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Abstract

The impressive performance of VLMs is largely measured on benchmarks that fail
to capture the complexities of real-world scenarios. Existing datasets for tabular
QA, such as WikiTableQuestions and FinQA, are overwhelmingly monolingual
(English) and present tables in a digitally perfect, clean format. This creates a signif-
icant gap between research and practice. To address this, we present MirageTVQA,
a new benchmark designed to evaluate VLMs on these exact dimensions. Featuring
nearly 60,000 QA pairs across 24 languages, MirageTVQA challenges models
with tables that are not only multilingual but also visually imperfect, incorporat-
ing realistic noise to mimic scanned documents. Our evaluation of the leading
VLMs reveals two primary failure points: a severe degradation in performance
(over 35% drop for the best models) when faced with visual noise and a consistent
English-first bias where reasoning abilities fail to transfer to other languages. Mi-
rageTVQA provides a benchmark for measuring and driving progress towards more
robust VLM models for table reasoning. The dataset and the code are available
atthttps://github.com/anshulsc/MirageTVQA.

1 Introduction

Tables are the backbone of information storage in countless domains, from financial reports and
scientific papers to enterprise databases and healthcare records. The ability to comprehend and reason
over these semistructured data is an important skill for LLMs to act as an Al agent. Traditionally,
answering questions from table images involved a cascading pipeline: first, an Optical Character
Recognition (OCR) engine extracts text, which is then fed to a language model for reasoning.
However, this multi-step process is highly susceptible to error propagation, where a single OCR
mistake can invalidate the entire result. Recent work has shown that end-to-end vision language
models (VLMs) can outperform these brittle OCR+LLM pipelines by jointly processing visual and
textual information [Zheng et al.| [2024].

This positions VLMs as a promising direction for robust table understanding. However, their true
potential is hampered by a critical blind spot in existing evaluation benchmarks. Research has
progressed along two largely separate tracks. On one hand, most benchmarks that explore complex
reasoning, like FinQA [Chen et al., 2021], remain fundamentally text-based, ignoring the visual
aspect of tables as they appear in documents. On the other hand, the few benchmarks that incorporate
visual elements are almost exclusively English-centric. Crucially, to our knowledge, no existing
benchmark addresses these two critical real-world challenges, visual complexity and linguistic
diversity, simultaneously.

Al for Tabular Data workshop at EurIPS 2025


https://github.com/anshulsc/MirageTVQA

To fill this gap, we introduce MirageTVQA. Our primary contributions are twofold.

* We construct MirageTVQA, the first large-scale visual question-answering benchmark de-
signed to test VLM reasoning on nearly 60,000 QA pairs. It integrates massive multilingual
support (24 languages) with visually realistic table images.

* We conduct an extensive empirical evaluation of leading open-source VLMs, providing a
comprehensive analysis of their performance across languages and their robustness against
visual degradation.

2 Related Work

Our work builds upon and addresses the limitations of several lines of research in table understanding.

Text-Based Table Question Answering. A significant body of work has focused on reasoning over
the textual content of tables. Benchmarks such as Spider [[Yu et al., |2018]], WikiTableQuestions
[Pasupat and Liang, [2015]], TAT-QA [Zhu et al.} 2021]], TableBench [Wu et al.| [2025]], and MIMO-
Table [Li et al.,|2025]] frame the task as text-to-SQL or text-to-answer. These approaches typically
feed models linearized HTML or Markdown renditions of tables, completely sidestepping the visual
modality. While important for evaluating textual reasoning, they do not test a model’s ability to
process tables as they are found in documents.

Multi-modal Table Question Answering. More recent efforts have extended this research into the
multi-modal domain. Work such as MMTab [Zheng et al., [2024]] and MTabVQA[Singh et al., [2025]]
frame the task as visual table question answering, requiring models to reason over table images.
However, these benchmarks have two key limitations: they remain monolingual (English-only),
and the visual table images are synthetically generated and clean, lacking the real-world noise and
artifacts often present in scanned documents or photographs.

Multilingual Table Question Answering. A third line of research has attempted to address the
multilingual gap. Benchmarks like M3TQA [Shu et al.| [2025]] provide datasets for evaluation across
multiple languages. Nevertheless, these efforts are often limited to a small number of language
pairs (e.g., Chinese—English) and, critically, focus solely on text-based table representations, thereby
inheriting the limitations of the first category. Our work is first to fill this gap by combining 20+
languages across diverse domains (scientific, financial, and general knowledge), evaluating a broader
set of 10 reasoning types, introducing realistic visual noise to table images to create a benchmark to
test VLM’s tabular understanding.

3 MirageTVQA Benchmark

3.1 Data Collection and Table Translation

Source Table Collection and Filtering. We begin by collecting a diverse set of 3000 English tables
from four primary sources: Wikipedia (WikiSQL [Zhong et all 2017]), financial documents (FinQA
[Chen et al., 2021])), scientific papers from arXiv, and GitHub. To ensure the suitability of tables for
translation, we filtered the tables based on the median word character count per cell and selected a
representative subset for translation. This process filtered our initial set down to 250 seed tables for
the multilingual generation phase: 50 from arXiv, 100 from Wikipedia, and 100 from other sources,
respectively. This curated set ensures a balanced and high-quality foundation for our benchmark.

With this curated seed, we create our multilingual Table corpus using a translate-refine-filter pipeline.
For each of the 30 selected target languages, we: (1) perform an initial translation of all textual
content using Qwen3-32B (Yang et al.|[2025]); (2) use a powerful LLM (Gemini 2.5 Pro (Hassabis
et al.|[2024])) to refine the translation by cross-referencing the original English table for context and
data integrity; (3) back-translate the refined table to English; and (4) filter out the languages that had
low-quality translation on the basis of back-translation BLEU score (Papineni et al.|[2002]), resulting
in translated tables in 24 diverse languages.



3.2 Visually-Rich and Realistic Rendering

To address the reality gap, we developed a two-stage rendering pipeline. First, each table (in each
language) is rendered into a clean PNG image from an HTML representation. We design 40+
distinct and advanced CSS themes to simulate a variety of document aesthetics, from minimalist
and academic styles to financial reports and dark-mode interfaces. Next, we produce multiple noisy
versions of each clean image. Using the imgaug library (Jung| [2020]]), we apply a stochastic pipeline
of augmentations that are meant to simulate real-world degradation of documents. These involve
geometric distortions, such as minor rotations, skew, and perspective transforms to simulate a camera
capture; quality degradation, like Gaussian blur and variable JPEG compression; and the possibility
of scanning artifacts, such as salt-and-pepper noise, slight scan lines, and corner shadowing. This
process results in a rich dataset where each table is associated with one clean image and multiple
unique noisy counterparts, complete with metadata for each applied transformation.

3.3 Question-Answer Generation

We produced question-answer pairs using a combined human-LLM approach to balance cost efficiency
and quality of the annotation process. First, human annotators curated a seed corpus by manually
creating one high-quality QA pair per table. Next, we expanded the QA dataset by utilizing the seed
examples in detailed prompts, allowing LLMs (Google Gemini (Hassabis et al.|[2024]) to produce 10
additional QA pairs for each table, covering 10 reasoning types and two question types. This process
yielded 11 QA pairs for each table-language combination, for a total of 80,520 QA pairs (244 tables x
30 languages x 11 QA pairs). Following the generation of the QA pairs, we validated these pairs with
LLMs and identified which pairs had been misclassified during generation. Three human annotators
then corrected these flagged pairs. With this final correction, the QA pairs for each of the tables were
complete. Both source tables and their associated QA pairs were translated into all target languages
to enable extensive multilingual evaluation. For more details, refer to Appendix A.

4 Results and Analysis

Our benchmark, MirageTVQA, was designed to evaluate Vision-Language Models (VLMs) on two
critical axes that reflect real-world challenges: visual robustness and multilingual reasoning. To do
this, our dataset provides two visual settings for each table: digitally perfect clean images and noisy
images that simulate document degradation. The analysis of model performance on MirageTVQA
reveals significant and systematic limitations in current state-of-the-art models.

4.1 Baseline Performance and Model Scale

We first establish a performance baseline by evaluating models on the clean image set. The results,
detailed in Table[I] demonstrate a strong and consistent correlation between model scale and reasoning
capability. The largest model evaluated, Qwen2.5-VL-72B (Team et al.|[2025c]]), achieves the highest
average Exact Match (EM) of 13.57% across all languages, significantly outperforming smaller
models. This trend, visually represented by the expanding area of the performance polygons in Figure

(a) Small (3B-8B) (b) Medium (9B-30B) (c) Large (32B-78B)

Figure 1: Per-language F1 score performance on MirageTVQA across different model scales.



Table 1: Comprehensive per-language performance breakdown on MirageTVQA, showing Exact
Match (%). The ‘Avg.’” column shows the overall average EM. I means Instruct models and T means
Thinking models. Best result in each column is in bold.
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[T] confirms that greater parameter counts are beneficial for the complex, multi-step reasoning required
by MirageTVQA.

4.2 The Impact of Visual Noise

A primary motivation for creating MirageTVQA was to measure how models performs with the
visual imperfections common in real-world documents. Our findings reveal that current models are
extremely brittle in this regard. Table [2]directly compares model performance on ‘clean® versus
‘noisy‘ images for the English subset. The top-performing Qwen2.5-VL-72B (Team et al.| [2025c])
model, which scores 25.52% EM on clean images, sees its performance degrade to just 16.50%
EM on the noisy set with drop of over 35%. This trend is consistent across all evaluated models.
Hence, it validates a core premise of our benchmark: that performance on pristine, synthetic data is
an unreliable predictor of performance on realistic, visually imperfect data.

4.3 Multilingual Performance

The second core motivation of MirageTVQA was to assess reasoning capabilities beyond English.
Our results show the VLMs’ performance is biased towards English (see Figure[T). Across all model
scales, performance invariably peaks on English. Scores drop sharply even for other high-resource
languages, degrade further for languages with different scripts, and become negligible for many
low-resource languages. This demonstrates that current VLMs, despite their exposure to multilingual
data during pre-training, fail to generalize complex, visually grounded reasoning skills to non-English
contexts. This failure in cross-lingual transfer is a critical gap that MirageTVQA successfully exposes,
reinforcing the need for more equitable and truly multilingual model development.

Table 2: Impact of Visual Noise on Model Performance (EM %) on the English Subset. Models are
sorted by their performance on clean images.

Model Clean EM (%) Noisy EM (%) Perf. Drop (%)
Gemma-3 27B-IT (Team et al.|[2025b]) 13.79 12.87 -6.7%
Qwen-2.5-VL 8B-Instruct (Team et al.[[2025c]) 17.53 16.62 -5.2%
Qwen-2.5-VL 32B-Instruct (Team et al.[[2025¢]) 23.15 20.36 -12.1%
Qwen-2.5-VL 72B-Instruct (Team et al.|[2025c¢]) 25.52 16.50 -35.3%

5 Conclusion

In this work, we introduced MirageTVQA, a new large-scale benchmark designed to address a critical
gap in the evaluation of vision-language models: their ability to reason over tables that are both
visually imperfect and multilingual. Through our extensive experiments, we have demonstrated two
significant findings. First, the performance of even state-of-the-art VLMs degrades in the presence
of realistic visual noise, highlighting a profound lack of robustness. Second, we identified a severe
"English-first" bias, with models failing to transfer their reasoning capabilities to non-English and
low-resource languages. We hope it will be useful for the development of more robust and capable
models for real-world table understanding. Additionally, we discuss the limitations of our study and
outline future directions toward improving the interpretability of VLM failure modes in the Appendix.
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A Technical Appendices and Supplementary Material

A.1 Data distribution and Language Composition

To provide a transparent overview of our benchmark, Table 3] details the composition of MirageTVQA.
Part (a) shows the initial breakdown of QA pairs and unique tables collected from our diverse sources
before filtering and translation. Part (b) shows the final distribution of the nearly 60,000 high-quality
QA pairs that passed our validation pipeline, broken down by language and grouped by linguistic
family. This highlights the broad and balanced coverage of our final benchmark.

Table 3: Detailed composition of the MirageTVQA benchmark. The table shows the distribution
of tables and QA pairs by their original source, followed by the final distribution of QA pairs per
language, grouped by linguistic family.

(a) Data Source Composition

Data Source # QA Pairs Unique Tables Total Table Images
ArXiv 12,100 1,100 4,400
Wikipedia 27,500 2,500 10,000
Other (Financial, etc.) 27,500 2,500 10,000
Total Initial Set 67,100 6,100 24,400
(b) Language Composition (Final Valid Set)
Language Family Language # Final QA Pairs
Afro-Asiatic Arabic (ar) 2,482
Indonesian (id_casual) 2,435
Indonesian (id_formal) 2,434
A . Javanese (jv_krama) 2,431
ustronestan Javanese (jv_ngoko) 2,419
Sundanese (su_loma) 2,373
Tagalog (tl) 2,392
Bengali (bn) 2,440
Czech (cs) 2,428
English (en) 2,618
French (fr) 2,411
Hindi (hi) 2,454
Indo-European Italian (it) 2,434
Marathi (mr) 2,438
Russian (ru_formal) 2,410
Sardinian (sc) 2,444
Sinhala (si_formal_spoken) 2,433
Spanish (es) 2,396
Japonic Japanese (ja_formal) 2,428
Koreanic Korean (ko_formal) 2,441
Kra-Dai Thai (th) 2,430
. . Hokkien (nan) 2,487
Sino-Tibetan Chinese (zh_cn) 2,430
Turkic Azerbaijani (az) 2,392
Total Valid Set 24 Languages 58,480

A.2 Table Translation Prompt

For reproducibility, we provide the exact prompts used in our data generation pipeline. Figure 3]
shows the detailed prompt provided to Gemini 1.5 Pro (Comanici et al.|[2025])to generate the English
dense-reasoning question-answer pairs described in Section 3.3. Figure 2| shows the prompt used to
translate these QA pairs into the 25 target languages.



The following prompt shown in Fig[2] was provided to the LLMs QA translation agents during the
QA translation phase described in Section 3.1.

You are an expert linguist and professional translator with deep expertise
in structured data. Your task is to accurately translate a question-answer
pair from English to {target_language}.

The question-answer pair is based on the following data table. Use this
table to understand the context of entities, numbers, and technical terms.

Context Table:
{context_table_json}

ENGLISH QUESTION-ANSWER PAIR TO TRANSLATE:
{english_qa_json}

CRITICAL INSTRUCTIONS:

1. Convert the question text into fluent and natural-sounding
{target_languagel}.
2. 1If the question_type is ’open_ended_reasoning’, you must translate the
full text of the answer. However, if the question_type is ’value’, you
must preserve the original answer exactly. Do not translate numbers (e.g.,
"370"), names (e.g., "Beta"), percentages, or codes.
3. Your entire response must be a single, valid JSON object with ONLY two
keys: translated_question and translated_answer. Do not add any other
text, explanations, or markdown code blocks.
EXAMPLE:
If target_language is Spanish and the input QA pair is:
{
"question": "Which product experienced a decline in units sold from 2022
to 20237",
"answer": [["Beta"]],
"question_type": '"value"

}

Your perfect JSON output would be:
{

"translated_question": ";Qué producto experimentdé una disminucidén en las
unidades vendidas de 2022 a 20237",
"translated_answer": [["Beta"]l]

}

Notice how "Beta" was NOT translated because the question_type was ’value’.

YOUR TASK:

Translate the provided English QA pair to {target_language} following all
instructions.

Your JSON Output:

Figure 2: LLM prompt for multilingual QA pair translation. Placeholders like {target_language}
and {context_table_json} represent actual input data provided to the model.

A.3 QA pair generation prompt

The following prompt shown in Fig[3|was provided to the LLMs QA generation agents during the
QA generation phase described in Section 3.3.



You are a world-class data analyst and expert curriculum designer.

Your task is to generate a set of {num_questions} diverse, challenging, and
high-quality question-answer pairs based on the provided data table in JSON
format.

The questions must require deep reasoning and not be simple lookups.

CRITICAL INSTRUCTIONS:

1. Create questions that cover a wide range of the reasoning categories
defined below. Do not repeat question patterms.

2. Every question must be answerable ezclusively from the provided table.
Do not require external knowledge.

3. Provide Precise Answers:

- For value-based questions: The ’answer’ must be the exact value(s)
from the table or calculated from it. Format it as a list of lists (e.g.,
[["150"]1] or [["Alpha"], ["Beta"]l).

- For open-ended reasoning questions: The ’answer’ should be a
comprehensive explanation or analysis based on the data, formatted as a list
containing a single list with one string element (e.g., [["The data shows a
declining trend because..."]]).

"open_ended_reasoning" .

5. The ’evidence_cells’ must accurately list all cells needed to

formulate the answer. Use standard spreadsheet notation (e.g., Al for the
top-left-most cell in the data body, where Column A is the first column and
Row 1 is the first data row. Headers are considered Row 0, so Al refers to
the first data cell, not a header).

6. Your response MUST be a single, valid JSON object that conforms to the
provided schema. Do not include any explanatory text, markdown, or comments
outside of the JSON structure, and do not wrap the JSON in markdown code
blocks (e.g., ~~json).

REASONING CATEGORIES TO USE: Comparative Reasoning, Numerical Aggregation,
Multi-Hop Reasoning, Temporal Reasoning, Conditional Reasoning,
Proportional/Ratio Analysis, Hypothetical Reasoning, Correlation Inference,
Structural/Metadata Reasoning, Outlier Detection

REQUIRED JSON OUTPUT SCHEMA:

{
"qa_pairs": [
"question": "string",
"answer": [["string"]],
"evidence_cells": ["string"],
"reasoning_category": "string (must be one of the 10 categories)",
"question_type": "string (either ’value’ or ’open_ended_reasoning’)"
}
]
}

NOW, GENERATE QA PAIRS FOR THE FOLLOWING TABLE:
Input Table (as JSON): {table_as_json_string}
Your JSON Output:

4. Each question must have a ’question_type’ field that is either "value" or

Figure 3: LLM prompt for automated QA pair generation. Placeholders
{table_as_json_string} represent the actual table data provided to the model.

10

like



B Limitations

While this research provides an understanding of how real-world noise affects the performance of
VLMs in multi-modal visual question-answers, we would like to emphasize a few limitations. First,
we did analyze how noise impacts performance, but we did not establish interpretability methods
to explain why these degradations occur or suggest ways to reduce that degradation. This will
be an important area for future work. Second, we carried out our cross-lingual experiments in a
limited scope. The cross-lingual experiments involved performance in only 25 languages, we only
evaluated open models, and we did not perform experiments on top-tier proprietary models that may
behave differently on robustness in noise. Adopting state-of-the-art proprietary models, introducing a
wider array of languages, and exploring interpretability methods for understanding and addressing
degradation are all potential improvements to our analyses.
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