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ABSTRACT1

Multimodal music generation aims to produce music from2

diverse input modalities such as text, videos, and im-3

ages. Existing methods typically rely on a shared em-4

bedding space, but face challenges such as insufficient5

cross-modal data, weak cross-modal alignment, and lim-6

ited controllability. This paper addresses these issues by7

introducing explicit bridges of text and music for im-8

proved alignment. We propose a novel pipeline for con-9

structing multimodal music datasets, yielding two new10

datasets, namely MTV-24K and MT-512K, all annotated11

with rich musical attributes. Additionally, we propose12

MTM, a Multimodal-to-Text-to-Music framework based13

on these bridges. Experiments on video-to-music, image-14

to-music, text-to-music, and controllable music generation15

tasks demonstrate that MTM significantly improves music16

quality, modality alignment, and user controllability com-17

pared to existing methods.18

1. INTRODUCTION19

Recent advances in generative models have made notable20

progress in text-to-music generation [1–3], but multimodal21

music generation (from text, images, or videos) remains22

challenging. Existing methods rely on common embed-23

ding spaces for alignment [4–6] but struggle to maintain24

accurate, high-quality cross-modal correlations.25

We argue that key limitations of multimodal music gen-26

eration include: (1) scarce large-scale multimodal mu-27

sic datasets, with existing ones lacking fine-grained musi-28

cal annotations; (2) over-reliance on low-level visual cues29

without semantic understanding of mood or themes; (3)30

under-utilization of distinct, complementary modality con-31

tributions (e.g., text for semantics, videos for temporal dy-32

namics); (4) poor interpretability and controllability over33

musical attributes in joint embedding approaches.34

To address these, we propose using text and music as35

explicit alignment bridges. Text bridge converts visu-36

als to detailed music descriptions via a multimodal model,37

guiding generation. Music bridge introduces retrieval-38

augmented generation (RAG) for thematic alignment and39
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attribute control. These bridges complement each other40

and help to enhance controllability.41

Based on this principle, we present MTM, a novel42

method generating music from text, video, or images, with43

four core components: (1) a 24K multimodal video-music-44

text dataset with rich musical annotations; (2) a multi-45

modal music description model (based on InternVL2 [7])46

translating visuals to structured musical descriptions; (3)47

dual-track retrieval (broad for fine-grained guidance, tar-48

geted for attribute control); (4) explicitly conditioned gen-49

eration integrating both bridges via a diffusion transformer.50

The overview of our framework is shown in Fig. 1.51

We conduct extensive experiments on video, text, and52

image-to-music, visual-to-description, and controllable53

music generation tasks. Results show that MTM en-54

hances music quality, strengthens cross-modal alignment,55

and improves controllability, making it a robust and flexi-56

ble framework with broad multimedia applications.57

2. RELATED WORK58

Multimodal Music Generation. Conditional music gen-59

eration has advanced in both symbolic and audio do-60

mains, with representative text-to-music systems improv-61

ing fidelity and diversity [1–3, 8–11]. For video-to-music62

(V2M), MIDI-based methods translate visual rhythm into63

symbolic patterns [12–15], while audio-based models ex-64

ploit large corpora and strong encoders to learn richer cor-65

respondences [16, 17]. However, limited paired data leads66

to weak high-level semantic alignment and poor control-67

lability. Any-to-music work such as NExT-GPT [5] and68

[6] treats music as generic audio, and MuMu-LLaMA [4]69

fuses modality features via an LLM, but these feature-level70

schemes under-use the structure of music and offer little71

user control.72

Retrieval-augmented Generation. Retrieval-augmented73

generation (RAG) has become a common technique to en-74

hance the fidelity and diversity of language models with75

an additional knowledge base in the field of natural lan-76

guage processing [18–21]. Due to its effectiveness, RAG77

is further generalized to a range of fields and tasks, such as78

visual recognition [22, 23], image generation [24, 25], 3D79

generation [26, 27], and drug discovery [28]. To the best80

of our knowledge, we propose the first RAG pipeline for81

multimodal music generation.82



Figure 1: Overview of the MTM framework. We employ text and music as two explicit bridges for multimodal music
generation. Text-form music description is obtained with the Multimodal Music Description model. Reference music is
retrieved with the Dual-track Music Retrieval module. The two bridges are fed into the Explicitly Conditioned Music
Generation module to generate output music.

3. METHODOLOGY83

In this section, we present our multimodal music gen-84

eration framework (Fig. 1.), including the following key85

components: (1) a Multimodal Music Dataset which ef-86

fectively aligns music, video and text; (2) a Multimodal87

Music Description Model (MMDM), which generates88

textual descriptions for emotional and thematic framing,89

providing the textual bridge; (3) a Dual-track Music90

Retrieval (DMR) module, which retrieves relevant mu-91

sic tracks based on input criteria, providing the musical92

bridge; and (4) an Explicitly Conditioned Music Gener-93

ation (ECMG) module, which uses both bridges to gener-94

ate the final music composition.95

3.1 Multimodal Music Dataset96

High-quality datasets that effectively align music, video,97

and text remain a critical bottleneck in multimodal music98

generation research. Existing datasets (Tab. 1) are small,99

weakly annotated, or single-modal, failing to capture the100

intricate relationships between audio, visual, and textual101

elements. To address this gap, we introduce MTV-24K, a102

dataset of 24K music-video-text triplets with fine-grained103

musical attributes and descriptions. This dataset opens new104

possibilities for training and evaluating advanced genera-105

tive models conditioned on multimodal inputs. With the106

same pipeline we further collect MT-512K, 512k music-107

text pairs that fine-tune the T2M model further demonstrat-108

ing the high quality and reliability of our data construction109

process. For details on the construction of the datasets,110

please refer to the Appendix.111

3.2 Multimodal Music Description Model112

To bridge the gap between multimodal information and113

the music modality, our approach employs textual descrip-114

tions as the first explicit bridge, effectively linking com-115

plex multimodal inputs with music generation. Leverag-116

ing the cross-modal understanding and generation ability117

of multimodal large language models (MLLMs) [30–32],118

Dataset Genre Desc. SrcSep. Attr. Size

SymMV [13] ! % % ! 1,140
DISCO-MV [29] % % % % 2200K
MUVideo [4] % Coarse % % 14.5K
BGM909 [15] ! Fine ! ! 909
V2M [17] % % % % 360K
MTV-24K (Ours) ! Fine ! ! 24K

Table 1: Comparison between different multimodal
music datasets. This table compares datasets based on
their genre, music description (Desc.), source separation
(SrcSep), music attributes (Attr.), and size.

we introduce the Multimodal Music Description Model119

(MMDM), which is built on InternVL2 [7] with MTV-24K120

to map multimodal signals into textual music description121

to guide the music generation process.122

3.3 Dual-track Music Retrieval123

Musicians composing for multimedia often start by ref-124

erencing existing music—an approach AI can mirror via125

retrieval-augmented generation, especially when datasets126

are limited. To enhance multimodal music generation and127

address alignment challenges (e.g., text-to-music models128

struggling with chord progressions or rhythm), we intro-129

duce Dual-track Music Retrieval, using music as an ex-130

plicit bridge to mitigate language-music gaps.131

We use music embeddings to form an in-domain link132

between diverse inputs (text, images) and target audio. As133

shown in Fig. 2, our pipeline combines two retrieval strate-134

gies on the MTV-24K dataset:135

Broad retrieval for Fine-grained Control. For each con-136

ditional modality, we first retrieve relevant music by com-137

puting similarities using CLIP [33] or CLAP [34] embed-138

dings. Given a target music, we directly use CLAP to139

compute audio embeddings and compare them with em-140

beddings in our music database. The retrieved music mi∗141

provides fine-grained conditions (e.g., melody, rhythm).142

At inference, CLIP embeddings of text/visuals can replace143



Figure 2: Framework of Dual-track Music Retrieval and Explicitly Conditioned Music Generation. The left part
illustrates the Dual-track Music Retrieval process, which leverages our multimodal dataset to perform both broad and
targeted retrieval. The right part shows the Explicitly Conditioned Music Generation pathway, where music is generated
through a ControlFormer block integrating embeddings from selected music bridge, text bridge, and noisy inputs.

audio inputs to align with semantic context.144

Targeted retrieval for Coarse-Grained Control. In parallel145

to the broad retrieval, we conduct a targeted retrieval based146

on musical attributes labeled in MTV-24K. For instance,147

the tempo partition is categorized into “fast”, “medium”,148

and “slow” subsets. This allows users to flexibly select149

songs that match specific attributes among genre, tempo,150

or mood partition. To retrieve a fast-paced song, we query151

directly within the “fast” subset in the tempo partition. In152

each subset, the most suitable music piece is determined153

by computing the cosine similarity between the CLAP em-154

beddings of the desired textual attribute. The embedding155

of the retrieved music is fed into the subsequent modules.156

3.4 Explicitly Conditioned Music Generation157

Our base model uses a latent diffusion transformer158

(DiT) [35], built on Stable Audio Open [3]. Music is159

encoded into a latent space via a pre-trained VAE, with160

Gaussian noise added. Transformer blocks process the161

noisy input, incorporating T5-encoded text features and162

timestep via cross-attention, optimized with the diffusion163

v-prediction objective [36].164

Music ControlFormer. To integrate fine-grained guid-165

ance from broad retrieval, we adapt ControlNet princi-166

ples [37, 38] for diffusion transformers (Fig. 2). Instead of167

full model duplication, we replicate early transformer lay-168

ers to form a ControlFormer branch, balancing efficiency169

and structural alignment. At each layer, the main branch170

produces a hidden state, and the ControlFormer produces171

another. We combine these hidden states by element-wise172

addition To ensure stable training and prevent disrupting173

the extracted representations from the pretrained model,174

we initialize the input and output convolution layers of the175

ControlFormer to zero.176

Stylization Module. For coarse-grained attribute control177

from targeted retrieval, we fuse retrieved music character-178

istics into generation by: (1) appending attribute descrip-179

tions to the input prompt; (2) concatenating CLAP embed-180

dings of retrieved music with text/timestep embeddings to181

form a unified conditional representation (adjusted to text182

embedding dimensions); (3) using cross-attention to inte-183

grate this into noisy music, aligning generated output with184

specified attributes.185

4. EXPERIMENTS186

In this section, we comprehensively evaluate MTM on187

video-to-music (V2M), text-to-music (T2M), and ablation188

studies. For details of our dataset and full experimental189

setup, and additional results on image-to-music generation,190

visual-to-description, and controllable generation, please191

refer to the appendix.192

We use objective metrics including KLpasst [39],193

FDopenl3 [40], CLAPScore [34], ImageBind score194

(IB) [41], and BeatMSE. KLpasst and FDopenl3 evalu-195

ate the music quality from its statistical similarity with196

real music data and perceptual audio quality. CLAPScore197

and IB measure the cross-modal semantic alignment be-198

tween text, videos or images and the corresponding gen-199

erated music. BeatMSE calculates the Mean Squared Er-200

ror (MSE) between the ground truth and generated music,201

specifically evaluating the alignment of rhythmic patterns.202

4.1 Video-to-music Generation203

We evaluate the proposed MTM model on the V2M task,204

where the goal is to generate background music for in-205

put videos with both high-quality audio and strong video-206

music alignment. We benchmark the performance of207

MTM on SymMV [13] dataset against several state-of-208

the-art methods, including symbolic methods (CMT [12],209

Video2music [14] and Diff-BGM [15]) and audio meth-210

ods (VidMuse [17] and MuMu-LLaMA [4]). Apart from211

objective metrics, we also conduct subjective evalua-212

tion to ask participants to rate music tracks on Musi-213

cal Pleasantness (MP), Emotional Correspondence (EC),214



Method Output Objective Metrics Subjective Metrics↑
KLpasst↓ FDopenl3↓ IB↑ BeatMSE ↓ MP EC TC RC

CMT [12] MIDI 52.76 269.63 8.54 1748.1 3.06 2.68 2.72 3.04
Video2music [14] MIDI 103.56 533.46 5.26 943.4 2.93 2.53 2.59 2.53
Diff-BGM [15] MIDI 104.28 472.53 10.29 1842.3 3.10 2.92 2.77 2.74
MuMu-LLaMA [4] Audio 60.41 180.72 15.58 1388.1 2.98 2.44 2.44 2.71
VidMuse [17] Audio 56.48 187.13 22.09 1427.2 3.21 2.98 3.06 3.16
MTM (ours) Audio 47.12 101.43 22.93 1172.1 3.85 3.40 3.40 3.64

Table 2: Video-to-music generation performance on SymMV.

Method Objective Metrics Subjective Metrics↑
KLpasst↓ FDopenl3↓ CLAPScore↑ IB↑ MP TMA

AudioLDM [11] 99.85 293.86 17.61 20.01 2.31 2.65
MusicGen [2] 46.89 181.59 33.95 22.46 3.12 3.33
MuMu-LLaMA [4] 49.03 188.84 28.76 16.70 3.21 3.19
Stable Audio Open [3] 42.89 183.09 40.92 24.67 3.42 3.51
MTM (ours) 38.28 134.34 41.28 29.36 3.78 3.57

Table 3: Text-to-music generation performance on SongDescriber dataset.

B T KL↓ FD↓ IB↑

! ! 75.3 177.3 24.7
! × 91.9 199.7 20.7
× ! 91.1 387.1 20.5
× × 96.4 360.3 14.7

(a)

Method KL↓ FD↓ CLAPScore↑

Retrieval 56.6 163.0 37.0

Full 38.3 134.3 41.3

(b)

Table 4: (a) Effect of broad (B) and target (T) retrieval on
video-to-music performance. (b) Comparison of retrieval-
only and full models.

Thematic Correspondence (TC), and Rhythmic Correspon-215

dence (RC) using a 5-point Likert scale. A total of 80 valid216

responses were gathered. More details are in the appendix.217

Results. As shown in Tab. 2, MTM achieves the best per-218

formance across all objective metrics excluding BeatMSE,219

indicating superior realism, perceptual quality, and strong220

semantic alignment with video content. Subjective evalua-221

tions highlight MTM’s ability to enhance video narratives222

emotionally and thematically, thanks to the DMR mod-223

ule, which dynamically synchronizes music with visuals.224

While MTM does not explicitly optimize local rhythmic225

accuracy, it achieves better global rhythm coherence than226

baselines, avoiding overfitting to local beats observed in227

CMT and Diff-BGM. This balance ensures natural musi-228

cal flow, enhancing both immersion and storytelling.229

4.2 Text-to-music Generation230

We evaluate the MTM model on the T2M task, where the231

goal is to generate music that aligns with a given text de-232

scription. We use the SongDescriber [42], a curated collec-233

tion specifically for this task, excluding samples with vo-234

cal parts to maintain instrumental coherence. We compare235

MTM with several state-of-the-art text-to-music models:236

AudioLDM [11], MusicGen [2], Stable Audio Open [3]237

and MuMu-LLaMA [4].238

Results. As presented in Tab. 3, MTM outperforms base-239

line models across the objective metrics. It achieves the240

lowest KLpasst and FDopenl3, indicating that the music241

generated by MTM is statistically closer to real-world mu-242

sic distributions and exhibits higher perceptual quality.243

MTM also achieves a highest CLAPScore and ImageBind-244

Score, further validating its robust performance in aligning245

text with music. Subjectively, MTM excels with the high-246

est MP and TMA score, suggesting it generates musically247

coherent and contextually accurate compositions.248

4.3 Ablation Studies249

We assess the individual contributions of broad retrieval250

(BR) and targeted retrieval (TR) in the video-to-music task251

using the SymMV dataset. As shown in Tab. 4(a), com-252

bining BR and TR achieves the best performance across all253

metrics, demonstrating their complementary roles in music254

generation. Removing either component degrades perfor-255

mance, underscoring their complementary roles in music256

generation.257

As shown in Tab. 4(b), the retrieval-only model directly258

uses retrieved music as output, leading to weak alignment259

with input descriptions and higher KL and FD scores. In260

contrast, the full model outperforms it across all metrics,261

showing the necessity of generation.262

5. CONCLUSION263

We presented MTM, a multimodal music generator that264

treats text and retrieved music as explicit bridges to align265

and control generation from text, images, and video. Built266

on the new MTV-24K dataset and a dual-track retrieval267

module, MTM delivers state-of-the-art audio quality and268

fine-grained controllability on V2M, I2M, and T2M bench-269

marks. These results point to MTM’s potential as a scal-270

able engine for personalised, context-aware soundtracks in271

entertainment, XR, and other interactive media.272
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A. CONSTRUCTION OF THE MTV-24K DATASET502

A.1 Data Collection and Annotation503

We design a pipeline to collect diverse music-video pairs504

and produce high-quality, context-rich textual annotations.505

The pipeline consists of three primary stages: MV collec-506

tion, auto-tagging, and ground truth generation, as sum-507

marized in Fig. 3. This multi-stage approach was designed508

to ensure comprehensive coverage of music modalities and509

robust alignment between audiovisual content and associ-510

ated descriptions.511

Music Video Data Collection. Data collection phase tar-512

gets music videos (MVs) since they exhibit strong corre-513

spondence between visual content and musical expression.514

Each entry in the dataset contains:515

• Video frames capturing key scenes and transitions.516

• Music tracks processed with hybrid Demucs [43]517

for source separation to isolate instrumentals.518

• Metadata such as titles, artist information, and519

video descriptions from platforms like YouTube and520

Shazam, providing supplementary context for each521

music-video pair.522

Automatic Music Description Generation. After con-523

structing the initial MV dataset, we proceed to generate524

music descriptions from the raw data. This process be-525

gins with an auto-tagging method that annotates each au-526

dio file across dimensions such as emotional tone and mu-527

sic theory elements. Subsequently, large language models528

are employed to formulate unstructured metadata and tags529

into detailed music descriptions in natural language.530

The auto-tagging process is grounded in a comprehen-531

sive label set developed by music experts, covering essen-532

tial categories such as instruments, genres, and emotions533

for standardized and interpretable tagging. CLAP [34] em-534

beddings of candidate tags are extracted and align candi-535

date tags with audio CLAP embeddings through cosine536

similarity. To ensure high precision in labeling, we use537

carefully calibrated similarity thresholds to filter out low-538

alignment tags.539

To generate detailed music descriptions, we combine540

auto-generated tags and metadata with an LLM used as541

a paraphraser. We design detailed, structured prompts to542

constrain generation scope, ensuring outputs remain se-543

mantically faithful to the original data. This strategy pro-544

duces grounded descriptions that mitigate hallucinations545

and improve text-audio alignment.546

A.2 Quality Validation547

Quality assurance combines automatic filtering and ex-548

pert review. CLAP similarity removes low-alignment tags;549

PAMScore [44] and outlier detection drop noisy pairs; a550

manual audit of 10% of samples tunes thresholds. This551

two-tier protocol yields finer multimodal consistency than552

prior MV datasets that rely solely on raw metadata. More553

details are provided in the supplementary.554

Method KLpasst↓ FDopenl3↓ IB↑
CoDi [6] 216.48 251.52 9.60
MuMu-LLaMA [4] 128.33 247.42 2.28
MTM (ours) 98.78 116.71 12.10

Table 5: Image-to-music generation performance.

Model CLAPScore↑

GPT-4V [45] 44.41
InternVL [7] 44.21
MuMu-LLaMA [4] 41.91
MMDM 50.88

Table 6: Video-to-description generation performance.

B. ADDITIONAL EXPERIMENTS555

B.1 Image-to-music Generation556

To demonstrate the versatility of our proposed framework,557

we evaluate the MTM model on the image-to-music (I2M)558

generation task. In this setting, models are required to gen-559

erate music that aligns semantically and emotionally with a560

given image. Evaluations are conducted using the MUIm-561

age [4] dataset, a high-quality collection of image-music562

pairs curated for nuanced cross-modal generation. We use563

1,500 image-music pairs as the test set.564

Baselines. We benchmark MTM against state-of-the-565

art models, including CoDi [6] and MuMu-LLaMA [4].566

CoDi, an any-to-any generation model, supports image-to-567

music, making it a strong baseline for comparison.568

Results.Tab. 5 summarizes the performance of MTM,569

CoDi, and MuMu-LLaMA on the I2M task. MTM demon-570

strates a substantially lower KLpasst and FDopenl3 com-571

pared to the baselines, alongside a higher ImageBind Score572

(IB), indicating its ability to generate music that aligns573

closely with real-world distributions. Notably, although574

MTM is not explicitly trained on images, it effectively575

captures both the semantic and emotional content of vi-576

sual inputs, underscoring its strong generalizability and its577

capacity to produce perceptually high-quality music from578

images.579

B.2 Visual-to-Description Generation580

We evaluate our MMDM model on a subset of 8,042 dy-581

namic videos filtered from the DISCO-200K-high-quality582

dataset [29]. To assess the quality of the generated de-583

scriptions, we use the CLAPScore to measure the similar-584

ity between the original and generated textual descriptions585

in terms of their alignment with the corresponding music.586

Since MuMu-LLaMA [4] focuses on user interaction, the587

output typically begins with ’Here is a piece of music that588

is [music description].’ We then parse the output and filter589

out any abnormal results.590

In Tab. 6, MMDM achieves highest CLAPScore. While591

both excel in multimodal tasks, they are not specialized592

for music-text generation, leading to lower performance.593



Figure 3: Pipeline of constructing MTV-24K and the Multimodal Music Description Model (MMDM). This process
starts with the collection of music videos, followed by automated tagging to refine audio annotations using CLAP em-
bedding similarities. Metadata and thematic descriptions are paraphrased by LLM to create training targets. The training
utilizes LoRA fine-tuning in the MMDM to transform multimodal inputs into targeted music descriptions that align with
the visual content’s themes.

Attribute ∆

Instrument +11.46
Genre +3.03
Mood +4.14

Table 7: Average change in CLAPScore when controlling
different attributes.

Metric Mood Genre Instrument Beat

Agreement (%) 95.2 91.0 94.3 92.8
Likert Score (1–5) 4.2 3.8 4.2 4.1

Table 8: User study of controllability.

MuMu-LLaMA struggles with multimodal fusion and rea-594

soning, further limiting its effectiveness. These results595

highlight MMDM’s superior ability to generate accurate596

and contextually relevant music descriptions.597

B.3 Controllable Generation598

To evaluate MTM’s controllability, we examine its abil-599

ity to modify music attributes. For each attribute we de-600

fine a binary contrast, for example “happy” versus “non-601

happy” for mood, and randomly select 20 songs that do602

not fall clearly on either side. From every seed we gen-603

erate 10 variants conditioned only on the target attribute604

while keeping the rest of the prompt unchanged. We then605

compute the mean change in CLAPScore, ∆, between each606

controlled output and its baseline, using the target-attribute607

text as the CLAP query. The results, listed in Tab. 7, show608

that a larger positive ∆ corresponds to closer alignment609

with the requested attribute.610

To further evaluate the controllability of our model, we611

test its ability to adjust the tempo of the generated music.612

Similar to other music attributes such as genre, instrument,613

and mood, we report the average change in tempo on the614

generated variations to quantify the model’s performance.615

For this experiment, we categorize the dataset into dis-616

tinct beats per minute (BPM) groups: “Fast,” “Medium,”617

and “Slow.” We randomly sample 20 songs for each BPM618

group and generate 10 variations for each song, condi-619

tioned on the sampled song itself. This setup allows us620

to assess the model’s capability to independently control621

tempo while maintaining the overall coherence of the gen-622

erated music.623

We calculate the average BPM across the 200 generated624

songs per group (20 songs × 10 variations) to measure how625

well the generated music aligns with the expected tempo626

adjustments. The results are summarized in Tab. 9.627

Model Average BPM

Fast 143.55
Medium 122.64
Slow 93.88

Table 9: Average BPM of music generated under varying
tempo conditions.

B.4 Additional Ablation Studies628

For efficiency, we trained models for this ablation study629

using only half the standard training epochs. However,630

we observed that performance trends remained consistent631

with full-epoch training, ensuring the validity of our con-632

clusions.633

We also remove the text modification when exclude tar-634

get retrieval, and results are shown in Tab. 10. The results635

are similar since user attributes are randomly sampled dur-636

ing whole experiment.637

We further conduct experiments on the scale of retriev-638

ing set. As shown in Tab. 11, performance consistently639

improves with larger retrieval sets. Compared to 1% and640

0.1% subsets, using the full retrieval pool achieves the641

best results across all metrics—lower KL and FD, and642

higher IB. This confirms that broader retrieval coverage643



enhances both semantic alignment and audio quality, high-644

lighting the importance of retrieval scale in the video-to-645

music task. Notably, even under extremely low-resource646

conditions (e.g., 0.1%), our model still maintains reason-647

able performance, demonstrating its robustness in limited648

retrieval scenarios.649

Text Modification KL↓ FD↓ IB↑

× 96.4 360.3 14.7
✓ 97.1 364.3 14.5

Table 10: Ablation of text modification.

Dataset KLpasst↓ FDopenl3↓ IB↑
1%(247 pieces) 47.43 132.16 21.72
0.1%(25 pieces) 50.28 150.82 19.09
Full 47.12 101.43 22.93

Table 11: Low-resource setting on video-to-music task.

C. ANALYSIS OF GENERATED SAMPLES650

C.1 Samples of V2M Generation651

In a comparative evaluation with existing models, our652

MTM framework displayed notable advancements in the653

stability and thematic alignment of music generation654

across various video contexts. Unlike CMT, which ex-655

cels at matching music to minute changes in video content,656

our model prioritizes broader narrative coherence. This ap-657

proach ensures a stronger, long-term narrative connection658

with the video, even if it occasionally sacrifices the preci-659

sion of minor video-to-music correspondences that CMT660

might capture more explicitly.661

When compared to VidMuse, another leading model in662

the field, the MTM framework stands out significantly in663

terms of musical clarity and completeness. The music gen-664

erated by our model not only demonstrated superior clarity665

but also showed a better correspondence with the overar-666

ching themes of the videos. For example, in an “Anime”667

video clip where the challenge lay in capturing the com-668

plex emotion of sorrow masked by cheerful sounds, i.e.,669

a nuance rooted in the original score, MTM was uniquely670

successful. Our model adeptly generated a sorrowful major671

key composition that maintained the cheerful impression672

while subtly conveying the underlying sadness, mirroring673

the complex emotional layering of the original music.674

Furthermore, in a scene depicting a forest at the start675

of a film, MTM distinguished itself by producing a piece676

with a long melodic line that naturally began to fade in, en-677

hancing the scene’s mysterious and vague ambiance. This678

capability to align musical elements with the intended at-679

mospheric qualities of a scene underscored our model’s ad-680

vanced understanding of contextual and thematic elements,681

setting it apart from other models which failed to capture682

this nuanced musical requirement.683

These examples underscore the MTM framework’s ca-684

pacity to generate music that not only complements but en-685

hances the storytelling of visual media, offering a more im-686

mersive and contextually appropriate auditory experience687

than its contemporaries.688

C.2 Samples of Visual-to-Description Generation689

To evaluate our model’s performance, we sampled690

10 frames from each video and provided the fol-691

lowing prompt to the models: Based on the692

emotional tone, pacing, and visuals of693

this video, how would you compose the694

music? Provide a one-sentence summary695

of the key musical elements that you696

use. This method ensures that the generated music697

aligns well with the emotional and visual characteristics698

of the video. Samples of these music descriptions are699

displayed in Tab. 12. Additionally, the content shown in700

Figure 1 of the main paper, which illustrates how a poem701

by P.B. Shelley, “The Flower that Smiles Today,” can also702

be transformed into a music description, is also generated703

using our model.704

C.3 Conclusion705

Compared to other models, our model captures musical de-706

tails, including style and emotion curves more effectively.707

D. DATASET ANALYSIS708

We utilize four self-curated datasets for the following pur-709

poses: 1) training the ECMG module (MT-512K); 2) con-710

structing the DMR retrieval dataset (MTV-24K); 3) con-711

ducting subjective and qualitative evaluations; and 4) as-712

sessing the performance of the MMDM module. Addition-713

ally, we document modifications made to existing datasets,714

namely SymMV [13] and SongDescriber [42].715

D.1 MT-512K716

We collect a total of 512K music tracks. Tracks contain-717

ing vocal components are identified using PANN [46] and718

CLAP [34], based on pre-defined tags such as vocal,719

choir, and human voice. Scores are computed be-720

tween each track and the target tags, and a threshold of721

0.1 is selected to identify tracks with vocal components.722

This threshold is determined through a manual review pro-723

cess, where we listen to a subset of music tracks to ensure724

the balance between accurately identifying vocal parts and725

minimizing false positives. The decision to remove tracks726

with human voices follows previous works [17], and is727

guided by three key considerations: 1) to lower the com-728

plexity of modeling voice components; 2) to enable the729

model to focus more effectively on instrumental music;730

and 3) to align with the primary goal of video background731

music generation [12, 13], which typically excludes vocal732

elements. Additionally, we filter out low-quality tracks by733

applying the PAM [44] score with a threshold of 0.95. Af-734

ter filtering, we obtain 54,112 high-quality tracks. The dis-735



Image Description GPT-4 Evaluation

A vibrant, energetic, and epic soundtrack
featuring a dynamic blend of strings,
brass, and orchestral elements, perfectly
capturing a sense of adventure and
excitement.

Score: 5 / 5
Reason:
Emotion Match: The energy and vibrancy of the
description match perfectly with the lively festival scene.
Scene Association: The use of “strings, brass, and
orchestral elements” effectively aligns with the
celebratory and grand setting.
Conclusion: The description is highly appropriate for
this image, requiring no further improvement.

A dynamic and emotive soundtrack
featuring a mix of guitar, bass, strings, and
orchestra, perfectly capturing a range of
moods from action-packed and
adventurous to melancholic and romantic.

Score: 4.5 / 5
Reason:
Emotion Match: The description’s adventurous tone
works well for the desert landscape. However, the
“melancholic and romantic” portion slightly detracts
from the overall alignment.
Scene Association: The instrumentation (guitar, bass,
and orchestra) complements the sense of vastness and
exploration in the desert.
Conclusion: A more focused description on adventure
and solitude could enhance the fit.

A fast-paced, dynamic electronic
soundtrack featuring pulsating rhythms,
vibrant synthwave beats.

Score: 5 / 5
Reason:
Emotion Match: The fast-paced, electronic, and vibrant
tone perfectly reflects the energy, dynamism, and
modernity of the urban night scene.
Scene Association: The use of “synthwave beats” aligns
exceptionally well with the futuristic, neon-lit visuals.
Conclusion: The updated description captures the
essence of the image flawlessly, making it an excellent
match.

A gentle piano melody, accompanied by
soft strings, to evoke a sense of tenderness.

Score: 5 / 5
Reason:
Emotion Match: The gentle piano melody perfectly
evoke the tenderness and nostalgia expressed in the
characters’ emotional moment.
Scene Association: The use of “soft strings” aligns with
the intimate and heartfelt nature of the scene, enhancing
the emotional depth.
Conclusion: The description is highly appropriate for
this image, requiring no further improvement.

A gentle, melancholic melody, featuring
soft piano and strings, to evoke the serene
yet poignant atmosphere.

Score: 4.5 / 5
Reason:
Emotion Match: The melancholic melody matches the
serene and poignant atmosphere of the comet-lit sky.
Scene Association: The inclusion of “soft piano” and
“strings” reflects the calmness and wonder of the scene
but does not fully emphasize the awe-inspiring grandeur
of the comet.
Conclusion: While the description aligns well with the
scene, adding a sense of scale and majesty could
enhance the match.

A sense of awe and wonder, using a
combination of orchestral strings, and
electronic soundscapes.

Score: 5 / 5
Reason:
Emotion Match: The energy and vibrancy of the
description match perfectly with the lively festival scene.
Scene Association: The use of “strings, brass, and
orchestral elements” effectively aligns with the
celebratory and grand setting.
Conclusion: The description is highly appropriate for
this image, requiring no further improvement.

A slow, eerie, and melancholic melody,
using a combination of dissonant chords
and a haunting vocal line to evoke the
sense of despair and isolation.

Score: 5 / 5
Reason:
Emotion Match: The slow, eerie melody and dissonant
chords align seamlessly with the despair and isolation
depicted in The Scream.
Scene Association: The “dissonant chords” effectively
complements the painting’s unsettling and surreal nature.
Conclusion: The description accurately reflects the
psychological intensity of the image, requiring no
further improvement.

Table 12: Samples of visual-to-description generation.



Figure 4: Distribution of PAM Scores across the raw train-
ing dataset.

Figure 5: Histogram of music duration in the training
dataset.

tribution of PAM score in the whole dataset is illustrated in736

Fig. 4.737

The selected tracks are annotated using the methodol-738

ogy described in MMDM. Candidate tags are pre-defined739

by musicians who serve as domain experts to align with740

commonly used labels in music generation while minimiz-741

ing the effect of long-tail distribution. The detailed anno-742

tations are provided in the file label.json.743

We use instrument tagging as an example to illustrate744

the experts’ taxonomy. Instruments are first categorized745

into five primary groups: strings, keyboards, wind instru-746

ments, percussion instruments, and others. To address747

the issue of long-tail distributions, rare tags are combined748

into broader categories. For instance, instruments like the749

double bass, which are seldom played independently, are750

treated as indivisible units. Therefore, we use strings to751

replace double bass. This approach ensures robust cate-752

gorization while accurately reflecting the practical usage753

of instruments in compositions. Other tagging principles,754

which align with the general design philosophy of instru-755

ment categorization, are omitted here for brevity.756

To generate natural descriptions, we employ the Llama-757

3.1-8B-Instruct [47] model to generate one-sentence de-758

scriptions for each music track. The system prompt is: You759

are a professional music expert. Here are tags about this760

music. You need to generate a one-sentence description761

for this music. Only generate the description without any762

other information. Metadata tags were supplied via the763

user prompt.764

Fig. 5 and Fig. 6 illustrate the distribution of music du-765

rations and the corresponding descriptions, providing in-766

sight into the characteristics of the dataset.767

Figure 6: Histogram of text word counts in the training
dataset.

Figure 7: Distribution of mood tags across the retrieval
dataset. This histogram shows the frequency of various
mood categories, illustrating the emotional diversity cap-
tured in our data.

D.2 MTV-24K768

We have introduced the methodology of collecting the769

MMDM training and retrieval dataset. Here, we provide770

other details.771

First, we scrape the hottest singers and their songs772

from Spotify. We use YoutubeAPI 1 to search for their773

original official music video with keywords in the for-774

mat of {singer} + {song name} + Official775

Music Video. We scrape all the music videos with their776

Youtube description boxes and top-10 comments. We also777

use Shazam 2 to get other metadata. Finally we obtain the778

primary dataset.779

We use methodology in MMDM to label each music780

track. Eventually our dataset contains 24,719 video-text-781

music pairs.782

In targeted retrieval, we partition our whole datasets.783

We follow three standards and get three different partitions,784

i.e., genre, tempo, and mood partition. We use the labeled785

tags to partition the whole dataset. Distribution of each786

attribute is shown in Fig. 7, 8, 9, and 10.787

Fig. 11 shows the distribution of audio durations in the788

1 https://developers.google.com/youtube/v3
2 https://www.shazam.com/



Figure 8: Genre distribution within the retrieval dataset.
This bar graph reflects the variety of music genres rep-
resented, indicating the dataset’s broad applicability for
genre-specific retrieval tasks.

Figure 9: Histogram of instrument tags in our retrieval
dataset. This figure shows the range of musical instru-
ments represented, underscoring the dataset’s comprehen-
sive coverage of instrumental music.

dataset. The majority of the audio files have durations789

concentrated within a specific range, suggesting consistent790

lengths across the dataset. The associated text data is char-791

acterized by word count distribution in Fig. 12, showing a792

variety of text lengths, with most falling in the mid-range.793

Finally, the lexical diversity, representing vocabulary us-794

age variation, is displayed in Fig. 13. Most texts demon-795

strate high lexical diversity, indicating rich vocabulary us-796

age across the dataset.797

D.3 Subjective Evaluation Dataset798

To evaluate our model across diverse video contexts, we799

construct a dataset encompassing seven distinct video cate-800

gories: Scene/Vlog, Documentary, Advertisement, Movie,801

Game, Anime, and Sports. These categories are selected802

to ensure a comprehensive benchmark that reflects a wide803

range of video types and their corresponding music needs.804

Each video is manually reviewed to ensure quality, result-805

ing in a final dataset of 35 high-quality videos.806

We apply the following criteria for video selection:807

• Duration: Videos are limited to a maximum length808

of three minutes to ensure efficient evaluation.809

• Content Quality: Only classic or high-quality videos810

are included, reflecting diverse and impactful visual811

Figure 10: Density curve of Beats Per Minute (BPM)
across the retrieval dataset. This plot illustrates the dis-
tribution of Beats Per Minute, showcasing the tempo range
covered in our collection.

Figure 11: Histogram of audio durations in retrieval
dataset. This shows the distribution of song lengths in the
dataset.

themes.812

Due to limitations on providing external URLs in the813

supplementary material, we describe each category as fol-814

lows:815

Scene/Vlog. This category focuses on travel and scenic816

content, featuring dynamic landscapes, urban exploration,817

and lifestyle moments. Examples include aerial footage of818

Amoy, a travel vlog in Tokyo, and a beachside promotional819

video capturing the beauty of coastal environments.820

Documentary. Highlighting impactful narratives, this cat-821

egory includes trailers for iconic documentaries such as822

Planet Earth II, which captures breathtaking natural phe-823

nomena; The Last Dance, chronicling Michael Jordan’s824

legendary career; and Free Solo, an intense portrayal of825

extreme rock climbing.826

Advertisement. Promotional videos from globally recog-827

nized brands are featured here, such as Honda’s engineer-828

ing marvel in its Classic Honda Commercial, Coca-Cola’s829

emotionally resonant advertisements, and Samsung’s fu-830

turistic product showcases.831

Movie. Iconic film moments and trailers dominate this832

category, with examples including the montage from The833

Shawshank Redemption, the epic trailer for Interstellar,834

and the thrilling scenes from Jurassic Park and Star Wars.835

Game. This category showcases the artistry of game trail-836

ers, featuring visually stunning examples like the official837



Figure 12: Histogram of text word counts in retrieval
dataset. This represents the distribution of word counts in
the associated text data.

Figure 13: Histogram of lexical diversity scores in re-
trieval dataset. This shows the variation in vocabulary us-
age across text samples.

trailer for Genshin Impact, the adventurous world of Zelda:838

Breath of the Wild, and the nostalgic appeal of Final Fan-839

tasy VII.840

Anime. This category includes promotional materials and841

memorable moments from classic anime series. Exam-842

ples include the heartwarming trailer for My Neighbor To-843

toro, the action-packed sequences from Attack on Titan, the844

emotional depth of Evangelion, and the visually stunning845

storytelling of Your Name.846

Sport. Dramatic and inspiring moments from the world of847

sports are showcased in this category. Examples include848

the excitement of the Qatar World Cup trailer, Usain Bolt’s849

electrifying highlights, the high-speed intensity of Formula850

1 racing, and the Paris 2024 Olympics promotional film.851

D.4 Visual-to-Description Evaluation Dataset852

We downloaded all available videos from the Disco-200K-853

high-quality dataset [29] as of July 30, 2023. Upon review,854

we noted that many videos consisted of static images or855

were lyrics-based music videos. To filter for dynamic con-856

tent, we calculated the average pixel difference between857

consecutive frames to identify static videos. Videos close858

to the threshold are manually reviewed to confirm their dy-859

namic nature. Following this rigorous selection process,860

we curated a subset of 8,042 videos that demonstrated suf-861

ficient motion suitable for our analysis.862

To visualize the motion characteristics of the Disco-863

(a) KDE of log inter-frame differ-
ence

(b) Violin plot of log inter-frame
distribution

Figure 14: Distribution of log-transformed inter-frame
motion across all videos in Disco-200K-high-quality.

200K-high-quality dataset, we computed the average pixel864

difference between consecutive frames for each video and865

applied a logarithmic transformation to reduce the influ-866

ence of extreme outliers (e.g., flashes, scene cuts). As867

shown in Fig. 14, the distribution is highly right-skewed:868

most videos exhibit minimal motion, while a minority con-869

tain substantial dynamic content. We used this distribution870

to guide our filtering strategy. Videos near the boundary871

were manually inspected to ensure quality. This filtering872

ensures that the retained 8,042 videos are visually dynamic873

and better suited for downstream multimodal alignment874

tasks.875

D.5 SymMV, SongDescriber, and MUImage876

We utilize all available videos from the SymMV [13]877

dataset as of November 1, 2024.878

While Stable Audio Open [3] claimed to have filtered879

the SongDescriber dataset to exclude tracks with vocal880

components, we conduct an additional manual review to881

ensure thorough filtering. After this process, we retain a882

total of 279 text-music pairs.883

For the MUImage dataset [4], as the authors do not884

specify a valid test set but only provided the training set,885

we sort the entire dataset alphabetically by file name and886

use the first 1,500 image-music pairs as the test set. Con-887

sequently, the evaluation of MuMu-LLaMA on MUImage888

is actually conducted on its training set.889

The specific video-music / text-music pairs used in our890

study are documented in the files Dataset/SymMV.csv891

and Dataset/SongDescriber.csv.892

E. METHOD DETAILS893

E.1 Chain-of-Thought Training in MTV-24K894

Pretrained multimodal large language models (MLLMs)895

exhibit strong generalization. In our setting, we use mu-896

sic videos (MVs) as training data because they offer high-897

quality music–visual alignment and professionally pro-898

duced audio. However, the genre coverage of these videos899

is limited, which makes direct fine-tuning prone to overfit-900

ting.901

To address this, we propose a chain-of-thought (CoT)902

training scheme that explicitly links visual evidence to mu-903

sical attributes. The goal is to preserve the relevance be-904



tween the generated music description and the video con-905

tent, thereby improving generalization—especially for the906

music-description generation task.907

Given an input video V , we first use InternVL-2 [7] to908

produce a video caption C. We then fine-tune InternVL-909

2 with the following instruction-style prompt, conditioned910

on V and C: [V ] You are a film music supervisor. The fol-911

lowing describes a film clip: [C] Based on the emotional912

tone and visuals of this clip, how would you compose the913

music? Provide a one-sentence summary of the key musi-914

cal elements you would use. This prompt encourages the915

model to articulate a concise rationale that ties visual cues916

(e.g., mood, pacing, scene dynamics) to musical decisions917

(e.g., tempo, instrumentation, harmony), reinforcing mu-918

sic–visual relevance during training.919

E.2 Details of Broad Search920

For each conditional modality, we first retrieve music that921

closely aligns with the input by computing similarities us-922

ing CLIP [33] or CLAP [34] embeddings. Given a target923

music, we directly use CLAP to compute audio embed-924

dings ainput and compare them with embeddings {eaudio
i }925

in our music database:926

i∗ = argmax
i

cos
(
eaudio

input , e
audio
i

)
. (1)

The music pieces retrieved from the broad retrieval mi∗927

serve as fine-grained conditions. Notably, although we928

only apply music-centric retrieval during training, it is fea-929

sible to use CLIP embeddings of the input text tinput or930

visual signals vinput and compare them with text-music or931

visual-music pairs in the database as inference-time re-932

trieval. The music associated with the closest matches is933

retrieved as:934

i∗ = argmax
i

cos
(
etext/visual

input , etext/visual
i

)
, (2)

where etext/visual
input and etext/visual

i are the CLIP embeddings of935

the input text or visual content and each dataset entry. This936

ensures that the retrieved music complements the semantic937

and emotional context of the visual or textual input, al-938

lowing the model to effectively capture complex musical939

features, such as melody and rhythm.940

E.3 Details of Target Search941

In parallel to the broad retrieval, we conduct a targeted re-942

trieval within partitions of our dataset, specifically orga-943

nized based on musical attributes. For instance, the tempo944

partition is categorized into “fast”, “medium”, and “slow”945

subsets. This allows users to flexibly select songs that946

match specific attributes among genre, tempo, or mood947

partition. To retrieve a fast-paced song, we query directly948

within the “fast” subset in the tempo partition. In each sub-949

set, the most suitable music piece is determined by com-950

puting the cosine similarity between the CLAP embed-951

dings of the desired textual attribute, encoded as eattr
desired952

and {eaudio
k }:953

k∗ = argmax
k

cos
(
eattr

desired, e
audio
k

)
. (3)

The embedding of the retrieved music eaudio
k∗ is used as in-954

put in a subsequent module, where it is integrated into the955

generation process.956

F. EXPERIMENT DETAILS957

In this section, we provide details of the experiments in the958

main paper.959

F.1 Implementation Details960

For MMDM module, We utilize the InternVL-2 [7] archi-961

tecture with mixed precision training (bfloat16) and the962

AdamW optimizer (learning rate: 1e-6, cosine decay).963

Top-k sampling (k=50) and nucleus sampling (p=1.0) are964

used for generation, with a temperature of 1.0. The model965

features FlashAttention v2 [48], 32 layers, and 16 attention966

heads, paired with a vision backbone (Intern-ViT-6B) [49]967

at 448x448 resolution. Training is performed using a batch968

size of 2 with gradient accumulation over 8 steps. Fine-969

tuning is conducted with LoRA [50] at rank 16, utilizing 8970

NVIDIA A800-SXM4-80GB GPUs over 3 days for a total971

of 10 epochs.972

In ECMG module, We leverage a DiT [35] model973

with T5 [51] conditioning and an audio autoencoder for974

fine-tuning on audio-text alignment tasks. The archi-975

tecture includes a 24-layer continuous transformer with976

1536 embedding dimensions and 24 attention heads. Au-977

dio inputs are preprocessed via an autoencoder featuring978

Oobleck [52] encoders/decoders with multi-scale channel979

configurations and a latent dimension of 64.980

Training uses AdamW [53] (learning rate: 1e-6, weight981

decay: 0.001) with an InverseLR scheduler. The model982

operates at a 44.1kHz sample rate with a batch size of 1983

and gradient accumulation over 8 steps. Mixed precision984

(16-bit) training is employed, using DeepSpeed [54] for985

optimization with 4 NVIDIA A100-PCIE-40GB GPUs.986

Conditioning involves audio features, time attributes,987

and textual prompts (via T5-base, max length: 128).988

F.2 Video-to-Music Generation989

We evaluate video-to-music generation using several state-990

of-the-art models, adhering to their default settings for991

fair comparison. Due to the sequence length limitation of992

MuMu-LLaMA [4], all samples are truncated to 30 sec-993

onds. Additionally, to accommodate the resolution con-994

straint of CMT [12], all videos are resized to 360p.995

For all MIDI based model, we use SGM-v2.01-Sal-996

Guit-Bass-V1.3 as the sound font. We also follow the de-997

fault setting in each generation model. For MTM, we set998

a standard sample rate of 44,100 Hz and adjust the CFG999

scale to 7 for balancing conditioning influence, with 1001000

steps for detailed noise reduction. Our sampler, “DPM++1001

3M SDE” [55], manages noise sampling across a sigma1002

range from 0.03 to 1000. For Diff-BGM [15], we notice1003

that, contrary to their claim in the paper [15], the visual en-1004

coder is actually sourced from CLIP2Video 3 rather than1005

3 https://github.com/CryhanFang/CLIP2Video



Figure 15: Screenshot of the user study questionnaire in subjective evaluation.

VideoCLIP. This is evident from their implementation 41006

and the fact that the embedding dimensions do not match1007

those of VideoCLIP but align with those in CLIP2Video.1008

Additionally, the generated music quality remains strong.1009

Based on this, we preprocess using CLIP2Video [56].1010

In our experiments, we use a server with dual Intel1011

Xeon Processors (Icelake) with 64 cores each and four1012

NVIDIA A100-PCIE-40GB GPUs, under a KVM virtual-1013

ized Linux environment. These configurations ensure the1014

reproducibility of our inference time measurements.1015

F.3 Text-to-Music Generation1016

For text-to-music models, we also adhere to their default1017

settings for a fair comparison. Due to the maximum se-1018

quence length limitation of MuMu-LLaMA [4], all gener-1019

ated music samples are capped at 30 seconds.1020

MTM follows the parameters outlined in [3]. It uses a1021

44,100 Hz sample rate, a CFG scale of 7, 100 steps for1022

diffusion, and a ’DPM++ 3M SDE’ sampler with a sigma1023

range from 0.03 to 1000.1024

F.4 Subjective Evaluation1025

For the subjective evaluation, we provide each participant1026

with two sets of evaluations: one for video-to-music gen-1027

eration and another for text-to-music generation. Each set1028

consists of seven groups, corresponding to the seven cat-1029

egories in our subjective evaluation dataset. For each cat-1030

egory, a video is randomly sampled. Each group includes1031

five music pieces, one generated by each of the compared1032

models.1033

For video-to-music (V2M) generation, participants are1034

briefed on the purpose of the study and instructed to eval-1035

uate how well the generated music matched the video in1036

terms of mood, thematic alignment, and overall enhance-1037

ment of the viewing experience. Each video is presented1038

seven times, each time paired with a background music1039

track generated from a different model. The order of music1040

presentations is randomized to eliminate order effects. Af-1041

ter watching all versions of a video, participants are asked1042

4 https://github.com/sizhelee/Diff-BGM

to rate each version using a Likert scale, i.e. rate from 11043

to 5, considering factors such as emotional impact, the-1044

matic coherence, and suitability for the video’s content.1045

Additionally, participants are encouraged to provide qual-1046

itative feedback explaining their preferences, highlighting1047

specific emotional or thematic factors that influenced their1048

choices.1049

For the V2M task, we utilize the following metrics to1050

guide participant evaluations:1051

• Musical Pleasantness (MP): The aesthetic quality1052

of the music, independent of context.1053

• Emotional Correspondence (EC): How well the1054

music conveys the intended emotions of the video.1055

• Thematic Correspondence (TC): The alignment1056

between the video’s theme and the generated music.1057

• Rhythmic Correspondence (RC): The synchro-1058

nization between the video’s motion and the music’s1059

rhythm.1060

The evaluation process for text-to-music (T2M) gen-1061

eration follows a similar structure. Participants are pro-1062

vided with textual prompts and asked to evaluate the gen-1063

erated music based on how well it reflects the mood, style,1064

and thematic elements described in the text. Each textual1065

prompt is paired with five music tracks generated from five1066

models, and participants rate the tracks using the same Lik-1067

ert scoring system. Feedback is collected to identify spe-1068

cific strengths and weaknesses of the generated music in1069

conveying textual meaning.1070

For the T2M task, we select the following metrics:1071

• Musical Pleasantness (MP): The aesthetic quality1072

of the music, independent of context.1073

• Text-Music Alignment (TMA): How effectively1074

the music captures the mood, style, and themes de-1075

scribed in the text.1076

Each participant rated 40 tracks for the V2M task and1077

35 tracks for the T2M task, completing the questionnaire in1078



approximately 50 minutes. In addition to quantitative rat-1079

ings, participants also provided qualitative feedback, ex-1080

plaining their preferences and highlighting the emotional1081

and thematic factors influencing their decisions. Each par-1082

ticipant received a $10 reward, and a total of 80 valid re-1083

sponses were collected via social media recruitment, which1084

is the largest scale compare to 20-55 participants in exist-1085

ing works [4, 12–15, 17].1086

A notable result is observed in the RC metric. Despite1087

not explicitly introducing rhythm-focused features, our1088

model achieves superior performance compared to base-1089

line methods. This suggests that an alternative approach,1090

which emphasizes a broader perspective rather than heav-1091

ily focusing on local rhythmic features, can also be ef-1092

fective. Overemphasis on local rhythms may sometimes1093

challenge the overall coherence of the music and its align-1094

ment with the broader narrative. By adopting a balanced1095

approach, our model maintains rhythmic flow while align-1096

ing closely with the intended emotional context, leading1097

to an enhanced audiovisual experience. We also provide1098

a screenshot of the questionnaire with full text of instruc-1099

tions in Fig. 15.1100

We also conduct subjective evaluation with 42 partic-1101

ipants to evaluate perceptual controllability. For each at-1102

tribute, listeners are presented with a pair of outputs (with1103

and without the target control) and asked which better1104

matched the condition. They also rated alignment on a1105

1–5 Likert scale. Results in Tab. 8 show high agreement1106

and strong subjective ratings, confirming the effectiveness1107

of MTM’s control mechanisms.1108

G. BROADER IMPACTS, LIMITATIONS, AND1109

FUTURE WORKS1110

Broader Impacts. The MTM framework introduces sev-1111

eral significant impacts across various domains. Primarily,1112

MTM enhances accessibility in entertainment technologies1113

such as gaming and virtual reality by enabling the auto-1114

matic generation of emotionally resonant background mu-1115

sic, which could improve user engagement and accessibil-1116

ity for people with diverse abilities. However, the technol-1117

ogy also presents potential negative impacts. The automa-1118

tion of music generation might reduce the need for human1119

composers in certain contexts, potentially affecting their1120

livelihoods. Moreover, biases in the training data could1121

lead to outputs that do not adequately represent the diver-1122

sity of global musical expressions, potentially introducing1123

unfairness in musical representation.1124

Limitations. The MTM framework represents a signif-1125

icant advancement in multimodal music generation; how-1126

ever, it is not devoid of limitations. The model’s effec-1127

tiveness heavily relies on the diversity and quality of the1128

dataset it is trained on. Presently, available datasets may1129

not adequately represent the vast array of musical styles1130

and cultural expressions, thus limiting the system’s ability1131

to produce a broad spectrum of musical outputs. Moreover,1132

the challenge of accurately translating complex emotional1133

and thematic nuances across different modalities persists,1134

as the system occasionally fails to capture the depth and1135

subtlety inherent in human compositions.1136

Future Works. Future enhancements to the MTM1137

framework should focus on several key areas. Broadening1138

the diversity of the dataset to encompass a greater variety1139

of musical styles and cultural expressions would consider-1140

ably enhance the model’s generative capabilities. Improv-1141

ing the system’s understanding of and ability to accurately1142

translate intricate emotional and thematic nuances between1143

modalities would make the technology more effective. In-1144

tegrating music theory into the music generation process1145

could provide a more robust framework for generating mu-1146

sically coherent outputs.1147


