
Spectral PINNs: Fast Uncertainty Propagation with
Physics-Informed Neural Networks

Björn Lütjens ∗
Human Systems Laboratory

MIT

Catherine H. Crawford
IBM Research

Mark Veillette
MIT Lincoln Laboratory

Dava Newman
Human Systems Laboratory

MIT & MIT Media Lab

Abstract

Physics-informed neural networks (PINNs) promise to significantly speed up par-
tial differential equation (PDE) solvers. However, most PINNs can only solve
deterministic PDEs. Here, we consider stochastic PDEs that contain partially
unknown parameters. We aim to quickly quantify the impact of uncertain param-
eters onto the solution of a PDE - that is - we want to perform fast uncertainty
propagation. Classical uncertainty propagation methods such as Monte Carlo
sampling, stochastic Galerkin, collocation, or discrete projection methods become
computationally too expensive with an increasing number of stochastic parameters.
For example, the well-known spectral or polynomial chaos expansions achieve
to separate the spatiotemporal and probabilistic domains and offer theoretical
guarantees and fast computation of stochastic summaries (e.g., mean), but can be
computationally expensive to form. Our Spectral PINNs approximate the underly-
ing spectral coefficients with a neural network and reduce the computational cost
of the spectral expansion while maintaining guarantees. We derive the method for
partial differential equations, discuss runtime, demonstrate initial results on the
convection-diffusion equation, and provide steps towards convergence guarantees.

1 Introduction

Solving partial differential equations (PDEs) in fluid dynamics, astrophysics, or climate science is
computationally expensive [1]. For example, solving a climate model at 1km resolution can take
10 days on a 5000-GPU supercomputer [2]. Decades of research in numerical methods [3] and
physical approximations, such as parametrizations or closures [4], has achieved drastic reductions in
the complexity of solving PDEs. However, numerical methods remain computationally expensive
for high-dimensional problems or uncertainty quantification [5] and physical approximations require
extensive domain knowledge and often sacrifice accuracy [4].

Recently, researchers in the field of physics-informed neural networks (PINNs) have proposed to
combine numerical methods with deep neural networks (NNs) [6, 5]. The combination builds a perfect
team: NNs have fast inference times despite approximating high-dimensional functions, but lack
guarantees and constraints [7]. Numerical methods are slow for high-dimensional problems, but have
rigorous convergence guarantees and physical constraints [8]. Each balancing the other’s weaknesses,
physical knowledge has been integrated into NNs as inputs [9, 10, 11], loss function [6], latent

∗Corresponding author: lutjens@mit.edu

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

(a) Target solution (b) Spectral PINN solution (ours)

Figure 1: Spectral PINNs. Initial results show that the spectral PINNs in Fig. 1b-solid can approximately match
the mean (line) and standard deviation (shade) of the target solution in Fig. 1a and Fig. 1b-light-shade-dotted
(with y=u). Importantly the approximated standard deviation also captures the growing trend towards the center
location (x = 0.5) and growing time, t = 1 (far-right-plot, orange).

state [12, 13, 14, 15], analytic constraints [16, 17], or evaluation function [18, 19]. From the other side,
NNs have been embedded into numerical methods by approximating the PDE’s parameters [20, 6],
dynamics [21, 12], residual [22, 23], differential operator [24, 25], or solution [6, 26]. Our Spectral
PINNs leverage NNs to approximate the solution of a PDE, creating a learning-based “surrogate
model” [27, 12] that can be used for fast propagation of uncertainties or sensitivity analyses.

PINNs have achieved to speed-up PDE solvers by 1-3 orders of magnitude [28, 26], but are mostly
limited to deterministic PDEs [5]. In practice, many parameters of PDEs are partially unknown and
uncertainty quantification plays a vital role in the development of real-life safety-critical systems [29],
climate risk estimation [30], or parameter inference [27]. A small set of PINNs has targeted stochastic
differential equations [31, 32, 33], but has been developed rather independently from the existing
tools in uncertainty quantification (UQ) [27]. Our work builds a bridge between UQ and deep learning
by combining well-known spectral expansions with neural networks.

Uncertainty propagation, the UQ subfield of our interest, aims to calculate statistical summaries of
the solution given knowledge about parameter distributions [27]. We can roughly divide methods
for uncertainty propagation in intrusive and non-intrusive techniques. Intrusive techniques, such
as Stochastic Galerkin [34], require domain knowledge of the PDEs and modifiability of the PDE
solver which often does not exist [8]. Non-intrusive techniques, such as Monte Carlo sampling [35],
collocation methods [36], or discrete projection [36], are purely data-driven methods that only assume
solver-generated datasets. The runtime complexity of many non-intrusive techniques, however, can
scale cubically with the number of stochastic parameters [34]. Purely deep learning-based generative
models such as GANs [37] or VAEs [38] can offer fast uncertainty propagation via Monte Carlo
sampling, but often come without theoretical guarantees [39, 40]. Our method is non-intrusive,
faster than conventional UQ methods, and leverages a widely adopted UQ technique called spectral
expansion or polynomial chaos expansion (PCE) offering some guarantees [41, 42, 27].

In particular, we propose to approximate the spectral coefficients with NNs. The integration of NNs
into spectral expansions enables fast calculation of statistical summaries, sensitivity analyses [43],
and the potential for theoretical guarantees of optimality or convergence [27]. The closest to our
work proposes NNs to estimate the coefficients of an arbitrary polynomial chaos [44], but has only
been demonstrated on a 1D stochastic elliptic diffusion equation, not on PDEs, and is intrusive [45].

We contribute Spectral PINNs, specifically:

• The extension of spectral PINNs to PDEs, spatiotemporal, parabolic, hyperpolic, and
evolutionary equations.

• A scalable, mesh-free, and data-driven method for non-intrusive uncertainty propagation in
potentially high-dimensional parameter and spatiotemporal spaces.

• A potentially faster method for uncertainty propagation than traditional UQ methods, such
as stochastic Galerkin or collocation.

• The first demonstration of Spectral PINNs on the convection-diffusion equation.

2

2 Approach

Quantifying uncertainties in solutions to stochastic PDEs (SPDEs), via computing large ensembles is
computationally expensive. In this section, we approximate the solution using a spectral expansion,
and estimate the coefficients of that spectral expansion with NNs to build a fast and accurate surrogate
for uncertainty propagation.

2.1 Problem definition

First, we define a stochastic PDE with the solution, u, and stochastic parameters,Q, as:

Nt,x[u(t, x;ω);Q(x;ω)] = 0, ∀ t∈Dt, x∈Dx, ω∈Ω,

Bt,x[u(t, x;ω)] = 0, ∀ t∈∂Dt, x∈∂Dx,

with spatial domain, Dx⊂Rnx , temporal domain, Dt⊂Rnt+ , sample space, Ω, domain boundary, ∂,
potentially nonlinear operator, Nt,x, and initial and Dirichlet boundary conditions, Bt,x.

We aim to learn a surrogate model, i.e, an approximation to the solution, û:

û : Dt ×Dx ×Q 7→ Rnu . (1)

The domain of û are points of the form (t, x,Q(ξ)), whereQ(ξ) is a sample from a finite dimensional
distribution of Q, i.e. Q(ξ) = [Q(x0; ξ), . . . , Q(xnx−1; ξ)] for some nx > 0 and x0, . . . , xnx−1 ∈
Dx and the realizations of a new stochastic basis, ξ. The solution then maps a distribution of
parameters to a distribution of solutions.

2.2 The Local Convection-Diffusion Equation

We use the convection-diffusion equation to illustrate our method. This is a well-known evolutionary
PDE that combines parabolic and hyperbolic equations and is conceptually similar to incompressible
Navier-Stokes. The equation models the temperature distribution in a vertical ocean column over
time as,

f =
δT (t, x;ω)

δt
+ w

δT (t, x;ω)

δx
− δ

δx

(
κ(x;ω)

δT (t, x;ω)

δx

)
, (2)

with height, x ∈ Dx = [0, 1], time, t ∈ Dt = [0, 0.01], source, f = 0, noise, ω ∈ Ω, univariate
(nu=1) temperature, u = T : Dt×Dx×Q 7→ R1, stochastic diffusivity,Q(x;ω) = κ(x;ω) (detailed
in Appendix A.2), partial derivative, δ, constant vertical velocity, w = 100, initial temperature,
T (0, x;ω) = −4(x− 0.5)2 + 1, and Dirichlet boundary conditions, T (t, 0;ω) = T (t, 1;ω) = 0.

2.3 Spectral expansion

A core idea in our paper is to approximate the solution, u, as a spectral expansion, also called
polynomial chaos expansion [42, 27]. The spectral expansion projects the solution onto a space of
stochastic orthogonal polynomials. The solution then becomes a linear combination of spatiotemporal
coefficients and stochastic polynomials. The projection is optimal in the L2 sense [27]. The spectral
expansion approximates the solution as,

û(t, x; ξ) =

|A|−1∑
j=0

Ĉαj (t, x)Ψαj (ξ), (3)

where Ĉαj (t, x) are deterministic spectral coefficients of the expansion of the random variable
û(t, x; ξ). In our approach we replace these coefficients with neural network function approximations
that will be learned from data. The unknown stochastic domain ω ∈ Ω is approximated by a
transformed domain that can easily be sampled from, for example, a set of iid. Gaussians with ξ =
{ξ0, . . . , ξnξ−1} ∼ N (0, 1)nξ−1 with the truncated stochastic dimension nξ ≤ nx. We choose the
set of polynomials, ΨA(ξ), to transform a Gaussian distribution, specifically a multivariate orthogonal
Gaussian-Hermite polynomials (as displayed and displayed and detailed in Appendix A.3.1). The
polynomials and spectral coefficients are indexed by the multi-indices, αj ∈ A, which contain
index-pairs into the stochastic and polynomial degree, as detailed in Appendix A.3.2.

3

2.4 Spectral PINNs

The NN jointly estimates all |A| spectral coefficients based on 2D spatiotemporal input pairs, {t, x},

NNCA(t, x) := ĈA(t, x) : Dt ×Dx → R|A|. (4)

Using single input pairs makes our surrogate model mesh-free as the NN can be queried at any
location to interpolate the training samples or collocation points. The NN is trained to approximate
the spectral coefficients while only using a limited number of measurements as target data. We
formulate the mean-squared error (MSE) loss for episode, e, and batch size, B, as:

Le(tb, xb) =
1

B

B−1∑
b=0

||u(tb, xb; ξb)−
|A|−1∑
j=0

Ĉαj (tb, xb)Ψαj
(ξb)||22, (5)

where the realizations of Gaussian random vectors, ξb ∼ N (0, 1)nξ−1 are shared between the target
and approximated solution. The batch size is chosen to fit one solution sample, B = ntnx with t-grid
size, nt, and x-grid size, nx. The training and validation/test set are using different realizations of the
random vector and the same {t, x}-pairs as grid points.

3 Preliminary Results

Figure 1 shows that the Spectral PINNs in Fig. 1b can successfully approximate the mean and
standard deviation of the target solution Fig. 1a. Importantly the explicit formulation as spectral
expansion allows us to compute the mean and standard deviation without any sampling as a function
of the spectral coefficients, e.g., µu(t, x) = C[0,0,0](t, u) [27]. We can note that the Spectral PINNs-
approximated standard deviation captures the growing trend towards the center location (x = 0.5)
and increasing time (t = 1). While the accuracy of estimating the mean and std. dev. could be
improved towards regions of high uncertainty (x = 0.5, t = 0.05) the plots indicate promise and
we expect hyperparameter tuning to further increase the accuracy. Figure 4 shows the approximated
spectral coefficients.

We used a 6-layer 2048-unit fully-connected neural network with ResNet blocks, in-/output nor-
malization, and ReLu activation. The network was trained with the ADAM optimizer with learn-
ing rate, lr = 0.001, and β = [0.9, 0.999] for E = 8 epochs in ≈1hr on one 5-year old Intel
i7−7500U@2.70GHz quad-core CPU. The target data was generated with nt = 128 temporal and
nz = 16 grid points and {ns,train = 800, ns,val = 200} samples of the solved PDE. The maximum
polynomial degree was chosen to be, nξ = 3, s.t. the number of spectral coefficients is |A| = 10.

3.1 Linear vs. cubic runtime complexity

Introducing NNs into uncertainty propagation (UP) methods aims to reduce runtime complexity while
maintaining accuracy in conducting statistic analysis of high-dimensional PDEs.

Runtime complexity. Classical UP methods can scale cubically with the number of spectral coef-
ficients in the worst-case [27]. For example, stochastic Galerkin requires to solve one system of
J(K + 1) equations [34] and collocation methods require to solve M systems of size J [36]. Here,
J is the number of spectral coefficients, K the number of stochastic polynomials, M the number
of training samples and in our case J=K=|A|=10, M=ns,train=800. In comparison, inference of
our FCNN scales linearly with the number of outputs/spectral coefficients, J , assuming the network
architecture is independent of J [46]. In practice, the architecture depends on the number of outputs
and future work will investigate this relationship. Further, a full comparison will include a discussion
on how training time scales with the number of outputs and experimental plots.

Convergence rate. The final accuracy of collocation methods scales linearly in the number of
samples, M [36]. However, the convergence rate towards an accurate solution has poor scaling with
the number of stochastic parameters nξ asO(M−αregularity/nξ). In comparison, MC sampling converges
withO(M−1/2) which is faster for a high number of stochastic parameters, nξ [27]. Future work, will
include a discussion on how the accuracy of NNs converges with the number of stochastic training
samples, M , and stochastic dimension, nξ [47], and provide examples with increased nξ > nKL = 3
(see Appendix A.2 for current stochastic dimension).

4

Memory complexity. In some cases, leveraging NN-based surrogate models can not only reduce
computational complexity but also memory complexity [23]. Our network, however, contains nw =
2nunits +nlayersn

2
units +nunits|A| = 25M weights which occupy as floats nweights4B ≈ 96MB.

As this is quite large, future work, will investigate pruning [48] and mixed-precision [49] methods.

4 Discussion and Future works

We contributed Spectral PINNs, a spectral method for fast uncertainty propagation of high-
dimensional stochastic PDEs. We demonstrated the first application of NN-based spectral expansions
on the convection-diffusion equation. There exist various avenues for future work. First, we would
like to extend hyperparameter search to increase accuracy and decrease memory consumption. Sec-
ond, our work assumes that the stochastic parameters are mutually independent and Gaussian which
can be alleviated by an extension to arbitrary polynomial chaos expansion for arbitrary distribu-
tions [50]. Third, future work will investigate efficient sampling strategies to reduce the amount
of training samples, such as Latin hypercube sampling [51] or Quasi Monte Carlo sampling [52].
Fourth, our work relies purely on FCNNs, but the approximation of as spatiotemporal coefficients
naturally lends itself to RNNs [53], CNNs [54], GNNs [55], Transformers [56], or more to exploit
spatiotemporal features and propagate uncertaintes of higher-dimensional systems. Lastly, we will
continue the analysis of convergence guarantees based on recent work in converging PINNs [47].

Acknowledgments and Disclosure of Funding

The authors greatly appreciate the discussions with Chris Hill, Shu-Yu Lin, Nicholas Mehrle, Yanni
Yuval, Paul O’Gorman, Jaume Peraire, and Youssef Marzouk.

Research was sponsored by the United States Air Force Research Laboratory and the United States
Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative Agreement
Number FA8750-19-2-1000. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies, either expressed or
implied, of the United States Air Force or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation
herein.

References
[1] P. Bauer, A. Thorpe, and G. Brunet, “The quiet revolution of numerical weather prediction,” pp.

47–55, sep 2015.
[2] O. Fuhrer, T. Chadha, T. Hoefler, G. Kwasniewski, X. Lapillonne, D. Leutwyler, D. Lüthi,

C. Osuna, C. Schär, T. C. Schulthess, and H. Vogt, “Near-global climate simulation at 1 km
resolution: establishing a performance baseline on 4888 gpus with cosmo 5.0,” Geosci. Model
Dev., vol. 11, pp. 1665 – 1681, 2018.

[3] J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed., ser. Dover Books on Mathematics.
Mineola, NY: Dover Publications, 2001.

[4] P. Gentine, M. Pritchard, S. Rasp, G. Reinaudi, and G. Yacalis, “Could Machine Learning Break
the Convection Parameterization Deadlock?” Geophysical Research Letters, vol. 45, no. 11, pp.
5742–5751, jun 2018.

[5] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, “Physics-
informed machine learning,” Nature Reviews Physics 2021 3:6, vol. 3, no. 6, pp. 422–440, may
2021.

[6] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations,” Journal of Computational Physics, vol. 378, pp. 686 – 707, 2019.

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.
deeplearningbook.org.

[8] O. L. Maitre and O. M. Knio, Spectral Methods for Uncertainty Quantification, 1st ed. Springer
Netherlands, 2010, scientific Computation.

5

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[9] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and Prabhat,
“Deep learning and process understanding for data-driven earth system science,” Nature, vol.
566, pp. 195 – 204, 2019.

[10] S. R. Cachay, E. Erickson, A. F. C. Bucker, E. Pokropek, W. Potosnak, S. Bire, S. Osei, and
B. Lütjens, “The world as a graph: Improving el niño forecasts with graph neural networks,”
2021.

[11] R. Kurinchi-Vendhan, B. Lütjens, R. Gupta, L. Werner, and D. Newman, “Wisosuper: Bench-
marking super-resolution methods on wind and solar data,” 2021.

[12] P. Jiang, N. Meinert, H. J. ao, C. Weisser, S. Holgate, A. Lavin, B. Lütjens, D. Newman,
H. Wainwright, C. Walker, and P. Barnard, “Digital twin earth - coasts: Learning a fast and
physics-informed surrogate model for coastal floods via neural operators,” arxiv, 2021.

[13] B. Lusch, J. Kutz, and S. Brunton, “Deep learning for universal linear embeddings of nonlinear
dynamics,” Nat. Commun., vol. 9, 2018.

[14] S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian neural networks,” in Advances
in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 15 379–15 389.

[15] D. Bau, J.-Y. Zhu, H. Strobelt, A. Lapedriza, B. Zhou, and A. Torralba, “Understanding the role
of individual units in a deep neural network,” Proceedings of the National Academy of Sciences,
2020.

[16] A. T. Mohan, N. Lubbers, D. Livescu, and M. Chertkov, “Embedding hard physical constraints
in neural network coarse-graining of 3d turbulence,” ICLR Workshop on AI for Earth Sciences,
2020.

[17] T. Beucler, M. Pritchard, S. Rasp, J. Ott, P. Baldi, and P. Gentine, “Enforcing analytic constraints
in neural networks emulating physical systems,” Phys. Rev. Lett., vol. 126, p. 098302, Mar
2021.

[18] B. Lütjens*, B. Leshchinskiy*, C. Requena-Mesa*, F. Chishtie*, N. Díaz-Rodríguez*,
O. Boulais*, A. Sankaranarayanan*, A. P. na, Y. Gal, C. Raïssi, A. Lavin, and D. Newman,
“Physically-consistent generative adversarial networks for coastal flood visualization,” arXiv
e-prints, 2021, * equal contribution. [Online]. Available: https://arxiv.org/abs/2104.04785

[19] T. Lesort, M. Seurin, X. Li, N. Díaz-Rodríguez, and D. Filliat, “Deep unsupervised state
representation learning with robotic priors: a robustness analysis,” in 2019 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2019, pp. 1–8.

[20] L. A. Garcia and A. Shigidi, “Using neural networks for parameter estimation in ground water,”
Journal of Hydrology, vol. 318, no. 1, pp. 215–231, 2006.

[21] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential
equations,” in Advances in Neural Information Processing Systems 31. Curran Associates,
Inc., 2018, pp. 6571–6583.

[22] A. Karpatne, W. Watkins, J. Read, and V. Kumar, “Physics-guided Neural Networks (PGNN):
An Application in Lake Temperature Modeling,” arXiv e-prints, p. arXiv:1710.11431, Oct.
2017.

[23] J. Yuval, P. A. O’Gorman, and C. N. Hill, “Use of neural networks for stable, accurate and
physically consistent parameterization of subgrid atmospheric processes with good performance
at reduced precision,” Geophysical Research Letter, vol. 48, p. e2020GL091363, 2021.

[24] M. Raissi, “Deep hidden physics models: Deep learning of nonlinear partial differential equa-
tions,” Journal of Machine Learning Research, vol. 19, no. 25, pp. 1–24, 2018.

[25] Z. Long, Y. Lu, and B. Dong, “Pde-net 2.0: Learning pdes from data with a numeric-symbolic
hybrid deep network,” Journal of Computational Physics, vol. 399, p. 108925, 2019.

[26] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, and
A. Ramadhan, “Universal differential equations for scientific machine learning,” ArXiv, vol.
abs/2001.04385, 2020.

[27] R. C. Smith, “Uncertainty quantification: Theory, implementation, and applications,” in Compu-
tational science and engineering. SIAM, 2013, p. 382.

6

https://arxiv.org/abs/2104.04785

[28] J. Zhuang, D. Kochkov, Y. Bar-Sinai, M. P. Brenner, and S. Hoyer, “Learned discretizations
for passive scalar advection in a two-dimensional turbulent flow,” Phys. Rev. Fluids, vol. 6, p.
064605, Jun 2021.

[29] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané, “Concrete problems
in ai safety,” 2016.

[30] T. N. Palmer, “Stochastic weather and climate models,” pp. 463–471, jul 2019.
[31] P. Kidger, J. Foster, X. Li, H. Oberhauser, and T. Lyons, “Neural SDEs as Infinite-Dimensional

GANs,” International Conference on Machine Learning, 2021.
[32] X. Li, T.-K. L. Wong, R. T. Q. Chen, and D. Duvenaud, “Scalable Gradients for Stochastic

Differential Equations,” 2020.
[33] L. Yang, X. Meng, and G. Karniadakis, “B-pinns: Bayesian physics-informed neural networks

for forward and inverse pde problems with noisy data,” J. Comput. Phys., vol. 425, p. 109913,
2021.

[34] I. Babuška, R. Tempone, and G. E. Zouraris, “Galerkin finite element approximations of
stochastic elliptic partial differential equations,” SIAM Journal on Numerical Analysis, vol. 42,
no. 2, pp. 800–825, 2005.

[35] W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their applications,”
Biometrika, vol. 57, no. 1, pp. 97–109, 04 1970.

[36] I. Babuška, F. Nobile, and R. Tempone, “A stochastic collocation method for elliptic partial dif-
ferential equations with random input data,” SIAM J. Numer. Anal., vol. 45, no. 3, p. 1005–1034,
May 2007.

[37] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing
Systems, vol. 27. Curran Associates, Inc., 2014, pp. 2672–2680.

[38] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in 2nd International
Conference on Learning Representations, ICLR, 2014.

[39] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised
learning using nonequilibrium thermodynamics,” in Proceedings of the 32nd International
Conference on Machine Learning, vol. 37. JMLR.org, 2015, pp. 2256–2265.

[40] D. Rezende and S. Mohamed, “Variational inference with normalizing flows,” in Proceedings of
the 32nd International Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, F. Bach and D. Blei, Eds., vol. 37. Lille, France: PMLR, 07–09 Jul 2015, pp.
1530–1538.

[41] N. Wiener, “The homogeneous chaos,” American Journal of Mathematics, vol. 60, no. 4, pp.
897–936, 1938.

[42] T. Crestaux, O. Le Maı^tre, and J.-M. Martinez, “Polynomial chaos expansion for sensitivity
analysis,” Reliability Engineering and System Safety, vol. 94, no. 7, pp. 1161–1172, 2009,
special Issue on Sensitivity Analysis.

[43] B. Sudret, “Global sensitivity analysis using polynomial chaos expansions,” Reliability Engineer-
ing and System Safety, vol. 93, no. 7, pp. 964–979, 2008, bayesian Networks in Dependability.

[44] S. Oladyshkin and W. Nowak, “Data-driven uncertainty quantification using the arbitrary
polynomial chaos expansion,” Reliability Engineering and System Safety, vol. 106, pp. 179–190,
2012.

[45] D. Zhang, L. Lu, L. Guo, and G. E. Karniadakis, “Quantifying total uncertainty in physics-
informed neural networks for solving forward and inverse stochastic problems,” Journal of
Computational Physics, vol. 397, p. 108850, 2019.

[46] K. Fredenslund, “Computational complexity of neural networks,” last accessed
09/2021. [Online]. Available: https://kasperfred.com/series/introduction-to-neural-networks/
computational-complexity-of-neural-networks

[47] S. Mishra and R. Molinaro, “Estimates on the generalization error of physics informed neural
networks (pinns) for approximating pdes,” 2021.

[48] L. Liebenwein, C. Baykal, H. Lang, D. Feldman, and D. Rus, “Provable filter pruning for
efficient neural networks,” in International Conference on Learning Representations, 2020.

7

https://kasperfred.com/series/introduction-to-neural-networks/computational-complexity-of-neural-networks
https://kasperfred.com/series/introduction-to-neural-networks/computational-complexity-of-neural-networks

Figure 2: Local convection diffusion equation. The local convection diffusion equation simulates how the
initial temperature profile, T (t = 0, x) (green), is distributed over time. We can observe that the positive
diffusivity, κ > 0, flattens the temperature curve (left) and the vertical velocity, w > 0, shifts the curve to the
right over time.

[49] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural networks with low precision
multiplications,” 2015.

[50] X. Wan and G. E. Karniadakis, “Multi-element generalized polynomial chaos for arbitrary
probability measures,” SIAM J. Sci. Comput., vol. 28, no. 3, p. 901–928, Mar. 2006.

[51] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code,” Technometrics, vol. 21,
no. 2, pp. 239–245, 1979.

[52] W. J. Morokoff and R. E. Caflisch, “Quasi-monte carlo integration,” Journal of Computational
Physics, vol. 122, no. 2, pp. 218–230, 1995.

[53] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal Representations by Error
Propagation. Cambridge, MA, USA: MIT Press, 1986, p. 318–362.

[54] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” in Advances in Neural Information Processing Systems, F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012.

[55] W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on Artificial Intelligence
and Machine Learning, vol. 14, no. 3, pp. 1–159, 2020.

[56] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional
transformers for language understanding,” Association for Computational Linguistics Human
Language Technologies (NAACL-HLT), vol. 1, pp. 4171–4186, 2019.

A Appendix

A.1 The local convection-diffusion equation

We generated ns = 1000 samples of the stochastic convection-diffusion equation via a 2nd-order finite
difference scheme in Python. We used the number of discretization points, nt = 128 and nx = 16.
We used a 2nd order forward/central/backward difference scheme for the left boundary/interior/right
boundary of the domain, respectively. The initial condition was then time-stepped with T (t+ 1) =

T (t) + ∆tdT (t)
dt .

A.2 Sampling the Stochastic Parameter during Training

We assume that the distribution over the diffusivity is known, for example, through domain knowledge,
data assimilation, or Bayesian parameter estimation. Specifically, the diffusivity is assumed to follow
an exponential Gaussian process (GP) with κ(x;ω) = exp(Yκ(x;ω)). The GP, Yκ(x;ω), is defined
by mean, µYκ = 3, correlation length, L = 0.3, variance, σYκ = 1.0, exponent, pGP = 1.0, and a
covariance kernel that is similar to the non-smooth Ornstein-Uhlenbeck kernel:

CovYκ(xi, xj) = σ2
Yκ exp

[
− 1

pGP

(
|xi − xj |

L

)p]
. (6)

8

Figure 3: Hermite Polynomials. The basis functions for the first three Hermite polynomials, Hei(x) for
i = {0, 1, 2}. As the

During training we sample the GP via a Karhunen-Loève (KL) expansion [27]:

κ(xi;ω) = exp(Yκ(xi;ω))

≈ exp(µYκ +

nKL−1∑
j=0

√
λjφj(xi)ξj).

(7)

Here, λj and φj(xi) are the j-th eigenvalues/-vectors of the covariance matrix respectively, s.t.,∑nx
i Cov(xj , xi)φj(xi) = λjφj(xj). The KL-expansion has a maximum of nKL,max = nx modes

which have been truncated at nKL = 3 modes. The GP which is defined by random variable, ω, is then
approximated by drawing iid. Gaussian random samples, ξb = {ξ0, ..., ξnKL−1}b ∼ N (0, 1)nKL−1,
and projecting them onto the eigenspace of the covariance matrix.

A.3 Polynomial basis

A.3.1 Hermite polynomials

We choose the set of polynomials, ΨA(ξ), to be a set of multivariate orthogonal Gaussian-Hermite
polynomials, as displayed in Fig. 3:

Ψαj (ξ0, ..., ξn−1) = Πn−1
i=0 ψαji(ξi),

= Πn−1
i=0 Heαji(ξi),

with ξi ∼ N (0, 1),

(8)

with the one-term (monic) polynomials, ψαji of polynomial degree, αji, and maximum degree, n.
We are choosing the random vector of each stochastic dimension, i ∈ {0, ..., n− 1}, to be a Gaussian,
ξi ∼ N (0, 1) and use the associated probabilists’ Hermite polynomials, Heαji .

We chose Hermite polynomials, because we assumed the stochastic parameter, κ, to follow a Gaussian
Process and Hermite polynomials are orthogonal with respect to a Gaussian measure [8]. For other
distributions we choose other polynomials, e.g., uniform→Legendre, γ →Laguerre, as listed in table
2.4 of [8]. Future work, will analyse which space of functions can be approximated by Spectral
PINNs that rely on Gaussian-Hermite polynomials.

A.3.2 Multi-indices

We choose the vector of polynomial degrees, αj , that builds the polynomial set, Ψαj to be all
combinations of degrees that sum to a maximum of n − 1. In other words, the multi-index, αj ∈
A, with j ∈ {0, ..., |A|−1} is defined by the total-degree multi-index set, A = {αj ∈ Nn0 :

||αj ||1 =
∑n−1
i=0 αji ≤ n− 1} [27]. For example, A = {α0, ...,α|A|−1} = {[0, 0, 0], [0, 0, 1],

[0, 1, 0], [1, 0, 0], [0, 0, 2], [0, 1, 1], [0, 2, 0], [1, 0, 1], [1, 1, 0], [2, 0, 0]} and |A| = 10 for n = 3.

A.4 Learned spectral coefficients

Figure 4 shows the approximated spectral coefficients.

9

Figure 4: Learned spectral coefficients. The neural network outputs the first |A| = 10 spectral coefficients.
We can observe that the first coefficient, C[0,0,0] (blue), approximates the mean and is of significantly larger
scale than the other coefficients.

10

	Introduction
	Approach
	Problem definition
	The Local Convection-Diffusion Equation
	Spectral expansion
	Spectral PINNs

	Preliminary Results
	Linear vs. cubic runtime complexity

	Discussion and Future works
	Appendix
	The local convection-diffusion equation
	Sampling the Stochastic Parameter during Training
	Polynomial basis
	Hermite polynomials
	Multi-indices

	Learned spectral coefficients

