
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IMPROOFBENCH: BENCHMARKING AI ON RESEARCH-
LEVEL MATHEMATICAL PROOF GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

As the mathematical capabilities of large language models (LLMs) improve, it
becomes increasingly important to evaluate their performance on research-level
tasks at the frontier of mathematical knowledge. However, existing benchmarks are
limited, as they focus solely on final-answer questions or high-school competition
problems. To address this gap, we introduce IMProofBench, a private benchmark
consisting of 39 peer-reviewed problems developed by expert mathematicians.
Each problem requires a detailed proof and is paired with subproblems that have
final answers, supporting both an evaluation of mathematical reasoning capabilities
by human experts and a large-scale quantitative analysis through automated grading.
Furthermore, unlike prior benchmarks, the evaluation setup simulates a realistic
research environment: models operate in an agentic framework with tools like web
search for literature review and mathematical software such as SageMath. Our
results show that current LLMs can succeed at the more accessible research-level
questions, but still encounter significant difficulties on more challenging problems.
Quantitatively, GROK-4 achieves the highest accuracy of 52% on final-answer
subproblems, while GPT-5 obtains the best performance for proof generation,
achieving a fully correct solution for 22% of problems. IMProofBench will con-
tinue to evolve as a dynamic benchmark in collaboration with the mathematical
community, ensuring its relevance for evaluating the next generation of LLMs.

1 INTRODUCTION

Large language models (LLMs) are making rapid progress on mathematical tasks, achieving strong
results on challenging benchmarks like AIME (Balunovic et al., 2025) and FrontierMath (Glazer
et al., 2024). These improvements suggest that LLMs may soon support mathematical research
by collaborating with professional mathematicians on open problems. However, to determine
whether current systems are capable of contributing in such settings, benchmarks are needed that test
capabilities at the frontier of mathematical research.

Limitations of existing benchmarks Existing benchmarks fall short of this objective: most focus
on high-school or undergraduate-level mathematics (Balunovic et al., 2025; Frieder et al., 2023), due
to the difficulty associated with designing rigorous, research-level problems. The few benchmarks
that do target more advanced mathematics, like FrontierMath (Glazer et al., 2024) and HLE (Phan
et al., 2025), focus exclusively on final-answer problems. As a result, they overlook proof-writing
capabilities and allow models to apply shortcuts to reach the correct final answer without fully solving
the problem (EpochAI, 2025).

This work: IMProofBench To fill this gap, we introduce IMProofBench, a private benchmark
developed in collaboration with the mathematical research community to evaluate LLMs on research-
level proof writing. IMProofBench is built on a custom platform and supported by initiatives that
actively involve professional mathematicians. It includes tasks ranging from challenging oral exam
questions in a graduate course to open research questions based on the contributors’ own work. Unlike
static benchmarks, IMProofBench is designed as a platform for continuous evaluation: problems
are added on a rolling basis, ensuring its continued relevance for evaluating the next generation of
frontier LLMs. Currently, IMProofBench consists of 39 problems developed in collaboration with
over 23 mathematicians, with 30 more questions in the latest stages of the problem creation pipeline.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Question: Isomorphism Classes of Stable Graphs

Given an integer g ≥ 2, let Ng be the number of isomorphism classes of stable graphs
of genus g with precisely 3 edges. Give a closed formula for Ng valid for all g ≥ 2.

Follow-up subquestions: What are N3, N8, and N10000?

GPT-5 Reasoning Summary

Ng is a sum of connected multigraph types lim-
ited by 3 edges, considering partitions of genera.

Obtain experimental data for some values.

Submits a closed formula for Ng as a degree-3
quasi-polynomial with a period of 6.

Full Grade: 3/3 Subquestions:

GROK-4 Reasoning Summary

Full Grade: 2/3 Subquestions:

Finds a non-closed formula for Ng , requiring to
compute a sum from 1 to g.

Attempts to look up the sequence in OEIS.

Submits a very concise sketch of the answer, with
the non-closed formula for Ng .

Figure 1: Example IMProofBench problem. Models are tested on research-level questions in an
agentic framework with tool access. Grading of the main reasoning is done by a human expert, while
follow-up subquestions are evaluated using an automated parser. For the question above, models
other than GPT-5 and GROK-4 only made minor progress. For full details, see App. C.

Problem creation pipeline Each problem in IMProofBench is authored by a research mathemati-
cian within their area of expertise. Submissions undergo a rigorous review process by a core team
member and an additional mathematician with expertise in the relevant field. Reviewers provide
feedback that allows authors to refine their problems before finalization. Alongside the main proof-
writing tasks, authors are encouraged to add follow-up subquestions with final answers that can be
automatically graded. These follow-ups enable a comparison between proof-writing and final-answer
performance, while also supporting lower-cost evaluation across a broader range of models.

Evaluation process Evaluation is conducted in an agentic framework designed to mirror a research
environment. Models have access to computational tools such as Python and SageMath (sag, 2025), as
well as web search and multi-turn reasoning. Each model is first tasked with solving the main problem,
followed by the associated follow-up subquestions. The main solution is graded by the problem’s
author, who assigns a score from zero to three. Graders also annotate the types of errors, such as
logical mistakes, and identify specific areas of partial progress, such as correct intermediate insights.
Follow-up answers are automatically evaluated by comparing them with ground-truth solutions. We
illustrate this process in Fig. 1, which shows a sample problem with two model solutions.

Key results We evaluate 10 state-of-the-art LLMs on the current version of IMProofBench. Our
results show that models can already solve a small but meaningful fraction of research-level problems:
the best model, GPT-5, produces complete solutions for 22% of tasks, closely followed by GROK-4
at 19%. Notably, GROK-4 achieves the highest final-answer accuracy at 52%, surpassing GPT-5’s
42%. Other models lag further behind, with CLAUDE-OPUS-4.1 scoring particularly poorly, only
providing complete solutions in 3% of tasks.

Qualitative analysis Beyond aggregate scores, our analysis reveals that many models are prone
to reasoning errors, ranging from simple logical mistakes to deep misconceptions unlikely to be
exhibited by any professional mathematician in the relevant area. Indeed, almost half of the model
solutions contain arguments revealing fundamental misunderstandings of mathematical concepts,
as judged by human graders. Moreover, models frequently hallucinate existing results to obtain a
(flawed) answer. Finally, models almost never abstain from providing a solution attempt, preferring
to present convincing but incorrect proofs rather than admit they are stuck. At the same time, they
also show a wide-ranging familiarity with existing literature and can often provide insights that
could meaningfully support mathematicians on a substantial number of problems. These results
indicate that state-of-the-art LLMs can already aid mathematicians in their research, but also still
need significant supervision to avoid simple mistakes.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Core contributions The core contributions of this work are:

• IMProofBench, a private and evolving benchmark for research-level problems, developed in
collaboration with the mathematical community.

• A systematic analysis of proof generation capabilities across state-of-the-art LLMs, demon-
strating that GPT-5 provides fully justified solutions for a small but non-trivial fraction of our
research-level problems, as judged by human expert graders.

• A qualitative analysis discussing both the difficulties and strengths of current state-of-the-art
models and their potential application to research-level mathematics.

2 RELATED WORK

We briefly review existing benchmarks that evaluate LLMs on mathematical reasoning tasks.

Competition mathematics benchmarks High-school and undergraduate problems are the most
common source of mathematical benchmarks due to their wide availability. Examples include GSM8k
(Cobbe et al., 2021) and MATH (Hendrycks et al., 2021), along with more recent efforts such as
OmniMath (Gao et al., 2024) and MathArena (Balunovic et al., 2025). However, these benchmarks
fail to measure model performance on realistic, research-level tasks. Furthermore, even the most
challenging competition problems are increasingly tractable for state-of-the-art LLMs (Balunovic
et al., 2025), meaning that these benchmarks are reaching their saturation point.

Research-level benchmarks To move beyond competition problems, several benchmarks aim
to capture research-level mathematical reasoning, though each has notable limitations, and none
provide systematic proof evaluation. FrontierMath (Glazer et al., 2024) offers extremely challenging
private problems, though privileged access by OpenAI raises concerns about evaluation fairness
(AI, 2025). Humanity’s Last Exam (Phan et al., 2025) crowd-sources expert-level questions across
domains, including mathematics, but suffers from contamination risks due to its open nature and
reports of substantial noise in the benchmark (Skarlinski et al., 2025). RealMath (Zhang et al., 2025)
sources problems from arXiv papers, enabling dynamic evaluation of research-level problems, but
it is currently not being maintained. Finally, the UQ-Dataset (Nie et al., 2025) collects unsolved
StackExchange questions, many of them mathematical. While promising, it lacks systematic human
evaluation of proof validity, making consistent cross-model comparisons difficult.

Proof-based benchmarking efforts The importance of evaluating proof-generation capabilities
has recently gained attention, leading to a range of benchmarking efforts. For example, Mahdavi et al.
(2025) showed that models trained with reinforcement-style methods such as GRPO (Shao et al., 2024)
perform poorly at proof writing. However, more recent evaluations on the USAMO and IMO 2025
demonstrated substantial progress in the ability of frontier models to construct rigorous mathematical
arguments (Petrov et al., 2025; Balunovic et al., 2025). At the same time, other studies highlighted
a persistent gap between final-answer accuracy and genuine proof-writing ability, indicating that
final-answer benchmarks are not sufficient to measure mathematical capabilities (Guo et al., 2025;
Dekoninck et al., 2025). Despite these advances, benchmarks remain focused on high-school and
undergraduate mathematics, leaving research-level proof generation unexplored.

Formal math benchmarks A complementary line of work evaluates LLMs on their ability to
generate proofs in formal systems such as Lean (de Moura and Ullrich, 2021) and Isabelle (Nipkow
et al., 2002). Success in this setting typically requires fine-tuning frontier models for this particular
task (Ren et al., 2025; Lin et al., 2025), as off-the-shelf LLMs perform poorly. Formal proofs offer the
advantage of automatic verification and scalable evaluation, but current models still lag significantly
behind their natural language proof counterparts (Dekoninck et al., 2025). Benchmarks in this space
include PutnamBench (Tsoukalas et al., 2024) and MiniF2F (Zheng et al., 2022), which formalize
problems from well-known mathematics competitions into Lean or Isabelle. Work on a Lean-based
benchmark with research-level problems is currently in progress with the ProofBench initiative
(Bowler and Carmesin).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Question Generation

Author

LLM

testanswer

Review

submit

Admin Expert
recruit

Accept?

Reject Accept

feedback

Benchmark

Find a closed formula
for the number N(g)

of stable graphs of
genus g with no

legs and precisely 3
edges, for all g ⩾ 2.

Figure 2: Workflow for question creation with peer review. Authors iteratively refine questions based
on expert review. A problem is only accepted once the reviewers have no further comments.

3 BENCHMARK METHODOLOGY

In this section, we present the creation and evaluation process of IMProofBench. We begin by
outlining our community outreach efforts (§3.1), followed by a description of the problem creation
pipeline (§3.2) and the evaluation methodology (§3.3). Finally, we discuss the current state of the
benchmark and our plans to maintain and extend it as a platform for continuous evaluation (§3.4).

3.1 COMMUNITY OUTREACH

Creating a novel and diverse collection of research-level problems is a challenging task, requiring
professional mathematicians from a wide range of fields. To facilitate this, we undertook several
initiatives to engage the community:

• Workshops: We organized several problem-creation sessions as satellite events at mathematical
research conferences.

• Posters and flyers: We distributed informational materials in math common rooms and confer-
ence venues to reach graduate students, postdocs, and faculty.

• Personal outreach: Organizers and motivated contributors actively contacted their academic
networks to invite participation.

These efforts are ongoing as we continue to expand the benchmark. Informal surveys of contributors
indicate that key motivating factors to participate include convenient access to frontier models via
the platform, curiosity about AI-generated responses to submitted questions, and the opportunity for
co-authorship on resulting publications for contributors whose questions are accepted.

3.2 PROBLEM CREATION PIPELINE

Question creation As shown in Fig. 2, authors draft questions through a dedicated web interface
and can immediately test them on an instance of GPT-5 configured with high reasoning effort, built-in
web search and code interpreter tools, and safeguards such as a 30-minute timeout and a cap of 20
evaluations per day to prevent abuse. This LLM interaction allows quick, optional feedback on both
difficulty and potential ambiguities. Importantly, problem selection criteria are independent of the
model’s performance on the draft question. Where possible, authors are asked to include follow-up
subquestions with unique, automatically gradable answers, with the option to assign point weights
for the solution of different subquestions to reflect their difficulty or importance. This facilitates
broader evaluation of more models by reducing reliance on human grading, while also supporting
comparisons between final-answer accuracy and proof-generation capability. To guide contributions,
authors receive detailed instructions that include illustrative examples and emphasize that questions
should require PhD-level insight, while avoiding standard textbook exercises or computational
problems. A complete description of the author instructions is provided in App. B.2.

Question peer-review process Once a question is submitted, an administrator recruits a reviewer
whose expertise aligns with the problem’s subject area. Reviewers are invited via email, with

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Agent

Frontier LLM

tools

Python SageMath

Web Bash

Multi-Turn Interaction

Find a closed formula for the number
N(g) of stable graphs of genus g with no
legs and precisely 3 edges, for all g ⩾ 2.

Inference

I will prove that N(g) = g3 ...

What is N(5)?

N(5) = 125

Human Grader
Grade: 1/3 (minor progress)

Error: Logic & Conceptual
Progress: Correct Insight

Automated Parser

Extracted: 125

Incorrect Correct

Figure 3: Evaluation workflow in a multi-turn environment with research tools. The main solution is
graded by a human expert, while follow-up questions are automatically evaluated.

invitations extended to both existing benchmark participants and external experts if necessary. The
review process follows an academic peer-review model, with administrator and reviewer providing
detailed feedback, asking for revisions where necessary. While the reviewer concentrates on verifying
mathematical correctness and difficulty, the administrator ensures that the submission adheres to
the guidelines. Authors are then invited to revise their problem and respond to comments with
clarifications or adjustments. A problem is accepted only after both the administrator and reviewer
have no remaining concerns. A full description of the reviewer instructions is given in App. B.3.

3.3 MODEL EVALUATION

Evaluation environment As shown in Fig. 3, models are evaluated within an agentic framework
designed to approximate real research conditions. We use the Inspect framework (AI Security Institute,
2024) and give models access to a diverse set of tools:

• Python: a full scientific environment with NumPy, SciPy, SymPy, and related libraries.
• Bash: an Arch Linux console with persistent filesystem and computer algebra systems like GAP

(GAP, 2024), and Maxima (Maxima, 2025).
• SageMath: open-source mathematical software with specialized packages and mathematical

databases (sag, 2025).
• Web search: a tool for retrieving literature and external references.

A full description of these tools is provided in App. E. To submit an answer, models must use a
dedicated submit tool, which ensures a clear distinction between intermediate reasoning steps and
the final output. The submitted answer is either presented to the human grader for main questions
or compared with ground-truth answers for follow-up subquestions. Each model is allocated up to
300,000 tokens for main questions, with an additional 100,000 tokens available for each follow-up,
supporting extended interaction and tool use.

Model selection and tiers To ensure scalability, we adopt a tiered evaluation system. Each
model is assigned to a tier that reflects its priority for human grading, allowing question authors
to focus on the most important submissions when their time is limited. The highest-priority tier
includes state-of-the-art models that demonstrate strong performance on existing benchmarks: GPT-
5 from OpenAI (OpenAI, 2025b), GEMINI-2.5-PRO from Google (DeepMind, 2025), GROK-
4 from xAI (xAI, 2025), and CLAUDE-OPUS-4.1 from Anthropic (Anthropic, 2025a). Lower
tiers currently include O3 and O4-MINI (OpenAI, 2025a), GPT-4O (OpenAI, 2024), GEMINI-2.5-
FLASH (DeepMind, 2025), GROK-3 (xAI, 2025), and CLAUDE SONNET 4 (Anthropic, 2025b). A
complete description of the tiers, along with their priority levels, is provided in App. D.

Grading process Scoring of model answers takes place in two separate stages. First, follow-
up subquestions are automatically graded by comparing the model’s output with the ground-truth
reference. Currently, this automated evaluation is also manually verified by an administrator, who
can correct parsing errors and update the grading script if necessary. In the second stage, human
grading is conducted through our dedicated web interface. The question’s author serves as grader and
provides three types of feedback:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• Error classification: identifying reasoning mistakes caused by incorrect logic, hallucinations,
calculation errors, or conceptual misunderstandings.

• Achievement indicators: marking whether the model demonstrated understanding, reached
correct conclusions, identified key insights, or produced useful reasoning.

• Overall progress: assigning a score of no (0/3), minor (1/3), major (2/3), or full (3/3) progress.

Error classification and achievement indicators are recorded as eight binary marks and enable a more
fine-grained analysis of model performance. In particular, this structure allows us to identify both the
areas where models can already assist research mathematicians and the areas where they remain most
prone to errors. To avoid bias, model identities remain hidden until grading is completed.

3.4 BENCHMARK STATISTICS AND FUTURE DEVELOPMENT

State of the benchmark IMProofBench is under active development, with this paper presenting its
first pilot phase. This initial version consists of 39 questions and 79 follow-up subquestions. Topics
range from areas of pure mathematics, such as algebraic geometry, combinatorics, and graph theory,
to applied subjects such as stochastic analysis and bioinformatics. In Fig. 12 of App. A, we include
a word cloud of question tags, weighted by frequency. Of the 39 benchmark problems, authors
characterize 7 as open research questions. A total of 23 mathematical researchers have contributed at
least one question in their area of expertise.

Continuous development With models showing rapid progress in mathematics, benchmarks are
being saturated at an accelerating pace. For example, the USAMO 2025 benchmark moved from
a solve rate below 5% to more than 60% in only a few months (Petrov et al., 2025; xAI, 2025).
To ensure that IMProofBench remains both unsaturated and challenging, we are committed to its
continuous development along several dimensions. First, we will maintain our problem creation
pipeline and accept problems on a rolling basis, while forming new strategic partnerships with
leading mathematical institutions to keep problem difficulty aligned with the capabilities of future
models. Second, to prevent contamination, we will employ a dynamic problem management system
in which authors are encouraged to revisit and possibly retire their problems once new publications or
techniques make them significantly easier. Third, we plan to create a transparent interface that allows
major companies or research labs to configure and provide their own agents for solving problems in
IMProofBench. This creates an opportunity to provide objective and equitable evaluations of internal
research models, ensuring that the benchmark reflects the latest state-of-the-art models and agents in
realistic settings. Other ideas for future work are given in App. F.

4 EXPERIMENTAL RESULTS

In this section, we give quantitative and qualitative summaries of model performance on IMProof-
Bench. In §4.1, we compare final-answer correctness and proof-generation capabilities of several
frontier LLMs. Then, in §4.2, we present a detailed analysis of errors and achievements made by
these models. In §4.3, we analyze token and tool usage. We conclude in §4.4 with a qualitative
discussion of several notable examples and overall results.

4.1 MAIN RESULTS

GPT-5
Grok 4

Gemini 2.5 Pro
o4-mini

Claude Opus 4.1
0%

20%

40%

60%

80%

100%

22%

53%

17%

19%

14%

25%

42%

69%

17%

14%

50%

31%

53%

42%

Complete Solution
Major Progress

Minor Progress
No Progress

Figure 5: Results on IMProofBench.

Proof-based evaluation As illustrated in
Fig. 5, GPT-5 achieves the strongest perfor-
mance, producing a complete solution in 22%
of cases. It fails to make any progress on only
17% of the questions, showing that the model
can engage meaningfully with most problems in
the benchmark. These results highlight both the
impressive capabilities of current systems and
the difficulty of IMProofBench, as substantial
progress remains possible. Importantly, none of
the 7 open problems were solved.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

GPT-5
Grok 4

Gemini 2.5 Pro
o4-mini

Claude Opus 4.1 o3

Gemini 2.5 Flash

Claude Sonnet 4
Grok 3

GPT-4o
0%

10%

20%

30%

40%

50%

60%

26%
23%

10%
6%

3%

No
t A

pp
lic

ab
le

No
t A

pp
lic

ab
le

No
t A

pp
lic

ab
le

No
t A

pp
lic

ab
le

No
t A

pp
lic

ab
le

42%

52%

23%

35%

10%

26%

19%
16%

13%
10%

Complete Solution All Subquestions Correct

Figure 4: Results on IMProofBench, reported on the 31 questions that include follow-up subquestions
and human grading.

GPT-5
Grok 4

o4-mini

Gemini 2.5 Pro

Claude Opus 4.1
0%

20%

40%

60%

80%

100%

Incorrect Logic
Conceptual
Not Sure

Hallucinated
Calculation

Figure 6: Error indicators

GPT-5
Grok 4

o4-mini

Gemini 2.5 Pro

Claude Opus 4.1
0%

20%

40%

60%

80%

100%

Understanding
Correct Result
Not Sure

Insight
Usefulness

Figure 7: Achievement Indicators

Final-answer evaluation In Fig. 4, we compare performance between final-answer accuracy and
full proof-based evaluation on the 31 questions that include both. While GROK-4 is slightly worse
compared to GPT-5 on proof-based evaluation, it performs best on final-answer accuracy, obtaining
52%. The ranking of other models is consistent between the two evaluation modes. Furthermore,
the correlation coefficient between author-weighted subquestion scores and the 0–3 progress scores
assigned by human graders is 0.45. This suggests that final-answer evaluation is a useful proxy for
model ability, but human grading provides essential nuance and a more refined view of performance.
In App. A, we analyze final-answer accuracy over the full set of questions, including partial progress.

4.2 ERROR AND PROGRESS ANALYSIS

We now analyze the error and achievement indicators classified by the question authors. This provides
a clearer picture of where models fail and where they already provide meaningful help.

Error indicators As shown in Fig. 6, models make a wide variety of errors. Logical errors are the
most common, with models frequently introducing unfounded assumptions or claiming incorrect
implications. CLAUDE-OPUS-4.1 is particularly weak in this respect, having logical errors in nearly
80% of its responses. Conceptual errors are also widespread. Importantly, these errors are described
as fundamental misunderstandings of mathematical concepts in the grader guidelines, showing that
models do not fully understand some advanced mathematical concepts. Furthermore, hallucinations

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

GPT-5
Grok 4

o4-mini

Gemini 2.5 Pro

Claude Opus 4.1
0

10

20

30

40

50 Web Search
Submit
Python
SageMath
Bash

Figure 8: Average tool usage per question.

GPT-5
Grok 4

o4-mini

Gemini 2.5 Pro

Claude Opus 4.1
500

1k

5k
10k

50k
100k

Reasoning Tokens
Output Tokens

Figure 9: Token usage per question.

are surprisingly frequent, with GEMINI-2.5-PRO hallucinating results in 50% of its answers. In
contrast, calculation mistakes are rare, which is expected since problems are proof-oriented and
models can rely on tools to perform calculations. A notable outlier among all models is GROK-4: it
often produces extremely short answers that only contain a final answer attempt without supporting
arguments. This leads graders to be unsure about the precise mistakes or achievements in its reasoning.

Achievement indicators As shown in Fig. 7, most models demonstrate general familiarity with
the background knowledge needed to understand the problems, which is an impressive achievement
in itself, given that many of these questions reference highly specialized mathematical concepts.
Creative ideas are rarer, but GPT-5 still displays non-trivial creativity in almost half its solutions.
This indicates that the model can already make remarkable progress on difficult problems. Finally, in
some cases, models provide insights that could be helpful to expert mathematicians, with GPT-5
offering meaningful contributions in about half its attempts. This is a significant achievement for any
automated system.

4.3 TOOL AND TOKEN USAGE

As illustrated in Fig. 8 and Fig. 9, models vary widely in their resource usage, both in tool selection
and token consumption. GROK-4 spends almost three times as many reasoning tokens as other
models while producing relatively few output tokens. It is also the only model to make heavy use of
the bash tool. Inspection of its logs shows frequent use of the command line to download research
papers from arXiv (via wget or curl) and to convert them using utilities like strings or gs.
This sometimes gives GROK-4 an edge over models that rely only on internal search tools. Another
pattern is that O4-MINI relies heavily on the web search tool, averaging over 40 searches per problem,
while CLAUDE-OPUS-4.1 makes frequent use of Python, occasionally misusing it as a scratchpad
with many comments or static print statements. Usage plots for all models, including those only
evaluated on final-answer questions, are shown in App. A.

4.4 QUALITATIVE ANALYSIS

We now describe qualitative observations drawn from manual inspection of logs and grader comments.

Broad and deep literature knowledge Leading models such as GPT-5 show strong familiarity
with the mathematical literature and are often able to identify specialized results in published work.
However, they struggle to locate more obscure sources, such as private lecture notes, which human
experts often use.

Use of specialized tools When confronted with complex computations, models frequently employ
tools like SageMath. However, more specialized packages that are accessible through the bash tool
pose challenges, with models often producing syntactically invalid code. After repeated failures, they
sometimes revert to more common libraries, e.g., by using a manual Python re-implementation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Mistakes are often hidden Models are typically quite economical with their mistakes, adding
just a single simplifying assumption or incorrect claim. This one mistake often makes the problem
significantly easier but leads to incorrect conclusions. Importantly, they are usually presented with
confidence and framed rhetorically, for example, by stating that a “well-known result” implies a key
step. Sometimes, different models even independently converge on the same shortcut, leading to
parallel arguments that can create a false sense of consensus for the user. Although reasoning traces
are often not accessible, we did not find evidence of deliberate deception where models were aware
of their own mistakes and presented the flawed argument nonetheless.

Models rarely abstain Models rarely abstain from claiming a solution to the presented IMProof-
Bench questions. Even on the extremely challenging open problems in the benchmark, models almost
always make an attempt at a definite answer. This happens despite user preferences strongly favoring
an abstention over a mistaken but convincing proof.

GROK-4 gives short responses As noted earlier, GROK-4 often provides only a final answer,
particularly when the question allows for a short response. This occurs despite repeated instructions
to provide full proofs (see App. H). Combined with the hidden reasoning tokens in the GROK-4 API,
this made evaluations difficult and led to frequent ”Not Sure” grades on our binary categories.

User testimonials For many contributors, this benchmark was their first hands-on experience with
state-of-the-art LLMs in an agentic setup. Participants at outreach events expressed surprise at the
level of performance (”Quite impressive, especially the case of degree 3 where one has to argue a
little bit...”). During grading, we found that some models applied new approaches to known problems,
surprising the expert graders (”Interestingly, I was not familiar with the correct solution from the
models, even though it is relatively fundamental.”). Although no open problems were solved, some
attempts received positive feedback (”Still I am amazed by the quality of the one-shot answers.”).

5 LIMITATIONS

The main limitation of IMProofBench is its current scale, with only 39 questions included so
far. However, we are continuously expanding the benchmark, with an additional 17 problems at
an advanced draft stage and 30 problems in the final stages of review. Even at this point, our
analysis already provides detailed and valuable insights into the potential of LLMs for research-level
mathematics, and these findings will become even more compelling as the benchmark develops further.
Much smaller-scale evaluations of proof-based problems, such as those conducted on the USAMO
and IMO 2025 (Petrov et al., 2025; Balunovic et al., 2025), have already produced meaningful
conclusions, which underscores the value of such efforts even when the number of problems is small.

6 CONCLUSION

In this paper, we introduced IMProofBench, a benchmark designed to evaluate research-level proof-
writing capabilities in LLMs. Unlike prior datasets that focus primarily on final answers, IMProof-
Bench evaluates whether models can produce logically sound arguments that meet the standards of
mathematical research. Each problem is authored and peer-reviewed by professional mathematicians,
and evaluation takes place in an agentic framework that mirrors real research environments. Our
experiments with state-of-the-art LLMs show that models can already solve a meaningful subset of
research-level problems, with GPT-5 achieving complete solutions on 22% of tasks. These findings
highlight that while current models remain imperfect and prone to errors, they are already capable of
providing valuable support to working mathematicians for some problems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

While the IMProofBench dataset remains private, we take several measures to ensure transparency of
the resulting evaluations: we give detailed descriptions of tested models and their API configuration
(App. D), an account of the tools available to them within the Inspect framework (App. E), and
the used evaluation prompts (App. H). We plan to release the code base of our web platform and
evaluation framework under a suitable open-source license before November 30, 2025, and to actively
encourage scrutiny, feedback, and participation by outside developers. This release will include
a continuously expanding collection of open sample problems that allow users to test the relevant
systems and reproduce our data analysis on this sample set.

Moreover, we are open to scientific collaborations with outside parties to conduct specific investiga-
tions using our problem and grading dataset. Such requests will be evaluated on a case-by-case basis
with the aim of ensuring the privacy commitments we make to our contributors.

ETHICS STATEMENTS

We acknowledge that our project received support in the form of free credits for both the xAI and
the Gemini APIs, for which we thank the teams at the respective companies. These contributions
did not have an influence on our scientific evaluation of the respective models, which happens via a
model-agnostic framework.

We address several further ethical considerations:

• Contributor protection: Problems remain private to protect contributors’ intellectual property,
with generous withdrawal policies if questions lead to publishable insights. Contributors maintain
rights to their content and receive co-authorship on benchmark publications.

• Responsible AI evaluation: By keeping the dataset private and focusing on evaluation rather
than training data provision, we aim to measure capabilities without directly improving them.

REFERENCES

Sagemath — open-source mathematical software system. https://www.sagemath.org/,
2025. Accessed: 2025-09-15.

Epoch AI. Clarifying the creation and use of the frontiermath benchmark. https://epoch.ai/
blog/openai-and-frontiermath, January 2025. Accessed: 2025-09-25.

UK AI Security Institute. Inspect AI: Framework for Large Language Model Evaluations, 2024. URL
https://github.com/UKGovernmentBEIS/inspect_ai.

Anthropic. Claude 4.1 system card (addendum). Technical report, Anthropic, August 2025a.
Last updated September 15, 2025. Available at https://assets.anthropic.com/m/
4c024b86c698d3d4/original/Claude-4-1-System-Card.pdf.

Anthropic. Claude opus 4 & claude sonnet 4 system card. Technical report, Anthropic, May
2025b. Last updated September 2, 2025. Available at https://www-cdn.anthropic.com/
6d8a8055020700718b0c49369f60816ba2a7c285.pdf.

Benjamin Assarf, Ewgenij Gawrilow, Katrin Herr, Michael Joswig, Benjamin Lorenz, Andreas
Paffenholz, and Thomas Rehn. Computing convex hulls and counting integer points with
polymake. Math. Program. Comput., 9(1):1–38, 2017. doi: 10.1007/s12532-016-0104-z.
URL http://dx.doi.org/10.1007/s12532-016-0104-z.

V. Baldoni, N. Berline, J. A. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, M. Vergne, and
J. Wu. A User’s Guide for LattE integrale v1.7.2, 2013. URL https://www.math.ucdavis.
edu/˜latte/.

Mislav Balunovic, Jasper Dekoninck, Ivo Petrov, Nikola Jovanovic, and Martin T. Vechev. Matharena:
Evaluating llms on uncontaminated math competitions. CoRR, abs/2505.23281, 2025. doi: 10.
48550/ARXIV.2505.23281. URL https://doi.org/10.48550/arXiv.2505.23281.

10

https://www.sagemath.org/
https://epoch.ai/blog/openai-and-frontiermath
https://epoch.ai/blog/openai-and-frontiermath
https://github.com/UKGovernmentBEIS/inspect_ai
https://assets.anthropic.com/m/4c024b86c698d3d4/original/Claude-4-1-System-Card.pdf
https://assets.anthropic.com/m/4c024b86c698d3d4/original/Claude-4-1-System-Card.pdf
https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf
https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf
http://dx.doi.org/10.1007/s12532-016-0104-z
https://www.math.ucdavis.edu/~latte/
https://www.math.ucdavis.edu/~latte/
https://doi.org/10.48550/arXiv.2505.23281

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionı́sio, Tim
Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner,
Christoph Graczyk, Katrin Halbig, Ivo Hedtke, Alexander Hoen, Christopher Hojny, Rolf van der
Hulst, Dominik Kamp, Thorsten Koch, Kevin Kofler, Jurgen Lentz, Julian Manns, Gioni Mexi,
Erik Mühmer, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Mark Turner,
Stefan Vigerske, Dieter Weninger, and Lixing Xu. The SCIP Optimization Suite 9.0. ZIB-Report
24-02-29, Zuse Institute Berlin, February 2024. URL https://nbn-resolving.org/urn:
nbn:de:0297-zib-95528.

Nathan Bowler and Johannes Carmesin. Proofbench: a benchmark suite for mathematical proof
verification and generation. in preparation.

W. Bruns, B. Ichim, C. Söger, and U. von der Ohe. Normaliz. algorithms for rational cones and affine
monoids. Available at https://www.normaliz.uni-osnabrueck.de.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In
André Platzer and Geoff Sutcliffe, editors, Automated Deduction - CADE 28 - 28th International
Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings, volume
12699 of Lecture Notes in Computer Science, pages 625–635. Springer, 2021. doi: 10.1007/
978-3-030-79876-5\ 37. URL https://doi.org/10.1007/978-3-030-79876-5_
37.

Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann. SINGULAR 4-4-0 —
A computer algebra system for polynomial computations. http://www.singular.uni-kl.
de, 2024.

Google DeepMind. Gemini 2.5 pro model card. Technical report, Google DeepMind,
June 2025. URL https://storage.googleapis.com/model-cards/documents/
gemini-2.5-pro.pdf. Last updated: June 27, 2025; Accessed: 2025-09-21.

Jasper Dekoninck, Ivo Petrov, Kristian Minchev, Mislav Balunovic, Martin T. Vechev, Miroslav
Marinov, Maria Drencheva, Lyuba Konova, Milen Shumanov, Kaloyan Tsvetkov, Nikolay
Drenchev, Lazar Todorov, Kalina Nikolova, Nikolay Georgiev, Vanesa Kalinkova, and Mar-
gulan Ismoldayev. The open proof corpus: A large-scale study of llm-generated mathe-
matical proofs. CoRR, abs/2506.21621, 2025. doi: 10.48550/ARXIV.2506.21621. URL
https://doi.org/10.48550/arXiv.2506.21621.

EpochAI. Introducing FrontierMath Tier 4, 2025. URL https://x.com/EpochAIResearch/
status/1943744468781289543.

Simon Frieder, Luca Pinchetti, Alexis Chevalier, Ryan-Rhys Griffiths, Tommaso Salvatori,
Thomas Lukasiewicz, Philipp Petersen, and Julius Berner. Mathematical capabilities of chatgpt.
In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
Levine, editors, Advances in Neural Information Processing Systems 36: Annual Conference
on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/
2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_
and_Benchmarks.html.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan,
Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang. Omni-
math: A universal olympiad level mathematic benchmark for large language models. CoRR,
abs/2410.07985, 2024.

GAP – Groups, Algorithms, and Programming, Version 4.14.0. The GAP Group, 2024. URL
https://www.gap-system.org.

11

https://nbn-resolving.org/urn:nbn:de:0297-zib-95528
https://nbn-resolving.org/urn:nbn:de:0297-zib-95528
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro.pdf
https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro.pdf
https://doi.org/10.48550/arXiv.2506.21621
https://x.com/EpochAIResearch/status/1943744468781289543
https://x.com/EpochAIResearch/status/1943744468781289543
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
https://www.gap-system.org

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caro-
line Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, Olli Järviniemi,
Matthew Barnett, Robert Sandler, Matej Vrzala, Jaime Sevilla, Qiuyu Ren, Elizabeth Pratt, Lionel
Levine, Grant Barkley, Natalie Stewart, Bogdan Grechuk, Tetiana Grechuk, Shreepranav Varma
Enugandla, and Mark Wildon. Frontiermath: A benchmark for evaluating advanced mathematical
reasoning in AI. arXiv, 2024.

Jiaxing Guo, Wenjie Yang, Shengzhong Zhang, Tongshan Xu, Lun Du, Da Zheng, and Zengfeng
Huang. Right is not enough: The pitfalls of outcome supervision in training llms for math
reasoning. CoRR, abs/2506.06877, 2025. doi: 10.48550/ARXIV.2506.06877. URL https:
//doi.org/10.48550/arXiv.2506.06877.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
NeurIPS Datasets and Benchmarks, 2021.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng,
Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang, Hongzhou
Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover-v2: Scaling formal
theorem proving with scaffolded data synthesis and self-correction. CoRR, abs/2508.03613, 2025.
doi: 10.48550/ARXIV.2508.03613. URL https://doi.org/10.48550/arXiv.2508.
03613.

Hamed Mahdavi, Alireza Hashemi, Majid Daliri, Pegah Mohammadipour, Alireza Farhadi, Samira
Malek, Yekta Yazdanifard, Amir Khasahmadi, and Vasant Honavar. Brains vs. bytes: Evaluating
llm proficiency in olympiad mathematics. arXiv preprint arXiv:2504.01995, 2025.

Maxima. Maxima, a computer algebra system. version 5.48.0, 2025. URL https://maxima.
sourceforge.io/.

Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal of Symbolic
Computation, 60:94–112, 2014. ISSN 0747-7171. doi: 10.1016/j.jsc.2013.09.003. URL https:
//www.sciencedirect.com/science/article/pii/S0747717113001193.

Fan Nie, Ken Ziyu Liu, Zihao Wang, Rui Sun, Wei Liu, Weijia Shi, Huaxiu Yao, Linjun Zhang,
Andrew Y. Ng, James Zou, Sanmi Koyejo, Yejin Choi, Percy Liang, and Niklas Muennighoff. Uq:
Assessing language models on unsolved questions, 2025. URL https://arxiv.org/abs/
2508.17580.

Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant for
higher-order logic, volume 2283. Springer Science & Business Media, 2002.

OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2025. Published electroni-
cally at http://oeis.org.

OpenAI. Gpt-4o system card. Technical report, OpenAI, August 2024. Available at https:
//cdn.openai.com/gpt-4o-system-card.pdf.

OpenAI. Openai o3 and o4-mini system card, April 2025a. URL https:
//cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/
o3-and-o4-mini-system-card.pdf.

OpenAI. Gpt-5 system card. Technical report, OpenAI, August 2025b. URL https://cdn.
openai.com/gpt-5-system-card.pdf. Accessed: 2025-09-21.

Ivo Petrov, Jasper Dekoninck, Lyuben Baltadzhiev, Maria Drencheva, Kristian Minchev, Mislav
Balunović, Nikola Jovanović, and Martin Vechev. Proof or bluff? evaluating llms on 2025 usa
math olympiad. arXiv preprint arXiv:2503.21934, 2025.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Sean Shi, Michael
Choi, Anish Agrawal, Arnav Chopra, Adam Khoja, Ryan Kim, Jason Hausenloy, Oliver Zhang,
et al. Humanity’s last exam. arXiv, 2025.

12

https://doi.org/10.48550/arXiv.2506.06877
https://doi.org/10.48550/arXiv.2506.06877
https://doi.org/10.48550/arXiv.2508.03613
https://doi.org/10.48550/arXiv.2508.03613
https://maxima.sourceforge.io/
https://maxima.sourceforge.io/
https://www.sciencedirect.com/science/article/pii/S0747717113001193
https://www.sciencedirect.com/science/article/pii/S0747717113001193
https://arxiv.org/abs/2508.17580
https://arxiv.org/abs/2508.17580
http://oeis.org
https://cdn.openai.com/gpt-4o-system-card.pdf
https://cdn.openai.com/gpt-4o-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang, Yuxuan Liu,
Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2: Advancing formal mathematical
reasoning via reinforcement learning for subgoal decomposition. CoRR, abs/2504.21801, 2025.
doi: 10.48550/ARXIV.2504.21801. URL https://doi.org/10.48550/arXiv.2504.
21801.

Johannes Schmitt and Jason van Zelm. Intersections of loci of admissible covers with tautological
classes. Selecta Math. (N.S.), 26(5):Paper No. 79, 69, 2020. ISSN 1022-1824. doi: 10.1007/
s00029-020-00603-4. URL https://doi.org/10.1007/s00029-020-00603-4.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. CoRR, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL
https://doi.org/10.48550/arXiv.2402.03300.

Michael Skarlinski, Jonathan Laurent, Andy Bou, and Adam White. About 30% of humanity’s
last exam chemistry/biology answers are likely wrong. https://www.futurehouse.org/
research-announcements/hle-exam, July 23 2025. FutureHouse Research. Accessed:
2025-09-01.

PARI/GP version 2.17.2. The PARI Group, Univ. Bordeaux, 2024. available from http://
pari.math.u-bordeaux.fr/.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the
putnam mathematical competition. CoRR, abs/2407.11214, 2024.

xAI. Grok 3 beta — the age of reasoning agents, February 2025. URL https://x.ai/news/
grok-3. Accessed: 2025-04-03.

xAI. Grok 4 model card. Technical report, xAI, August 2025. Last updated August 20, 2025.
Available at https://data.x.ai/2025-08-20-grok-4-model-card.pdf.

Jie Zhang, Cezara Petrui, Kristina Nikolic, and Florian Tramèr. Realmath: A continuous benchmark
for evaluating language models on research-level mathematics. CoRR, abs/2505.12575, 2025.
doi: 10.48550/ARXIV.2505.12575. URL https://doi.org/10.48550/arXiv.2505.
12575.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark for formal
olympiad-level mathematics. In ICLR. OpenReview.net, 2022.

13

https://doi.org/10.48550/arXiv.2504.21801
https://doi.org/10.48550/arXiv.2504.21801
https://doi.org/10.1007/s00029-020-00603-4
https://doi.org/10.48550/arXiv.2402.03300
https://www.futurehouse.org/research-announcements/hle-exam
https://www.futurehouse.org/research-announcements/hle-exam
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
https://x.ai/news/grok-3
https://x.ai/news/grok-3
https://data.x.ai/2025-08-20-grok-4-model-card.pdf
https://doi.org/10.48550/arXiv.2505.12575
https://doi.org/10.48550/arXiv.2505.12575

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Grok 4
GPT-5

o4-mini o3

Gemini 2.5 Pro

Claude Opus 4.1

Claude Sonnet 4
Grok 3

Gemini 2.5 Flash
GPT-4o

0%

10%

20%

30%

40%

50%

60%

70%

W
ei

gh
te

d
Su

bq
ue

st
io

n
Sc

or
e

62%

53%
47% 44%

39%
33% 33% 33% 33%

23%

Figure 10: Average percentage of points for subquestion evaluation. Here performance on any
individual question is weighted by the point rewards determined by the problem author.

GPT-5
Grok 4

Gemini 2.5 Pro
o4-mini

Claude Opus 4.1 o3

Gemini 2.5 Flash

Claude Sonnet 4
Grok 3

GPT-4o
500

1k

5k
10k

50k
100k

Reasoning Tokens
Output Tokens

Figure 11: Token usage distribution for problem evaluation (main question and subquestions) for all
tested models.

A BENCHMARK COMPOSITION AND ADDITIONAL EVALUATION RESULTS

In Fig. 10, we show the average scores obtained by all 10 evaluated models. In Fig. 11, we show the
distribution of the number of used reasoning and output tokens on the evaluated questions. We find
several notable patterns. First, GROK-4 displays both the longest reasoning and the shortest output
among all models in the benchmark, consistent with the pattern mentioned in §4.4. Further, while
the OpenAI models show a balanced ratio between reasoning and output tokens, the Gemini model
family tends to use slightly more reasoning, whereas the Claude models are more verbose in their
output. Finally, compared to the usage limits of 300k tokens (reasoning and output) for the main
question and an additional 100k for each subquestion, most models stay well below these budgets for
more than 75% of the problems.

In Fig. 12, we illustrate the distribution of current problem tags among the problems in IMProofBench.
The topic of ”Algebraic Geometry” currently dominates since it represents the main research topic of
several of the benchmark organizers, who both contributed questions themselves and reached out

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algebraic Geometry
Open Problem

Combinatorics

Graph Theory

Intersection Theory
Algebra

Commutative Algebra

Hyperelliptic Curves

Arithmetic Geometry

Finite Group Theory

Number Theory

Sequence Analysis

Quantum‑Airy‑Structure

Topological‑Recursion

Existence‑Uniqueness

Homotopy Groups

Hopf Map

Toric Varieties

Chow Rings

Pushforward
Metric Geometry

Geometric Group Theory

Open Question

Calculus Of Vector Functions: Estimates

Counterexamples

Differential Geometry

Stokes

Group Theory

Representation Theory Permutation Groups

Stable Reduction
Local Fields

Stochastic Analysis

Markov Processes

Feller Semigroups

Np-Completeness

Bioinformatics

Moduli Of Curves

Real Algebraic Geometry

Character Variety

Compactification

Topology

Schemes

Figure 12: Word cloud of tags assigned to IMProofBench problems.

primarily to their own academic network. For our plans to broaden the coverage of the benchmark
towards other areas of pure and applied mathematics, see App. F.

B HUMAN INTERFACE AND INSTRUCTIONS

In this appendix, we discuss how contributors and benchmark administrators interact with IMProof-
Bench, including the instructions and interface for different steps of the submission process (question
generation, review and grading). In App. B.1, we give a brief overview of the main pages on the
web interface. Then, in App. B.2, we provide details on how questions are created and edited. In
App. B.3, we explain the review process. Finally, in App. B.4, we discuss the grading interface.

B.1 SUBMISSION WEBSITE

Contributors submit problems via a secure website designed for submitting and reviewing questions,
and grading AI answers (see Fig. 13). Features include:

• User accounts and permissions: Contributors can create an account tied to a (verified) email,
which allows them to author questions and use website features like the free AI solution pre-
views for these questions. Benchmark administrators have additional access to manage model
evaluations, review requests and access a live view of benchmark results.

• Community features: The website shows a list of contributors (ordered by numbers of accepted
questions or similar parameters) to encourage active participation, and links to a project Zulip
with further news and opportunity to provide feedback.

• Benchmark dashboard: Total numbers of contributors and questions in different stages of the
submission process are displayed to show project progress. An overview page with both live
results and archived snapshots of the benchmark state will be added in the future.

• About the project: Information about the IMProofBench is provided. This information contains
the initial whitepaper, overview of core team members, timeline of planned steps, and a page
with frequently asked questions. A privacy policy detailing our handling of user data is linked in
the footer of the page.

B.2 QUESTION CREATION AND EDITING

Benchmark problems are created through a structured interface that guides contributors through the
submission requirements. The system provides comprehensive guidelines (see Figure 14) emphasizing
the key characteristics of suitable benchmark problems.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Problem guidelines. Effective benchmark problems must meet several criteria:

• PhD-level difficulty: Problems should be suitable for oral exams of graduate courses, research
papers, or advanced seminars, representing mathematics close to or at research-level.

• Genuine mathematical insight: Solutions must require non-routine approaches that cannot be
solved through pattern matching or standard algorithm application.

• Clear proof-based main question: The primary answer should consist of a complete mathemat-
ical argument rather than merely a numerical result.

• Auto-gradable subquestions: Each problem requires 2–3 subquestions with unique answers
(e.g., “Is the statement true for n = 5?” or “What is the rank of this group?”), enabling automated
evaluation.

Contributors should avoid problems solvable by lucky guessing, standard textbook exercises (even
from graduate texts), or purely computational problems that mathematical software can solve directly.

Question editing interface. The question creation and editing window (see Figure 15) provides a
comprehensive authoring environment with the following components:

• Main question editor: A text area supporting Markdown with LaTeX mathematics, featuring a
live preview pane that renders the formatted content in real-time. Contributors can use standard
LaTeX delimiters ($...$ for inline and $$...$$ for display mathematics).

• Problem metadata: A tags field allows contributors to categorize problems by area (e.g., “group
theory”, “representation theory”, or “permutation groups”) and special characteristics (e.g.,
“open problem” for questions where the author seeks but does not know the answer).

• AI solution preview: Contributors can test their questions against a frontier AI model (currently
GPT-5 with high reasoning effort) using up to 20 free attempts per day. This feature helps
authors evaluate whether their problem has appropriate difficulty and clarity.

• Sample solution: A dedicated editor for the complete solution, which serves as the reference for
reviewers and graders. The solution should demonstrate the expected level of rigor and detail to
allow expert review to verify correctness and serve as a reference for grading model answers.

• Subquestions management: A dynamic form system for adding multiple subquestions, where
each subquestion consists of:

– Question text (supporting Markdown and LaTeX)
– Expected answer field for the unique answer
– Evaluation method selector (e.g., exact match)
– Optional points value (defaulting to 1) for weighting subquestions by difficulty or impor-

tance
– Rationale field for explaining the correct answer

Question detail view. Once submitted, questions are displayed in a detail view (see Figure 16) that
presents all components in their rendered form. This view shows:

• The question status in the submission pipeline (Draft → Under Review → Approved → Active)

• Rendered main question and sample solution with properly formatted mathematics

• List of subquestions with their expected answers

• AI solution attempt preview when available

• Review comments from expert reviewers (when in review stage)

• Response interface allowing authors to address reviewer feedback and revise their submission

The detail view serves as the central hub for tracking a question’s progress through the review process
and facilitating communication between authors and reviewers.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.3 REVIEW PROCESS AND INSTRUCTIONS

Each question is reviewed by at least one expert before being included in the benchmark. These
experts are invited to submit a review via email. An example of such an email is included below.

Reviewer invitation email

Dear [invited_user],

My name is [inviting_user] and I am part of a small team of mathematicians studying the
question of how good today’s AI models are at solving research-level math questions. As
part of this IMProofBench project, we are building a collection of challenging
mathematical problems to use for testing the AI performance.

We would like to ask for your help in verifying the mathematical correctness of one such
question. If you are interested to learn more about the project, further information is
available at https://improofbench.math.ethz.ch/faq/

The following question was submitted for inclusion in the IMProofBench dataset:

Title: Permutation representation
Author: Example Participant

Would you be willing to review this question and:
- Verify that the phrasing is well-defined and unambiguous
- Confirm the provided solution is mathematically correct
- Make any suggestions for improvements (e.g., additional unique-answer subquestions)

We estimate that for most problems this should take between 10 and 30 minutes.

You can view the full submitted problem and write a review at:
[ACCEPT_URL]

There you will also have the option to decline this review request after viewing the
question.
Alternatively, you can decline immediately by clicking:
[DECLINE_URL]

If you provide a review, the question’s author will be notified and have the chance to
revise the question and compose a response. After seeing the response, you have the
option to submit a further review or recommend the question for acceptance in the
benchmark.

Thank you for considering this request!

Best regards,
[inviting_user]

Note: To track your review and allow you to see the author’s replies, accepting the
review request will create a user account for you on our website. You can optionally set
a password after submitting your review to log back in and e.g. contribute a question to
the benchmark yourself.

When the reviewer accepts the review invitation by clicking on the link, they are forwarded to
a webpage displaying the problem to be reviewed, along with a form for review submission and
further information (see Figure 17). The reviewer may also view the full review guidelines displayed
in Figure 18. The review consists of a short comment by the reviewer indicating improvements
and/or mistakes in the question statement. Before submitting the review, the reviewer decides on
a recommended action among the following: “Recommended for acceptance”, “Needs revision”
and “Not suitable”. The site admins are notified when a review is complete and can take action
accordingly. If the reviewer selects “Not suitable”, the question is automatically reset to the “draft”
status. Independently of the outcome, the author is permitted to submit an answer to the reviewer’s
comments and change the question if necessary. The reviewer may then either submit a new review
taking into account the changes, or a new reviewer may be invited.

B.4 GRADING INTERFACES

The grading system provides a structured interface for human evaluation of model-generated proofs
through a dedicated web page.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Human grading interface. The main grading interface (see Figure 19) employs a three-column
layout designed to facilitate easy access to relevant information and the feedback form:

• Left column: Displays the question statement and sample solution for reference
• Center column: Shows the model’s complete response with mathematical rendering
• Right column: Contains the interactive grading panel with scoring controls

To prevent bias, model identities are concealed behind randomized aliases (Answer A, B, C, etc.) that
remain hidden until all answers for a question have been graded. The system maintains independent
grading sessions for each evaluator, with aliases shuffled differently to ensure blind evaluation.

Grading categories. The scoring form consists of three main components providing multifaceted
evaluation, with relevant information available via concise tooltips:

AI Mistake Indicators: Four binary categories identifying common failure modes:

1. Incorrect Logic: Flawed logical steps or invalid reasoning
2. Hallucinated: References to non-existent theorems, papers, or results
3. Calculation: Arithmetic or algebraic errors
4. Conceptual: Fundamental misunderstanding of mathematical concepts

AI Achievement Indicators: Four binary categories recognizing positive aspects:

5. Understanding: Correctly identifies what needs to be proven or calculated
6. Correct Result: Arrives at the correct final answer (with N/A option for open-ended problems

or when the correct answer is unknown)
7. Insight: Shows creative problem-solving or novel approaches
8. Usefulness: Solution would be helpful to someone learning this topic

Each binary category offers three response options: “True”, “False”, or “Not Sure”, allowing graders
to indicate uncertainty when evaluation is ambiguous.

Overall Progress: A four-point scale (0–3) rating overall solution progress:

• 0/3: No progress toward solution
• 1/3: Minor progress with limited advancement
• 2/3: Major progress with substantial work completed
• 3/3: Complete solution achieved

This overall progress score serves as the primary metric for model ranking and comparison.

Additional grading features. The interface includes several supporting elements to ensure grading
consistency and quality:

• Grading notes: A persistent text area where graders record their evaluation criteria and decision
patterns across all answers (e.g., “Matrix errors count as Calculation, Theory errors as Logic”).
These notes help maintain consistency when grading multiple model responses and facilitate
reproducibility in future grading sessions.

• Comments field: Answer-specific observations about edge cases or explanations for grading
decisions.

• Auto-save functionality: Grading selections are automatically preserved with a 2-second
debounce to prevent data loss.

• Focus mode: An optional distraction-free interface that maximizes screen space by hiding
navigation elements and allowing collapsible panels, enabling graders to concentrate on detailed
evaluation.

• Flag for organizers: Option to mark responses requiring special attention due to serious issues
or technical problems.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The grading workflow supports iterative evaluation, allowing graders to mark answers as complete,
incomplete, or given up (for responses that cannot be meaningfully evaluated). Once all model
answers for a question are marked complete, the system reveals the true model identities, enabling
post-hoc analysis of performance patterns.

C SAMPLE PROBLEM

Below we present an example of a problem from the benchmark and discuss model performance and
solution strategies from our evaluation.

Background for reader (not included in benchmark question) A stable graph is a connected
graph Γ̂, multi-edges and loops allowed, together with a vertex-labeling by non-negative integers
(gv)v∈V (Γ̂) satisfying that each vertex v with gv = 0 has valence at least 3. These combinatorial
objects appear in algebraic geometry in the study of moduli spaces of stable curves, see e.g. (Schmitt
and van Zelm, 2020, Section 2). The genus of Γ̂ is defined as g = b1(Γ̂) +

∑
v∈V (Γ̂) gv , with b1 the

first Betti number (or cyclomatic number) of Γ̂.

Question Given an integer g ≥ 2, let Ng be the number of isomorphism classes of stable graphs of
genus g with precisely 3 edges. Give a closed formula for Ng valid for all g ≥ 2.

Solution To compute Ng , we note that each stable graph Γ̂ has an undecorated underlying graph Γ,
which is one of the 10 connected multi-graphs with precisely 3 edges. Then Ng can be calculated
by summing over those graphs Γ and counting the number of assignments gv to the vertices of Γ,
avoiding double-counting by taking into account symmetries of Γ.

The final answer is that for g = 2 we have N2 = 2 and for g ≥ 3, we have

Ng =



1
9g

3 + 7
8g

2 + 5
12g − 2 if g ≡ 0 (mod 6)

1
9g

3 + 7
8g

2 + 1
6g −

155
72 if g ≡ 1 (mod 6)

1
9g

3 + 7
8g

2 + 5
12g −

20
9 if g ≡ 2 (mod 6)

1
9g

3 + 7
8g

2 + 1
6g −

19
8 if g ≡ 3 (mod 6)

1
9g

3 + 7
8g

2 + 5
12g −

16
9 if g ≡ 4 (mod 6)

1
9g

3 + 7
8g

2 + 1
6g −

187
72 if g ≡ 5 (mod 6)

Subquestions What is N3? (Answer: 9) What is N8? (Answer: 114) What is N10000? (Answer:
111198615276)

Model approaches and performance

• GPT-5 instantly identifies the solution strategy in its first reasoning step, writing ”Essentially,
I’m computing Ng as a sum of connected multigraph types limited by 3 edges and considering
partitions of genera”. It performs a Python calculation to obtain first experimental data. From
theoretical considerations, it correctly identifies the shape of the final answer, writing ”Ultimately,
I want a final closed formula for Ng as a degree-3 quasi-polynomial with a period of 6.”. After a
few attempts it calculates this polynomial via Lagrange interpolation on datapoints with fixed
residue modulo 6, discovering that the case g = 2 needs separate treatment. This not only
represents a perfect solution to the given problem, but also mirrors precisely the approach of the
human question author to solving the problem.

• GROK-4 obtains an expression for Ng in a single reasoning step, though no further details are
available as the GROK-4 API does not expose reasoning summaries. The model then uses a
Python tool to calculate the first values and the SageMath tool to look up the resulting integer
sequence in the OEIS database OEIS Foundation Inc. (2025). This being unsuccessful it submits
a very concise sketch of its answer, which is slightly less simple than the formula for Ng above,
as it still features a summation over g − 2 terms.
In a second evaluation, GROK-4 uses the bash tool to download textbooks on algebraic graph
theory and moduli spaces of curves and convert them to text. Lacking the software tools for the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

latter, it tries and fails to install new packages on the sandboxed docker container, receiving an
error for attempting to use sudo rights. Finally it abandons these attempts and just submits a
solution which is even mostly correct, but has some small error in one of the terms.

• CLAUDE-OPUS-4.1 also tries to combine combinatorial arguments with computer calculations
in SageMath, but fails to find even the contribution from 2-vertex graphs, forgetting some
topological possibilities for Γ. One noteworthy pattern is that the model includes very verbose
reasoning in form of comments and static print statements within the SageMath code.

• GEMINI-2.5-PRO starts with a correct calculation of N2, N3, N4. However, then it makes
the completely unfounded claim that ”This implies that Ng is a quadratic polynomial in g.”,
whereas in reality it is a cubic quasi-polynomial. It then submits an answer based on that wrong
assumption. It does get partial credit in the subquestions for calculating N3 = 9 correctly.

D MODEL TIERS

We evaluate models across four tiers based on their capabilities and release timeline. Tier 1 comprises
current frontier models with state-of-the-art mathematical reasoning capabilities. Tier 3 includes
previous generation models that have demonstrated strong mathematical performance. Tier 4 contains
legacy models included for historical comparison and baseline establishment. Currently, only models
in Tiers 1–3 are included in human grading to focus evaluation resources on the most relevant
comparisons.1

Table 1: Models evaluated in IMProofBench, organized by tier

Tier Model API Endpoint Parameters

1

CLAUDE-OPUS-4.1 claude-opus-4-1-20250805 cache prompt="auto"
max tokens=32000
reasoning tokens=31000

GPT-5 gpt-5 reasoning effort="high"
reasoning summary="auto"

GEMINI-2.5-PRO gemini-2.5-pro reasoning tokens=32768

GROK-4 grok-4-0709 —

3 O4-MINI o4-mini-2025-04-16 reasoning effort="high"
reasoning summary="auto"

4

CLAUDE SONNET 4 claude-sonnet-4-20250514 cache prompt="auto"
max tokens=64000
reasoning tokens=63000

GPT-4O gpt-4o-2024-11-20 —

GEMINI-2.5-FLASH gemini-2.5-flash reasoning tokens=24576

GROK-3 grok-3 —

O3 o3-2025-04-16 reasoning effort="high"
reasoning history="auto"
reasoning summary="auto"
reasoning tokens=100000

All models are evaluated using the Inspect framework with standardized prompting and tool access,
including Python execution, web search, and SageMath for advanced mathematical computation
(see App. E). The reasoning effort parameter, when specified as "high", enables enhanced
reasoning capabilities for models that support it. The reasoning tokens parameter controls
the maximum length of the model’s internal reasoning process, while max tokens limits the total
response length including both reasoning and final answer.

1Tier 2 is reserved for testing Command Line Interface models such as Claude Code, but implementation has
been deferred to a future version of the benchmark.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E DETAILED TOOL DESCRIPTIONS

The evaluation environment for IMProofBench was designed to emulate the computational resources
available to research mathematicians when solving complex problems. Rather than restricting models
to basic arithmetic operations, we provide access to the same sophisticated mathematical software that
researchers routinely use in their work. This approach reflects the reality that modern mathematical
research frequently involves computational exploration, symbolic manipulation, and verification of
conjectures through extensive calculation.

E.1 TECHNICAL SPECIFICATIONS

All tools operate within the following constraints to balance computational power with practical
limitations:

• Timeout: 15 minutes per tool invocation
• Memory limit: 8 GB RAM per execution
• Environment: Isolated Docker container running Arch Linux
• Execution model: Independent tool calls (no variables persist between calls), but files written to

the filesystem remain accessible throughout the evaluation session

E.2 CORE COMPUTATIONAL TOOLS

E.2.1 PYTHON ENVIRONMENT

The Python tool provides access to a comprehensive scientific computing environment (Python
3.13.7). This language was chosen for its prevalence in scientific computing and the extensive
familiarity that language models demonstrate with its syntax and libraries. The environment includes
standard numerical and symbolic computation packages:

• Numerical computing: NumPy, SciPy, pandas
• Symbolic mathematics: SymPy, SymEngine
• Visualization: Matplotlib (though output is text-based)
• Graph theory: NetworkX, igraph, graph-tool
• Optimization: CVXPY with multiple backend solvers (GLPK, ECOS, OSQP, SCS, CSDP)
• Machine learning: Basic scikit-learn functionality

Each Python execution runs independently with no variables or imports preserved between invocations,
though files written to disk remain accessible for subsequent tool calls.

E.2.2 BASH SHELL ACCESS

The bash tool provides command-line access to the evaluation environment, enabling models to
leverage specialized mathematical software that operates through command-line interfaces. This tool
serves as the gateway to domain-specific mathematical systems detailed in Section E.3.

E.2.3 SAGEMATH

SageMath (sag, 2025) (version 10.6) serves as the primary computer algebra system, providing a
unified Python-based interface to numerous mathematical software packages. Its significance in
the research community stems from its comprehensive coverage of mathematical domains and its
philosophy of combining the best open-source mathematics software into a coherent system.

Key features available through the sage computation tool include:

• Natural mathematical syntax through automatic preparsing (e.g., xˆ2 for exponentiation, K.<a>
for field extensions)

• Extensive algebraic capabilities: polynomial rings, number fields, elliptic curves, modular forms

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• Combinatorial structures: graphs, matroids, posets, designs
• Specialized packages: admcycles for moduli spaces of curves, ore algebra for D-finite

functions and recurrence operators, pari jupyter for enhanced PARI/GP integration
• Integration with external systems: automatic interfacing with GAP, Maxima, PARI/GP, Singular

E.3 SPECIALIZED MATHEMATICAL SOFTWARE

The evaluation environment includes a comprehensive suite of specialized mathematical software,
accessible through the bash tool:

E.3.1 COMPUTER ALGEBRA SYSTEMS

• GAP (Groups, Algorithms, Programming): Specialized system for computational discrete
algebra, particularly group theory and combinatorics GAP (2024)

• Maxima: General-purpose computer algebra system for symbolic computation, descended from
MIT’s Macsyma Maxima (2025)

• PARI/GP (version 2.17.2): High-performance system focused on number theory computa-
tions The (2024)

• Singular: Specialized system for polynomial computations, commutative algebra, and algebraic
geometry Decker et al. (2024)

• Polymake (version 4.14): System for research in polyhedral geometry and related areas Assarf
et al. (2017)

E.3.2 ALGEBRAIC AND GEOMETRIC COMPUTATION

• Normaliz: Computation of normalizations of affine semigroups and rational cones Bruns et al.
• LattE integrale: Lattice point enumeration and integration over convex polytopes Baldoni et al.

(2013)
• Gfan: Gröbner fans and tropical varieties computation
• 4ti2: Algebraic, geometric, and combinatorial problems on linear spaces
• msolve: Polynomial system solving over finite fields and rational numbers

E.3.3 GRAPH THEORY AND COMBINATORICS

• nauty and Traces: Graph automorphism and canonical labeling McKay and Piperno (2014)
• bliss: Another efficient graph automorphism tool
• igraph: Network analysis and graph algorithms library

E.3.4 OPTIMIZATION SOLVERS

• Linear Programming: GLPK (GNU Linear Programming Kit), Gurobi-compatible interfaces
• Mixed-Integer Programming: SCIP (Solving Constraint Integer Programs) Bolusani et al.

(2024)
• Semidefinite Programming: CSDP, DSDP for SDP problems
• SAT Solvers: glucose, kissat, cryptominisat for Boolean satisfiability

E.3.5 PROOF ASSISTANTS AND VERIFICATION

• Lean (de Moura and Ullrich, 2021): Interactive theorem prover and functional programming
language

• Mathics: Open-source alternative to Mathematica for symbolic computation

E.3.6 NUMERICAL AND SCIENTIFIC COMPUTING

• Julia: High-performance language for numerical computing
• SciLab: Numerical computational package similar to MATLAB

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

• FLINT: Fast Library for Number Theory
• NTL: High-performance number theory library

E.4 DATA RESOURCES

The environment includes numerous mathematical databases accessible through SageMath:

• Stein-Watkins database of elliptic curves
• Jones database of number fields
• Kohel database for elliptic curves and modular polynomials
• Cunningham tables for factorizations
• OEIS (Online Encyclopedia of Integer Sequences) integration
• Various polytope databases and mutation class data

E.5 WEB SEARCH CAPABILITIES

The web search tool provides access to current mathematical literature and online resources. The
implementation follows a provider-based architecture:

• Internal providers: Models from OpenAI, Anthropic, and Grok utilize their respective built-in
web search capabilities, requiring no additional API keys

• External provider: Tavily is configured as a fallback for models without internal search
capabilities (e.g., Gemini), providing AI-optimized search results

Some models, notably GROK-4, combine web search capabilities with the wget bash command to
download full research papers for detailed analysis.

E.6 EXAMPLE TOOL USES FROM BENCHMARK EVALUATION

Below we list some example tool applications that occurred during our model evaluations. In each
case, the full log file of the multi-turn evaluation reveals that the respective calculation played a
decisive role in allowing the model to find the correct answer. To preserve benchmark privacy, we
describe the relevant tool uses in general terms while leaving out the details of the specific benchmark
problem.

• Generating functions (Model: GROK-4, Tool: SageMath)
Solved combinatorics problem by calculating a generating function F (x) and forming the
exponential G(x) = exp(F (x)) to extract a specific coefficient from G

• Modular forms (Model: GROK-4, Tool: SageMath)
Compute q-expansion of the weight 12 cusp form ∆

• Group theory (Model: GPT-5, Tool: GAP (2024) via Bash Shell)
Accessed entries of the character table of a sporadic group

• Literature access (Model: GROK-4, Tool: Bash Shell)
Model uses curl to download pdf of paper from arXiv, installs the PyPDR2 package via pip
and converts the pdf to text to obtain relevant information for the benchmark problem. Note: after
an initial failed attempt at installing the PyPDR2 package, the model uses the pip argument
--break-system-packages to force a user installation in the externally managed Python
environment of our sandboxed evaluation environment.

F PLANS FOR FUTURE DEVELOPMENT

Below we give further details on our plans for the continuous development of IMProofBench.

• Scale and outreach: We aim to expand the benchmark to 150–300 problems, e.g. through
strategic partnerships with leading mathematical institutions (e.g., MFO Oberwolfach, IAS,
Fields Institute) and by recruiting domain-specific ambassadors who can promote participation
at conferences and within their research networks.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

• Quality assurance and grading: To strengthen the scientific validity of our evaluations, we will
study inter-rater reliability by comparing expert gradings on the same problems. We will support
graders via AI-assisted pre-screening of model answers and refine our error classification system
to localize specific mistakes within solution texts rather than applying only global categories.

• Dynamic problem management: As mathematical knowledge evolves, problems may become
easier due to new publications or techniques. We will implement a generous retirement policy
allowing authors to withdraw problems affected by recent research, while regularly adding fresh
problems to maintain benchmark difficulty. We also plan to release small sets of sample problems
to provide the community with concrete reference points for gauging AI progress.

• Technical innovation: We plan to develop automated difficulty classifiers to predict which
problems challenge current AI systems, explore alternative evaluation formats (such as formula
reconstruction tasks and interactive problem-solving sessions), and implement bring-your-own-
agent interfaces to enable companies to test internal models against the benchmark.

• Model coverage: Beyond proprietary frontier models, we will evaluate leading open-source rea-
soning systems like DeepSeek-V3.1-Terminus and Qwen3-235B-Think, promoting the strongest
to Tier 1 status for human grading, ensuring long-term comparison baselines even as commercial
models are deprecated. Note: One reason why these models were not included in this initial
version of the benchmark is the ongoing challenges with enabling tool use for these models
- a requirement to put them on equal footing with other models within the inspect evaluation
framework of IMProofBench.

G USE OF LARGE LANGUAGE MODELS

In accordance with ICLR 2026 disclosure requirements, we report our use of LLMs throughout
this research project. The authors take full responsibility for all content in this paper, including any
LLM-assisted portions.

G.1 WRITING AND PRESENTATION

Claude Opus 4.1 was used to generate an initial draft of Sections 3 and Appendices B, D, E and G,
and provided feedback and suggestions for our Reproducibility and Ethics Statements. Additionally,
Claude Opus 4.1 provided proofreading assistance, offered stylistic and structural suggestions, and
helped verify compliance with the ICLR 2026 Author Guide. GPT-5 was used to collect bibliography
entries of software packages in Appendix D. All LLM-generated content was thoroughly reviewed,
fact-checked, and edited by the authors.

G.2 LITERATURE DISCOVERY AND RELATED WORK

During the ideation phase and preparation of the benchmark whitepaper, we used ChatGPT o3 and
Claude Opus Research to conduct comprehensive searches of the benchmarking literature and identify
related projects. These tools helped surface relevant prior work and ensure thorough coverage of the
existing landscape, though all citations were independently verified by the authors.

G.3 RESEARCH IMPLEMENTATION AND DEVELOPMENT

LLMs played a substantial role in implementing the benchmark infrastructure. Claude Code, supple-
mented by ChatGPT’s Codex CLI tool, assisted with:

• Development of the benchmark website and database architecture
• Adaptation of the Inspect framework for model evaluation
• Extraction and visualization of quantitative results

Additionally, Claude Opus provided support for organizational tasks including meeting summaries
and creation of promotional materials. The background image for our benchmark poster was generated
using GPT-5’s multimodal capabilities.

All code and implementations were tested, validated, and debugged by the authors to ensure correct-
ness and functionality.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

H EVALUATION PROMPTS

Main Question Prompt

Background
The IMProofBench project is a mathematical reasoning benchmark for AI systems, testing
their ability to solve research level math problems. Each such problem consists of one **
main question**, where the expected answer is a longform mathematical proof, and several
related **subquestions** which have short, unique answers (e.g. a natural number). The
main answer will be graded by both human expert mathematicians (often the author of the
question) and AI evaluators, whereas subquestion answers are checked automatically using
a Python script.

Structure of the evaluation
In the following we would like to evaluate your mathematical reasoning abilities on one
such problem. The overall structure of the conversation below is that we iterate through
the questions in order (main question, sub-question 1, sub-question 2, ...) and in each
step, you can:

- Read the current question
- Think about it in a multi-turn environment with tool use (see below)
- Submit the answer to the current question

At each point in the conversation, you have the context of the entire previous
conversation including your outputs in the thinking steps and the record of any tool uses
. Note that you will *not necessarily* have access to records of your internal reasoning
traces and internal tool uses, so any helpful information from these should be documented
in your (external) thinking outputs.

Multi-turn reasoning environment
To help you solve the problem, you will have access to a multi-turn conversation
environment with optional tool use, based on the Inspect AI framework. At each step, you
can:

- Think out loud to analyze the problem, devise a solution approach, think through the
steps of mathematical arguments, etc.
- Use the ‘python‘ tool to run self-contained experiments in a standard python
environment
- Use the ‘bash‘ tool to execute commands inside a docker container (running ArchLinux
with some open-source mathematical software installed)
- Use the ‘web_search‘ tool to search for current information, mathematical definitions,
theorems, or recent research
- Use the ‘sage_computation‘ tool for conducting an experiment in a self-contained
SageMath terminal session
- Use the ‘submit‘ tool to provide your final answer to the current question (main or sub
-question)

All tools have a timeout of 15 minutes, maximal memory usage (RAM) of 8 GB and run on
standard 2025 hardware.

Token constraints
You have {main_question_token_limit:,} tokens to solve the main question, and {
subquestion_token_limit:,} tokens for each of the following sub-questions. This counts
both your output tokens (including in tool calls) and your reasoning tokens. You are
informed about your current usage after each conversation turn.

Answer format for main question
Below you will see the text of the main question. Once you finished reasoning about it,
you can register your answer using the ‘submit‘ tool. The answer for the main question
should be a detailed mathematical argument, formatted in Markdown with LaTeX formulas
using $...$ for inline mathematical expressions and $$...$$ for equations. Use Markdown [
link formatting](https://www.markdownguide.org/basic-syntax/#links) for including online
references, *not* any internal web-referencing system.

Problem:

{question_text}

Please work through this problem step by step. When you have your final answer, use the
submit() tool to submit it.

Subquestion Prompt

Great work on the previous part!

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

You have successfully completed the previous question. Now please solve the following
subquestion while keeping the context of your previous work:

Subquestion {subquestion_order}:
{subquestion_text}

Instructions:
- You can reference your work from previous parts
- Use the same mathematical tools available to you
- When you have your final answer, use the submit() tool to submit it
- Be precise and specific in your answer format

Please proceed with solving this subquestion.

Conversation Status Update

Please continue working on the current question. To formally register your answer, use
the ‘submit‘ tool as per the original instructions above. Note: the conversation will
only proceed to the next stage once you use the ‘submit‘ tool.

Token usage: {current_tokens:,} of {token_limit:,} tokens used for this stage.

Python tool description

Use the python function to execute Python code.

The Python tool executes single-run Python scripts. Important notes:
1. Each execution is independent - no state is preserved between runs
2. You must explicitly use print() statements to see any output
3. Simply writing expressions (like in notebooks) will not display results
4. The script cannot accept interactive input during execution
5. Return statements alone won’t produce visible output
6. All variables and imports are cleared between executions
7. Standard output (via print()) is the only way to see results
8. This tool has a timeout of 15 minutes and maximal memory usage (RAM) of 8 GB

Bash tool description

Use this function to execute bash commands. Underlying system is ArchLinux with many
standard open-source computer algebra systems (like GAP) pre-installed.
This tool has a timeout of 15 minutes and maximal memory usage (RAM) of 8 GB.

Web search tool description

Use this function to search the web for current information, mathematical definitions,
theorems, or recent research.

This tool gives you access to up-to-date information that can help with:
- Looking up mathematical definitions and theorems
- Finding recent research papers or results
- Verifying computational results against known databases
- Checking current mathematical conventions or notation
- Finding examples of similar problems or techniques

The search results will include titles, URLs, and relevant excerpts from web pages.
Use this tool when you need information that might not be in your training data or when
you want to verify facts.

Sage tool description

Use the sage_computation function to run calculations in the open-source mathematics
software system SageMath.

The sage_computation tool executes single-run SageMath scripts. Important notes:
1. Each execution is independent - no state is preserved between runs
2. You must explicitly use print() statements to see any output
3. Simply writing expressions (like in notebooks) will not display results
4. The script cannot accept interactive input during execution

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

5. Return statements alone won’t produce visible output
6. All variables and imports are cleared between executions
7. Standard output (via print()) is the only way to see results
8. This tool has a timeout of 15 minutes and maximal memory usage (RAM) of 8 GB

All standard SageMath functions are pre-imported and available.
The SageMath preparser is applied, so you can use natural mathematical syntax.

Key Features:
- Natural syntax: Use xˆ2 for powers, K.<a> for field extensions
- All mathematical objects pre-imported: Matrix, EllipticCurve, PolynomialRing, etc.
- Advanced packages available: admcycles for moduli spaces, and many more

Examples:
Factor a polynomial
factor(xˆ100 - 1)

Define a number field
K.<a> = NumberField(xˆ3 - 2)

Work with elliptic curves
E = EllipticCurve([0, 1])
print(E.rank())

Use specialized packages (example with admcycles)
from admcycles import *
G = StableGraph([1,1],[[1,3],[2,4]],[(1,2),(3,4)])
print(f"Automorphismsˆ2: {G.automorphism_number()ˆ2}")

IMPORTANT: Like the python() tool, you must use print() to see any output.
Nothing is returned automatically - always print your results!

Submit tool description

Submit your final answer for the current question or subquestion. Use Markdown + LaTeX
formatting.
The answer for the main question should be a detailed mathematical argument.

Your answer should be formatted as natural Markdown text with LaTeX formulas.
Use $ for inline math and $$ for display math, or \begin{equation} environments.
Use standard [Markdown link syntax](https://www.markdownguide.org/basic-syntax/#links)
for online references.

RECOMMENDED: Use raw strings (r’’’ or r"") to write LaTeX naturally without escaping.

Important formatting notes:
- Write your answer exactly as you would in a math document
- Use raw triple quotes r’’’ for multiline answers with LaTeX
- This lets you write \frac, \sqrt, \int naturally (no escaping needed)
- Include full mathematical reasoning with the final answer clearly stated
- Do not use custom macros (e.g., \Z, \Q, \RR, etc.). Only use valid standard LaTeX
commands

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 13: Landing and overview page of IMProofBench website.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 14: Guidelines for authoring benchmark problems.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 15: Window for editing questions, solutions, and their associated subquestions; via the blue
button, the user can request up to 20 free AI solution previews per day to check suitability of the
question.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 16: Overview page of question data (with main question, sample solution, AI answer preview
and subquestions).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 17: Question review window showing text box for feedback and review instruction summary.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 18: Detailed explainer of review instructions and process.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 19: Grading form, displaying sample solution, model answer and scoring form side by side.
Model identities (A–E) at top are randomized on starting the grading, and only revealed when grading
is complete, to avoid bias.

34

	Introduction
	Related Work
	Benchmark Methodology
	Community Outreach
	Problem Creation Pipeline
	Model Evaluation
	Benchmark statistics and future development

	Experimental Results
	Main Results
	Error and Progress Analysis
	Tool and token usage
	Qualitative Analysis

	Limitations
	Conclusion
	Benchmark composition and additional evaluation results
	Human Interface and Instructions
	Submission website
	Question creation and editing
	Review process and instructions
	Grading interfaces

	Sample Problem
	Model Tiers
	Detailed Tool Descriptions
	Technical Specifications
	Core Computational Tools
	Python Environment
	Bash Shell Access
	SageMath

	Specialized Mathematical Software
	Computer Algebra Systems
	Algebraic and Geometric Computation
	Graph Theory and Combinatorics
	Optimization Solvers
	Proof Assistants and Verification
	Numerical and Scientific Computing

	Data Resources
	Web Search Capabilities
	Example tool uses from benchmark evaluation

	Plans for future development
	Use of Large Language Models
	Writing and Presentation
	Literature Discovery and Related Work
	Research Implementation and Development

	Evaluation Prompts

