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ABSTRACT

As the mathematical capabilities of large language models (LLMs) improve, it
becomes increasingly important to evaluate their performance on research-level
tasks at the frontier of mathematical knowledge. However, existing benchmarks are
limited, as they focus solely on final-answer questions or high-school competition
problems. To address this gap, we introduce IMProofBench, a private benchmark
consisting of 54 peer-reviewed problems developed by expert mathematicians.
Each problem requires a detailed proof and is paired with subproblems that have
final answers, supporting both an evaluation of mathematical reasoning capabilities
by human experts and a large-scale quantitative analysis through automated grading.
Furthermore, unlike prior benchmarks, the evaluation setup simulates a realistic
research environment: models operate in an agentic framework with tools like web
search for literature review and mathematical software such as SageMath. Our
results show that current LLMs can succeed at the more accessible research-level
questions, but still encounter significant difficulties on more challenging problems.
Quantitatively, GROK-4 achieves the highest accuracy of 61% on final-answer
subproblems, while GPT-5 obtains the best performance for proof generation,
achieving a fully correct solution for 21% of problems. IMProofBench will con-
tinue to evolve as a dynamic benchmark in collaboration with the mathematical
community, ensuring its relevance for evaluating the next generation of LLMs.

1 INTRODUCTION

Large language models (LLMs) are making rapid progress on mathematical tasks, achieving strong
results on challenging benchmarks like AIME (Balunovic et al., 2025) and FrontierMath (Glazer
et al., 2024). These improvements suggest that LLMs may soon support mathematical research
by collaborating with professional mathematicians on open problems. However, to determine
whether current systems are capable of contributing in such settings, benchmarks are needed that test
capabilities at the frontier of mathematical research.

Limitations of existing benchmarks Existing benchmarks fall short of this objective: most focus
on high-school or undergraduate-level mathematics (Balunovic et al., 2025; Frieder et al., 2023), due
to the difficulty associated with designing rigorous, research-level problems. The few benchmarks
that do target more advanced mathematics, like FrontierMath (Glazer et al., 2024) and HLE (Phan
et al., 2025), focus exclusively on final-answer problems. As a result, they overlook proof-writing
capabilities and allow models to apply shortcuts to reach the correct final answer without fully solving
the problem (EpochAI, 2025).

This work: IMProofBench To fill this gap, we introduce IMProofBench, a private benchmark
developed in collaboration with the mathematical research community to evaluate LLMs on research-
level proof writing. IMProofBench is built on a custom platform and supported by initiatives that
actively involve professional mathematicians. It includes tasks ranging from challenging oral exam
questions in a graduate course to open research questions based on the contributors’ own work. Unlike
static benchmarks, IMProofBench is designed as a platform for continuous evaluation: problems
are added on a rolling basis, ensuring its continued relevance for evaluating the next generation of
frontier LLMs. Currently, IMProofBench consists of 54 problems developed in collaboration with
over 35 mathematicians, with 29 more questions in the latest stages of the problem creation pipeline.
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Question: Isomorphism Classes of Stable Graphs

Given an integer g ≥ 2, let Ng be the number of isomorphism classes of stable graphs
of genus g with precisely 3 edges. Give a closed formula for Ng valid for all g ≥ 2.

Follow-up subquestions: What are N3, N8, and N10000?

GPT-5 Reasoning Summary

Ng is a sum of connected multigraph types lim-
ited by 3 edges, considering partitions of genera.

Obtain experimental data for some values.

Submits a closed formula for Ng as a degree-3
quasi-polynomial with a period of 6.

Full Grade: 3/3 Subquestions:

GROK-4 Reasoning Summary

Full Grade: 2/3 Subquestions:

Finds a non-closed formula for Ng , requiring to
compute a sum from 1 to g.

Attempts to look up the sequence in OEIS.

Submits a very concise sketch of the answer, with
the non-closed formula for Ng .

Figure 1: Example IMProofBench problem. Models are tested on research-level questions in an
agentic framework with tool access. Grading of the main reasoning is done by a human expert, while
follow-up subquestions are evaluated using an automated parser. For the question above, models
other than GPT-5 and GROK-4 only made minor progress. For full details, see App. C.

Problem creation pipeline Each problem in IMProofBench is authored by a research mathemati-
cian within their area of expertise. Submissions undergo a rigorous review process by a core team
member and an additional mathematician with expertise in the relevant field. Reviewers provide
feedback that allows authors to refine their problems before finalization. Alongside the main proof-
writing tasks, authors are encouraged to add follow-up subquestions with final answers that can be
automatically graded. These follow-ups enable a comparison between proof-writing and final-answer
performance, while also supporting lower-cost evaluation across a broader range of models.

Evaluation process Evaluation is conducted in an agentic framework designed to mirror a research
environment. Models have access to computational tools such as Python and SageMath (sag, 2025), as
well as web search and multi-turn reasoning. Each model is first tasked with solving the main problem,
followed by the associated follow-up subquestions. The main solution is graded by the problem’s
author, who assigns a score from zero to three. Graders also annotate the types of errors, such as
logical mistakes, and identify specific areas of partial progress, such as correct intermediate insights.
Follow-up answers are automatically evaluated by comparing them with ground-truth solutions. We
illustrate this process in Fig. 1, which shows a sample problem with two model solutions.

Key results We evaluate 10 state-of-the-art LLMs on the current version of IMProofBench. Our
results show that models can already solve a small but meaningful fraction of research-level problems:
the best model, GPT-5, produces complete solutions for 22% of tasks, closely followed by GROK-4
at 19%. Notably, GROK-4 achieves the highest final-answer accuracy at 52%, surpassing GPT-5’s
42%. Other models lag further behind, with CLAUDE-OPUS-4.1 scoring particularly poorly, only
providing complete solutions in 3% of tasks.

Qualitative analysis Beyond aggregate scores, our analysis reveals that many models are prone
to reasoning errors, ranging from simple logical mistakes to deep misconceptions unlikely to be
exhibited by any professional mathematician in the relevant area. Indeed, almost half of the model
solutions contain arguments revealing fundamental misunderstandings of mathematical concepts,
as judged by human graders. Moreover, models frequently hallucinate existing results to obtain a
(flawed) answer. Finally, models almost never abstain from providing a solution attempt, preferring
to present convincing but incorrect proofs rather than admit they are stuck. At the same time, they
also show a wide-ranging familiarity with existing literature and can often provide insights that
could meaningfully support mathematicians on a substantial number of problems. These results
indicate that state-of-the-art LLMs can already aid mathematicians in their research, but also still
need significant supervision to avoid simple mistakes.
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Core contributions The core contributions of this work are:

• IMProofBench, a private and evolving benchmark for research-level problems, developed in
collaboration with the mathematical community.

• A systematic analysis of proof generation capabilities across state-of-the-art LLMs, demon-
strating that GPT-5 provides fully justified solutions for a small but non-trivial fraction of our
research-level problems, as judged by human expert graders.

• A qualitative analysis discussing both the difficulties and strengths of current state-of-the-art
models and their potential application to research-level mathematics.

2 RELATED WORK

We briefly review existing benchmarks that evaluate LLMs on mathematical reasoning tasks.

High-school and undergraduate benchmarks High-school and undergraduate problems are the
most common source of mathematical benchmarks due to their wide availability. Examples include
GSM8k (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021), along with more recent efforts such
as OmniMath (Gao et al., 2024), UGMathBench (Xu et al., 2025), and MathArena (Balunovic et al.,
2025). However, these benchmarks fail to measure model performance on realistic, research-level
tasks. Furthermore, even the most challenging competition problems are increasingly tractable for
state-of-the-art LLMs (Balunovic et al., 2025), meaning that these benchmarks are reaching their
saturation point. More importantly, most of these benchmarks do not evaluate proof-based reasoning.

Research-level benchmarks To move beyond competition problems, several benchmarks aim
to capture research-level mathematical reasoning, though each has notable limitations, and none
provide systematic proof evaluation. FrontierMath (Glazer et al., 2024) offers extremely challenging
private problems, though privileged access by OpenAI raises concerns about evaluation fairness
(AI, 2025). Humanity’s Last Exam (Phan et al., 2025) crowd-sources expert-level questions across
domains, including mathematics, but suffers from contamination risks due to its open nature and
reports of substantial noise in the benchmark (Skarlinski et al., 2025). RealMath (Zhang et al., 2025)
sources problems from arXiv papers, enabling dynamic evaluation of research-level problems, but
it is currently not being maintained. Finally, the UQ-Dataset (Nie et al., 2025) collects unsolved
StackExchange questions, many of them mathematical. While promising, it lacks systematic human
evaluation of proof validity, making consistent cross-model comparisons difficult.

Proof-based benchmarking efforts The importance of evaluating proof-generation capabilities
has recently gained attention, leading to a range of benchmarking efforts. For example, Mahdavi et al.
(2025) showed that models trained with reinforcement-style methods such as GRPO (Shao et al., 2024)
perform poorly at proof writing. However, more recent evaluations on the USAMO and IMO 2025
demonstrated substantial progress in the ability of frontier models to construct rigorous mathematical
arguments (Petrov et al., 2025; Balunovic et al., 2025). At the same time, other studies highlighted
a persistent gap between final-answer accuracy and genuine proof-writing ability, indicating that
final-answer benchmarks are not sufficient to measure mathematical capabilities (Guo et al., 2025;
Dekoninck et al., 2025). Despite these advances, benchmarks remain focused on high-school and
undergraduate mathematics, leaving research-level proof generation unexplored.

Formal math benchmarks A complementary line of work evaluates LLMs on their ability to
generate proofs in formal systems such as Lean (de Moura and Ullrich, 2021). Success in this
setting typically requires fine-tuning frontier models for this particular task (Ren et al., 2025; Lin
et al., 2025), as off-the-shelf LLMs perform poorly. Formal proofs offer the advantage of automatic
verification and scalable evaluation, but current models still lag significantly behind their natural
language proof counterparts (Dekoninck et al., 2025). Benchmarks in this space include PutnamBench
(Tsoukalas et al., 2024) and MiniF2F (Zheng et al., 2022), which formalize problems from well-
known mathematics competitions into Lean or Isabelle. Work on a Lean-based benchmark with
research-level problems is currently in progress with the ProofBench initiative (Bowler and Carmesin).
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Question Generation

Author

LLM

testanswer

Review

submit
Admin Expert

recruit

Accept?

Reject Accept
feedback

Benchmark

Find a closed formula
for the number N(g)

of stable graphs of
genus g with no

legs and precisely 3
edges, for all g ⩾ 2.

Figure 2: Workflow for question creation with peer review. Authors iteratively refine questions based
on expert review. A problem is only accepted once the reviewers have no further comments.

3 BENCHMARK METHODOLOGY

In this section, we present the creation and evaluation process of IMProofBench. We begin by
outlining our community outreach efforts (§3.1), followed by a description of the problem creation
pipeline (§3.2) and the evaluation methodology (§3.3). Finally, we discuss the current state of the
benchmark and our plans to maintain and extend it as a platform for continuous evaluation (§3.4).

3.1 COMMUNITY OUTREACH

Creating a novel and diverse collection of research-level problems is a challenging task, requiring
professional mathematicians from a wide range of fields. To facilitate this, we undertook several
initiatives to engage the community:

• Workshops: We organized several problem-creation sessions as satellite events at mathematical
research conferences.

• Posters and flyers: We distributed informational materials in math common rooms and confer-
ence venues to reach graduate students, postdocs, and faculty.

• Personal outreach: Organizers and motivated contributors actively contacted their academic
networks to invite participation.

These efforts are ongoing as we continue to expand the benchmark. Informal surveys of contributors
indicate that key motivating factors to participate include convenient access to frontier models via
the platform, curiosity about AI-generated responses to submitted questions, and the opportunity for
co-authorship on resulting publications for contributors whose questions are accepted.

3.2 PROBLEM CREATION PIPELINE

Question creation As shown in Fig. 2, authors draft questions through a dedicated web interface
and can immediately test them on an instance of GPT-5 configured with high reasoning effort, built-in
web search and code interpreter tools, and safeguards such as a 30-minute timeout and a cap of 20
evaluations per day to prevent abuse. This LLM interaction allows quick, optional feedback on both
difficulty and potential ambiguities. Importantly, problem selection criteria are independent of the
model’s performance on the draft question. Where possible, authors are asked to include follow-up
subquestions with unique, automatically gradable answers, with the option to assign point weights
for the solution of different subquestions to reflect their difficulty or importance. This facilitates
broader evaluation of more models by reducing reliance on human grading, while also supporting
comparisons between final-answer accuracy and proof-generation capability. To guide contributions,
authors receive detailed instructions that include illustrative examples and emphasize that questions
should require PhD-level insight, while avoiding standard textbook exercises or computational
problems. A complete description of the author instructions is provided in App. B.2.

Question peer-review process Once a question is submitted, an administrator recruits a reviewer
whose expertise aligns with the problem’s subject area. Reviewers are invited via email, with
invitations extended to both existing benchmark participants and external experts if necessary. The
review process follows an academic peer-review model, with the administrator and reviewer providing
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Agent

Frontier LLM

tools

Python SageMath

Web Bash

Multi-Turn Interaction

Find a closed formula for the number
N(g) of stable graphs of genus g with no
legs and precisely 3 edges, for all g ⩾ 2.

Inference

I will prove that N(g) = g3 ...

What is N(5)?

N(5) = 125

Human Grader
Grade: 1/3 (minor progress)

Error: Logic & Conceptual
Progress: Correct Insight

Automated Parser

Extracted: 125

Incorrect Correct

Figure 3: Evaluation workflow in a multi-turn environment with research tools. The main solution is
graded by a human expert, while follow-up questions are automatically evaluated.

detailed feedback, asking for revisions where necessary. While the reviewer concentrates on verifying
mathematical correctness and difficulty, the administrator ensures that the submission adheres to
the guidelines. Authors are then invited to revise their problem and respond to comments with
clarifications or adjustments. A problem is accepted only after both the administrator and reviewer
have no remaining concerns. A full description of the reviewer instructions is given in App. B.3.

3.3 MODEL EVALUATION

Evaluation environment As shown in Fig. 3, models are evaluated within an agentic framework
designed to approximate real research conditions. We use the Inspect framework (AI Security Institute,
2024) and give models access to a diverse set of tools:

• Python: a full scientific environment with NumPy, SciPy, SymPy, and related libraries.
• Bash: an Arch Linux console with persistent filesystem and computer algebra systems like GAP

(GAP, 2024), and Maxima (Maxima, 2025).
• SageMath: open-source mathematical software with specialized packages and mathematical

databases (sag, 2025).
• Web search: a tool for retrieving literature and external references.

A full description of these tools is provided in App. E. To submit an answer, models must use a
dedicated submit tool, which ensures a clear distinction between intermediate reasoning steps and
the final output. The submitted answer is either presented to the human grader for main questions
or compared with ground-truth answers for follow-up subquestions. Each model is allocated up to
300,000 tokens for main questions, with an additional 100,000 tokens available for each follow-up,
supporting extended interaction and tool use. In App. I.1 we describe some ablation experiments
where models were tested with a simpler one-turn evaluation and restricted tools. While some models
like GROK-4 show significant performance drops in this restricted setting, others like GPT-5 show
more complex patterns, exhibiting stronger performance with fewer tools.

Model selection and tiers To ensure scalability, we adopt a tiered evaluation system. Each model is
assigned to a tier that reflects its priority for human grading, allowing question authors to focus on the
most important submissions when their time is limited. The highest-priority tier includes state-of-the-
art models that demonstrate strong performance on existing benchmarks: GPT-5 (OpenAI, 2025b),
GEMINI-2.5-PRO (DeepMind, 2025), GROK-4 (xAI, 2025), and CLAUDE-OPUS-4.1 (Anthropic,
2025a). Lower tiers currently include O3 and O4-MINI (OpenAI, 2025a), GPT-4O (OpenAI, 2024),
GEMINI-2.5-FLASH (DeepMind, 2025), GROK-3 (xAI, 2025), and CLAUDE SONNET 4 (Anthropic,
2025b). A complete description of the tiers is provided in App. D.

Grading process Scoring of model answers takes place in two separate stages. First, follow-
up subquestions are automatically graded by comparing the model’s output with the ground-truth
reference. Currently, this automated evaluation is also manually verified by an administrator, who
can correct parsing errors and update the grading script if necessary. In the second stage, human
grading is conducted through our dedicated web interface. The question’s author serves as grader and
provides three types of feedback:
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• Error classification: identifying reasoning mistakes caused by incorrect logic, hallucinations,
calculation errors, or conceptual misunderstandings.

• Achievement indicators: marking whether the model demonstrated understanding, reached
correct conclusions, identified key insights, or produced useful reasoning.

• Overall progress: assigning a score of no (0/3), minor (1/3), major (2/3), or full (3/3) progress.

Error classification and achievement indicators are recorded as eight binary marks and enable a more
fine-grained analysis of model performance. In particular, this structure allows us to identify both the
areas where models can already assist research mathematicians and the areas where they remain most
prone to errors. To avoid bias, model identities remain hidden until grading is completed.

In App. I.2 we describe results from a preliminary analysis verifying grader reliability. While the
agreement on overall progress score is quite good (89% of pairwise comparisons within one point of
each other), the individual error and achievement categories show more mixed results (ranging from
84.9% for Correct End Results, to only 58.2% for the Incorrect Logic indicator). We do note that for
now the size of the comparison group is still small, and that we plan to conduct more comprehensive
grading comparisons in the future and study the sources of disagreement.

3.4 BENCHMARK STATISTICS AND FUTURE DEVELOPMENT

State of the benchmark IMProofBench is under active development, with this paper presenting
its first pilot phase. This initial version consists of 54 questions and 120 follow-up subquestions.
Topics range from areas of pure mathematics, such as algebraic geometry, combinatorics, and graph
theory, to applied subjects such as stochastic analysis and bioinformatics. In Fig. 13 of App. A,
we include a word cloud of question tags, weighted by frequency. Of the 54 benchmark problems,
authors characterize 13 as open research questions. A total of 35 mathematical researchers have
contributed at least one question in their area of expertise.

Continuous development With models showing rapid progress in mathematics, benchmarks are
being saturated at an accelerating pace. For example, the USAMO 2025 benchmark moved from
a solve rate below 5% to more than 60% in only a few months (Petrov et al., 2025; xAI, 2025).
To ensure that IMProofBench remains both unsaturated and challenging, we are committed to its
continuous development along several dimensions. First, we will maintain our problem creation
pipeline and accept problems on a rolling basis, while forming new strategic partnerships with
leading mathematical institutions to keep problem difficulty aligned with the capabilities of future
models. Second, to prevent contamination, we will employ a dynamic problem management system
in which authors are encouraged to revisit and possibly retire their problems once new publications or
techniques make them significantly easier. Third, we plan to create a transparent interface that allows
major companies or research labs to configure and provide their own agents for solving problems in
IMProofBench. This creates an opportunity to provide objective and equitable evaluations of internal
research models, ensuring that the benchmark reflects the latest state-of-the-art models and agents in
realistic settings. Other ideas for future work are given in App. F.

4 EXPERIMENTAL RESULTS

In this section, we give quantitative and qualitative summaries of model performance on IMProof-
Bench. In §4.1, we compare final-answer correctness and proof-generation capabilities of several
frontier LLMs. Then, in §4.2, we present a detailed analysis of errors and achievements made by
these models. In §4.3, we analyze token and tool usage. We conclude in §4.4 with a qualitative
discussion of several notable examples and overall results.

4.1 MAIN RESULTS

Proof-based evaluation As illustrated in Fig. 5, GPT-5 achieves the strongest performance,
producing a complete solution in 21% of cases. It fails to make any progress on only 17% of the
questions, showing that the model can engage meaningfully with most problems in the benchmark.
These results highlight both the impressive capabilities of current systems and the difficulty of
IMProofBench, as substantial progress remains possible. Importantly, none of the 13 open problems
were solved.
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Figure 4: Results on the 41 questions that include follow-up subquestions and human grading.
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Figure 5: Results on IMProofBench.

Final-answer evaluation In Fig. 4, we com-
pare performance between final-answer accu-
racy and full proof-based evaluation on the
41 questions that include both. While GROK-
4 is slightly worse compared to GPT-5 on
proof-based evaluation, it performs best on final-
answer accuracy, obtaining 52%. The ranking
of other models is consistent between the two
evaluation modes. Furthermore, the correlation
coefficient between author-weighted subques-
tion scores and the 0–3 progress scores assigned
by human graders is 0.48, while the Pearson cor-
relation between getting all subquestions right
and a full human grade of 3 for the main ques-
tion is 0.43. This suggests that final-answer evaluation is a useful proxy for model ability, but human
grading provides essential nuance and a more refined view of performance. In App. A, we analyze
final-answer accuracy over the full set of questions, including partial progress.

4.2 ERROR AND PROGRESS ANALYSIS

We now analyze the error and achievement indicators classified by the question authors. This provides
a clearer picture of where models fail and where they already provide meaningful help.

Error indicators As shown in Fig. 6, models make a wide variety of errors. Logical errors are the
most common, with models frequently introducing unfounded assumptions or claiming incorrect
implications. CLAUDE-OPUS-4.1 is particularly weak in this respect, having logical errors in nearly
80% of its responses. Conceptual errors are also widespread. Importantly, these errors are described
as fundamental misunderstandings of mathematical concepts in the grader guidelines, showing that
models do not fully understand some advanced mathematical concepts. Furthermore, hallucinations
are surprisingly frequent, with GEMINI-2.5-PRO hallucinating results in 50% of its answers. In
contrast, calculation mistakes are rare, which is expected since problems are proof-oriented and
models can rely on tools to perform calculations. A notable outlier among all models is GROK-4: it
often produces extremely short answers that only contain a final answer attempt without supporting
arguments. This leads graders to be unsure about the precise mistakes or achievements in its reasoning.

Achievement indicators As shown in Fig. 7, most models demonstrate general familiarity with the
background knowledge needed to understand the problems, which is an impressive achievement given
that many of these questions reference highly specialized mathematical concepts. Creative ideas are
rarer, but GPT-5 still displays non-trivial creativity in almost half its solutions. This indicates that the
model can already make remarkable progress on difficult problems. Finally, in some cases, models
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Figure 9: Token usage per question.

provide insights that could be helpful to expert mathematicians, with GPT-5 offering meaningful
contributions in about half its attempts. This is a significant achievement for any automated system.

4.3 TOOL AND TOKEN USAGE

As illustrated in Fig. 8 and Fig. 9, models vary widely in their resource usage, both in tool selection
and token consumption. GROK-4 spends almost three times as many reasoning tokens as other
models while producing relatively few output tokens. It is also the only model to make heavy use of
the bash tool. Inspection of its logs shows frequent use of the command line to download research
papers from arXiv (via wget or curl) and to convert them using utilities like strings or gs.
This sometimes gives GROK-4 an edge over models that rely only on internal search tools. Another
pattern is that O4-MINI relies heavily on the web search tool, averaging over 40 searches per problem,
while CLAUDE-OPUS-4.1 makes frequent use of Python, occasionally misusing it as a scratchpad
with many comments or static print statements. Usage plots for all models, including those only
evaluated on final-answer questions, are shown in App. A.

4.4 QUALITATIVE ANALYSIS

We now describe qualitative observations drawn from manual inspection of logs and grader comments.

Broad and deep literature knowledge Leading models such as GPT-5 show strong familiarity
with the mathematical literature and are often able to identify specialized results in published work.
However, they struggle to locate more obscure sources, such as private lecture notes, which human
experts often use.
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Use of specialized tools When confronted with complex computations, models frequently employ
tools like SageMath. However, more specialized packages that are accessible through the bash tool
pose challenges, with models often producing syntactically invalid code. After repeated failures, they
sometimes revert to more common libraries, e.g., by using a manual Python re-implementation.

Mistakes are often hidden Models are typically quite economical with their mistakes, adding
just a single simplifying assumption or incorrect claim. This one mistake often makes the problem
significantly easier but leads to incorrect conclusions. Importantly, they are usually presented with
confidence and framed rhetorically, for example, by stating that a “well-known result” implies a key
step. Sometimes, different models even independently converge on the same shortcut, leading to
parallel arguments that can create a false sense of consensus for the user. Although reasoning traces
are often not accessible, we did not find evidence of deliberate deception where models were aware
of their own mistakes and presented the flawed argument nonetheless.

Models rarely abstain Models rarely abstain from claiming a solution to the presented IMProof-
Bench questions. Even on the extremely challenging open problems in the benchmark, models almost
always make an attempt at a definite answer. This happens despite user preferences strongly favoring
an abstention over a mistaken but convincing proof.

GROK-4 gives short responses As noted earlier, GROK-4 often provides only a final answer,
particularly when the question allows for a short response. This occurs despite repeated instructions
to provide full proofs (see App. H). Combined with the hidden reasoning tokens in the GROK-4 API,
this made evaluations difficult and led to frequent “Not Sure” grades on our binary categories.

User testimonials For many contributors, this benchmark was their first hands-on experience with
state-of-the-art LLMs in an agentic setup. Participants at outreach events expressed surprise at the
level of performance (”Quite impressive, especially the case of degree 3 where one has to argue a
little bit...”). During grading, we found that some models applied new approaches to known problems,
surprising the expert graders (”Interestingly, I was not familiar with the correct solution from the
models, even though it is relatively fundamental.”). Although no open problems were solved, some
attempts received positive feedback (”Still I am amazed by the quality of the one-shot answers.”).

5 LIMITATIONS

The main limitation of IMProofBench is its current scale, with only 54 questions included so
far. However, we are continuously expanding the benchmark, with an additional 14 problems at
an advanced draft stage and 29 problems in the final stages of review. Even at this point, our
analysis already provides detailed and valuable insights into the potential of LLMs for research-level
mathematics, and these findings will become even more compelling as the benchmark develops further.
Much smaller-scale evaluations of proof-based problems, such as those conducted on the USAMO
and IMO 2025 (Petrov et al., 2025; Balunovic et al., 2025), have already produced meaningful
conclusions, which underscores the value of such efforts even when the number of problems is small.

6 CONCLUSION

In this paper, we introduced IMProofBench, a benchmark designed to evaluate research-level proof-
writing capabilities in LLMs. Unlike prior datasets that focus primarily on final answers, IMProof-
Bench evaluates whether models can produce logically sound arguments that meet the standards of
mathematical research. Each problem is authored and peer-reviewed by professional mathematicians,
and evaluation takes place in an agentic framework that mirrors a real research environment. Our
experiments with state-of-the-art LLMs show that models can already solve a meaningful subset of
research-level problems, with GPT-5 achieving complete solutions on 22% of tasks. These findings
highlight that while current models remain imperfect and prone to errors, they are already capable of
providing valuable support to working mathematicians for some problems.
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REPRODUCIBILITY STATEMENT

While the IMProofBench dataset remains private, we take several measures to ensure transparency of
the resulting evaluations: we give detailed descriptions of tested models and their API configuration
(App. D), an account of the tools available to them within the Inspect framework (App. E), and
the used evaluation prompts (App. H). We plan to release the code base of our web platform and
evaluation framework under a suitable open-source license before November 30, 2025, and to actively
encourage scrutiny, feedback, and participation by outside developers. This release will include
a continuously expanding collection of open sample problems that allow users to test the relevant
systems and reproduce our data analysis on this sample set.

Moreover, we are open to scientific collaborations with outside parties to conduct specific investiga-
tions using our problem and grading dataset. Such requests will be evaluated on a case-by-case basis
with the aim of ensuring the privacy commitments we make to our contributors.

ETHICS STATEMENT

We acknowledge that our project received support in the form of free credits for both the xAI and
the Gemini APIs, for which we thank the teams at the respective companies. These contributions
did not have an influence on our scientific evaluation of the respective models, which happens via a
model-agnostic framework.

We address several further ethical considerations:

• Contributor protection: Problems remain private to protect contributors’ intellectual property,
with generous withdrawal policies if questions lead to publishable insights. Contributors maintain
rights to their content and receive co-authorship on benchmark publications.

• Responsible AI evaluation: By keeping the dataset private and focusing on evaluation rather
than training data provision, we aim to measure capabilities without directly improving them.
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Figure 10: Average percentage of points for subquestion evaluation. Here, performance on any
individual question is weighted by the point rewards determined by the problem author. For the
models with at least two evaluations per question, we plot error bars (as explained in I.3).
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Figure 11: Token usage distribution for problem evaluation (main question and subquestions) for all
tested models.

A BENCHMARK COMPOSITION AND ADDITIONAL EVALUATION RESULTS

Performance on final-answer subquestions In Fig. 10, we present the average scores obtained by
all 10 evaluated models on the final-answer subquestions, using the author-appointed weights that
reflect importance or difficulty. As shown in the figure, GROK-4 achieves the highest performance,
with almost a 10% margin over the second-ranked model, GPT-5.

Token usage In Fig. 11, we show the distribution of reasoning and output tokens across the
evaluated questions. GROK-4 produces the longest reasoning traces but the shortest outputs among
all models in the benchmark, consistent with the trend described in §4.4. In contrast, the OpenAI
models show a more balanced ratio of reasoning to output tokens. The Gemini models use slightly
more reasoning tokens, while the Claude models generate more verbose outputs. With respect to
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Figure 12: Average tool usage for all tested models.

token limits, which allow 300k tokens for the main question and 100k tokens for each subquestion,
models almost always remain well below these thresholds.

Tool usage In Fig. 12, we show the average tool usage across models. The patterns differ substan-
tially. O4-MINI and O3 each make around 50 tool calls per problem, relying more heavily on the web
search tool than any other model in the leaderboard. Further, GROK-4 is the only model that makes
frequent use of the bash tool. Other models display broadly similar usage patterns, distributing their
calls among web search, Python, and SageMath.

Topics in IMProofBench In Fig. 13, we display the distribution of problem tags in IMProofBench.
The topic of ”Algebraic Geometry” currently dominates, reflecting the research focus of the bench-
mark organizers. These organizers both contributed problems themselves and solicited input primarily
from colleagues in their own academic networks. Future development of the benchmark will aim to
broaden its coverage to include a wider range of topics in pure and applied mathematics, as outlined
in App. F.

B HUMAN INTERFACE AND INSTRUCTIONS

In this appendix, we discuss how contributors and benchmark administrators interact with IMProof-
Bench, including the instructions and interface for different steps of the submission process (question
generation, review, and grading). In App. B.1, we give a brief overview of the main pages on the
web interface. Then, in App. B.2, we provide details on how questions are created and edited. In
App. B.3, we explain the review process. Finally, in App. B.4, we discuss the grading interface.

B.1 SUBMISSION WEBSITE

Contributors submit problems via a secure website designed for submitting and reviewing questions,
and grading AI answers (see Fig. 14). Features include:

• User accounts and permissions: Contributors can create an account tied to a (verified) email,
which allows them to author questions and use website features like the free AI solution pre-
views for these questions. Benchmark administrators have additional access to manage model
evaluations, review requests, and access a live view of benchmark results.

• Community features: The website shows a list of contributors (ordered by the number of
accepted questions or similar parameters) to encourage active participation, and links to a project
Zulip with further news and an opportunity to provide feedback.
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Figure 13: Word cloud of tags assigned to IMProofBench problems.

• Benchmark dashboard: Total numbers of contributors and questions in different stages of the
submission process are displayed to show project progress. An overview page with both live
results and archived snapshots of the benchmark state will be added in the future.

• About the project: Information about the IMProofBench is provided. This information contains
the initial whitepaper, an overview of core team members, a timeline of planned steps, and a
page with frequently asked questions. A privacy policy detailing our handling of user data is
linked in the footer of the page.

B.2 QUESTION CREATION AND EDITING

Benchmark problems are created through a structured interface that guides contributors through the
submission requirements. The system provides comprehensive guidelines (see Figure 15) emphasizing
the key characteristics of suitable benchmark problems.

Problem guidelines Effective benchmark problems must meet several criteria:

• PhD-level difficulty: Problems should be suitable for oral exams of graduate courses, research
papers, or advanced seminars, representing mathematics close to or at research-level.

• Genuine mathematical insight: Solutions must require non-routine approaches that cannot be
solved through pattern matching or standard algorithm application.

• Clear proof-based main question: The primary answer should consist of a complete mathemat-
ical argument rather than merely a numerical result.

• Auto-gradable subquestions: Each problem requires 2–3 subquestions with unique answers
(e.g., “Is the statement true for n = 5?” or “What is the rank of this group?”), enabling automated
evaluation.

Contributors should avoid problems solvable by lucky guessing, standard textbook exercises (even
from graduate texts), or purely computational problems that mathematical software can solve directly.
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Question editing interface The question creation and editing window (see Figure 16) provides a
comprehensive authoring environment with the following components:

• Main question editor: A text area supporting Markdown with LaTeX mathematics, featuring a
live preview pane that renders the formatted content in real-time. Contributors can use standard
LaTeX delimiters ($...$ for inline and $$...$$ for display mathematics).

• Problem metadata: A tags field allows contributors to categorize problems by area (e.g., “group
theory”, “representation theory”, or “permutation groups”) and special characteristics (e.g.,
“open problem” for questions where the author seeks but does not know the answer).

• AI solution preview: Contributors can test their questions against a frontier AI model (currently
GPT-5 with high reasoning effort) using up to 20 free attempts per day. This feature helps
authors evaluate whether their problem has appropriate difficulty and clarity.

• Sample solution: A dedicated editor for the complete solution, which serves as the reference for
reviewers and graders. The solution should demonstrate the expected level of rigor and detail to
allow expert review to verify correctness and serve as a reference for grading model answers.

• Subquestions management: A dynamic form system for adding multiple subquestions, where
each subquestion consists of:

– Question text (supporting Markdown and LaTeX)
– Expected answer field for the unique answer
– Evaluation method selector (e.g., exact match)
– Optional points value (defaulting to 1) for weighting subquestions by difficulty or impor-

tance
– Rationale field for explaining the correct answer

Question detail view Once submitted, questions are displayed in a detail view (see Figure 17) that
presents all components in their rendered form. This view shows:

• The question status in the submission pipeline (Draft → Under Review → Approved → Active)
• Rendered the main question and sample solution with properly formatted mathematics
• List of subquestions with their expected answers
• AI solution attempt preview when available
• Review comments from expert reviewers (when in review stage)
• Response interface allowing authors to address reviewer feedback and revise their submission

The detail view serves as the central hub for tracking a question’s progress through the review process
and facilitating communication between authors and reviewers.

B.3 REVIEW PROCESS AND INSTRUCTIONS

Each question is reviewed by at least one expert before being included in the benchmark. These
experts are invited to submit a review via email. An example of such an email is included below.

Reviewer invitation email

Dear [invited_user],

My name is [inviting_user] and I am part of a small team of mathematicians studying the
question of how good today’s AI models are at solving research-level math questions. As
part of this IMProofBench project, we are building a collection of challenging
mathematical problems to use for testing the AI performance.

We would like to ask for your help in verifying the mathematical correctness of one such
question. If you are interested to learn more about the project, further information is
available at https://improofbench.math.ethz.ch/faq/

The following question was submitted for inclusion in the IMProofBench dataset:

Title: Permutation representation
Author: Example Participant
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Would you be willing to review this question and:
- Verify that the phrasing is well-defined and unambiguous
- Confirm the provided solution is mathematically correct
- Make any suggestions for improvements (e.g., additional unique-answer subquestions)

We estimate that for most problems, this should take between 10 and 30 minutes.

You can view the full submitted problem and write a review at:
[ACCEPT_URL]

There, you will also have the option to decline this review request after viewing the
question.
Alternatively, you can decline immediately by clicking:
[DECLINE_URL]

If you provide a review, the question’s author will be notified and have the chance to
revise the question and compose a response. After seeing the response, you have the
option to submit a further review or recommend the question for acceptance in the
benchmark.

Thank you for considering this request!

Best regards,
[inviting_user]

Note: To track your review and allow you to see the author’s replies, accepting the
review request will create a user account for you on our website. You can optionally set
a password after submitting your review to log back in and e.g., contribute a question to
the benchmark yourself.

When the reviewer accepts the review invitation by clicking on the link, they are forwarded to
a webpage displaying the problem to be reviewed, along with a form for review submission and
further information (see Figure 18). The reviewer may also view the full review guidelines displayed
in Figure 19. The review consists of a short comment by the reviewer indicating improvements
and/or mistakes in the question statement. Before submitting the review, the reviewer decides on
a recommended action among the following: “Recommended for acceptance”, “Needs revision”
and “Not suitable”. The site admins are notified when a review is complete and can take action
accordingly. If the reviewer selects “Not suitable”, the question is automatically reset to the “draft”
status. Independent of the outcome, the author is permitted to submit an answer to the reviewer’s
comments and change the question if necessary. The reviewer may then either submit a new review
taking into account the changes, or a new reviewer may be invited.

B.4 GRADING INTERFACES

The grading system provides a structured interface for human evaluation of model-generated proofs
through a dedicated web page.

Human grading interface The main grading interface (see Figure 20) employs a three-column
layout designed to facilitate easy access to relevant information and the feedback form:

• Left column: Displays the question statement and sample solution for reference
• Center column: Shows the model’s complete response with mathematical rendering
• Right column: Contains the interactive grading panel with scoring controls

To prevent bias, model identities are concealed behind randomized aliases (Answer A, B, C, etc.) that
remain hidden until all answers for a question have been graded. The system maintains independent
grading sessions for each evaluator, with aliases shuffled differently to ensure blind evaluation.

Grading categories The scoring form consists of three main components providing multifaceted
evaluation, with relevant information available via concise tooltips:

AI mistake indicators: Four binary categories identifying common failure modes:

1. Incorrect Logic: Flawed logical steps or invalid reasoning
2. Hallucinated: References to non-existent theorems, papers, or results
3. Calculation: Arithmetic or algebraic errors
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4. Conceptual: Fundamental misunderstanding of mathematical concepts

AI achievement indicators Four binary categories recognizing positive aspects:

5. Understanding: Correctly identifies what needs to be proven or calculated
6. Correct Result: Arrives at the correct final answer (with N/A option for open-ended problems

or when the correct answer is unknown)
7. Insight: Shows creative problem-solving or novel approaches
8. Usefulness: Solution would be helpful to someone learning this topic

Each binary category offers three response options: “True”, “False”, or “Not Sure”, allowing graders
to indicate uncertainty when evaluation is ambiguous.

Overall progress A four-point scale (0–3) rating overall solution progress:

• 0/3: No progress toward solution
• 1/3: Minor progress with limited advancement
• 2/3: Major progress with substantial work completed
• 3/3: Complete solution achieved

This overall progress score serves as the primary metric for model ranking and comparison.

Additional grading features The interface includes several supporting elements to ensure grading
consistency and quality:

• Grading notes: A persistent text area where graders record their evaluation criteria and decision
patterns across all answers (e.g., “Matrix errors count as Calculation, Theory errors as Logic”).
These notes help maintain consistency when grading multiple model responses and facilitate
reproducibility in future grading sessions.

• Comments field: Answer-specific observations about edge cases or explanations for grading
decisions.

• Auto-save functionality: Grading selections are automatically preserved with a 2-second
debounce to prevent data loss.

• Focus mode: An optional distraction-free interface that maximizes screen space by hiding
navigation elements and allowing collapsible panels, enabling graders to concentrate on detailed
evaluation.

• Flag for organizers: Option to mark responses requiring special attention due to serious issues
or technical problems.

The grading workflow supports iterative evaluation, allowing graders to mark answers as complete,
incomplete, or given up (for responses that cannot be meaningfully evaluated). Once all model
answers for a question are marked complete, the system reveals the true model identities, enabling
post-hoc analysis of performance patterns.

C SAMPLE PROBLEM

Below, we present an example of a problem from the benchmark and discuss model performance and
solution strategies from our evaluation.

Background for reader (not included in benchmark question) A stable graph is a connected
graph Γ̂, multi-edges and loops allowed, together with a vertex-labeling by non-negative integers
(gv)v∈V (Γ̂) satisfying that each vertex v with gv = 0 has valence at least 3. These combinatorial
objects appear in algebraic geometry in the study of moduli spaces of stable curves, see e.g. (Schmitt
and van Zelm, 2020, Section 2). The genus of Γ̂ is defined as g = b1(Γ̂) +

∑
v∈V (Γ̂) gv , with b1 the

first Betti number (or cyclomatic number) of Γ̂.
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Question Given an integer g ≥ 2, let Ng be the number of isomorphism classes of stable graphs of
genus g with precisely 3 edges. Give a closed formula for Ng valid for all g ≥ 2.

Solution To compute Ng , we note that each stable graph Γ̂ has an undecorated underlying graph Γ,
which is one of the 10 connected multi-graphs with precisely 3 edges. Then Ng can be calculated
by summing over those graphs Γ and counting the number of assignments gv to the vertices of Γ,
avoiding double-counting by taking into account symmetries of Γ.

The final answer is that for g = 2 we have N2 = 2 and for g ≥ 3, we have

Ng =



1
9g

3 + 7
8g

2 + 5
12g − 2 if g ≡ 0 (mod 6)

1
9g

3 + 7
8g

2 + 1
6g −

155
72 if g ≡ 1 (mod 6)

1
9g

3 + 7
8g

2 + 5
12g −

20
9 if g ≡ 2 (mod 6)

1
9g

3 + 7
8g

2 + 1
6g −

19
8 if g ≡ 3 (mod 6)

1
9g

3 + 7
8g

2 + 5
12g −

16
9 if g ≡ 4 (mod 6)

1
9g

3 + 7
8g

2 + 1
6g −

187
72 if g ≡ 5 (mod 6)

Subquestions What is N3? (Answer: 9) What is N8? (Answer: 114) What is N10000? (Answer:
111198615276)

Model approaches and performance

• GPT-5 instantly identifies the solution strategy in its first reasoning step, writing ”Essentially,
I’m computing Ng as a sum of connected multigraph types limited by 3 edges and considering
partitions of genera”. It performs a Python calculation to obtain the first experimental data.
From theoretical considerations, it correctly identifies the shape of the final answer, writing

”Ultimately, I want a final closed formula for Ng as a degree-3 quasi-polynomial with a period of
6.”. After a few attempts, it calculates this polynomial via Lagrange interpolation on datapoints
with fixed residue modulo 6, discovering that the case g = 2 needs separate treatment. This not
only represents a perfect solution to the given problem, but also mirrors precisely the approach
of the human question author to solving the problem.

• GROK-4 obtains an expression for Ng in a single reasoning step, though no further details are
available as the GROK-4 API does not expose reasoning summaries. The model then uses a
Python tool to calculate the first values and the SageMath tool to look up the resulting integer
sequence in the OEIS database OEIS Foundation Inc. (2025). This being unsuccessful, it submits
a very concise sketch of its answer, which is slightly less simple than the formula for Ng above,
as it still features a summation over g − 2 terms.
In a second evaluation, GROK-4 uses the bash tool to download textbooks on algebraic graph
theory and moduli spaces of curves and convert them to text. Lacking the software tools for the
latter, it tries and fails to install new packages on the sandboxed Docker container, receiving an
error for attempting to use sudo rights. Finally, it abandons these attempts and just submits a
solution that is mostly correct, but has some small errors in one of the terms.

• CLAUDE-OPUS-4.1 also tries to combine combinatorial arguments with computer calculations
in SageMath, but fails to find even the contribution from 2-vertex graphs, forgetting some
topological possibilities for Γ. One noteworthy pattern is that the model includes very verbose
reasoning in the form of comments and static print statements within the SageMath code.

• GEMINI-2.5-PRO starts with a correct calculation of N2, N3, N4. However, then it makes
the completely unfounded claim that ”This implies that Ng is a quadratic polynomial in g.”,
whereas in reality it is a cubic quasi-polynomial. It then submits an answer based on that wrong
assumption. It does get partial credit in the subquestions for calculating N3 = 9 correctly.

D MODEL TIERS

We evaluate models across four tiers based on their capabilities and release timeline. Tier 1 comprises
current frontier models with state-of-the-art mathematical reasoning capabilities. Tier 3 includes
previous-generation models that have demonstrated strong mathematical performance. Tier 4 contains
legacy models included for historical comparison and baseline establishment. Currently, only models

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

in Tiers 1–3 are included in human grading to focus evaluation resources on the most relevant
comparisons.1

Table 1: Models evaluated in IMProofBench, organized by tier

Tier Model API Endpoint Parameters

1

CLAUDE-OPUS-4.1 claude-opus-4-1-20250805 cache prompt="auto"
max tokens=32000
reasoning tokens=31000

GPT-5 gpt-5 reasoning effort="high"
reasoning summary="auto"

GEMINI-2.5-PRO gemini-2.5-pro reasoning tokens=32768

GROK-4 grok-4-0709 —

3 O4-MINI o4-mini-2025-04-16 reasoning effort="high"
reasoning summary="auto"

4

CLAUDE SONNET 4 claude-sonnet-4-20250514 cache prompt="auto"
max tokens=64000
reasoning tokens=63000

GPT-4O gpt-4o-2024-11-20 —

GEMINI-2.5-FLASH gemini-2.5-flash reasoning tokens=24576

GROK-3 grok-3 —

O3 o3-2025-04-16 reasoning effort="high"
reasoning history="auto"
reasoning summary="auto"
reasoning tokens=100000

All models are evaluated using the Inspect framework with standardized prompting and tool access,
including Python execution, web search, and SageMath for advanced mathematical computation
(see App. E). The reasoning effort parameter, when specified as "high", enables enhanced
reasoning capabilities for models that support it. The reasoning tokens parameter controls
the maximum length of the model’s internal reasoning process, while max tokens limits the total
response length, including both reasoning and final answer.

E DETAILED TOOL DESCRIPTIONS

The evaluation environment for IMProofBench was designed to emulate the computational resources
available to research mathematicians when solving complex problems. Rather than restricting models
to basic arithmetic operations, we provide access to the same sophisticated mathematical software that
researchers routinely use in their work. This approach reflects the reality that modern mathematical
research frequently involves computational exploration, symbolic manipulation, and verification of
conjectures through extensive calculation.

E.1 TECHNICAL SPECIFICATIONS

All tools operate within the following constraints to balance computational power with practical
limitations:

• Timeout: 15 minutes per tool invocation
• Memory limit: 8 GB RAM per execution
• Environment: Isolated Docker container running Arch Linux
• Execution model: Independent tool calls (no variables persist between calls), but files written to

the filesystem remain accessible throughout the evaluation session
1Tier 2 is reserved for testing Command Line Interface models such as Claude Code, but implementation has

been deferred to a future version of the benchmark.
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E.2 CORE COMPUTATIONAL TOOLS

E.2.1 PYTHON ENVIRONMENT

The Python tool provides access to a comprehensive scientific computing environment (Python
3.13.7). This language was chosen for its prevalence in scientific computing and the extensive
familiarity that language models demonstrate with its syntax and libraries. The environment includes
standard numerical and symbolic computation packages:

• Numerical computing: NumPy, SciPy, pandas
• Symbolic mathematics: SymPy, SymEngine
• Visualization: Matplotlib (though output is text-based)
• Graph theory: NetworkX, igraph, graph-tool
• Optimization: CVXPY with multiple backend solvers (GLPK, ECOS, OSQP, SCS, CSDP)
• Machine learning: Basic scikit-learn functionality

Each Python execution runs independently with no variables or imports preserved between invocations,
though files written to disk remain accessible for subsequent tool calls.

E.2.2 BASH SHELL ACCESS

The bash tool provides command-line access to the evaluation environment, enabling models to
leverage specialized mathematical software that operates through command-line interfaces. This tool
serves as the gateway to domain-specific mathematical systems detailed in Section E.3.

E.2.3 SAGEMATH

SageMath (sag, 2025) (version 10.6) serves as the primary computer algebra system, providing a
unified Python-based interface to numerous mathematical software packages. Its significance in
the research community stems from its comprehensive coverage of mathematical domains and its
philosophy of combining the best open-source mathematics software into a coherent system.

Key features available through the sage computation tool include:

• Natural mathematical syntax through automatic preparsing (e.g., xˆ2 for exponentiation, K.<a>
for field extensions)

• Extensive algebraic capabilities: polynomial rings, number fields, elliptic curves, modular forms
• Combinatorial structures: graphs, matroids, posets, designs
• Specialized packages: admcycles for moduli spaces of curves, ore algebra for D-finite

functions and recurrence operators, pari jupyter for enhanced PARI/GP integration
• Integration with external systems: automatic interfacing with GAP, Maxima, PARI/GP, Singular

E.3 SPECIALIZED MATHEMATICAL SOFTWARE

The evaluation environment includes a comprehensive suite of specialized mathematical software,
accessible through the bash tool:

E.3.1 COMPUTER ALGEBRA SYSTEMS

• GAP (Groups, Algorithms, Programming): Specialized system for computational discrete
algebra, particularly group theory and combinatorics GAP (2024)

• Maxima: General-purpose computer algebra system for symbolic computation, descended from
MIT’s Macsyma Maxima (2025)

• PARI/GP (version 2.17.2): High-performance system focused on number theory computa-
tions The (2024)

• Singular: Specialized system for polynomial computations, commutative algebra, and algebraic
geometry Decker et al. (2024)
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• Polymake (version 4.14): System for research in polyhedral geometry and related areas Assarf
et al. (2017)

E.3.2 ALGEBRAIC AND GEOMETRIC COMPUTATION

• Normaliz: Computation of normalizations of affine semigroups and rational cones Bruns et al.
• LattE integrale: Lattice point enumeration and integration over convex polytopes Baldoni et al.

(2013)
• Gfan: Gröbner fans and tropical varieties computation
• 4ti2: Algebraic, geometric, and combinatorial problems on linear spaces
• msolve: Polynomial system solving over finite fields and rational numbers

E.3.3 GRAPH THEORY AND COMBINATORICS

• nauty and Traces: Graph automorphism and canonical labeling McKay and Piperno (2014)
• bliss: Another efficient graph automorphism tool
• igraph: Network analysis and graph algorithms library

E.3.4 OPTIMIZATION SOLVERS

• Linear Programming: GLPK (GNU Linear Programming Kit), Gurobi-compatible interfaces
• Mixed-Integer Programming: SCIP (Solving Constraint Integer Programs) Bolusani et al.

(2024)
• Semidefinite Programming: CSDP, DSDP for SDP problems
• SAT Solvers: glucose, kissat, cryptominisat for Boolean satisfiability

E.3.5 PROOF ASSISTANTS AND VERIFICATION

• Lean (de Moura and Ullrich, 2021): Interactive theorem prover and functional programming
language

• Mathics: Open-source alternative to Mathematica for symbolic computation

E.3.6 NUMERICAL AND SCIENTIFIC COMPUTING

• Julia: High-performance language for numerical computing
• SciLab: Numerical computational package similar to MATLAB
• FLINT: Fast Library for Number Theory
• NTL: High-performance number theory library

E.4 DATA RESOURCES

The environment includes numerous mathematical databases accessible through SageMath:

• Stein-Watkins database of elliptic curves
• Jones’ database of number fields
• Kohel database for elliptic curves and modular polynomials
• Cunningham tables for factorizations
• OEIS (Online Encyclopedia of Integer Sequences) integration
• Various polytope databases and mutation class data

E.5 WEB SEARCH CAPABILITIES

The web search tool provides access to current mathematical literature and online resources. The
implementation follows a provider-based architecture:
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• Internal providers: Models from OpenAI, Anthropic, and Grok utilize their respective built-in
web search capabilities, requiring no additional API keys

• External provider: Tavily is configured as a fallback for models without internal search
capabilities (e.g., Gemini), providing AI-optimized search results

Some models, notably GROK-4, combine web search capabilities with the wget bash command to
download full research papers for detailed analysis.

E.6 EXAMPLE TOOL USES FROM BENCHMARK EVALUATION

Below, we list some example tool applications that occurred during our model evaluations. In each
case, the full log file of the multi-turn evaluation reveals that the respective calculation played a
decisive role in allowing the model to find the correct answer. To preserve benchmark privacy, we
describe the relevant tool uses in general terms while leaving out the details of the specific benchmark
problem.

• Generating functions (Model: GROK-4, Tool: SageMath)
Solved combinatorics problem by calculating a generating function F (x) and forming the
exponential G(x) = exp(F (x)) to extract a specific coefficient from G

• Modular forms (Model: GROK-4, Tool: SageMath)
Compute q-expansion of the weight 12 cusp form ∆

• Group theory (Model: GPT-5, Tool: GAP (2024) via Bash Shell)
Accessed entries of the character table of a sporadic group

• Literature access (Model: GROK-4, Tool: Bash Shell)
Model uses curl to download PDF of paper from arXiv, installs the PyPDR2 package via pip,
and converts the PDF to text to obtain relevant information for the benchmark problem. Note:
after an initial failed attempt at installing the PyPDR2 package, the model uses the pip argument
--break-system-packages to force a user installation in the externally managed Python
environment of our sandboxed evaluation environment.

F PLANS FOR FUTURE DEVELOPMENT

Below, we give further details on our plans for the continuous development of IMProofBench.

• Scale and outreach: We aim to expand the benchmark to 150–300 problems, e.g. through
strategic partnerships with leading mathematical institutions (e.g., MFO Oberwolfach, IAS,
Fields Institute) and by recruiting domain-specific ambassadors who can promote participation
at conferences and within their research networks.

• Quality assurance and grading: To strengthen the scientific validity of our evaluations, we will
study inter-rater reliability by comparing expert gradings on the same problems. We will support
graders via AI-assisted pre-screening of model answers and refine our error classification system
to localize specific mistakes within solution texts rather than applying only global categories.

• Dynamic problem management: As mathematical knowledge evolves, problems may become
easier due to new publications or techniques. We will implement a generous retirement policy
allowing authors to withdraw problems affected by recent research, while regularly adding fresh
problems to maintain benchmark difficulty. We also plan to release small sets of sample problems
to provide the community with concrete reference points for gauging AI progress.

• Technical innovation: We plan to develop automated difficulty classifiers to predict which
problems challenge current AI systems, explore alternative evaluation formats (such as formula
reconstruction tasks and interactive problem-solving sessions), and implement bring-your-own-
agent interfaces to enable companies to test internal models against the benchmark.

• Model coverage: Beyond proprietary frontier models, we will evaluate leading open-source rea-
soning systems like DeepSeek-V3.1-Terminus and Qwen3-235B-Think, promoting the strongest
to Tier 1 status for human grading, ensuring long-term comparison baselines even as commercial
models are deprecated. Note: One reason why these models were not included in this initial
version of the benchmark is the ongoing challenges with enabling tool use for these models
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- a requirement to put them on equal footing with other models within the inspect evaluation
framework of IMProofBench.

• Evaluation modalities: Building on the existing IMProofBench platform and contributor
network, we plan to explore further problem types and evaluation methodology. This includes:

– combinations of informal and formalized questions and solutions (e.g., in collaboration
with the ProofBench project Bowler and Carmesin),

– specialized task formats with wide importance to mathematical research, such as formula
reconstruction for sequence data of natural/rational numbers, polynomials, . . . (see e.g.
Gauthier and Urban (2023); Belcak et al. (2022); D’Ascoli et al. (2022)),

– interactive or collaborative proof attempts, including provision of hints or feedback to the
model during evaluation time, more closely mimicking the setting of a researcher using
commercially available AI systems.

G USE OF LARGE LANGUAGE MODELS

We report our use of LLMs throughout this research project. The authors take full responsibility for
all content in this paper, including any LLM-assisted portions.

G.1 WRITING AND PRESENTATION

Claude Opus was used to generate an initial draft of Sections 3 and Appendices B, D, E, G, and I
and provided feedback and suggestions for our Reproducibility and Ethics Statements. Additionally,
Claude Opus provided proofreading assistance and offered stylistic and structural suggestions. GPT-5
was used to collect bibliography entries of software packages in Appendix D. All LLM-generated
content was thoroughly reviewed, fact-checked, and edited by the authors.

G.2 LITERATURE DISCOVERY AND RELATED WORK

During the ideation phase and preparation of the benchmark whitepaper, we used ChatGPT o3 and
Claude Opus Research to conduct comprehensive searches of the benchmarking literature and identify
related projects. These tools helped surface relevant prior work and ensure thorough coverage of the
existing landscape, though all citations were independently verified by the authors.

G.3 RESEARCH IMPLEMENTATION AND DEVELOPMENT

LLMs played a substantial role in implementing the benchmark infrastructure. Claude Code, supple-
mented by ChatGPT’s Codex CLI tool, assisted with:

• Development of the benchmark website and database architecture
• Adaptation of the Inspect framework for model evaluation
• Extraction and visualization of quantitative results

Additionally, Claude Opus provided support for organizational tasks, including meeting summaries
and the creation of promotional materials. The background image for our benchmark poster was
generated using GPT-5’s multimodal capabilities.

All code and implementations were tested, validated, and debugged by the authors to ensure correct-
ness and functionality.

H EVALUATION PROMPTS

Main Question Prompt

# Background
The IMProofBench project is a mathematical reasoning benchmark for AI systems, testing
their ability to solve research level math problems. Each such problem consists of one **
main question**, where the expected answer is a longform mathematical proof, and several
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related **subquestions** which have short, unique answers (e.g. a natural number). The
main answer will be graded by both human expert mathematicians (often the author of the
question) and AI evaluators, whereas subquestion answers are checked automatically using
a Python script.

# Structure of the evaluation
In the following we would like to evaluate your mathematical reasoning abilities on one
such problem. The overall structure of the conversation below is that we iterate through
the questions in order (main question, sub-question 1, sub-question 2, ...) and in each
step, you can:

- Read the current question
- Think about it in a multi-turn environment with tool use (see below)
- Submit the answer to the current question

At each point in the conversation, you have the context of the entire previous
conversation including your outputs in the thinking steps and the record of any tool uses
. Note that you will *not necessarily* have access to records of your internal reasoning
traces and internal tool uses, so any helpful information from these should be documented
in your (external) thinking outputs.

# Multi-turn reasoning environment
To help you solve the problem, you will have access to a multi-turn conversation
environment with optional tool use, based on the Inspect AI framework. At each step, you
can:

- Think out loud to analyze the problem, devise a solution approach, think through the
steps of mathematical arguments, etc.
- Use the ‘python‘ tool to run self-contained experiments in a standard python
environment
- Use the ‘bash‘ tool to execute commands inside a docker container (running ArchLinux
with some open-source mathematical software installed)
- Use the ‘web_search‘ tool to search for current information, mathematical definitions,
theorems, or recent research
- Use the ‘sage_computation‘ tool for conducting an experiment in a self-contained
SageMath terminal session
- Use the ‘submit‘ tool to provide your final answer to the current question (main or sub
-question)

All tools have a timeout of 15 minutes, maximal memory usage (RAM) of 8 GB and run on
standard 2025 hardware.

# Token constraints
You have {main_question_token_limit:,} tokens to solve the main question, and {
subquestion_token_limit:,} tokens for each of the following sub-questions. This counts
both your output tokens (including in tool calls) and your reasoning tokens. You are
informed about your current usage after each conversation turn.

# Answer format for main question
Below you will see the text of the main question. Once you finished reasoning about it,
you can register your answer using the ‘submit‘ tool. The answer for the main question
should be a detailed mathematical argument, formatted in Markdown with LaTeX formulas
using $...$ for inline mathematical expressions and $$...$$ for equations. Use Markdown [
link formatting](https://www.markdownguide.org/basic-syntax/#links) for including online
references, *not* any internal web-referencing system.

**Problem:**

{question_text}

Please work through this problem step by step. When you have your final answer, use the
submit() tool to submit it.

Subquestion Prompt

---

**Great work on the previous part!**

You have successfully completed the previous question. Now please solve the following
subquestion while keeping the context of your previous work:

**Subquestion {subquestion_order}:**
{subquestion_text}

**Instructions:**
- You can reference your work from previous parts
- Use the same mathematical tools available to you
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- When you have your final answer, use the submit() tool to submit it
- Be precise and specific in your answer format

Please proceed with solving this subquestion.

Conversation Status Update

Please continue working on the current question. To formally register your answer, use
the ‘submit‘ tool as per the original instructions above. Note: the conversation will
only proceed to the next stage once you use the ‘submit‘ tool.

Token usage: {current_tokens:,} of {token_limit:,} tokens used for this stage.

Python tool description

Use the python function to execute Python code.

The Python tool executes single-run Python scripts. Important notes:
1. Each execution is independent - no state is preserved between runs
2. You must explicitly use print() statements to see any output
3. Simply writing expressions (like in notebooks) will not display results
4. The script cannot accept interactive input during execution
5. Return statements alone won’t produce visible output
6. All variables and imports are cleared between executions
7. Standard output (via print()) is the only way to see results
8. This tool has a timeout of 15 minutes and maximal memory usage (RAM) of 8 GB

Bash tool description

Use this function to execute bash commands. Underlying system is ArchLinux with many
standard open-source computer algebra systems (like GAP) pre-installed.
This tool has a timeout of 15 minutes and maximal memory usage (RAM) of 8 GB.

Web search tool description

Use this function to search the web for current information, mathematical definitions,
theorems, or recent research.

This tool gives you access to up-to-date information that can help with:
- Looking up mathematical definitions and theorems
- Finding recent research papers or results
- Verifying computational results against known databases
- Checking current mathematical conventions or notation
- Finding examples of similar problems or techniques

The search results will include titles, URLs, and relevant excerpts from web pages.
Use this tool when you need information that might not be in your training data or when
you want to verify facts.

Sage tool description

Use the sage_computation function to run calculations in the open-source mathematics
software system SageMath.

The sage_computation tool executes single-run SageMath scripts. Important notes:
1. Each execution is independent - no state is preserved between runs
2. You must explicitly use print() statements to see any output
3. Simply writing expressions (like in notebooks) will not display results
4. The script cannot accept interactive input during execution
5. Return statements alone won’t produce visible output
6. All variables and imports are cleared between executions
7. Standard output (via print()) is the only way to see results
8. This tool has a timeout of 15 minutes and maximal memory usage (RAM) of 8 GB

All standard SageMath functions are pre-imported and available.
The SageMath preparser is applied, so you can use natural mathematical syntax.

Key Features:
- Natural syntax: Use xˆ2 for powers, K.<a> for field extensions
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- All mathematical objects pre-imported: Matrix, EllipticCurve, PolynomialRing, etc.
- Advanced packages available: admcycles for moduli spaces, and many more

Examples:
# Factor a polynomial
factor(xˆ100 - 1)

# Define a number field
K.<a> = NumberField(xˆ3 - 2)

# Work with elliptic curves
E = EllipticCurve([0, 1])
print(E.rank())

# Use specialized packages (example with admcycles)
from admcycles import *
G = StableGraph([1,1],[[1,3],[2,4]],[(1,2),(3,4)])
print(f"Automorphismsˆ2: {G.automorphism_number()ˆ2}")

IMPORTANT: Like the python() tool, you must use print() to see any output.
Nothing is returned automatically - always print your results!

Submit tool description

Submit your final answer for the current question or subquestion. Use Markdown + LaTeX
formatting.
The answer for the main question should be a detailed mathematical argument.

Your answer should be formatted as natural Markdown text with LaTeX formulas.
Use $ for inline math and $$ for display math, or \begin{equation} environments.
Use standard [Markdown link syntax](https://www.markdownguide.org/basic-syntax/#links)
for online references.

RECOMMENDED: Use raw strings (r’’’ or r"") to write LaTeX naturally without escaping.

Important formatting notes:
- Write your answer exactly as you would in a math document
- Use raw triple quotes r’’’ for multiline answers with LaTeX
- This lets you write \frac, \sqrt, \int naturally (no escaping needed)
- Include full mathematical reasoning with the final answer clearly stated
- Do not use custom macros (e.g., \Z, \Q, \RR, etc.). Only use valid standard LaTeX
commands

I FURTHER EXPERIMENTS AND STATISTICAL EVALUATIONS

In the section below we report on several additional evaluations, to test the effectiveness of our
agent harness and the reliability of our human grading scheme, and on statistical reliability of our
final-answer subquestion scores.

I.1 ABLATION TESTS USING NON-AGENTIC EVALUATION SETUP

Our first additional experiment aims to test the effectiveness of our evaluation setup, which uses the
inspect framework and with tool access as described in App. E. For this we conducted ablation tests
where models were presented with the main question, followed sequentially with all the subquestions,
but with

• minimal additional prompting, and single-turn thinking (answer is given by single model
reply),

• either no tools or selected sets of their native tools (like web search and code interpreter)
hosted by the API provider.

More precisely, the initial message to the model is simply the main question text. After an answer is
received, the follow-up prompt introducing the first subquestion is:
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Non-agentic prompt for first subquestion

Thanks! Below I’ll ask some follow-up questions, where answers will be parsed
automatically. They might repeat the main question or ask for results in special cases.
Please provide the final answer in a \boxed{} environment for easier extraction. This
desired answer will typically be short, either \boxed{Yes} or \boxed{No} or a numerical
result like \boxed{172} or \boxed{-13/45}. Do not use additional (LaTeX) formatting
within the \boxed environment.

Subquestion 1:
{subquestion_text}

Any further subquestions are presented as follows:

Non-agentic prompt for further subquestions

Thanks!
Subquestion {number}:
{subquestion_text}

In Table 2 we compare the performance of GPT-5 inside inspect (left) with the ablation setup given
various tools (right). We see that the best performance is actually achieved by only granting web

Code Interpreter

Inspect Web Search No Yes

52.5%
No 55.0% 47.6%
Yes 57.4% 51.2%

Table 2: Average final-answer subquestion scores

search, surpassing the score inside the inspect setup. In fact a striking pattern is that in the 2× 2 grid
on the right, granting web search leads to a boost of 2− 3 percentage points, whereas granting code
interpreter access actually decreases model performance by 6− 9 percentage points.

As a second experiment we compared the inspect setup with a no-tools ablation: While the score

Model Inspect No Tools

GEMINI-2.5-PRO 38.1% 39.4%
GROK-4 60.8% 44.4%

Table 3: Inspect vs. no-tool ablation results on final-answer subquestions

of GEMINI-2.5-PRO is basically unchanged, the example of GROK-4 shows that the inspect agent
framework can significantly boost the performance of some models.

I.2 PRELIMINARY ANALYSIS OF HUMAN GRADING RELIABILITY

To assess inter-rater reliability of our human grading scheme, we conducted a preliminary analysis
during which 15 questions were independently graded by multiple evaluators (11 questions by 2
graders, 4 questions by 3 graders), yielding 55 pairwise answer comparisons. Each grader worked
blindly, with model identities hidden behind randomized aliases.

For the overall progress grade (scored 0–3), graders achieved exact agreement in 50.9% of cases and
agreed within one point in 89.1% of cases, suggesting that the coarse-grained progress assessment
is reasonably reliable. At the question level, 18.2% of questions showed high overall agreement
(≥ 80%), 72.7% showed moderate agreement (60–79%), and only 9.1% showed low agreement
(< 60%).
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Agreement varied considerably across the eight binary grading categories, as shown in Table 4.
Objective categories such as “Correct End Result” showed high agreement (84.9%), while more
subjective error classifications like “Incorrect Logic” and assessments of “Mathematical Insight”
proved harder to pin down (both 58.2%). This suggests that while graders largely agree on whether a
solution succeeds and makes meaningful progress, diagnosing the precise nature of errors in failed
attempts involves more subjective judgment.

Category Agreement

Correct End Result 84.9%
Hallucinated Facts 74.5%
Problem Understanding 72.7%
Useful Progress 70.9%
Calculation Error 65.5%
Conceptual Error 61.8%
Mathematical Insight 58.2%
Incorrect Logic 58.2%

Table 4: Inter-rater agreement by grading category, based on 55 pairwise comparisons across 15
questions.

I.3 STATISTICAL UNCERTAINTY FROM STOCHASTIC LLM BEHAVIOR

For any AI benchmark, the reported model scores are empirical estimates subject to statistical
uncertainty. Following Miller (2024), there are two distinct sources of this uncertainty:

1. Finite question sampling: The benchmark questions represent a finite sample from a
hypothetical super-population of all questions testing the relevant skills. Even with deter-
ministic model behavior, the score on n questions would differ from the “true” score on that
super-population.

2. Stochastic model behavior: Due to temperature sampling and other sources of randomness,
a model may produce different answers—and hence different scores—when presented with
the same question multiple times.

The framework of Miller (2024) addresses the first source by computing standard errors from the
variance of scores between the actual set of test question and the whole hypothetical super-population.
However, this approach has limitations for our purposes: the resulting confidence intervals depend
only on the mean score and number of questions, adding no information beyond what is already visible
in the results. Moreover, such intervals could easily be misinterpreted as quantifying measurement
noise from stochastic model behavior, when they actually capture uncertainty about the question
sample.

We therefore focus on directly measuring the second source of uncertainty. For our Tier 1 models, we
conducted two independent evaluations per question, allowing us to estimate the variance attributable
to non-deterministic LLM behavior. Specifically, for each model M and question Q, we compute the
sample variance V (M,Q) of the weighted subquestion scores across the two evaluations. We then
estimate the standard deviation of the average score as

σ(M) =
1

N

√∑
Q

V (M,Q),

where N is the number of questions. The results are shown in Table 5.

The standard deviations range from approximately 3 to 4 percentage points across models, indicating
that the stochastic nature of model responses contributes meaningful but moderate uncertainty to the
final scores. A 95% confidence interval for each model’s score can be approximated as ±2σ, i.e.,
roughly ±6–8 percentage points.
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Model Score Std. Dev. (σ)

GROK-4 60.8% 3.54
GPT-5 53.6% 3.8
GEMINI-2.5-PRO 38.1% 4.1
CLAUDE-OPUS-4.1 36.4% 3.1

Table 5: Estimated standard deviations of average subquestion scores due to stochastic LLM behavior,
based on two evaluations per question (for n = 44 questions with at least one subquestion).
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Figure 14: Landing and overview page of IMProofBench website.
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Figure 15: Guidelines for authoring benchmark problems.
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Figure 16: Window for editing questions, solutions, and their associated subquestions; via the blue
button, the user can request up to 20 free AI solution previews per day to check the suitability of the
question.
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Figure 17: Overview page of question data (with main question, sample solution, AI answer preview,
and subquestions).
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Figure 18: Question review window showing text box for feedback and review instruction summary.
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Figure 19: Detailed explainer of review instructions and process.
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Figure 20: Grading form, displaying sample solution, model answer, and scoring form side by side.
Model identities (A–E) at the top are randomized on starting the grading, and only revealed when
grading is complete, to avoid bias.

38


	Introduction
	Related Work
	Benchmark Methodology
	Community Outreach
	Problem Creation Pipeline
	Model Evaluation
	Benchmark Statistics and Future Development

	Experimental Results
	Main Results
	Error and Progress Analysis
	Tool and Token Usage
	Qualitative Analysis

	Limitations
	Conclusion
	Benchmark Composition and Additional Evaluation Results
	Human Interface and Instructions
	Submission Website
	Question Creation and Editing
	Review Process and Instructions
	Grading Interfaces

	Sample Problem
	Model Tiers
	Detailed Tool Descriptions
	Technical Specifications
	Core Computational Tools
	Python Environment
	Bash Shell Access
	SageMath

	Specialized Mathematical Software
	Computer Algebra Systems
	Algebraic and Geometric Computation
	Graph Theory and Combinatorics
	Optimization Solvers
	Proof Assistants and Verification
	Numerical and Scientific Computing

	Data Resources
	Web Search Capabilities
	Example Tool Uses From Benchmark Evaluation

	Plans for future development
	Use of Large Language Models
	Writing and Presentation
	Literature Discovery and Related Work
	Research Implementation and Development

	Evaluation Prompts
	Further experiments and statistical evaluations
	Ablation tests using non-agentic evaluation setup
	Preliminary analysis of human grading reliability
	Statistical uncertainty from stochastic LLM behavior


