the characteristics of the dataset.

Figure 6: Histogram of text word counts in the training
dataset.

Figure 7: Distribution of mood tags across the retrieval
dataset. This histogram shows the frequency of various
mood categories, illustrating the emotional diversity cap-
tured in our data.

D.2 MTV-24K

We have introduced the methodology of collecting the
MMDM training and retrieval dataset. Here, we provide
other details.

First, we scrape the hottest singers and their songs
from Spotify. We use YoutubeAPI 1 to search for their
original official music video with keywords in the for-
mat of {singer} + {song name} + Official
Music Video. We scrape all the music videos with their
Youtube description boxes and top-10 comments. We also
use Shazam 2 to get other metadata. Finally we obtain the
primary dataset.

We use methodology in MMDM to label each music
track. Eventually our dataset contains 24,719 video-text-
music pairs.

In targeted retrieval, we partition our whole datasets.
We follow three standards and get three different partitions,
i.e., genre, tempo, and mood partition. We use the labeled
tags to partition the whole dataset. Distribution of each
attribute is shown in Fig. 7, 8, 9, and 10.

Fig. 11 shows the distribution of audio durations in the

1 https://developers.google.com/youtube/v3
2 https://www.shazam.com/



Figure 8: Genre distribution within the retrieval dataset.
This bar graph reflects the variety of music genres rep-
resented, indicating the dataset’s broad applicability for
genre-specific retrieval tasks.

Figure 9: Histogram of instrument tags in our retrieval
dataset. This figure shows the range of musical instru-
ments represented, underscoring the dataset’s comprehen-
sive coverage of instrumental music.

dataset. The majority of the audio files have durations
concentrated within a specific range, suggesting consistent
lengths across the dataset. The associated text data is char-
acterized by word count distribution in Fig. 12, showing a
variety of text lengths, with most falling in the mid-range.
Finally, the lexical diversity, representing vocabulary us-
age variation, is displayed in Fig. 13. Most texts demon-
strate high lexical diversity, indicating rich vocabulary us-
age across the dataset.

D.3 Subjective Evaluation Dataset

To evaluate our model across diverse video contexts, we
construct a dataset encompassing seven distinct video cate-
gories: Scene/Vlog, Documentary, Advertisement, Movie,
Game, Anime, and Sports. These categories are selected
to ensure a comprehensive benchmark that reflects a wide
range of video types and their corresponding music needs.
Each video is manually reviewed to ensure quality, result-
ing in a final dataset of 35 high-quality videos.

We apply the following criteria for video selection:

• Duration: Videos are limited to a maximum length
of three minutes to ensure efficient evaluation.

• Content Quality: Only classic or high-quality videos
are included, reflecting diverse and impactful visual

Figure 10: Density curve of Beats Per Minute (BPM)
across the retrieval dataset. This plot illustrates the dis-
tribution of Beats Per Minute, showcasing the tempo range
covered in our collection.

Figure 11: Histogram of audio durations in retrieval
dataset. This shows the distribution of song lengths in the
dataset.

themes.

Due to limitations on providing external URLs in the
supplementary material, we describe each category as fol-
lows:
Scene/Vlog. This category focuses on travel and scenic
content, featuring dynamic landscapes, urban exploration,
and lifestyle moments. Examples include aerial footage of
Amoy, a travel vlog in Tokyo, and a beachside promotional
video capturing the beauty of coastal environments.
Documentary. Highlighting impactful narratives, this cat-
egory includes trailers for iconic documentaries such as
Planet Earth II, which captures breathtaking natural phe-
nomena; The Last Dance, chronicling Michael Jordan’s
legendary career; and Free Solo, an intense portrayal of
extreme rock climbing.
Advertisement. Promotional videos from globally recog-
nized brands are featured here, such as Honda’s engineer-
ing marvel in its Classic Honda Commercial, Coca-Cola’s
emotionally resonant advertisements, and Samsung’s fu-
turistic product showcases.
Movie. Iconic film moments and trailers dominate this
category, with examples including the montage from The
Shawshank Redemption, the epic trailer for Interstellar,
and the thrilling scenes from Jurassic Park and Star Wars.
Game. This category showcases the artistry of game trail-
ers, featuring visually stunning examples like the official



Figure 12: Histogram of text word counts in retrieval
dataset. This represents the distribution of word counts in
the associated text data.

Figure 13: Histogram of lexical diversity scores in re-
trieval dataset. This shows the variation in vocabulary us-
age across text samples.

trailer for Genshin Impact, the adventurous world of Zelda:
Breath of the Wild, and the nostalgic appeal of Final Fan-
tasy VII.
Anime. This category includes promotional materials and
memorable moments from classic anime series. Exam-
ples include the heartwarming trailer for My Neighbor To-
toro, the action-packed sequences from Attack on Titan, the
emotional depth of Evangelion, and the visually stunning
storytelling of Your Name.
Sport. Dramatic and inspiring moments from the world of
sports are showcased in this category. Examples include
the excitement of the Qatar World Cup trailer, Usain Bolt’s
electrifying highlights, the high-speed intensity of Formula
1 racing, and the Paris 2024 Olympics promotional film.

D.4 Visual-to-Description Evaluation Dataset

We downloaded all available videos from the Disco-200K-
high-quality dataset [29] as of July 30, 2023. Upon review,
we noted that many videos consisted of static images or
were lyrics-based music videos. To filter for dynamic con-
tent, we calculated the average pixel difference between
consecutive frames to identify static videos. Videos close
to the threshold are manually reviewed to confirm their dy-
namic nature. Following this rigorous selection process,
we curated a subset of 8,042 videos that demonstrated suf-
ficient motion suitable for our analysis.

To visualize the motion characteristics of the Disco-

(a) KDE of log inter-frame differ-
ence

(b) Violin plot of log inter-frame
distribution

Figure 14: Distribution of log-transformed inter-frame
motion across all videos in Disco-200K-high-quality.

200K-high-quality dataset, we computed the average pixel
difference between consecutive frames for each video and
applied a logarithmic transformation to reduce the influ-
ence of extreme outliers (e.g., flashes, scene cuts). As
shown in Fig. 14, the distribution is highly right-skewed:
most videos exhibit minimal motion, while a minority con-
tain substantial dynamic content. We used this distribution
to guide our filtering strategy. Videos near the boundary
were manually inspected to ensure quality. This filtering
ensures that the retained 8,042 videos are visually dynamic
and better suited for downstream multimodal alignment
tasks.

D.5 SymMV, SongDescriber, and MUImage

We utilize all available videos from the SymMV [13]
dataset as of November 1, 2024.

While Stable Audio Open [3] claimed to have filtered
the SongDescriber dataset to exclude tracks with vocal
components, we conduct an additional manual review to
ensure thorough filtering. After this process, we retain a
total of 279 text-music pairs.

For the MUImage dataset [4], as the authors do not
specify a valid test set but only provided the training set,
we sort the entire dataset alphabetically by file name and
use the first 1,500 image-music pairs as the test set. Con-
sequently, the evaluation of MuMu-LLaMA on MUImage
is actually conducted on its training set.

The specific video-music / text-music pairs used in our
study are documented in the files Dataset/SymMV.csv
and Dataset/SongDescriber.csv.

E. METHOD DETAILS

E.1 Chain-of-Thought Training in MTV-24K

Pretrained multimodal large language models (MLLMs)
exhibit strong generalization. In our setting, we use mu-
sic videos (MVs) as training data because they offer high-
quality music–visual alignment and professionally pro-
duced audio. However, the genre coverage of these videos
is limited, which makes direct fine-tuning prone to overfit-
ting.

To address this, we propose a chain-of-thought (CoT)
training scheme that explicitly links visual evidence to mu-
sical attributes. The goal is to preserve the relevance be-



tween the generated music description and the video con-
tent, thereby improving generalization—especially for the
music-description generation task.

Given an input video V , we first use InternVL-2 [7] to
produce a video caption C. We then fine-tune InternVL-
2 with the following instruction-style prompt, conditioned
on V and C: [V ] You are a film music supervisor. The fol-
lowing describes a film clip: [C] Based on the emotional
tone and visuals of this clip, how would you compose the
music? Provide a one-sentence summary of the key musi-
cal elements you would use. This prompt encourages the
model to articulate a concise rationale that ties visual cues
(e.g., mood, pacing, scene dynamics) to musical decisions
(e.g., tempo, instrumentation, harmony), reinforcing mu-
sic–visual relevance during training.

E.2 Details of Broad Search

For each conditional modality, we first retrieve music that
closely aligns with the input by computing similarities us-
ing CLIP [33] or CLAP [34] embeddings. Given a target
music, we directly use CLAP to compute audio embed-
dings ainput and compare them with embeddings {eaudio

i }
in our music database:

i∗ = argmax
i

cos
(
eaudio

input , e
audio
i

)
. (1)

The music pieces retrieved from the broad retrieval mi∗

serve as fine-grained conditions. Notably, although we
only apply music-centric retrieval during training, it is fea-
sible to use CLIP embeddings of the input text tinput or
visual signals vinput and compare them with text-music or
visual-music pairs in the database as inference-time re-
trieval. The music associated with the closest matches is
retrieved as:

i∗ = argmax
i

cos
(
etext/visual

input , etext/visual
i

)
, (2)

where etext/visual
input and etext/visual

i are the CLIP embeddings of
the input text or visual content and each dataset entry. This
ensures that the retrieved music complements the semantic
and emotional context of the visual or textual input, al-
lowing the model to effectively capture complex musical
features, such as melody and rhythm.

E.3 Details of Target Search

In parallel to the broad retrieval, we conduct a targeted re-
trieval within partitions of our dataset, specifically orga-
nized based on musical attributes. For instance, the tempo
partition is categorized into “fast”, “medium”, and “slow”
subsets. This allows users to flexibly select songs that
match specific attributes among genre, tempo, or mood
partition. To retrieve a fast-paced song, we query directly
within the “fast” subset in the tempo partition. In each sub-
set, the most suitable music piece is determined by com-
puting the cosine similarity between the CLAP embed-
dings of the desired textual attribute, encoded as eattr

desired
and {eaudio

k }:

k∗ = argmax
k

cos
(
eattr

desired, e
audio
k

)
. (3)

The embedding of the retrieved music eaudio
k∗ is used as in-

put in a subsequent module, where it is integrated into the
generation process.

F. EXPERIMENT DETAILS

In this section, we provide details of the experiments in the
main paper.

F.1 Implementation Details

For MMDM module, We utilize the InternVL-2 [7] archi-
tecture with mixed precision training (bfloat16) and the
AdamW optimizer (learning rate: 1e-6, cosine decay).
Top-k sampling (k=50) and nucleus sampling (p=1.0) are
used for generation, with a temperature of 1.0. The model
features FlashAttention v2 [48], 32 layers, and 16 attention
heads, paired with a vision backbone (Intern-ViT-6B) [49]
at 448x448 resolution. Training is performed using a batch
size of 2 with gradient accumulation over 8 steps. Fine-
tuning is conducted with LoRA [50] at rank 16, utilizing 8
NVIDIA A800-SXM4-80GB GPUs over 3 days for a total
of 10 epochs.

In ECMG module, We leverage a DiT [35] model
with T5 [51] conditioning and an audio autoencoder for
fine-tuning on audio-text alignment tasks. The archi-
tecture includes a 24-layer continuous transformer with
1536 embedding dimensions and 24 attention heads. Au-
dio inputs are preprocessed via an autoencoder featuring
Oobleck [52] encoders/decoders with multi-scale channel
configurations and a latent dimension of 64.

Training uses AdamW [53] (learning rate: 1e-6, weight
decay: 0.001) with an InverseLR scheduler. The model
operates at a 44.1kHz sample rate with a batch size of 1
and gradient accumulation over 8 steps. Mixed precision
(16-bit) training is employed, using DeepSpeed [54] for
optimization with 4 NVIDIA A100-PCIE-40GB GPUs.

Conditioning involves audio features, time attributes,
and textual prompts (via T5-base, max length: 128).

F.2 Video-to-Music Generation

We evaluate video-to-music generation using several state-
of-the-art models, adhering to their default settings for
fair comparison. Due to the sequence length limitation of
MuMu-LLaMA [4], all samples are truncated to 30 sec-
onds. Additionally, to accommodate the resolution con-
straint of CMT [12], all videos are resized to 360p.

For all MIDI based model, we use SGM-v2.01-Sal-
Guit-Bass-V1.3 as the sound font. We also follow the de-
fault setting in each generation model. For MTM, we set
a standard sample rate of 44,100 Hz and adjust the CFG
scale to 7 for balancing conditioning influence, with 100
steps for detailed noise reduction. Our sampler, “DPM++
3M SDE” [55], manages noise sampling across a sigma
range from 0.03 to 1000. For Diff-BGM [15], we notice
that, contrary to their claim in the paper [15], the visual en-
coder is actually sourced from CLIP2Video 3 rather than

3 https://github.com/CryhanFang/CLIP2Video



Figure 15: Screenshot of the user study questionnaire in subjective evaluation.

VideoCLIP. This is evident from their implementation 4

and the fact that the embedding dimensions do not match
those of VideoCLIP but align with those in CLIP2Video.
Additionally, the generated music quality remains strong.
Based on this, we preprocess using CLIP2Video [56].

In our experiments, we use a server with dual Intel
Xeon Processors (Icelake) with 64 cores each and four
NVIDIA A100-PCIE-40GB GPUs, under a KVM virtual-
ized Linux environment. These configurations ensure the
reproducibility of our inference time measurements.

F.3 Text-to-Music Generation

For text-to-music models, we also adhere to their default
settings for a fair comparison. Due to the maximum se-
quence length limitation of MuMu-LLaMA [4], all gener-
ated music samples are capped at 30 seconds.

MTM follows the parameters outlined in [3]. It uses a
44,100 Hz sample rate, a CFG scale of 7, 100 steps for
diffusion, and a ’DPM++ 3M SDE’ sampler with a sigma
range from 0.03 to 1000.

F.4 Subjective Evaluation

For the subjective evaluation, we provide each participant
with two sets of evaluations: one for video-to-music gen-
eration and another for text-to-music generation. Each set
consists of seven groups, corresponding to the seven cat-
egories in our subjective evaluation dataset. For each cat-
egory, a video is randomly sampled. Each group includes
five music pieces, one generated by each of the compared
models.

For video-to-music (V2M) generation, participants are
briefed on the purpose of the study and instructed to eval-
uate how well the generated music matched the video in
terms of mood, thematic alignment, and overall enhance-
ment of the viewing experience. Each video is presented
seven times, each time paired with a background music
track generated from a different model. The order of music
presentations is randomized to eliminate order effects. Af-
ter watching all versions of a video, participants are asked

4 https://github.com/sizhelee/Diff-BGM

to rate each version using a Likert scale, i.e. rate from 1
to 5, considering factors such as emotional impact, the-
matic coherence, and suitability for the video’s content.
Additionally, participants are encouraged to provide qual-
itative feedback explaining their preferences, highlighting
specific emotional or thematic factors that influenced their
choices.

For the V2M task, we utilize the following metrics to
guide participant evaluations:

• Musical Pleasantness (MP): The aesthetic quality
of the music, independent of context.

• Emotional Correspondence (EC): How well the
music conveys the intended emotions of the video.

• Thematic Correspondence (TC): The alignment
between the video’s theme and the generated music.

• Rhythmic Correspondence (RC): The synchro-
nization between the video’s motion and the music’s
rhythm.

The evaluation process for text-to-music (T2M) gen-
eration follows a similar structure. Participants are pro-
vided with textual prompts and asked to evaluate the gen-
erated music based on how well it reflects the mood, style,
and thematic elements described in the text. Each textual
prompt is paired with five music tracks generated from five
models, and participants rate the tracks using the same Lik-
ert scoring system. Feedback is collected to identify spe-
cific strengths and weaknesses of the generated music in
conveying textual meaning.

For the T2M task, we select the following metrics:

• Musical Pleasantness (MP): The aesthetic quality
of the music, independent of context.

• Text-Music Alignment (TMA): How effectively
the music captures the mood, style, and themes de-
scribed in the text.

Each participant rated 40 tracks for the V2M task and
35 tracks for the T2M task, completing the questionnaire in



approximately 50 minutes. In addition to quantitative rat-
ings, participants also provided qualitative feedback, ex-
plaining their preferences and highlighting the emotional
and thematic factors influencing their decisions. Each par-
ticipant received a $10 reward, and a total of 80 valid re-
sponses were collected via social media recruitment, which
is the largest scale compare to 20-55 participants in exist-
ing works [4, 12–15, 17].

A notable result is observed in the RC metric. Despite
not explicitly introducing rhythm-focused features, our
model achieves superior performance compared to base-
line methods. This suggests that an alternative approach,
which emphasizes a broader perspective rather than heav-
ily focusing on local rhythmic features, can also be ef-
fective. Overemphasis on local rhythms may sometimes
challenge the overall coherence of the music and its align-
ment with the broader narrative. By adopting a balanced
approach, our model maintains rhythmic flow while align-
ing closely with the intended emotional context, leading
to an enhanced audiovisual experience. We also provide
a screenshot of the questionnaire with full text of instruc-
tions in Fig. 15.

We also conduct subjective evaluation with 42 partic-
ipants to evaluate perceptual controllability. For each at-
tribute, listeners are presented with a pair of outputs (with
and without the target control) and asked which better
matched the condition. They also rated alignment on a
1–5 Likert scale. Results in Tab. 8 show high agreement
and strong subjective ratings, confirming the effectiveness
of MTM’s control mechanisms.

G. BROADER IMPACTS, LIMITATIONS, AND
FUTURE WORKS

Broader Impacts. The MTM framework introduces sev-
eral significant impacts across various domains. Primarily,
MTM enhances accessibility in entertainment technologies
such as gaming and virtual reality by enabling the auto-
matic generation of emotionally resonant background mu-
sic, which could improve user engagement and accessibil-
ity for people with diverse abilities. However, the technol-
ogy also presents potential negative impacts. The automa-
tion of music generation might reduce the need for human
composers in certain contexts, potentially affecting their
livelihoods. Moreover, biases in the training data could
lead to outputs that do not adequately represent the diver-
sity of global musical expressions, potentially introducing
unfairness in musical representation.

Limitations. The MTM framework represents a signif-
icant advancement in multimodal music generation; how-
ever, it is not devoid of limitations. The model’s effec-
tiveness heavily relies on the diversity and quality of the
dataset it is trained on. Presently, available datasets may
not adequately represent the vast array of musical styles
and cultural expressions, thus limiting the system’s ability
to produce a broad spectrum of musical outputs. Moreover,
the challenge of accurately translating complex emotional
and thematic nuances across different modalities persists,
as the system occasionally fails to capture the depth and

subtlety inherent in human compositions.
Future Works. Future enhancements to the MTM

framework should focus on several key areas. Broadening
the diversity of the dataset to encompass a greater variety
of musical styles and cultural expressions would consider-
ably enhance the model’s generative capabilities. Improv-
ing the system’s understanding of and ability to accurately
translate intricate emotional and thematic nuances between
modalities would make the technology more effective. In-
tegrating music theory into the music generation process
could provide a more robust framework for generating mu-
sically coherent outputs.


