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Abstract

Accurate real-time models of human motion are important for applications in
areas such as cognitive science and robotics. Neural networks are often the favored
choice, yet their generalization properties are limited, particularly on small data sets.
This paper utilizes the Gaussian process dynamical model (GPDM) as an alternative.
Despite their successes in various motion tasks, GPDMs face challenges like high
computational complexity and the need for many hyperparameters. This work
addresses these issues by integrating the information bottleneck (IB) framework
with GPDMs. The IB approach aims to optimally balance data fit and generalization
through measures of mutual information. Our technique uses IB variable selection
as a component of GPLVM back-constraints to reduce parameter count and to
select features for latent space optimization, resulting in improved model accuracy.

1 Introduction

Accurate real-time synthesis models for human motion are of high relevance for cognitive science,
computational neuroscience, computer graphics, and robotics. Although neural networks are fre-
quently used in these models, their precision and robustness depend on vast training data sizes.
Probabilistic graphical models are often more suitable for this task as they have a strong theoretical
foundation and allow for the inclusion of regularization methods appropriate for inference on smaller
data sets. However, due to their higher computational complexity, often such models are ill-suited for
real-time control and training on large data sets.

The Gaussian process latent variable model (GPLVM)—which can be formulated as a neural net-
work with an infinite number of hidden units (Neal [1995])—is an effective tool for modeling
high-dimensional human motion. They have been successfully applied to the acquisition of low-
dimensional models (Levine et al. [2012]), inverse kinematics (Grochow et al. [2004]), kinematic
modeling, and motion interpolation (Ye and Liu [2010]). While inherently computationally complex,
sparse approximation techniques make GPLVMs adaptable for real-time uses and large data sets
(Snelson and Ghahramani [2005], Lawrence [2007]). They also perform exceptionally well on
data-limited tasks compared to neural networks. The Gaussian process dynamical model (GPDM)
is an extension on the GPLVM, adding a dynamical prior for trajectory smoothing and sequence
prediction (Wang et al. [2005, 2008]).

A high computational cost and an excess of hyperparameters limit the utility of the GPDM. To
compensate, we integrate GPDMs and the information bottleneck (IB) framework to enforce optimal
dynamical latent space development. The IB balances data fit with generalization using mutual
information for cost and regularization (Tishby and Zaslavsky [2015]). Our objective is to simplify
optimization by tightly constraining the set of learnable parameters and decreasing the number of
necessary hyperparameters. We present here a novel technique that integrates IB variable selection
with GPLVM back-constraints to enhance the model’s ability to produce task-suitable latent spaces.
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2 Background

2.1 GPLVMs

The Gaussian process latent variable model (GPLVM) is a non-linear dimensionality reduction
technique closely related to probabilistic PCA (PPCA) (Lawrence [2005]). In GPLVMs, we learn a
reduced-dimensional representation of the observed data over a latent space.

Consider a data set Y = [y1, . . . ,yN ]T ∈ ℜN×D. We define the latent set as X = [x1, . . . ,xN ]T ∈
ℜN×Q, where N represents the number of data points, D is the number of dimensions in the data
space, and Q is the number of dimensions in the latent space. These latent values are learned through
likelihood optimization, satisfying the mapping function:

yd = fd(x) + εd, (1)

where y = [y1, . . . , yD]T , εd describes the noise, and fd(x) is drawn from a Gaussian process (GP)
prior, fd(x) ∼ GP (0, kf (x,x

′)). The kernel function kf (x,x
′) is chosen respective to the use case.

2.2 GPDMs

Dynamics in the latent space are modeled using a Gaussian process dynamical model (GPDM). This
model follows a mapping of the form:

xn = fx(xn−1, . . . ,xn−z) + ξ, (2)

where z changes to match application in first- or second-order dynamics (Wang et al. [2005, 2008]).
The function fx is drawn from a GP prior with an associated auto-regressive kernel function that
generalizes a hidden Markov model (HMM) (Li et al. [2000]). It serves to model state transitions and
helps to smooth trajectories in the latent space.

2.3 Back-Constraints

Back-constraints (BCs) are functions that inversely map from the data space into the latent space
of GPLVMs. In addition to offering an efficient way to project into the latent space, BCs impose
additional constraints on its formation. These constraints aim to preserve local distances and can be
used to shape the space into specific geometries (Urtasun et al. [2007]).

We apply BCs to prevent overfitting the GPLVM and to encourage the formation of a latent space
suitable for dynamics, e.g., by having latent points that make up coherent trajectories.

Below, we describe a new form of back-constraint named the GP BC which allows us to incorporate
the IB framework for selecting latent features.

2.4 Information Bottleneck Framework

The IB framework models a probabilistic mapping between the variable X and Y through an
intermediate bottleneck variable Z. It is expressed as the minimization of I(Z,X) − β · I(Y, Z),
where the mutual information I(X,Z) measures the interdependence between random variables X
and Z. Essentially, the inclusion of I(Z, Y ) encourages Z to predict Y, while the I(X,Z) enforces a
minimal knowledge of X, lowering redundancy. The hyperparameter β > 0 moderates the trade-off
between the compression and fit (Tishby and Zaslavsky [2015]).

3 Methods

3.1 Gaussian Process Back-Constraints

The GPDM can converge sub-optimally when overfitting the compression mapping relative to the
state transitions. Geometric constraints Urtasun et al. [2007] and smooth latent space initial conditions
can correct this imbalance. BCs that simply maintain the latent space close to good initial conditions,
like a kernel PCA, can dramatically improve performance for this reason.

The GP BC is a method that ensures the convergence of the latent space close to its initial conditions.
The model’s latent variables are first initialized with an arbitrary dimension reduction of the training
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data. A radial basis function (RBF) GP mapping from the data to the latent space is then optimized.
We use the regressional posterior of the GP to provide our constraint during learning,

X = KY,Y ·K−1 ·X0, (3)

where X is a matrix of latent variables, K−1 is the inverse learned GP kernel matrix, KY,Y is the
kernel mapping of the training data with itself, and X0 is the initialized latent matrix. Optimization of
the latent space is thus performed through learning the kernel parameters in KY,Y (and not in K−1).

After optimization, predictive mapping into the latent space is performed by equation (3) updated as,

X∗ = KY,Y ∗ ·K−1 ·X0, (4)

where Y ∗ designates a set of testing data.

3.2 Information Bottleneck Latent Optimization

IB latent optimization (IBLO) begins by defining a latent space with more than the expected number
of task-optimal features. Here, we designate Y as the data space and X as the high-dimensional
latent space. We aim to optimize an auto-regressive mapping from yt to yt+1.

Within this framework, we optimize a GP RBF mapping from X to Y. We then establish an auto-
regressive mapping in X using the same type of kernel as in our GPDM dynamics. These GPs furnish
us with the probability distributions: P(X) and P(Y|X). The former characterizes the auto-regressive
dynamics of X, while the latter provides a GP regression from X to Y.

Our central objective is to define Z as the random variable to be optimized, serving as the bottleneck
between yt and yt+1. We aim to identify a subset, denoted as x1, x2, x3, ...xd ⊆ X , for Z that
includes only the dimensions essential for describing Y. To assess the relevance of dimension xj , we
employ the following indicator function, inspired by the work in Pan et al. [2023]:

Sj = [I(Yt, Zt,+j)− βI(Zt+1,+j , Zt,+j)]− [I(Yt, Zt,−j)− βI(Zt+1,−j , Zt,−j)] (5)

Here, the subscripts −j and +j signify whether zj is not in Z or is included in Z, respectively.
I(N,M) represents the mutual information between N and M , calculated using the multivariate
Gaussian entropy. Sj is a measure of how well Z serves as a bottleneck when either retaining or
eliminating dimension xj . The greater the value of Sj , the more Z will benefit from the removal of
xj . Sj is evaluated iteratively on successive removals of dimension j. We set β by solving for Sj = 0
on the evaluation of the first j in the first iteration. This enabled the algorithm to optimally balance
features that were pertinent to both compression and dynamical prediction.

4 Results

We evaluated the IBLO method by its ability to accurately categorize actions under different conditions.
This classification was accomplished by comparing the posterior probabilities of a given sequence for
different GPDMs. The data set comprised infrared motion capture of five bimanual manipulation
tasks encompassing 117 degrees of freedom.

Our initial trials examined the ability of our IB method to select optimal RBF kernel PCA (kPCA)
features compared to the model’s performance when utilizing features selected according to the
highest eigenvalues. In these cases, our method produced no significant improvement as it nearly
always selected the highest eigenvalue features.

As a second comparison, we ran simulations where IBLO selected 10 features from a mixture
containing 10 RBF kPCA features and 30 features produced by random projection—a dimensionality
reduction technique wherein new features are produced by a linear combination of the features (in
our case, Y ) with weights sampled from a Gaussian distribution. We compared this against a control
containing an equal number of features produced only by random projection. From these results,
we derived two confusion matrices and accuracy scores based on the number of sequences correctly
classified. A t-test comparing these accuracy scores gave a t-statistic of -5.83 with a p-value of
6 · 10−7. Figure 1 displays a differential confusion matrix constructed from the IBLO scores minus
those of the control. We further tested whether the IBLO method could select features better than
expected for an arbitrary dimensionality reduction method. We tested the highest 10 eigenvalue
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Figure 1: A heat map displaying the difference in sequence classification accuracy for three actions
when comparing IBLO against the control. We constructed this heat map by subtracting the confusion
matrix of the control from the confusion matrix for IBLO. Positive and negative values indicate areas
where IBLO and the control, respectively, had greater scores. The numbers on the diagonal represent
scores for the correct outcome, indicating IBLO had improved accuracy when classifying actions
1 and 3. For this test, IBLO selected 10 features from a mixture of 10 RBF kPCA and 30 random
projections while the control used 10 random projections. Comparison of the two accuracy scores
produced a significant difference with a p-value of 6 · 10−7

features from PCA and ICA against a selection by IBLO from a set of the first 30 features of both
techniques. In this case, IBLO did not use the same features as the control. Figure 2 shows the
comparison for both ICA and PCA. In both cases IBLO improved the accuracy, precision, recall, and
F1 score of the model.
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Figure 2: Performance scores for model classification of five sequences using PCA and ICA features.
The control model used the first 10 features with the highest eigenvalues, while IBLO selected
10 from the first 30. In both PCA and ICA, IBLO improved performance on metrics of accuracy,
precision, recall, and F1 score. Further simulations must be run to determine a significance score, but
results suggest a continuation of the displayed trend.

5 Conclusion

The results are promising, showing an ability for IBLO to select highly informative kPCA features
from sets intermixed with random projections. It also shows a trend towards improved performance
when comparing PCA and ICA features chosen according to the highest eigenvalues to those selected
by IBLO. Future research will continue to test the performance and utility of the model.
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