
Graph Transformers for Large Graphs
⋆

Anonymous
1,2,*,†

, Anonymous
3,†

and Anonymous
4,†

1Anonymous

Abstract

Transformers have recently emerged as powerful neural networks for graph learning, showcasing state-of-the-art

performance on several graph property prediction tasks. However, these results have been limited to small-scale

graphs, such as ligand molecules with fewer than a hundred atoms, where the computational feasibility of the

global attention mechanism is possible. The next goal is to scale up these architectures to handle very large

graphs on the scale of millions or even billions of nodes. With large-scale graphs, global attention learning is

proven impractical due to its quadratic complexity w.r.t. the number of nodes. On the other hand, neighborhood

sampling techniques become essential to manage large graph sizes, yet finding the optimal trade-off between

speed and accuracy with sampling techniques remains challenging. This work advances representation learning

on single large-scale graphs with a focus on identifying model characteristics and critical design constraints for

developing scalable graph transformer (GT) architectures. We argue such GT requires layers that can adeptly

learn both local and global graph representations while swiftly sampling the graph topology. As such, a key

innovation of this work lies in the creation of a fast neighborhood sampling technique coupled with a local

attention mechanism that encompasses a 4-hop receptive field for each node, but achieved through just 2-hop

operations. This local node embedding is then integrated with a global node embedding, acquired via another

self-attention layer with an approximate global codebook, before finally sent through a downstream layer for node

predictions. The proposed GT framework, named LargeGT, overcomes previous computational bottlenecks and is

validated on three large-scale node classification benchmarks. We report a 3× speedup and 16.8% performance

gain on ogbn-products and snap-patents compared to their nearest baselines respectively, while we also

scale LargeGT on ogbn-papers100M with a 5.9% improvement in performance.

Keywords

graph representation learning, graph transformers, large graphs

1. Introduction

Transformer networks [1] have revolutionized representation learning in various domains, particularly

in the field of natural language processing [2, 3, 4, 5, 6, 7, 8, 9]. Their unique ability to model intricate

all-pair dependencies in sequential data (or sets of data tokens) has sparked interest in extending

Transformer architectures beyond just sequential data, leading to promising research in the area of

graph representation learning [10, 11, 12, 13, 14, 15, 16]. However, these advances are not without

their challenges. As graph-based learning tasks grow more complex and the scales of the graph data

increase, the limitations of current Graph Transformer (GT) architectures become increasingly evident

[17, 18, 19].

On the other hand, traditional message-passing neural networks (MPNNs), including variants like

GCN [20], GAT [21], and GatedGCN [22], function effectively on small-scale graphs such as molecular

structures, operating in the order of 𝑂(𝐸), or 𝑂(𝑁) for sparse graphs [23]. However, their efficiency

rapidly decreases when applied to larger graphs with even less than a million nodes. This is primarily

because MPNNs consider all neighbors during their aggregation and update steps. To mitigate this,

some approaches use neighborhood sampling (NS) to limit the number of sampled neighbors for each

Woodstock’22: Symposium on the irreproducible science, June 07–11, 2022, Woodstock, NY
⋆

You can use this document as the template for preparing your publication. We recommend using the latest version of the

ceurart style.

*
Corresponding author.

†
These authors contributed equally.

$ kulyabov-ds@rudn.ru (Anonymous); i.tiddi@vu.nl (Anonymous); Manfred.Jeusfeld@acm.org (Anonymous)

� https://yamadharma.github.io/ (Anonymous); https://kmitd.github.io/ilaria/ (Anonymous);

http://conceptbase.sourceforge.net/mjf/ (Anonymous)

� 0000-0002-0877-7063 (Anonymous); 0000-0001-7116-9338 (Anonymous); 0000-0002-9421-8566 (Anonymous)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:kulyabov-ds@rudn.ru
mailto:i.tiddi@vu.nl
mailto:Manfred.Jeusfeld@acm.org
https://yamadharma.github.io/
https://kmitd.github.io/ilaria/
http://conceptbase.sourceforge.net/mjf/
https://orcid.org/0000-0002-0877-7063
https://orcid.org/0000-0001-7116-9338
https://orcid.org/0000-0002-9421-8566
https://creativecommons.org/licenses/by/4.0

node up to a certain number of hops [24]. While this method keeps computational costs in check,

it encounters intractability issues when the graph scales to hundreds of millions of nodes or more

[25, 26, 27]. Moreover, even if NS is computationally feasible for two or three hops, the MPNNs become

confined to capturing only highly localized information, which might be insufficient for tasks on large

graphs where more global context is crucial [28, 29, 19].

Graph Transformers (GTs) could provide a potential solution, given their ability to model long-range

dependencies and attend to global neighborhoods [15]. However, the intractability remains, given

that GTs with all-pair attention, i.e., each node attending to every node, would be quadratic (𝑂(𝑁2))
computationally which is entirely feasible for large graphs. When applied with NS, GTs inherit the

same limitations, confining their effectiveness to localized regions. Without NS, the task of attending to

global neighborhoods necessitates approximation [30, 31, 16] or sampling [17, 32, 33] for computational

feasibility, thus bringing us back to the original challenges of sampling and (in)efficient access to global

information.

Present Work. In this paper, we introduce a comprehensive approach to overcoming the afore-

mentioned critical challenges in learning on large-scale graphs by focusing on two essential design

principles: model capacity and scalability. We enhance model capacity by integrating both local and

global graph information for building node representations, while ensuring scalability with an efficient

sampling approach. The proposed framework is summarized as follows:

1. Framework Design: We present LargeGT, a new framework that integrates both local and global

graph representations while minimizing the computational cost incurred at both the stages. In

consistency with recent working recipes in graph learning [15, 19] LargeGT utilizes two distinct

modules — LocalModule and GlobalModule — to handle local and global information exchange

efficiently.

2. Localized Representations: Within the LocalModule, we present a novel tokenization strategy

that prepares a fixed set of tokens for each graph node to be processed by a Transformer encoder,

resulting in rich local feature representations. Importantly, this mechanism leverages a neighborhood

sampling approach that consists of an offline sampling stage and incorporates local context features,

enabling a broad 4-hop receptive field through just 2-hop operations.

3. Global Representations: For the GlobalModule, we implement an approximate codebook-based

approach, adapted from Kong et al. [19], to enable global graph attention with computational

complexity linear to the codebook size. This design choice ensures that both modules can operate

independently of the graph size, thereby ensuring scalability.

4. Computational Efficiency: Our approach effectively mitigates computational bottlenecks tradi-

tionally associated with sampling techniques and global information flow. As a result, we enable

incorporation of both local and global graph representations without compromising performance.

5. Empirical Validation: We validate the competitiveness and scalability of LargeGT with baselines in

a scalable setting using ogbn-products, snap-patents and ogbn-papers100M datasets which

are among the largest benchmarks with node in ranges 2.5M, 2.9M and 111.1M, respectively. Notably,

we obtain a 3× speedup and 16.8% performance gain on ogbn-products and snap-patents
compared to their best baselines respectively, while on ogbn-papers100M we scale LargeGT with

a 5.9% improvement in performance.

Overall, our work not only investigates on the key challenges and presents design elements for GTs

at scale but also provides a robust framework for future research in this area.

2. Related Work

Challenges in MPNN Scaling. When learning on large graphs, the principal issue faced by message-

passing based graph neural networks (MPNNs) is the neighbor explosion phenomenon [24, 17], since

the neighborhood sets of nodes at successive hops expand exponentially [34]. Early efforts in scaling

MPNNs employed the use of neighbor sampling (NS) to sample neighbors of nodes in a graph recursively

that reduces the overall neighborhood sets sending messages for nodes’ feature updates [24]. While this

brings a reduction in memory and compute footprint, it remains intractable to (i) aggregate information

at hops greater than 2 or 3 in very large graphs due to the fact that the the size of the successive

neighborhood grows exponentially, and (ii) access global information in the graph, which is also a

well-acknowledged limitation for several works along this line [35, 36, 37, 38]. Information propagation

prior to or after the training stage [39, 40, 41] are also adopted as ways to address the intractability

brought by neighborhood explosion, which follow the aforementioned limitations. Several works also

propose pre-training [27], condensation [42] or distillation strategies [25, 26] to mitigate these impacts.

Graph Transformers and Scalability. The apparent access to global information is a driving

factor behind the recent plethora of works on Graph Transformers (GTs) with all pair attention [14].

We refer to Müller et al. [43] for a detailed taxonomy and component-wise study of GTs. However,

an obvious barrier for GTs to scale to large graphs is the quadratic complexity brought by full-graph

attention, i.e., 𝑂(𝑁2), with 𝑁 being the number of nodes in a graph. The use of sparse Transformers

[15, 16] or approximated global attention [30, 31] alleviate this issue to some extent to bring down the

complexity to sub-quadratic. Yet, these methods remain unscalable on single large graphs due to the

entire graph structure being operated upon in memory. In order to address this limitation, either an

NS-like computational boundary is enforced for each node [44, 17], or a fixed length sequence or set is

prepared for each node prior to training [10, 18]. Such solutions either inherit the limitations of NS as

discussed above, or are infeasible due to adjacency matrix multiplications as the graph size grows larger.

Clustering based GTs. Orthogonally, several recent works use hierarchical clustering or partitioning

to perform global attention on the coarsened or super nodes [32, 33]. However, the coarsening step

remains intractable for very large graphs with sizes in hundreds of millions or more. Finally, Kong

et al. [19] use a combination of NS based local module and a global module consisting of a trainable

fixed-sized codebook that represents global centroids. While the sampling limitations remain, the global

module based on the centroids is efficient and something that we consider in our proposed approach to

compute global representations.

3. Recipe for Building Transformers for Large Graphs

In the previous sections, we identified critical limitations in existing graph learning models, specifically

their inability to effectively merge local and global graph features when working with very large

graphs. While MPNNs struggle with the ‘neighbor explosion’ problem, making it difficult to aggregate

information beyond 2-3 hops, GTs can capture global context, but are hampered by quadratic complexity

in full graph attention. These challenges, although formidable, outline the essential criteria for a

successful GT model tailored for large graphs. This leads us to present a recipe focusing on model

capacity and scalability for building GTs for large graphs. In this section, we first discuss the design

principles of model capacity
1

and scalability. These factors play a crucial role in determining the

design and feasibility of a Graph Transformer, particularly when it comes to managing extremely large

graphs that have node counts in the millions or higher. Finally, following the design characteristics, we

introduce our proposed framework — LargeGT.

3.1. Design Principles

D1- Model Capacity. A graph learning model should possess the ability to incorporate both local and

global information from the original large graph.

Local Inductive Bias: A node’s local connectivity presents a rich source of information that is essential

to utilize even in a large graph setting. A straightforward local aggregation of all neighboring nodes

1

Note that in this work, we do not contextualize a model’s capacity in terms of Weisfeiler-Leman (WL)’s expressiveness

[45, 46, 47, 48] as it is known that almost all of non-isomorphic graphs (or subgraphs) are distinguishable by a 1-WL equivalent

model (MPNN) in the presence of node features [49], and we do not consider graphs with anonymous nodes.

followed by update equation in an MPNN is impractical due to which several works utilize sampling

techniques (as discussed in Section 2). The incorporation of such local information, while remaining in

a feasible computational boundary, is a key ingredient when building a graph learning model for larger

graphs and helps immensely in homophilic tasks [50, 51].

Access to Non-Local Information: A node’s capability to incorporate features beyond near-local

neighbors may be vital for long-range or non-homophilic tasks [28, 29]. The sampling strategies

discussed in Section 2 fail to allow a model to access nodes’ distant hops or global information, motivating

the use of GTs [15, 16]. GTs with all-pair attention alleviate this concern, however not all such

mechanisms reviewed in Section 2 are scalable, which is a key concern. The recent global attention

mechanism proposed in GOAT [19] uses dimensionality reduction scheme serving as a “conceptual”

global context for a node to attend when looking for non-local information. Without exhaustive

computation, a large graph learning model should allow access to global graph context [52].

D2- Scalability. Learning on large graphs become infeasible for several existing models due to

hindrances in sampling mechanisms or global information modules [14, 15, 17]. As such, we consider

the following factors to be vital for computational feasibility and ensuring scalability of the GTs when

graphs grow larger.

Efficient Neighbor Node Set Retrieval: As reviewed in Section 2, despite the use of sampling techniques,

it becomes intractable to retrieve neighbor node sets from hops greater than 2 or 3 if the graph in

consideration is very large [25, 26]. In fact, even a 3 hop neighbor set retrieval takes a significant

amount of time for graphs with hundreds of millions of nodes, as the computational complexity of

retrieving a node’s 𝑙 hop neighborhood is 𝑂(𝑑𝑙), where 𝑑 is the average node degree. Therefore, for

efficient retrieval for large graphs, we establish only two hops retrieval as a key constraint; this limit is

commonly adopted in large-scale graph learning applications [53, 54, 55, 56].

Efficient Global Information Access: As much as the significance of global information is discussed as a

key recipe in the Design D1, we reiterate that the global information flow should come at an inexpensive

cost. There are multiple candidates for an efficient access to global information, such as sparse global

attention [16], use of virtual nodes [52] and use of an approximate centroid-based codebook [19]. Since

we focus on large graphs where the former two candidates can be infeasible due to their dependency

on the number of nodes in the graph, we aim for incorporating global information without bottlenecks

due to a graph’s large size, such as the method implemented in Kong et al. [19] which depends on a

dynamic codebook comprising of global centroid tokens.

Distributed Training: Handling very large graphs will be impractical without taking advantage of

the distributed computing infrastructure in which several of the real world graphs occur, eg. social

networks, which are massive and require distribution over different machines [? 57, 58]. Ensuring

efficient run times during both training and inference is vital to allow a GT to handle large graphs

within acceptable time frames, keeping the cost feasible and lower. For a model to scale on large graphs,

the training steps should do away with the bottlenecks brought by traditional MPNNs and sparse GTs.

For instance, MPNNs usually sample nodes and their neighbors during the mini-batching step of the

training process, which also applies in recent GTs [17, 19]. In principle, this translates to maintaining

the adjacency matrix of a graph in one machine. This can be challenging: for example, a simple 3-layer

GraphSAGE with NS requires around 350GB+ RAM on the 111.1M sized ogbn-papers100M following

standard configurations of OGB [59]. The single-machine memory requirement can be much larger

than the availability on standard machines with sophisticated models and on industry-scale graphs

with billions of nodes and edges [60, 54]. Thus, avoiding the need to maintain the entire graph data on

a single machine when learning is desirable.

3.2. Our Proposed Framework: LargeGT

Incorporating these desiderata jointly, we next introduce our proposed framework, LargeGT, which is

designed from first-principles to enable the application of GTs to massive large-scale graphs. We refer

to Figure 1 for a sketch of the proposed architecture.

Transformer Encoder Layer
 layers

Readout

Linear Projection and Positional Encoding (if any)

+

Input set of tokens

Transformer Encoder Layer
1 Layer

Global CodebookInput node

U
pd

at
e

C
od

eb
oo

k

FFN, Norm and Residual
Local Module

Global Module

Final Node
Representation

Seed node (or central node)

Sampled neighbor of seed node

1-hop context of preceding seed or neighbor node

2-hop context of preceding seed or neighbor node
LEGEND

Figure 1: Architectural diagram of LargeGT illustrating the process of updating a node’s representation

denoted by the seed node. FFN and Norm denotes Feed Forward Network and Normalization layer

respectively. Neighbors are sampled for a central or seed node offline, prior to the training stage using

Algorithm LocalNodes. The feature vectors coming from both local module and global module are

concatenated before passing to the ‘FFN, Norm and Residual’ module.

Notations. We denote a given graph with 𝒢 = (𝒱, ℰ) with 𝒱 being the set of nodes and ℰ the set of

edges, and 𝑁 = |𝒱| and 𝐸 = |ℰ| being their cardinalities. The graph structure is represented by the

adjacency matrix A ∈ R𝑁×𝑁
where A𝑖𝑗 = 1 if there exists an edge between nodes 𝑖 and 𝑗, otherwise

A𝑖𝑗 = 0. The features for a node 𝑖 is denoted by H𝑖 ∈ R1×𝐷
and for all nodes in the graph 𝒢 is denoted

by H ∈ R𝑁×𝐷
. While we assume, for simplicity, that the graph 𝒢 has no edge features, these can

be incorporated using standard methods as done in the literature, such as using edge features during

message passing to update node representations.

Update Algorithm. We now define the equations which update the feature representations of a

node using the LargeGT framework. Given a node 𝑖 with its input feature Hin

𝑖 ∈ R1×𝐷in
, the aim

is to obtain its output features Hout

𝑖 ∈ R1×𝐷out
which can be passed to appropriate prediction heads

and/or loss functions, subsequently, depending on the learning task. For simplicity, we will represent

H𝑖 ∈ R1×𝐷
in the following equations.

S𝑖 = LocalNodes𝑖(A,𝐾) ∈ R1×𝐾
(1)

X𝑖 = InputTokens𝑖(S𝑖,H
in

𝑖 ,C𝑖) ∈ R1×3𝐾×𝐷
(2)

Hlocal

𝑖 = LocalModule(X𝑖) ∈ R1×𝐷
(3)

H
global

𝑖 = GlobalModule(Hin

𝑖) ∈ R1×𝐷
(4)

Ĥ𝑖 = FFN(Hlocal

𝑖 ||Hglobal

𝑖) ∈ R1×𝐷
(5)

Hout

𝑖 = Hin

𝑖 + Norm(Ĥ𝑖) ∈ R1×𝐷
(6)

where, S𝑖 reflects the 𝐾 sampled local nodes from LocalNodes in Algorithm 1, and X𝑖 is the set of

input tokens of size 3𝐾 prepared using InputTokens in Algorithm 2. Additionally, LocalModule

consists of a standard Transformer encoder [1] which could be a stack of multiple layers to produce

each token’s representations, with a readout function at the end that converts the set of tokens to

Algorithm 1 LocalNodes: Algorithm to fetch a multiset of local nodes from 1 and 2 hop neighbors for

each node.

Require: A graph with adjacency matrix A ∈ R𝑁×𝑁
, and the size of the multiset 𝐾 .

Ensure: Return the matrix with 𝐾-sized multisets for each node S ∈ R𝑁×𝐾

1: Initialize: Multisets for all nodes S ∈ R𝑁×𝐾

2: for 𝑖 = 0 to 𝑁 − 1 do
3: T̂← 1 and 2 hop neighbors of node 𝑖
4: if |T̂| ≥ 𝐾 − 1 then
5: T← Randomly sample 𝐾 − 1 nodes from T̂
6: else if |T̂| < 𝐾 − 1 and |T̂| > 0 then
7: T← Randomly sample from T̂ with replacement to make 𝐾 − 1 nodes

8: else
9: T← Randomly sample 𝐾 − 1 nodes from {0, 1, 2, . . . , 𝑁 − 1}

10: end if
11: S𝑖 ← {𝑖}+ {T} ∈ R𝐾

12: end for

Algorithm 2 InputTokens: Algorithm for Mini-Batch Preparation for Local Module

Require: Mini-batch of 𝑀 samples S ∈ R𝑀×𝐾
where 𝐾 is the total size of the multiset of nodes for

each node, Feature matrix H ∈ R𝑁×𝐷
, Hop context features C ∈ R𝑁×2×𝐷

.

Ensure: Return the input data of all nodes in mini-batch X ∈ R𝑀×3𝐾×𝐷
.

1: Initialize: X ∈ R𝑀×3𝐾×𝐷

2: for 𝑖 = 0 to 𝑀 − 1 do
3: for 𝑗 = 0 to 3𝐾 with step 3 do
4: X𝑖,𝑗 ← H[S𝑖,𝑗] # node feature for node 𝑖 from the feature matrix H
5: X𝑖,𝑗+1 ← C[S𝑖,𝑗 , 0] # 1 hop context feature for the node 𝑖 from C
6: X𝑖,𝑗+2 ← C[S𝑖,𝑗 , 1] # 2 hop context feature for the node 𝑖 from C
7: end for
8: end for

one feature vector as sketched in Figure 1, and GlobalModule consists of a single layer Transformer

encoder adapted from [19] that allows a node to attend to an approximate global representation of

all nodes in the graph through a projection of all nodes’ features in a codebook of a fixed size, that

is updated at each iteration (see Section C). || denotes concatenation. C ∈ R𝑁×2×𝐷
is the context

feature matrix which provides the 1 and 2 hop neighborhood context for all nodes in the graph and

can be precomputed as C0 = ÃH ∈ R𝑁×1×𝐷
and C1 = Ã

2
H ∈ R𝑁×1×𝐷

where Ã is the normalized

adjacency matrix [18].

Finally, FFN refers to a feed forward network used in Transformers, and Norm is normalization, which

can be either of LayerNorm [61] or BatchNorm [62]. Additionally, we note here that the Algorithms 1

and 2 are defined for either all nodes or a mini-batch of nodes, while their respective outputs can be

accessed index-wise in the above Eqns. 1 and 2.

Offline Step Prior to Training. The Algorithm 1 LocalNodes is run on CPU prior to the training

to sample local nodes for each node in the graph, and can be parallelized to multiple cores or machines.

The parallelization is possible due to the fact that the fetch of 1-hop and 2-hop neighbors in Step 3 and

the subsequent steps of Algorithm 1 is independent for each node and can be executed on different

CPU cores in parallel. It’s also worth mentioning that the graph is not required to be stored on a single

machine’s memory for this step. In line with our design principles, the graph can be distributed across

multiple machines using techniques such as key-value stores or graph databases to circumvent the

issue of memory limitations. This ensures that the offline step aligns with the scalability considerations

of handling very large graphs.

Mini-Batching for Local Module. The Algorithm 2 abstracts a mini-batching stage during the

training, which prepares the input tokens for each node in the mini-batch with 𝑀 node samples. This

process contains a nested loop that can also be heavily parallelized across available cores. The mini-

batch algorithm is implemented in a dataloader’s preparation function, such as the PyTorch DataLoader

collate [63]
2
. Besides, an important feature provided by InputTokens is that it increases the receptive

field of a node up to 4 hops, based on just 2-hop computations. To illustrate this, consider a node with its

𝐾 sized sampled set of 1-hop and 2-hop neighbors. Since the steps 5-6 in Algorithm 2 allows for a nodes’

1-2 hop neighbors to retrieve their 1-hop and 2-hop neighborhood context, the node 𝑖 in consideration

will have access to information from up to 4 hops. We have included further elaboration of this feature

in Figure B.2 in Section B.

Characteristics of the Framework. The LargeGT framework fulfills the desired characteristics

(D1-D2, Section 3.1) for a graph learning model to scale on large graphs.

D1-Model Capacity: By incorporating both a local and global module, LargeGT can build node

representations using information from local neighborhoods as well as global graph context. The local

module leverages offline neighbor sampling and local context features to efficiently aggregate local

structure up to 4 hops while the global module allows attending to the entire graph through a trainable

codebook.

D2-Scalability: The framework only samples up to 2-hop neighbors for each node, ensuring efficient

neighbor set retrieval. The runtime is also efficient as the local module operates on sampled neighbors

and the global module utilizes a fixed size codebook, which is already efficient as demonstrated in Kong

et al. [19]. Similarly, the offline neighbor sampling step allows the local node sets and neighborhood

contexts to be prepared independently of the graph structure, essentially converting the graph learning

task into a standard neural network training problem on the sampled nodes and contexts. This allows

easy parallelization across machines like for other modalities such as image and text, alleviating

bottlenecks caused in traditional GNN training that require adjacency matrix access on each machine,

in principle. The input token preparation is also independent of the graph structure. In summary,

LargeGT satisfies the key design principles of model capacity and scalability to effectively scale on large

graph datasets. The local and global components allow it to learn both from local structure as well as

model global dependencies in the graph, without any explicit bottleneck caused due to the size of a

graph. In the next section, we will demonstrate that this model is not only scalable, but offers strongly

competitive performance.

Complexity. The computational complexity of the LocalModule in LargeGT is 𝑂((3𝐾)2), while

that of the GlobalModule is 𝑂(𝐵) where 𝐾 is the size of the local nodes, 3𝐾 is the size of the tokens

for the LocalModule and 𝐵 is the size of the codebook in GlobalModule. As such, the framework is

not bottlenecked with the size of nodes in the graph, as in prior literature. Note that the complexity of

Algorithm 1, which is a one-time offline step, does not affect the computational complexity of LargeGT

during training or inference.

4. Experiments

4.1. Datasets and Experimental Setup

Datasets. We evaluate the proposed LargeGT model architecture on single large graph datasets with

2

https://pytorch.org/docs/stable/data.html#working-with-collate-fn

Table 1

Summary of the datasets used in our experiments.

Dataset Name Total Nodes Total Edges Node Feats Class Size Class Label

ogbn-products 2,449,029 61,859,140 100 47 product category

snap-patents 2,923,922 13,975,788 269 5 time granted

ogbn-papers100M 111,059,956 1,615,685,872 128 172 subject area

https://pytorch.org/docs/stable/data.html##working-with-collate-fn

node classification tasks. Since we particularly focus on large graphs, we do not conduct evaluations on

smaller benchmarks with lesser than million nodes as the limitations of scaling a model are not present.

We use ogbn-products and snap-patents for our model prototyping and experiments, while we

also scale our model on ogbn-papers100M. The datasets’ summary is presented in Table 1.

ogbn-products is a dataset containing Amazon co-purchasing network [64] with nodes repre-

senting products and edges representing the products being purchased together. We use the Open

Graph Benchmark [59] version of the dataset with their standard splits and available features.

snap-patents is a network of US patents [65] where each node represents a patent and an edge

represents patent nodes which cite each other. We use the snap-patents dataset from Lim et al. [28]

with their default splits and features.

Finally, we use ogbn-papers100M dataset [59] which is one of the largest publicly available

single large graph benchmarks. Nodes in the graph denote an arXiv paper while directed edges denote

papers which cite other papers [66]. As with the former dataset, we use the default splits and features

provided by OGB. Among the three datasets, snap-patents is a non-homophilic dataset, while the

rest are homophilic.

Scalable Baselines. We design our experiments in a way to ensure scalability with efficient neighbor

node set retrieval (D2, Section 3.1) on large graphs, with sizes even beyond the benchmarks we use for

the demonstration in this work. As such, we use constrained versions of existing MPNNs or GT baselines,

denoted by Model-δ and call them ‘Scalable Baselines’. We select GraphSAGE [24], GAT [21], GT-sparse

[44, 11], NAGphormer [18] and GOAT [19] as the baselines which encompass fundamental GNNs as

well as recent scalable GTs. Following D2, we constrain the graph propagation related operations in

all these baselines to 2 hops only. The goal of our experimental setup is to show how the scalability

constraints affect existing models’ capabilities, which can be addressed by LargeGT; for this reason, we

do not use enhanced techniques for obtaining top leaderboard results such as auxiliary label propagation

[44, 67] or augmentations [68]. We apply similar restrictions in our proposed LargeGT as well. For

hyperparameters, architectural and training setup of the baselines, we adopt the hyperparameters

available in the original model papers or the OGB examples repository (see Section E). We refer to

Section D for a comparison of scalable and original baselines.

LargeGT Models. We train and evaluate two versions of LargeGT in our experiments, denoted as

LargeGT-local and LargeGT-full. In local version we omit the GlobalModule (Eqn 4) and only use

local representations in Eqn. 5. In the full version, we use both the local and global modules and follow

the entire formulation as in Eqns. 1-6. We implement single layer of Transformer encoder in the local

Table 2

Results for ogbn-products, snap-patents and ogbn-papers100M datasets. All results reported are

on 4 runs. LargeGT as well as models with -δ suffix are the versions of the respective original architecture

with D2, i.e., only upto 2-hop computations. GraphSAGE, GAT and GT-sparse use NS with sizes [20, 10].
Colors denote First, Second and Third. Higher is better.

(a) ogbn-products

Model Test Acc

GraphSAGE-δ 76.62±0.93

GAT-δ 77.38±0.59

GT-sparse-δ 60.76±0.00

NAGphormer-δ 75.28±0.04

GOAT-local-δ 81.17±0.12

GOAT-global-δ 70.28±1.95

GOAT-full-δ 79.88±0.20

LargeGT-local 78.95±0.80

LargeGT-full 79.81±0.25

(b) snap-patents

Model Test Acc

GraphSAGE-δ 48.43±0.21

GAT-δ 45.92±0.22

GT-sparse-δ 47.81±0.00

NAGphormer-δ 60.11±0.05

GOAT-local-δ 40.95±0.16

GOAT-global-δ 42.65±0.07

GOAT-full-δ 50.28±0.14

LargeGT-local 68.19±3.11

LargeGT-full 70.21±0.12

(c) ogbn-papers100M

Model Test Acc

GOAT-full-δ 61.12±0.10

LargeGT-full 64.73±0.05

0 25 50 75 100 125 150 175 200
Epoch Time

60.0
62.5
65.0
67.5
70.0
72.5
75.0
77.5
80.0

Te
st

 A
cc

ur
ac

y
Test Accuracy vs Epoch Time

GraphSAGE-
GAT-
GT-sparse-
NAGphormer-
GOAT-local-
GOAT-global-
GOAT-full-
LargeGT-local
LargeGT-full

(a) ogbn-products

25 50 75 100 125 150 175
Epoch Time

40

45

50

55

60

Te
st

 A
cc

ur
ac

y

Test Accuracy vs Epoch Time

GraphSAGE-
GAT-
GT-sparse-
NAGphormer-
GOAT-local-
GOAT-global-
GOAT-full-
LargeGT-local
LargeGT-full

(b) snap-patents

Figure 2: Training time per epoch of various baselines with the proposed architecture. LargeGT reports relatively

faster epoch times compared to the best baselines despite performing competitively.

and global modules.
3

Other hyperparameter details are included in Section E.

Hardware. The experiments on ogbn-products and snap-patents are conducted on Tesla-V100

GPU with 16GB GPU memory, 24 CPU cores and 156GB RAM, while that of ogbn-papers100M are

on A40 GPU with 48GB GPU, 128 CPU cores and 1024GB RAM.

4.2. Numerical Results and Discussion

We now present the numerical results in this section. Table 2 presents the main comparison of the base-

lines Model-δ with the LargeGT models. For ogbn-papers100M, we only report the best performing

baseline on the homophilic task of ogbn-products due to computational constraints. Figure 2 shows

the training time per epoch incurred by the models, while Figure 3 shows the sensitivity analysis of the

number of nodes sampled (𝐾) in Algorithm 1 which is used by LocalModule in LargeGT. We present

our observations as follows.

On Performance. On comparison with the scalable baselines in Table 2 consisting of both GNNs

and GTs, we observe LargeGT to attain competitive performance to the best baseline GOAT-local-δ
on ogbn-products, while on snap-patents, LargeGT beats all the baselines. The lower scores of

GraphSAGE-δ and GAT-δ models reveal, in part, how the constraint D2 brings down the model capacity

and such a network with a 2-hop graph receptive field may not incorporate necessary information

required to build useful node representations. Among all the models on ogbn-products, GOAT-local-δ
is the best performing, which on snap-patents ranks the lowest, understandably due to the latter’s

non-homophilic characteristic where local-only information aggregation may not be enough. All results

considered, LargeGT ranks among the best models on both the datasets, suggesting the capacity to work

well in both homophilic and non-homophilic settings. Finally, we report the results of LargeGT-full

on ogbn-papers100M together with GOAT-full-δ which is the best performing baseline on a similar

homophilic task ogbn-products on a computational budget of 48h. We observe LargeGT-full to be

significantly better (5.9%) in performance compared to GOAT-full-δ, hence showing the ability to scale

to massive graphs.

On Runtime. In Figure 2, we present the training time per epoch of all the models considered.

We observe the epoch time of LargeGT to be faster up to a maximum of 3× times (GOAT-full-δ vs.

LargeGT-full). Further, Fig. A.1 in Appendix Sec. A shows accordingly better learning and generalization

curves of our proposed architecture against the baselines.

On Design Characteristics. The scores of LargeGT indicate the need to incorporate both local and

global neighbor information, as well as the suitability of such architecture to perform both in homophilic

and non-homophilic tasks. The absolute gain in performance of LargeGT-full against LargeGT-local

which is around 1% and 2% respectively for ogbn-products and snap-patents demonstrates how

3

We observed decreased performance when stacking multiple layers, in consistency with recent works such as Chen et al.

[18], Kong et al. [19], and leave the exploration of multi-layered version for later.

LargeGT satisfies D1 design characteristic. D2 which necessitates the computational feasibility of a

network helps keep the epoch times of each baseline feasible, along with LargeGT. See the epoch times

of each experiments in Figure 2. If we further compare GOAT-full-δ with the original GOAT-full (NS of 3

hops) [19], we report per epoch times of 205s and 497s respectively on ogbn-products, which suggests

how existing works without D2 can be computationally expensive. Finally, we ensure parallelizability

in principle given that the Algorithms 1-2 effectively convert the training problem on a single large

graph to a standard neural network training on the sampled tokens, which can leverage parallelization

without the need of a single global graph context maintained in the memory of any one machine.

On Node Set Sizes 𝐾. In Figure 3, we show results of LargeGT-full experiment on an important

hyperparameter in our proposed framework, the number of nodes to be sampled from LocalNodes

(Algorithm 1). The value of 𝐾 is chosen from a list of [20, 40, 50, 60, 80, 100, 150, 200]. We observe best

performance on 𝐾 = 100 and 𝐾 = 50 for ogbn-products and snap-patents respectively, which

somewhat aligns with the extent of their tasks being non-homophilic since a lower 𝐾 would reflect

lesser tokens from the local neighborhood.

25 50 75 100 125 150 175 200
K

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Te
st

 A
cc

17s 27s
34s39s 51s 68s

112s 151s

137s

247s

265s
340s

454s 535s 706s 975s

Test Accuracy on different values of K

ogbn-products
snap-patents

Figure 3: Hyperparameter analysis for 𝐾 which is the number of nodes to be sampled in LocalNodes algorithm

for LargeGT-full model on ogbn-products and snap-patents datasets. Labels on the data points denote the

training time per epoch.

On Comparison with SGC and SIGN. We also compare LargeGT with SGC (Simplified Graph

Convolution) [40] and SIGN (Scalable Inception Graph Neural Networks) [41], which utilize simplified

information propagation operations based on graph adjacency matrices. While SGC has been shown to

match or marginally improve upon the performance of GCN [20] in their experiments, its scores are

surpassed by those of SIGN. The SGC model is demonstrated to be a special case of SIGN as shown in

Frasca et al. [41] due to which we only conduct experiments with SIGN for the purpose of comparison

with LargeGT. In our experiments on ogbn-products and snap-patents, under the scalability

constraint (-δ), i.e., limited to 2-hop computations, SIGN-δ achieves 80.28±0.04 performance, comparable

to LargeGT on ogbn-products but significantly underperforms with the score of 47.91±0.07 compared

to LargeGT on snap-patents. Therefore, both SIGN and SGC, by extension, inherit the limitations of

local-only models and exhibit poor performance in non-homophilic settings, such as snap-patents.

LargeGT either matches or exceeds the performance over SIGN-δ.

5. Conclusion

In this work, we propose the LargeGT framework for designing Graph Transformers on very large graphs,

such at those with at least millions nodes. We studied the characteristics and constraints necessary for

a learning model to effectively scale on large graphs, namely model capacity, computational feasibility,

and distributed training ability. We design LargeGT to satisfy the intended criteria, and show a proof of

concept of how these components can be incorporated into a GT model to obtain competitive results in

an improved runtime compared to architectures in prior literature.

References

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin,

Attention is all you need, Advances in Neural Information Processing Systems 30 (2017).

[2] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers

for language understanding, arXiv preprint arXiv:1810.04805 (2018).

[3] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov,

Roberta: A robustly optimized bert pretraining approach, arXiv preprint arXiv:1907.11692 (2019).

[4] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, Q. V. Le, Xlnet: Generalized autoregressive

pretraining for language understanding, Advances in neural information processing systems 32

(2019).

[5] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, P. J. Liu, Exploring

the limits of transfer learning with a unified text-to-text transformer, The Journal of Machine

Learning Research 21 (2020) 5485–5551.

[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,

G. Sastry, A. Askell, et al., Language models are few-shot learners, Advances in neural information

processing systems 33 (2020) 1877–1901.

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,

M. Minderer, G. Heigold, S. Gelly, et al., An image is worth 16x16 words: Transformers for image

recognition at scale, in: International Conference on Learning Representations, 2020.

[8] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,

E. Hambro, F. Azhar, et al., Llama: Open and efficient foundation language models, arXiv preprint

arXiv:2302.13971 (2023).

[9] OpenAI, Gpt-4 technical report, 2023. arXiv:2303.08774.

[10] J. Zhang, H. Zhang, C. Xia, L. Sun, Graph-bert: Only attention is needed for learning graph

representations, arXiv preprint arXiv:2001.05140 (2020).

[11] V. P. Dwivedi, X. Bresson, A generalization of transformer networks to graphs, AAAI Workshop

on Deep Learning on Graphs: Methods and Applications (2021).

[12] D. Kreuzer, D. Beaini, W. Hamilton, V. Létourneau, P. Tossou, Rethinking graph transformers with

spectral attention, Advances in Neural Information Processing Systems 34 (2021) 21618–21629.

[13] G. Mialon, D. Chen, M. Selosse, J. Mairal, Graphit: Encoding graph structure in transformers,

arXiv preprint arXiv:2106.05667 (2021).

[14] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, T.-Y. Liu, Do transformers really perform

badly for graph representation?, in: Advances in Neural Information Processing Systems, 2021.

[15] L. Rampášek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, D. Beaini, Recipe for a general,

powerful, scalable graph transformer, Advances in Neural Information Processing Systems 35

(2022) 14501–14515.

[16] H. Shirzad, A. Velingker, B. Venkatachalam, D. J. Sutherland, A. K. Sinop, Exphormer: Sparse

transformers for graphs, arXiv preprint arXiv:2303.06147 (2023).

[17] J. Zhao, C. Li, Q. Wen, Y. Wang, Y. Liu, H. Sun, X. Xie, Y. Ye, Gophormer: Ego-graph transformer

for node classification, arXiv preprint arXiv:2110.13094 (2021).

[18] J. Chen, K. Gao, G. Li, K. He, Nagphormer: A tokenized graph transformer for node classification

in large graphs, in: The Eleventh International Conference on Learning Representations, 2022.

[19] K. Kong, J. Chen, J. Kirchenbauer, R. Ni, C. B. Bruss, T. Goldstein, Goat: A global transformer on

large-scale graphs, in: International Conference on Machine Learning, 2023.

[20] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks,

arXiv:1609.02907 (2016).

[21] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio, Graph attention networks,

in: International Conference on Learning Representations, 2018.

[22] X. Bresson, T. Laurent, Residual Gated Graph ConvNets, arXiv:1711.07553 (2017).

[23] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, Neural message passing for quantum

chemistry, in: International conference on machine learning, PMLR, 2017, pp. 1263–1272.

http://arxiv.org/abs/2303.08774

[24] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large graphs, Advances in

neural information processing systems 30 (2017).

[25] S. Zhang, Y. Liu, Y. Sun, N. Shah, Graph-less neural networks: Teaching old mlps new tricks via

distillation, in: International Conference on Learning Representations, 2021.

[26] Z. Guo, W. Shiao, S. Zhang, Y. Liu, N. V. Chawla, N. Shah, T. Zhao, Linkless link prediction

via relational distillation, in: International Conference on Machine Learning, PMLR, 2023, pp.

12012–12033.

[27] X. Han, T. Zhao, Y. Liu, X. Hu, N. Shah, Mlpinit: Embarrassingly simple gnn training acceleration

with mlp initialization, in: The Eleventh International Conference on Learning Representations,

2022.

[28] D. Lim, X. Li, F. Hohne, S.-N. Lim, New benchmarks for learning on non-homophilous graphs,

arXiv preprint arXiv:2104.01404 (2021).

[29] V. P. Dwivedi, L. Rampášek, M. Galkin, A. Parviz, G. Wolf, A. T. Luu, D. Beaini, Long range

graph benchmark, Neural Information Processing Systems (NeurIPS 2022), Track on Datasets and

Benchmarks (2022).

[30] Q. Wu, W. Zhao, Z. Li, D. P. Wipf, J. Yan, Nodeformer: A scalable graph structure learning

transformer for node classification, Advances in Neural Information Processing Systems 35 (2022)

27387–27401.

[31] Q. Wu, C. Yang, W. Zhao, Y. He, D. Wipf, J. Yan, Difformer: Scalable (graph) transformers induced

by energy constrained diffusion, arXiv preprint arXiv:2301.09474 (2023).

[32] Z. Zhang, Q. Liu, Q. Hu, C.-K. Lee, Hierarchical graph transformer with adaptive node sampling,

Advances in Neural Information Processing Systems 35 (2022) 21171–21183.

[33] W. Zhu, T. Wen, G. Song, X. Ma, L. Wang, Hierarchical transformer for scalable graph learning,

arXiv preprint arXiv:2305.02866 (2023).

[34] U. Alon, E. Yahav, On the bottleneck of graph neural networks and its practical implications, in:

International Conference on Learning Representations, 2021.

[35] J. Chen, J. Zhu, L. Song, Stochastic training of graph convolutional networks with variance

reduction, arXiv preprint arXiv:1710.10568 (2017).

[36] J. Chen, T. Ma, C. Xiao, Fastgcn: fast learning with graph convolutional networks via importance

sampling, arXiv preprint arXiv:1801.10247 (2018).

[37] W. Huang, T. Zhang, Y. Rong, J. Huang, Adaptive sampling towards fast graph representation

learning, Advances in neural information processing systems 31 (2018).

[38] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, V. Prasanna, Graphsaint: Graph sampling based

inductive learning method, arXiv preprint arXiv:1907.04931 (2019).

[39] J. Gasteiger, A. Bojchevski, S. Günnemann, Predict then propagate: Graph neural networks meet

personalized pagerank, arXiv preprint arXiv:1810.05997 (2018).

[40] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, K. Weinberger, Simplifying graph convolutional networks,

in: International conference on machine learning, PMLR, 2019, pp. 6861–6871.

[41] F. Frasca, E. Rossi, D. Eynard, B. Chamberlain, M. Bronstein, F. Monti, Sign: Scalable inception

graph neural networks, arXiv preprint arXiv:2004.11198 (2020).

[42] W. Jin, L. Zhao, S. Zhang, Y. Liu, J. Tang, N. Shah, Graph condensation for graph neural networks,

arXiv preprint arXiv:2110.07580 (2021).

[43] L. Müller, M. Galkin, C. Morris, L. Rampášek, Attending to graph transformers, arXiv preprint

arXiv:2302.04181 (2023).

[44] Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, Y. Sun, Masked label prediction: Unified message

passing model for semi-supervised classification, arXiv preprint arXiv:2009.03509 (2020).

[45] B. Weisfeiler, A. Leman, The reduction of a graph to canonical form and the algebra which appears

therein, NTI, Series 2 (1968) 12–16.

[46] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, M. Grohe, Weisfeiler and

Leman go neural: Higher-order graph neural networks, in: The Thirty-Third AAAI Conference

on Artificial Intelligence, AAAI Press, 2019, pp. 4602–4609.

[47] K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural networks?, in: International

Conference on Learning Representations, 2019.

[48] L. Zhao, N. Shah, L. Akoglu, A practical, progressively-expressive gnn, Advances in Neural

Information Processing Systems 35 (2022) 34106–34120.

[49] L. Cotta, C. Morris, B. Ribeiro, Reconstruction for powerful graph representations, Advances in

Neural Information Processing Systems 34 (2021) 1713–1726.

[50] Y. Ma, X. Liu, N. Shah, J. Tang, Is homophily a necessity for graph neural networks?, in:

International Conference on Learning Representations, 2021.

[51] H. Mao, Z. Chen, W. Jin, H. Han, Y. Ma, T. Zhao, N. Shah, J. Tang, Demystifying structural disparity

in graph neural networks: Can one size fit all?, arXiv preprint arXiv:2306.01323 (2023).

[52] C. Cai, T. S. Hy, R. Yu, Y. Wang, On the connection between mpnn and graph transformer, arXiv

preprint arXiv:2301.11956 (2023).

[53] A. Sankar, Y. Liu, J. Yu, N. Shah, Graph neural networks for friend ranking in large-scale social

platforms, in: Proceedings of the Web Conference 2021, 2021, pp. 2535–2546.

[54] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, J. Leskovec, Graph convolutional

neural networks for web-scale recommender systems, in: Proceedings of the 24th ACM SIGKDD

international conference on knowledge discovery & data mining, 2018, pp. 974–983.

[55] A. Jain, I. Liu, A. Sarda, P. Molino, Food discovery with uber eats: Using graph learning to power

recommendations, Accessed March 1 (2019) 2021.

[56] X. Tang, Y. Liu, X. He, S. Wang, N. Shah, Friend story ranking with edge-contextual local graph

convolutions, in: Proceedings of the Fifteenth ACM International Conference on Web Search and

Data Mining, 2022, pp. 1007–1015.

[57] D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan, Z. Zhang, G. Karypis, Distdgl:

distributed graph neural network training for billion-scale graphs, in: 2020 IEEE/ACM 10th

Workshop on Irregular Applications: Architectures and Algorithms (IA3), IEEE, 2020, pp. 36–44.

[58] A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, A. Peysakhovich, Pytorch-biggraph:

A large scale graph embedding system, Proceedings of Machine Learning and Systems 1 (2019)

120–131.

[59] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, J. Leskovec, Open Graph Benchmark:

Datasets for Machine Learning on Graphs, 34th Conference on Neural Information Processing

Systems (2020).

[60] J. Shi, V. Chaurasiya, Y. Liu, S. Vij, Y. Wu, S. Kanduri, N. Shah, P. Yu, N. Srivastava, L. Shi, et al.,

Embedding based retrieval in friend recommendation (2023).

[61] J. L. Ba, J. R. Kiros, G. E. Hinton, Layer normalization, arXiv preprint arXiv:1607.06450 (2016).

[62] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal

covariate shift, in: International conference on machine learning, PMLR, 2015, pp. 448–456.

[63] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, et al., Pytorch: An imperative style, high-performance deep learning library, Advances

in neural information processing systems 32 (2019).

[64] K. Bhatia, K. Dahiya, H. Jain, A. Mittal, Y. Prabhu, M. Varma, The extreme classification repository:

Multi-label datasets and code. url: http://manikvarma. org/downloads/xc, XMLRepository. html

(2016).

[65] J. Leskovec, A. Krevl, Snap datasets: Stanford large network dataset collection, 2014.

[66] K. Wang, Z. Shen, C. Huang, C.-H. Wu, Y. Dong, A. Kanakia, Microsoft academic graph: When

experts are not enough, Quantitative Science Studies 1 (2020) 396–413.

[67] Q. Huang, H. He, A. Singh, S.-N. Lim, A. Benson, Combining label propagation and simple models

out-performs graph neural networks, in: International Conference on Learning Representations,

2020.

[68] K. Kong, G. Li, M. Ding, Z. Wu, C. Zhu, B. Ghanem, G. Taylor, T. Goldstein, Flag: Adversarial data

augmentation for graph neural networks (2020).

A. Additional Runtime Analysis

0 50 100 150 200 250
Time (minutes)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Va
lid

at
io

n
Ac

cu
ra

cy

Validation Accuracy with training time

NAGphormer-
GOAT-full-
GAT-
GraphSAGE-
LargeGT-full

(a) ogbn-products

0 50 100 150 200 250
Time (minutes)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 A
cc

ur
ac

y

Test Accuracy with training time

NAGphormer-
GOAT-full-
GAT-
GraphSAGE-
LargeGT-full

(b) ogbn-products

0 50 100 150 200 250
Time (minutes)

0.3

0.4

0.5

0.6

0.7

Va
lid

at
io

n
Ac

cu
ra

cy

Validation Accuracy with training time

NAGphormer-
GOAT-full-
GAT-
GraphSAGE-
LargeGT-full

(c) snap-patents

0 50 100 150 200 250
Time (minutes)

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y
Test Accuracy with training time

NAGphormer-
GOAT-full-
GAT-
GraphSAGE-
LargeGT-full

(d) snap-patents

Figure A.1: Validation and test curves of the models with the running time in minutes.

Figure A.1 presents a convergence analysis of the scalable baselines with LargeGT with their validation

and test performance for an unlimited number of epochs run within a computation budget of 4 hours

(240 minutes). We observe better generalization curves of our proposed architecture against the baselines

as the latter are largely affected by NS (neighbor sampling) while our architecture is based on the

design principles which addresses some limitations of the NS used during training in the baselines.

Additionally, recall from Section 4, we report a 3× faster epoch time of LargeGT-full vs. GOAT-

full-δ on ogbn-products. This is influential in the faster convergence of LargeGT as observed for

ogbn-products in Figure A.1, where the generalization curves of LargeGT-full for < 90 minutes is

similar to that of GOAT-full-δ for the entire 240 minutes, resulting in an earlier learning stability.

B. LocalModule

One of the main contributions of LargeGT (Section 3.2) in building localized representations is the

introduction of a tokenization strategy that prepares a fixed set of input tokens for each graph node

which is processed in the Transformer encoder of LocalModule to produce local feature representations

of the node. For this, first a set of 𝐾 local nodes are sampled offline using LocalNodes Algorithm 1,

which is then leveraged to prepared 3𝐾 tokens for each node during the mini batching step, following

1-hop

2-hop

3-hop

4-hop

Figure B.2: An example illustration of how the tokenization strategy using LocalNodes and InputTokens

proposed in LargeGT which is input into LocalModule allows an effective receptive field of up to 4-hops

for a node 𝑖 in consideration.

InputTokens Algorithm 2. The combination of the sampled nodes and the context features in Algorithm

2 effectively allows a receptive field of up to 4 hops for a node 𝑖 in consideration, using only 2 hop

operations. This is illustrated in Figure B.2. We compute the 1 hop and 2 hop context features for all

nodes using C0 = ÃH and C1 = Ã
2
H, respectively, where Ã is the normalized adjacency matrix and

H is the node feature matrix.

In the figure, where 𝐾 is set to 5 for simple illustration, we can observe that there are 𝐾 − 1 = 4
sampled nodes for the node 𝑖, where the nodes sampled from 1 hop are represented as 𝑗1 and from 2

hop are represented as 𝑗2. The 2-hop context feature for 𝑗2 will also form part of the token set for the

node 𝑖, following InputTokens Algorithm 2. As such, the set of tokens of size 3𝐾 will include vectors

which represent the a node 𝑖’s 4 hop neighborhood information.

C. GlobalModule

The algorithm GlobalModule in LargeGT is adapted from [19] which uses a single layer Transformer

encoder to allow every node in a mini-batch to global graph nodes, conceptually through a fixed sized

𝐵 centroids. The 𝐵 centroid tokens are stored in a codebook which is defined as 𝜇 ∈ R𝐵×𝐷
and are

updated using an Exponential Moving Average (EMA) K-Means algorithm [19] at every mini-batch

step. In Algorithm 3, MLP𝑎 and MLP𝑏 are two multi-layer perceptron modules with separate learnable

Algorithm 3 GlobalModule: Algorithm to output global representations of nodes in mini-batch

Require: Hidden features Hin ∈ R𝑀×𝐷
for 𝑀 nodes in a mini-batch, 𝜇 is the centroid computed by

the K-Means algorithm, P is the centroid assignment index for each node.

Ensure: Return the output representations of all nodes in the mini-batch Hglobal
.

1: for 𝑖 = 0 to 𝑀 − 1 do
2: x← MLP𝑎(H

in

𝑖)
3: q← xW𝑄

4: K← 𝜇W𝐾

5: V← 𝜇W𝑉

6: Ĥ
global

𝑖 ← Softmax

(︁
qK⊤
√
𝐷

+ log (1𝑛P)
)︁
V

7: H
global

𝑖 ← MLP𝑏(Ĥ
global

𝑖)
8: Update 𝜇 using x through Exponential Moving Average (EMA) K-Means algorithm.

9: end for

parameters, while W𝑄,W𝐾 ,W𝑉 are the learnable parameters of the Transformer encoder.

D. Extended Baseline Results

As mentioned in Section 4.1, we compare LargeGT with ‘Scalable Baselines’ which are constrained

versions of existing MPNNs or GT baselines, denoted by Model-δ. The decision to compare LargeGT

with 2-hop constrained versions of the baselines was to maintain a consistent scope of expensive

computation incurred across all models. For instance, the cost of fetching 𝑙-hop neighbors for a node in

a very large graph would be the same and agnostic of any selected model. Nevertheless, in this section,

we provide an extended comparison of LargeGT with both ‘Scalable Baselines’ as well as their original

models, for ogbn-products. Note that for the original models, we adopt hyperparameters in their

respective papers. From Table D.1, we can observe that the best performing model remains the same

while LargeGT, which only use up to 2-hop operations, remains better and competitive compared to

the best performing model. Additionally, it is obvious that the ‘Original Baselines’ that employ greater

than 2-hop operations are computationally demanding (upto 4× in some cases), as compared to the

‘Scalable Baselines’.

Table D.1

Extended results for ogbn-products where LargeGT is compared to Model-δ as well as the original baselines

without the -δ constraint.

Model

Original Baselines Scalable Baselines (-δ)

Test Acc Epoch Time Test Acc Epoch Time

GraphSAGE 78.17 22s 76.62 7s

GAT 79.21 86s 77.38 31s

GT-sparse 67.87 40s 60.76 12s

NAGphormer 77.71 22s 75.28 8s

GOAT-local 81.29 490s 81.17 120s

GOAT-global 70.28 3.5s 70.28 3.5s

GOAT-full 81.21 500s 79.88 205s

LargeGT-local – 78.95 45s

LargeGT-full – 79.81 68s

E. Experimental Details

In our experiments, we use the baselines GraphSAGE [24], GAT [21], GT-sparse [11, 44], NAGphormer

[18] and GOAT [19] to compare with our proposed architecture LargeGT. We follow the setup of the

Table E.2

Hyperparameters for ogbn-products

GraphSAGE-δ GAT-δ GT-sparse-δ NAGphormer-δ GOAT-δ LargeGT

batch size 1024 512 1024 200 512 1024

hidden dim 256 128 128 512 256 256

heads – 4 4 4 2 2

pos enc – – – – node2vec (64) node2vec (64)

centroids (𝐵) – – – – 4096 4096

NS [20, 10] [20, 10] [20, 10] – [20, 10] –

dropout 0.5 0.5 0.3 0.3 0.5 0.5

learning rate 3e-3 1e-3 1e-3 – 1e-3 1e-3

weight decay 0.0 0.0 0.0 1e-5 0.0 0.0

warmup steps – – – 1000 – –

peak learning rate – – – 1e-3 – –

end learning rate – – – 1e-4 – –

learning patience – – – 30 – –

hops – – – 2 – –

Table E.3

Hyperparameters for snap-patents

GraphSAGE-δ GAT-δ GT-sparse-δ NAGphormer-δ GOAT-δ LargeGT

batch size 1024 512 1024 200 2048 2048

hidden dim 256 128 128 512 128 128

heads – 4 4 4 2 2

pos enc – – – – node2vec (64) node2vec (64)

centroids (𝐵) – – – – 4096 4096

NS [20, 10] [20, 10] [20, 10] – [20, 10] –

dropout 0.5 0.5 0.3 0.2 0.5 0.5

learning rate 3e-3 1e-3 1e-3 – 1e-3 1e-3

weight decay 0.0 0.0 0.0 1e-5 0.0 0.0

warmup steps – – – 1000 – –

peak learning rate – – – 1e-3 – –

end learning rate – – – 1e-4 – –

learning patience – – – 30 – –

hops – – – 2 – –

Table E.4

Hyperparameters for ogbn-papers100M

GOAT-δ LargeGT

batch size 2048 1024

hidden dim 768 512

heads 2 2

pos enc node2vec (128) node2vec (128)

centroids (𝐵) 4096 4096

NS [20, 10] –

dropout 0.5 0.5

learning rate 1e-3 1e-3

weight decay 0.0 0.0

respective codebase of NAGphormer
4

and GOAT
5

to conduct the baseline experiments, while for the

remaining, we follow their OGB implementation
6
. The hyperparameters of the experiments are as

follows.

E.1. Hyperparameters

4

https://github.com/JHL-HUST/NAGphormer

5

https://github.com/devnkong/GOAT

6

https://github.com/snap-stanford/ogb

https://github.com/JHL-HUST/NAGphormer
https://github.com/devnkong/GOAT
https://github.com/snap-stanford/ogb

	1 Introduction
	2 Related Work
	3 Recipe for Building Transformers for Large Graphs
	3.1 Design Principles
	3.2 Our Proposed Framework: LargeGT

	4 Experiments
	4.1 Datasets and Experimental Setup
	4.2 Numerical Results and Discussion

	5 Conclusion
	A Additional Runtime Analysis
	B LocalModule
	C GlobalModule
	D Extended Baseline Results
	E Experimental Details
	E.1 Hyperparameters

