

IMPROOFBENCH: BENCHMARKING AI ON RESEARCH-LEVEL MATHEMATICAL PROOF GENERATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

010 As the mathematical capabilities of large language models (LLMs) improve, it
 011 becomes increasingly important to evaluate their performance on research-level
 012 tasks at the frontier of mathematical knowledge. However, existing benchmarks are
 013 limited, as they focus solely on final-answer questions or high-school competition
 014 problems. To address this gap, we introduce IMPProofBench, a private benchmark
 015 consisting of 54 peer-reviewed problems developed by expert mathematicians.
 016 Each problem requires a detailed proof and is paired with subproblems that have
 017 final answers, supporting both an evaluation of mathematical reasoning capabilities
 018 by human experts and a large-scale quantitative analysis through automated grading.
 019 Furthermore, unlike prior benchmarks, the evaluation setup simulates a realistic
 020 research environment: models operate in an agentic framework with tools like web
 021 search for literature review and mathematical software such as SageMath. Our
 022 results show that current LLMs can succeed at the more accessible research-level
 023 questions, but still encounter significant difficulties on more challenging problems.
 024 Quantitatively, GROK-4 achieves the highest accuracy of 61% on final-answer
 025 subproblems, while GPT-5 obtains the best performance for proof generation,
 026 achieving a fully correct solution for 21% of problems. IMPProofBench will con-
 027 tinue to evolve as a dynamic benchmark in collaboration with the mathematical
 028 community, ensuring its relevance for evaluating the next generation of LLMs.

1 INTRODUCTION

032 Large language models (LLMs) are making rapid progress on mathematical tasks, achieving strong
 033 results on challenging benchmarks like AIME (Balunovic et al., 2025) and FrontierMath (Glazer
 034 et al., 2024). These improvements suggest that LLMs may soon support mathematical research
 035 by collaborating with professional mathematicians on open problems. However, to determine
 036 whether current systems are capable of contributing in such settings, benchmarks are needed that test
 037 capabilities at the frontier of mathematical research.

038 **Limitations of existing benchmarks** Existing benchmarks fall short of this objective: most focus
 039 on high-school or undergraduate-level mathematics (Balunovic et al., 2025; Frieder et al., 2023), due
 040 to the difficulty associated with designing rigorous, research-level problems. The few benchmarks
 041 that do target more advanced mathematics, like FrontierMath (Glazer et al., 2024) and HLE (Phan
 042 et al., 2025), focus exclusively on final-answer problems. As a result, they overlook proof-writing
 043 capabilities and allow models to apply shortcuts to reach the correct final answer without fully solving
 044 the problem (EpochAI, 2025).

046 **This work: IMPProofBench** To fill this gap, we introduce IMPProofBench, a private benchmark
 047 developed in collaboration with the mathematical research community to evaluate LLMs on research-
 048 level proof writing. IMPProofBench is built on a custom platform and supported by initiatives that
 049 actively involve professional mathematicians. It includes tasks ranging from challenging oral exam
 050 questions in a graduate course to open research questions based on the contributors' own work. Unlike
 051 static benchmarks, IMPProofBench is designed as a platform for continuous evaluation: problems
 052 are added on a rolling basis, ensuring its continued relevance for evaluating the next generation of
 053 frontier LLMs. Currently, IMPProofBench consists of 54 problems developed in collaboration with
 over 35 mathematicians, with 29 more questions in the latest stages of the problem creation pipeline.

054	Question: Isomorphism Classes of Stable Graphs	
055	<p>Given an integer $g \geq 2$, let N_g be the number of isomorphism classes of stable graphs of genus g with precisely 3 edges. Give a closed formula for N_g valid for all $g \geq 2$.</p> <p>Follow-up subquestions: What are N_3, N_8, and N_{10000}?</p>	
056		
057		
058		
059	GPT-5 Reasoning Summary	
060	<p>N_g is a sum of connected multigraph types limited by 3 edges, considering partitions of genera.</p> <p> Obtain experimental data for some values.</p> <p>Submits a closed formula for N_g as a degree-3 quasi-polynomial with a period of 6.</p>	
061		
062		
063		
064		
065		
066		
067		
068	Full Grade: 3/3	Subquestions: ✓ ✓ ✓
069		
070	GROK-4 Reasoning Summary	
071	<p>Finds a non-closed formula for N_g, requiring to compute a sum from 1 to g.</p> <p> Attempts to look up the sequence in OEIS.</p> <p>Submits a very concise sketch of the answer, with the non-closed formula for N_g.</p>	
072		
073		
074	Full Grade: 2/3	Subquestions: ✓ ✓ ✓
075		

Figure 1: Example IMPProofBench problem. Models are tested on research-level questions in an agentic framework with tool access. Grading of the main reasoning is done by a human expert, while follow-up subquestions are evaluated using an automated parser. For the question above, models other than GPT-5 and GROK-4 only made minor progress. For full details, see App. C.

Problem creation pipeline Each problem in IMPProofBench is authored by a research mathematician within their area of expertise. Submissions undergo a rigorous review process by a core team member and an additional mathematician with expertise in the relevant field. Reviewers provide feedback that allows authors to refine their problems before finalization. Alongside the main proof-writing tasks, authors are encouraged to add follow-up subquestions with final answers that can be automatically graded. These follow-ups enable a comparison between proof-writing and final-answer performance, while also supporting lower-cost evaluation across a broader range of models.

Evaluation process Evaluation is conducted in an agentic framework designed to mirror a research environment. Models have access to computational tools such as Python and SageMath (sag, 2025), as well as web search and multi-turn reasoning. Each model is first tasked with solving the main problem, followed by the associated follow-up subquestions. The main solution is graded by the problem’s author, who assigns a score from zero to three. Graders also annotate the types of errors, such as logical mistakes, and identify specific areas of partial progress, such as correct intermediate insights. Follow-up answers are automatically evaluated by comparing them with ground-truth solutions. We illustrate this process in Fig. 1, which shows a sample problem with two model solutions.

Key results We evaluate 10 state-of-the-art LLMs on the current version of IMPProofBench. Our results show that models can already solve a small but meaningful fraction of research-level problems: the best model, GPT-5, produces complete solutions for 22% of tasks, closely followed by GROK-4 at 19%. Notably, GROK-4 achieves the highest final-answer accuracy at 52%, surpassing GPT-5’s 42%. Other models lag further behind, with CLAUDE-OPUS-4.1 scoring particularly poorly, only providing complete solutions in 3% of tasks.

Qualitative analysis Beyond aggregate scores, our analysis reveals that many models are prone to reasoning errors, ranging from simple logical mistakes to deep misconceptions unlikely to be exhibited by any professional mathematician in the relevant area. Indeed, almost half of the model solutions contain arguments revealing fundamental misunderstandings of mathematical concepts, as judged by human graders. Moreover, models frequently hallucinate existing results to obtain a (flawed) answer. Finally, models almost never abstain from providing a solution attempt, preferring to present convincing but incorrect proofs rather than admit they are stuck. At the same time, they also show a wide-ranging familiarity with existing literature and can often provide insights that could meaningfully support mathematicians on a substantial number of problems. These results indicate that state-of-the-art LLMs can already aid mathematicians in their research, but also still need significant supervision to avoid simple mistakes.

108 **Core contributions** The core contributions of this work are:
 109

- 110 • IMPProofBench, a private and evolving benchmark for research-level problems, developed in
 111 collaboration with the mathematical community.
- 112 • A systematic analysis of proof generation capabilities across state-of-the-art LLMs, demon-
 113 strating that GPT-5 provides fully justified solutions for a small but non-trivial fraction of our
 114 research-level problems, as judged by human expert graders.
- 115 • A qualitative analysis discussing both the difficulties and strengths of current state-of-the-art
 116 models and their potential application to research-level mathematics.

117
 118 **2 RELATED WORK**
 119

120 We briefly review existing benchmarks that evaluate LLMs on mathematical reasoning tasks.
 121

122 **High-school and undergraduate benchmarks** High-school and undergraduate problems are the
 123 most common source of mathematical benchmarks due to their wide availability. Examples include
 124 GSM8k (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021), along with more recent efforts such
 125 as OmniMath (Gao et al., 2024), UGMathBench (Xu et al., 2025), and MathArena (Balunovic et al.,
 126 2025). However, these benchmarks fail to measure model performance on realistic, research-level
 127 tasks. Furthermore, even the most challenging competition problems are increasingly tractable for
 128 state-of-the-art LLMs (Balunovic et al., 2025), meaning that these benchmarks are reaching their
 129 saturation point. More importantly, most of these benchmarks do not evaluate proof-based reasoning.
 130

131 **Research-level benchmarks** To move beyond competition problems, several benchmarks aim
 132 to capture research-level mathematical reasoning, though each has notable limitations, and none
 133 provide systematic proof evaluation. FrontierMath (Glazer et al., 2024) offers extremely challenging
 134 private problems, though privileged access by OpenAI raises concerns about evaluation fairness
 135 (AI, 2025). Humanity’s Last Exam (Phan et al., 2025) crowd-sources expert-level questions across
 136 domains, including mathematics, but suffers from contamination risks due to its open nature and
 137 reports of substantial noise in the benchmark (Skarlinski et al., 2025). RealMath (Zhang et al., 2025)
 138 sources problems from arXiv papers, enabling dynamic evaluation of research-level problems, but
 139 it is currently not being maintained. Finally, the UQ-Dataset (Nie et al., 2025) collects unsolved
 140 StackExchange questions, many of them mathematical. While promising, it lacks systematic human
 141 evaluation of proof validity, making consistent cross-model comparisons difficult.
 142

143 **Proof-based benchmarking efforts** The importance of evaluating proof-generation capabilities
 144 has recently gained attention, leading to a range of benchmarking efforts. For example, Mahdavi et al.
 145 (2025) showed that models trained with reinforcement-style methods such as GRPO (Shao et al., 2024)
 146 perform poorly at proof writing. However, more recent evaluations on the USAMO and IMO 2025
 147 demonstrated substantial progress in the ability of frontier models to construct rigorous mathematical
 148 arguments (Petrov et al., 2025; Balunovic et al., 2025). At the same time, other studies highlighted
 149 a persistent gap between final-answer accuracy and genuine proof-writing ability, indicating that
 150 final-answer benchmarks are not sufficient to measure mathematical capabilities (Guo et al., 2025;
 151 Dekoninck et al., 2025). Despite these advances, benchmarks remain focused on high-school and
 152 undergraduate mathematics, leaving research-level proof generation unexplored.
 153

154 **Formal math benchmarks** A complementary line of work evaluates LLMs on their ability to
 155 generate proofs in formal systems such as Lean (de Moura and Ullrich, 2021). Success in this
 156 setting typically requires fine-tuning frontier models for this particular task (Ren et al., 2025; Lin
 157 et al., 2025), as off-the-shelf LLMs perform poorly. Formal proofs offer the advantage of automatic
 158 verification and scalable evaluation, but current models still lag significantly behind their natural
 159 language proof counterparts (Dekoninck et al., 2025). Benchmarks in this space include PutnamBench
 160 (Tsoukalas et al., 2024) and MiniF2F (Zheng et al., 2022), which formalize problems from well-
 161 known mathematics competitions into Lean or Isabelle. Work on a Lean-based benchmark with
 research-level problems is currently in progress with the *ProofBench* initiative (Bowler and Carmesin).

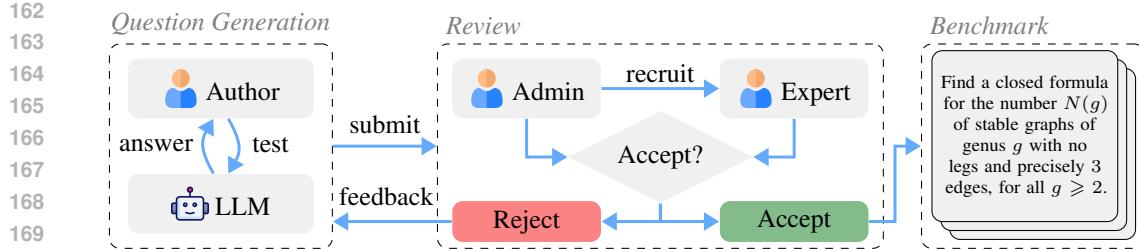


Figure 2: Workflow for question creation with peer review. Authors iteratively refine questions based on expert review. A problem is only accepted once the reviewers have no further comments.

3 BENCHMARK METHODOLOGY

In this section, we present the creation and evaluation process of IMPProofBench. We begin by outlining our community outreach efforts (§3.1), followed by a description of the problem creation pipeline (§3.2) and the evaluation methodology (§3.3). Finally, we discuss the current state of the benchmark and our plans to maintain and extend it as a platform for continuous evaluation (§3.4).

3.1 COMMUNITY OUTREACH

Creating a novel and diverse collection of research-level problems is a challenging task, requiring professional mathematicians from a wide range of fields. To facilitate this, we undertook several initiatives to engage the community:

- **Workshops:** We organized several problem-creation sessions as satellite events at mathematical research conferences.
- **Posters and flyers:** We distributed informational materials in math common rooms and conference venues to reach graduate students, postdocs, and faculty.
- **Personal outreach:** Organizers and motivated contributors actively contacted their academic networks to invite participation.

These efforts are ongoing as we continue to expand the benchmark. Informal surveys of contributors indicate that key motivating factors to participate include convenient access to frontier models via the platform, curiosity about AI-generated responses to submitted questions, and the opportunity for co-authorship on resulting publications for contributors whose questions are accepted.

3.2 PROBLEM CREATION PIPELINE

Question creation As shown in Fig. 2, authors draft questions through a dedicated web interface and can immediately test them on an instance of GPT-5 configured with high reasoning effort, built-in web search and code interpreter tools, and safeguards such as a 30-minute timeout and a cap of 20 evaluations per day to prevent abuse. This LLM interaction allows quick, optional feedback on both difficulty and potential ambiguities. Importantly, problem selection criteria are independent of the model’s performance on the draft question. Where possible, authors are asked to include follow-up subquestions with unique, automatically gradable answers, with the option to assign point weights for the solution of different subquestions to reflect their difficulty or importance. This facilitates broader evaluation of more models by reducing reliance on human grading, while also supporting comparisons between final-answer accuracy and proof-generation capability. To guide contributions, authors receive detailed instructions that include illustrative examples and emphasize that questions should require PhD-level insight, while avoiding standard textbook exercises or computational problems. A complete description of the author instructions is provided in App. B.2.

Question peer-review process Once a question is submitted, an administrator recruits a reviewer whose expertise aligns with the problem’s subject area. Reviewers are invited via email, with invitations extended to both existing benchmark participants and external experts if necessary. The review process follows an academic peer-review model, with the administrator and reviewer providing

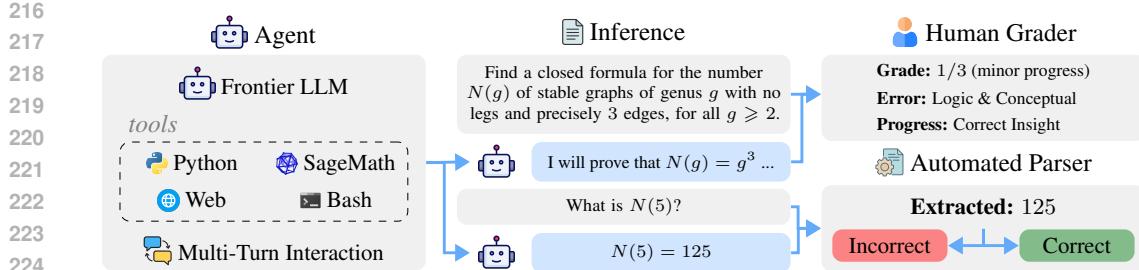


Figure 3: Evaluation workflow in a multi-turn environment with research tools. The main solution is graded by a human expert, while follow-up questions are automatically evaluated.

detailed feedback, asking for revisions where necessary. While the reviewer concentrates on verifying mathematical correctness and difficulty, the administrator ensures that the submission adheres to the guidelines. Authors are then invited to revise their problem and respond to comments with clarifications or adjustments. A problem is accepted only after both the administrator and reviewer have no remaining concerns. A full description of the reviewer instructions is given in App. B.3.

3.3 MODEL EVALUATION

Evaluation environment As shown in Fig. 3, models are evaluated within an agentic framework designed to approximate real research conditions. We use the Inspect framework (AI Security Institute, 2024) and give models access to a diverse set of tools:

- **Python:** a full scientific environment with NumPy, SciPy, SymPy, and related libraries.
- **Bash:** an Arch Linux console with persistent filesystem and computer algebra systems like GAP (GAP, 2024), and Maxima (Maxima, 2025).
- **SageMath:** open-source mathematical software with specialized packages and mathematical databases (sag, 2025).
- **Web search:** a tool for retrieving literature and external references.

A full description of these tools is provided in App. E. To submit an answer, models must use a dedicated submit tool, which ensures a clear distinction between intermediate reasoning steps and the final output. The submitted answer is either presented to the human grader for main questions or compared with ground-truth answers for follow-up subquestions. Each model is allocated up to 300,000 tokens for main questions, with an additional 100,000 tokens available for each follow-up, supporting extended interaction and tool use. In App. I.1 we describe some ablation experiments where models were tested with a simpler one-turn evaluation and restricted tools. While some models like GROK-4 show significant performance drops in this restricted setting, others like GPT-5 show more complex patterns, exhibiting *stronger* performance with fewer tools.

Model selection and tiers To ensure scalability, we adopt a tiered evaluation system. Each model is assigned to a tier that reflects its priority for human grading, allowing question authors to focus on the most important submissions when their time is limited. The highest-priority tier includes state-of-the-art models that demonstrate strong performance on existing benchmarks: GPT-5 (OpenAI, 2025b), GEMINI-2.5-PRO (DeepMind, 2025), GROK-4 (xAI, 2025), and CLAUDE-OPUS-4.1 (Anthropic, 2025a). Lower tiers currently include O3 and O4-MINI (OpenAI, 2025a), GPT-4O (OpenAI, 2024), GEMINI-2.5-FLASH (DeepMind, 2025), GROK-3 (xAI, 2025), and CLAUDE SONNET 4 (Anthropic, 2025b). A complete description of the tiers is provided in App. D.

Grading process Scoring of model answers takes place in two separate stages. First, follow-up subquestions are automatically graded by comparing the model’s output with the ground-truth reference. Currently, this automated evaluation is also manually verified by an administrator, who can correct parsing errors and update the grading script if necessary. In the second stage, human grading is conducted through our dedicated web interface. The question’s author serves as grader and provides three types of feedback:

- 270 • **Error classification:** identifying reasoning mistakes caused by incorrect logic, hallucinations,
271 calculation errors, or conceptual misunderstandings.
- 272 • **Achievement indicators:** marking whether the model demonstrated understanding, reached
273 correct conclusions, identified key insights, or produced useful reasoning.
- 274 • **Overall progress:** assigning a score of no (0/3), minor (1/3), major (2/3), or full (3/3) progress.

275
276 Error classification and achievement indicators are recorded as eight binary marks and enable a more
277 fine-grained analysis of model performance. In particular, this structure allows us to identify both the
278 areas where models can already assist research mathematicians and the areas where they remain most
279 prone to errors. To avoid bias, model identities remain hidden until grading is completed.

280 In App. I.2 we describe results from a preliminary analysis verifying grader reliability. While the
281 agreement on overall progress score is quite good (89% of pairwise comparisons within one point of
282 each other), the individual error and achievement categories show more mixed results (ranging from
283 84.9% for Correct End Results, to only 58.2% for the Incorrect Logic indicator). We do note that for
284 now the size of the comparison group is still small, and that we plan to conduct more comprehensive
285 grading comparisons in the future and study the sources of disagreement.

286 3.4 BENCHMARK STATISTICS AND FUTURE DEVELOPMENT

287 **State of the benchmark** IMPProofBench is under active development, with this paper presenting
288 its first pilot phase. This initial version consists of 54 questions and 120 follow-up subquestions.
289 Topics range from areas of pure mathematics, such as algebraic geometry, combinatorics, and graph
290 theory, to applied subjects such as stochastic analysis and bioinformatics. In Fig. 13 of App. A,
291 we include a word cloud of question tags, weighted by frequency. Of the 54 benchmark problems,
292 authors characterize 13 as open research questions. A total of 35 mathematical researchers have
293 contributed at least one question in their area of expertise.

294 **Continuous development** With models showing rapid progress in mathematics, benchmarks are
295 being saturated at an accelerating pace. For example, the USAMO 2025 benchmark moved from
296 a solve rate below 5% to more than 60% in only a few months (Petrov et al., 2025; xAI, 2025).
297 To ensure that IMPProofBench remains both unsaturated and challenging, we are committed to its
298 continuous development along several dimensions. First, we will maintain our problem creation
299 pipeline and accept problems on a rolling basis, while forming new strategic partnerships with
300 leading mathematical institutions to keep problem difficulty aligned with the capabilities of future
301 models. Second, to prevent contamination, we will employ a dynamic problem management system
302 in which authors are encouraged to revisit and possibly retire their problems once new publications or
303 techniques make them significantly easier. Third, we plan to create a transparent interface that allows
304 major companies or research labs to configure and provide their own agents for solving problems in
305 IMPProofBench. This creates an opportunity to provide objective and equitable evaluations of internal
306 research models, ensuring that the benchmark reflects the latest state-of-the-art models and agents in
307 realistic settings. Other ideas for future work are given in App. F.

309 4 EXPERIMENTAL RESULTS

310 In this section, we give quantitative and qualitative summaries of model performance on IMPProof-
311 Bench. In §4.1, we compare final-answer correctness and proof-generation capabilities of several
312 frontier LLMs. Then, in §4.2, we present a detailed analysis of errors and achievements made by
313 these models. In §4.3, we analyze token and tool usage. We conclude in §4.4 with a qualitative
314 discussion of several notable examples and overall results.

315 4.1 MAIN RESULTS

316 **Proof-based evaluation** As illustrated in Fig. 5, GPT-5 achieves the strongest performance,
317 producing a complete solution in 21% of cases. It fails to make any progress on only 17% of the
318 questions, showing that the model can engage meaningfully with most problems in the benchmark.
319 These results highlight both the impressive capabilities of current systems and the difficulty of
320 IMPProofBench, as substantial progress remains possible. Importantly, none of the 13 open problems
321 were solved.

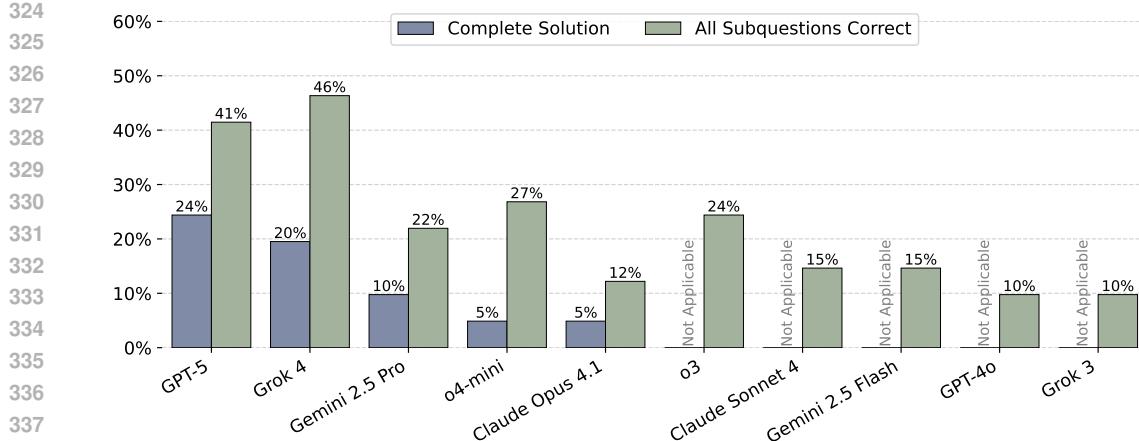


Figure 4: Results on the 41 questions that include follow-up subquestions and human grading.

Final-answer evaluation In Fig. 4, we compare performance between final-answer accuracy and full proof-based evaluation on the 41 questions that include both. While GROK-4 is slightly worse compared to GPT-5 on proof-based evaluation, it performs best on final-answer accuracy, obtaining 52%. The ranking of other models is consistent between the two evaluation modes. Furthermore, the correlation coefficient between author-weighted subquestion scores and the 0–3 progress scores assigned by human graders is 0.48, while the Pearson correlation between getting *all* subquestions right and a full human grade of 3 for the main question is 0.43. This suggests that final-answer evaluation is a useful proxy for model ability, but human grading provides essential nuance and a more refined view of performance. In App. A, we analyze final-answer accuracy over the full set of questions, including partial progress.

4.2 ERROR AND PROGRESS ANALYSIS

We now analyze the error and achievement indicators classified by the question authors. This provides a clearer picture of where models fail and where they already provide meaningful help.

Error indicators As shown in Fig. 6, models make a wide variety of errors. Logical errors are the most common, with models frequently introducing unfounded assumptions or claiming incorrect implications. CLAUDE-OPUS-4.1 is particularly weak in this respect, having logical errors in nearly 80% of its responses. Conceptual errors are also widespread. Importantly, these errors are described as fundamental misunderstandings of mathematical concepts in the grader guidelines, showing that models do not fully understand some advanced mathematical concepts. Furthermore, hallucinations are surprisingly frequent, with GEMINI-2.5-PRO hallucinating results in 50% of its answers. In contrast, calculation mistakes are rare, which is expected since problems are proof-oriented and models can rely on tools to perform calculations. A notable outlier among all models is GROK-4: it often produces extremely short answers that only contain a final answer attempt without supporting arguments. This leads graders to be unsure about the precise mistakes or achievements in its reasoning.

Achievement indicators As shown in Fig. 7, most models demonstrate general familiarity with the background knowledge needed to understand the problems, which is an impressive achievement given that many of these questions reference highly specialized mathematical concepts. Creative ideas are rarer, but GPT-5 still displays non-trivial creativity in almost half its solutions. This indicates that the model can already make remarkable progress on difficult problems. Finally, in some cases, models

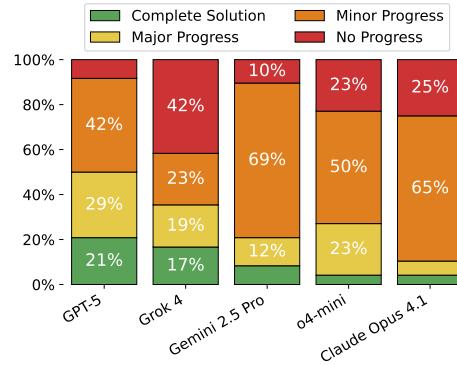


Figure 5: Results on IMPProofBench.

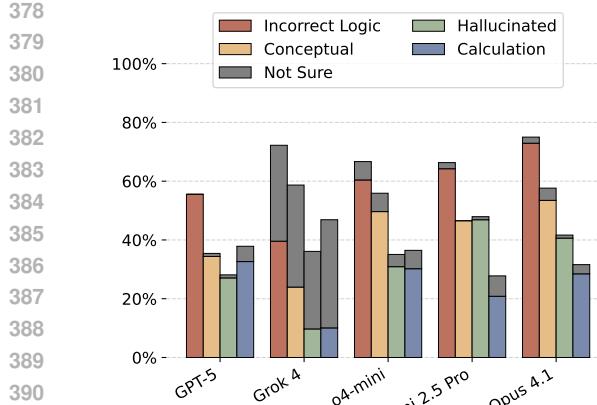


Figure 6: Error indicators

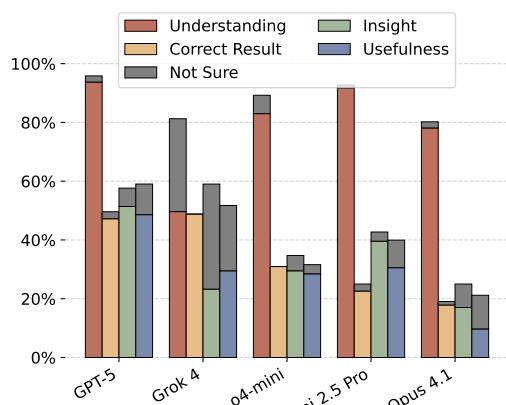


Figure 7: Achievement Indicators

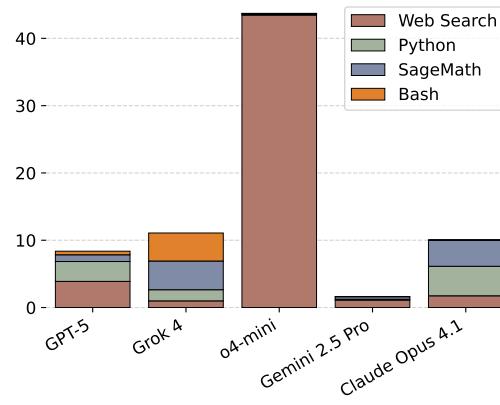


Figure 8: Average tool usage per question.

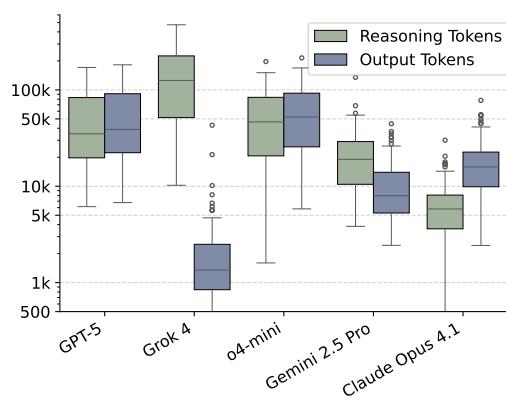


Figure 9: Token usage per question.

provide insights that could be helpful to expert mathematicians, with GPT-5 offering meaningful contributions in about half its attempts. This is a significant achievement for any automated system.

4.3 TOOL AND TOKEN USAGE

As illustrated in Fig. 8 and Fig. 9, models vary widely in their resource usage, both in tool selection and token consumption. GROK-4 spends almost three times as many reasoning tokens as other models while producing relatively few output tokens. It is also the only model to make heavy use of the bash tool. Inspection of its logs shows frequent use of the command line to download research papers from arXiv (via `wget` or `curl`) and to convert them using utilities like `strings` or `gs`. This sometimes gives GROK-4 an edge over models that rely only on internal search tools. Another pattern is that O4-MINI relies heavily on the web search tool, averaging over 40 searches per problem, while CLAUDE-OPUS-4.1 makes frequent use of Python, occasionally misusing it as a scratchpad with many comments or static `print` statements. Usage plots for all models, including those only evaluated on final-answer questions, are shown in App. A.

4.4 QUALITATIVE ANALYSIS

We now describe qualitative observations drawn from manual inspection of logs and grader comments.

Broad and deep literature knowledge Leading models such as GPT-5 show strong familiarity with the mathematical literature and are often able to identify specialized results in published work. However, they struggle to locate more obscure sources, such as private lecture notes, which human experts often use.

432 **Use of specialized tools** When confronted with complex computations, models frequently employ
 433 tools like SageMath. However, more specialized packages that are accessible through the bash tool
 434 pose challenges, with models often producing syntactically invalid code. After repeated failures, they
 435 sometimes revert to more common libraries, e.g., by using a manual Python re-implementation.
 436

437 **Mistakes are often hidden** Models are typically quite economical with their mistakes, adding
 438 just a single simplifying assumption or incorrect claim. This one mistake often makes the problem
 439 significantly easier but leads to incorrect conclusions. Importantly, they are usually presented with
 440 confidence and framed rhetorically, for example, by stating that a “well-known result” implies a key
 441 step. Sometimes, different models even independently converge on the *same* shortcut, leading to
 442 parallel arguments that can create a false sense of consensus for the user. Although reasoning traces
 443 are often not accessible, we did not find evidence of *deliberate deception* where models were aware
 444 of their own mistakes and presented the flawed argument nonetheless.
 445

446 **Models rarely abstain** Models rarely abstain from claiming a solution to the presented IMPProof-
 447 Bench questions. Even on the extremely challenging open problems in the benchmark, models almost
 448 always make an attempt at a definite answer. This happens despite user preferences strongly favoring
 449 an abstention over a mistaken but convincing proof.
 450

451 **GROK-4 gives short responses** As noted earlier, GROK-4 often provides only a final answer,
 452 particularly when the question allows for a short response. This occurs despite repeated instructions
 453 to provide full proofs (see App. H). Combined with the hidden reasoning tokens in the GROK-4 API,
 454 this made evaluations difficult and led to frequent “Not Sure” grades on our binary categories.
 455

456 **User testimonials** For many contributors, this benchmark was their first hands-on experience with
 457 state-of-the-art LLMs in an agentic setup. Participants at outreach events expressed surprise at the
 458 level of performance (“*Quite impressive, especially the case of degree 3 where one has to argue a*
 459 *little bit...*”). During grading, we found that some models applied new approaches to known problems,
 460 surprising the expert graders (“*Interestingly, I was not familiar with the correct solution from the*
 461 *models, even though it is relatively fundamental.*”). Although no open problems were solved, some
 462 attempts received positive feedback (“*Still I am amazed by the quality of the one-shot answers.*”).
 463

464 5 LIMITATIONS

465 The main limitation of IMPProofBench is its current scale, with only 54 questions included so
 466 far. However, we are continuously expanding the benchmark, with an additional 14 problems at
 467 an advanced draft stage and 29 problems in the final stages of review. Even at this point, our
 468 analysis already provides detailed and valuable insights into the potential of LLMs for research-level
 469 mathematics, and these findings will become even more compelling as the benchmark develops further.
 470 Much smaller-scale evaluations of proof-based problems, such as those conducted on the USAMO
 471 and IMO 2025 (Petrov et al., 2025; Balunovic et al., 2025), have already produced meaningful
 472 conclusions, which underscores the value of such efforts even when the number of problems is small.
 473

474 6 CONCLUSION

475 In this paper, we introduced IMPProofBench, a benchmark designed to evaluate research-level proof-
 476 writing capabilities in LLMs. Unlike prior datasets that focus primarily on final answers, IMPProof-
 477 Bench evaluates whether models can produce logically sound arguments that meet the standards of
 478 mathematical research. Each problem is authored and peer-reviewed by professional mathematicians,
 479 and evaluation takes place in an agentic framework that mirrors a real research environment. Our
 480 experiments with state-of-the-art LLMs show that models can already solve a meaningful subset of
 481 research-level problems, with GPT-5 achieving complete solutions on 22% of tasks. These findings
 482 highlight that while current models remain imperfect and prone to errors, they are already capable of
 483 providing valuable support to working mathematicians for some problems.
 484

486 REPRODUCIBILITY STATEMENT
487

488 While the IMPProofBench dataset remains private, we take several measures to ensure transparency of
489 the resulting evaluations: we give detailed descriptions of tested models and their API configuration
490 (App. D), an account of the tools available to them within the Inspect framework (App. E), and
491 the used evaluation prompts (App. H). We plan to release the code base of our web platform and
492 evaluation framework under a suitable open-source license before November 30, 2025, and to actively
493 encourage scrutiny, feedback, and participation by outside developers. This release will include
494 a continuously expanding collection of open sample problems that allow users to test the relevant
495 systems and reproduce our data analysis on this sample set.

496 Moreover, we are open to scientific collaborations with outside parties to conduct specific investiga-
497 tions using our problem and grading dataset. Such requests will be evaluated on a case-by-case basis
498 with the aim of ensuring the privacy commitments we make to our contributors.

500 ETHICS STATEMENT
501

502 We acknowledge that our project received support in the form of free credits for both the xAI and
503 the Gemini APIs, for which we thank the teams at the respective companies. These contributions
504 did not have an influence on our scientific evaluation of the respective models, which happens via a
505 model-agnostic framework.

506 We address several further ethical considerations:

- 508 • **Contributor protection:** Problems remain private to protect contributors' intellectual property,
509 with generous withdrawal policies if questions lead to publishable insights. Contributors maintain
510 rights to their content and receive co-authorship on benchmark publications.
- 511 • **Responsible AI evaluation:** By keeping the dataset private and focusing on evaluation rather
512 than training data provision, we aim to measure capabilities without directly improving them.

514 REFERENCES

515 Sagemath — open-source mathematical software system. <https://www.sagemath.org/>,
516 2025. Accessed: 2025-09-15.

518 Epoch AI. Clarifying the creation and use of the frontiermath benchmark. [https://epoch.ai/](https://epoch.ai/blog/openai-and-frontiermath)
519 blog/openai-and-frontiermath, January 2025. Accessed: 2025-09-25.

521 UK AI Security Institute. Inspect AI: Framework for Large Language Model Evaluations, 2024. URL
522 https://github.com/UKGovernmentBEIS/inspect_ai.

523 Anthropic. Claude 4.1 system card (addendum). Technical report, Anthropic, August 2025a.
524 Last updated September 15, 2025. Available at <https://assets.anthropic.com/m/4c024b86c698d3d4/original/Claude-4-1-System-Card.pdf>.

526 Anthropic. Claude opus 4 & claude sonnet 4 system card. Technical report, Anthropic, May
527 2025b. Last updated September 2, 2025. Available at <https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf>.

530 Benjamin Assarf, Ewgenij Gawrilow, Katrin Herr, Michael Joswig, Benjamin Lorenz, Andreas
531 Paffenholz, and Thomas Rehn. Computing convex hulls and counting integer points with
532 polymake. *Math. Program. Comput.*, 9(1):1–38, 2017. doi: 10.1007/s12532-016-0104-z.
533 URL <http://dx.doi.org/10.1007/s12532-016-0104-z>.

534 V. Baldoni, N. Berline, J. A. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, M. Vergne, and
535 J. Wu. *A User's Guide for Latte* *integrale* *v1.7.2*, 2013. URL <https://www.math.ucdavis.edu/~latte/>.

538 Mislav Balunovic, Jasper Dekoninck, Ivo Petrov, Nikola Jovanovic, and Martin T. Vechev. Matharena:
539 Evaluating llms on uncontaminated math competitions. *CoRR*, abs/2505.23281, 2025. doi: 10.48550/ARXIV.2505.23281. URL <https://doi.org/10.48550/arXiv.2505.23281>.

540 Peter Belcak, Ard Kastrati, Flavio Schenker, and Roger Wattenhofer. Fact: Learning governing
 541 abstractions behind integer sequences. *Advances in Neural Information Processing Systems*, 35:
 542 17968–17980, 2022.

543 Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionísio, Tim
 544 Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner,
 545 Christoph Graczyk, Katrin Halbig, Ivo Hedtke, Alexander Hoen, Christopher Hojny, Rolf van der
 546 Hulst, Dominik Kamp, Thorsten Koch, Kevin Kofler, Jurgen Lentz, Julian Manns, Goni Mexi,
 547 Erik Mühmer, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Mark Turner,
 548 Stefan Vigerske, Dieter Weninger, and Lixing Xu. The SCIP Optimization Suite 9.0. ZIB-Report
 549 24-02-29, Zuse Institute Berlin, February 2024. URL <https://nbn-resolving.org/urn:nbn:de:0297-zib-95528>.

550 Nathan Bowler and Johannes Carmesin. Proofbench: a benchmark suite for mathematical proof
 551 verification and generation. in preparation.

552 W. Bruns, B. Ichim, C. Söger, and U. von der Ohe. Normaliz. algorithms for rational cones and affine
 553 monoids. Available at <https://www.normaliz.uni-osnabrueck.de>.

554 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 555 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 556 Schulman. Training verifiers to solve math word problems. *CoRR*, abs/2110.14168, 2021.

557 Stéphane D’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, and Francois Charton. Deep
 558 symbolic regression for recurrence prediction. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
 559 Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, *Proceedings of the 39th International
 Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*,
 560 pages 4520–4536. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/d-ascoli22a.html>.

561 Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In
 562 André Platzer and Geoff Sutcliffe, editors, *Automated Deduction - CADE 28 - 28th International
 Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings*, volume
 563 12699 of *Lecture Notes in Computer Science*, pages 625–635. Springer, 2021. doi: 10.1007/
 564 978-3-030-79876-5_37. URL https://doi.org/10.1007/978-3-030-79876-5_37.

565 Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann. SINGULAR 4-4-0 —
 566 A computer algebra system for polynomial computations. <http://www.singular.uni-kl.de>, 2024.

567 Google DeepMind. Gemini 2.5 pro model card. Technical report, Google DeepMind,
 568 June 2025. URL <https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro.pdf>. Last updated: June 27, 2025; Accessed: 2025-09-21.

569 Jasper Dekoninck, Ivo Petrov, Kristian Minchev, Mislav Balunovic, Martin T. Vechev, Miroslav
 570 Marinov, Maria Drencheva, Lyuba Konova, Milen Shumanov, Kaloyan Tsvetkov, Nikolay
 571 Drenchev, Lazar Todorov, Kalina Nikolova, Nikolay Georgiev, Vanesa Kalinkova, and Mar-
 572 gulan Ismoldayev. The open proof corpus: A large-scale study of llm-generated mathe-
 573 matical proofs. *CoRR*, abs/2506.21621, 2025. doi: 10.48550/ARXIV.2506.21621. URL
 574 <https://doi.org/10.48550/arXiv.2506.21621>.

575 EpochAI. Introducing FrontierMath Tier 4, 2025. URL <https://x.com/EPOCHAIResearch/status/1943744468781289543>.

576 Simon Frieder, Luca Pinchetti, Alexis Chevalier, Ryan-Rhys Griffiths, Tommaso Salvatori,
 577 Thomas Lukasiewicz, Philipp Petersen, and Julius Berner. Mathematical capabilities of chatgpt.
 578 In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
 579 Levine, editors, *Advances in Neural Information Processing Systems 36: Annual Conference
 580 on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
 581 December 10 - 16, 2023*. URL http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html.

594 Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
 595 Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan,
 596 Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang. Omni-
 597 math: A universal olympiad level mathematic benchmark for large language models. *CoRR*,
 598 abs/2410.07985, 2024.

599 *GAP – Groups, Algorithms, and Programming, Version 4.14.0*. The GAP Group, 2024. URL
 600 <https://www.gap-system.org>.

601 Thibault Gauthier and Josef Urban. Learning program synthesis for integer sequences from scratch.
 602 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pages 7670–7677,
 603 2023.

604 Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caro-
 605 line Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, Olli Järvinen, Mi-
 606 Matthew Barnett, Robert Sandler, Matej Vrzala, Jaime Sevilla, Qiuyu Ren, Elizabeth Pratt, Lionel
 607 Levine, Grant Barkley, Natalie Stewart, Bogdan Grechuk, Tetiana Grechuk, Shreepranav Varma
 608 Enugandla, and Mark Wildon. Frontiermath: A benchmark for evaluating advanced mathematical
 609 reasoning in AI. *arXiv*, 2024.

610 Jiaxing Guo, Wenjie Yang, Shengzhong Zhang, Tongshan Xu, Lun Du, Da Zheng, and Zengfeng
 611 Huang. Right is not enough: The pitfalls of outcome supervision in training llms for math
 612 reasoning. *CoRR*, abs/2506.06877, 2025. doi: 10.48550/ARXIV.2506.06877. URL <https://doi.org/10.48550/arXiv.2506.06877>.

613 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 614 and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
 615 *NeurIPS Datasets and Benchmarks*, 2021.

616 Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng,
 617 Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang, Hongzhou
 618 Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover-v2: Scaling formal
 619 theorem proving with scaffolded data synthesis and self-correction. *CoRR*, abs/2508.03613, 2025.
 620 doi: 10.48550/ARXIV.2508.03613. URL <https://doi.org/10.48550/arXiv.2508.03613>.

621 Hamed Mahdavi, Alireza Hashemi, Majid Daliri, Pegah Mohammadipour, Alireza Farhadi, Samira
 622 Malek, Yekta Yazdanifard, Amir Khasahmadi, and Vasant Honavar. Brains vs. bytes: Evaluating
 623 llm proficiency in olympiad mathematics. *arXiv preprint arXiv:2504.01995*, 2025.

624 Maxima. Maxima, a computer algebra system. version 5.48.0, 2025. URL <https://maxima.sourceforge.io/>.

625 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. *Journal of Symbolic
 626 Computation*, 60:94–112, 2014. ISSN 0747-7171. doi: 10.1016/j.jsc.2013.09.003. URL <https://www.sciencedirect.com/science/article/pii/S0747717113001193>.

627 Evan Miller. Adding error bars to evals: A statistical approach to language model evaluations, 2024.
 628 URL <https://arxiv.org/abs/2411.00640>.

629 Fan Nie, Ken Ziyu Liu, Zihao Wang, Rui Sun, Wei Liu, Weijia Shi, Huaxiu Yao, Linjun Zhang,
 630 Andrew Y. Ng, James Zou, Sanmi Koyejo, Yejin Choi, Percy Liang, and Niklas Muennighoff. Uq:
 631 Assessing language models on unsolved questions, 2025. URL <https://arxiv.org/abs/2508.17580>.

632 OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2025. Published electronically
 633 at <http://oeis.org>.

634 OpenAI. Gpt-4o system card. Technical report, OpenAI, August 2024. Available at <https://cdn.openai.com/gpt-4o-system-card.pdf>.

635 OpenAI. Openai o3 and o4-mini system card, April 2025a. URL <https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf>.

648 OpenAI. Gpt-5 system card. Technical report, OpenAI, August 2025b. URL <https://cdn.openai.com/gpt-5-system-card.pdf>. Accessed: 2025-09-21.
 649
 650

651 Ivo Petrov, Jasper Dekoninck, Lyuben Baltadzhiev, Maria Drencheva, Kristian Minchev, Mislav
 652 Balunović, Nikola Jovanović, and Martin Vechev. Proof or bluff? evaluating llms on 2025 usa
 653 math olympiad. *arXiv preprint arXiv:2503.21934*, 2025.

654 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Sean Shi, Michael
 655 Choi, Anish Agrawal, Arnav Chopra, Adam Khoja, Ryan Kim, Jason Hausenloy, Oliver Zhang,
 656 et al. Humanity's last exam. *arXiv*, 2025.

657
 658 Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanja Zhao, Liyue Zhang,
 659 Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang, Yuxuan Liu,
 660 Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2: Advancing formal mathematical
 661 reasoning via reinforcement learning for subgoal decomposition. *CoRR*, abs/2504.21801, 2025.
 662 doi: 10.48550/ARXIV.2504.21801. URL <https://doi.org/10.48550/arXiv.2504.21801>.
 663

664 Johannes Schmitt and Jason van Zelm. Intersections of loci of admissible covers with tautological
 665 classes. *Selecta Math. (N.S.)*, 26(5):Paper No. 79, 69, 2020. ISSN 1022-1824. doi: 10.1007/s00029-020-00603-4. URL <https://doi.org/10.1007/s00029-020-00603-4>.

666
 667 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
 668 Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
 669 language models. *CoRR*, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL
 670 <https://doi.org/10.48550/arXiv.2402.03300>.

671
 672 Michael Skarlinski, Jonathan Laurent, Andy Bou, and Adam White. About 30% of humanity's
 673 last exam chemistry/biology answers are likely wrong. <https://www.futurehouse.org/research-announcements/hle-exam>, July 23 2025. FutureHouse Research. Accessed:
 674 2025-09-01.
 675

676 *PARI/GP version 2.17.2*. The PARI Group, Univ. Bordeaux, 2024. available from <http://pari.math.u-bordeaux.fr/>.
 677

678 George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
 679 tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the
 680 putnam mathematical competition. *CoRR*, abs/2407.11214, 2024.

681
 682 xAI. Grok 3 beta — the age of reasoning agents, February 2025. URL <https://x.ai/news/grok-3>. Accessed: 2025-04-03.

683
 684 xAI. Grok 4 model card. Technical report, xAI, August 2025. Last updated August 20, 2025.
 685 Available at <https://data.x.ai/2025-08-20-grok-4-model-card.pdf>.

686
 687 Xin Xu, Jiaxin Zhang, Tianhao Chen, Zitong Chao, Jishan Hu, and Can Yang. Ugmathbench:
 688 A diverse and dynamic benchmark for undergraduate-level mathematical reasoning with large
 689 language models. *arXiv preprint arXiv:2501.13766*, 2025.

690
 691 Jie Zhang, Cezara Petru, Kristina Nikolic, and Florian Tramèr. Realmath: A continuous benchmark
 692 for evaluating language models on research-level mathematics. *CoRR*, abs/2505.12575, 2025.
 693 doi: 10.48550/ARXIV.2505.12575. URL <https://doi.org/10.48550/arXiv.2505.12575>.

694
 695 Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark for formal
 696 olympiad-level mathematics. In *ICLR*. OpenReview.net, 2022.

697
 698
 699
 700
 701

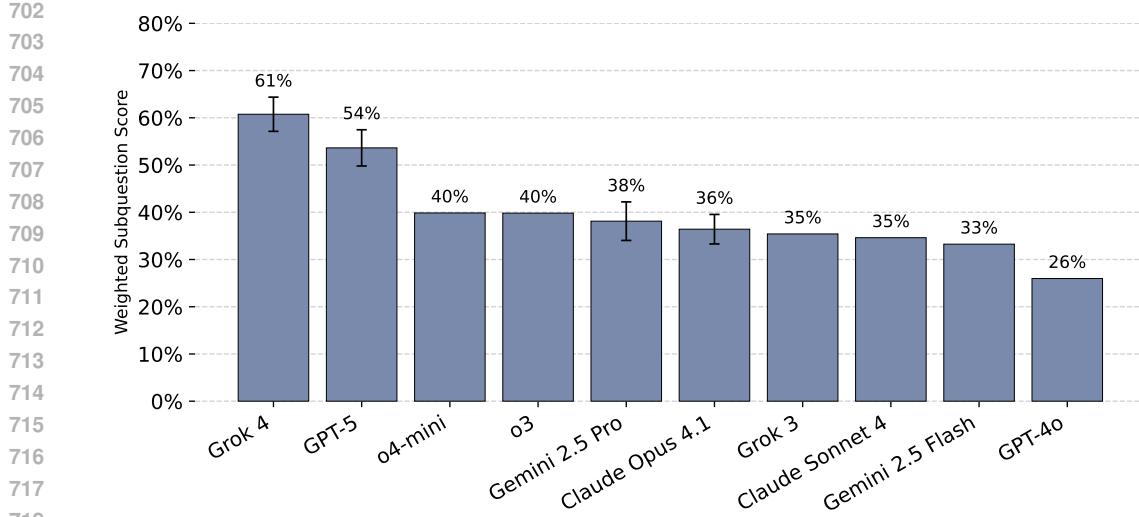


Figure 10: Average percentage of points for subquestion evaluation. Here, performance on any individual question is weighted by the point rewards determined by the problem author. For the models with at least two evaluations per question, we plot error bars (as explained in I.3).

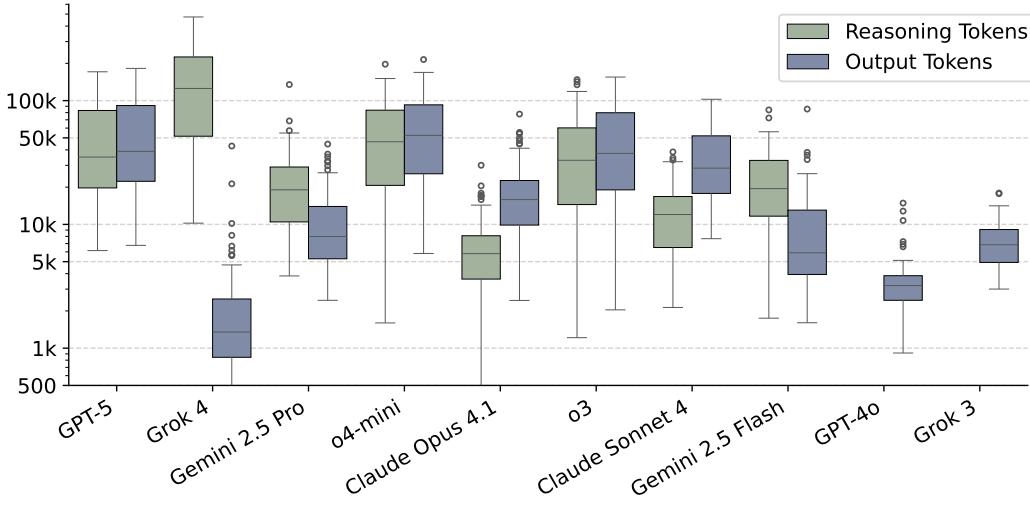


Figure 11: Token usage distribution for problem evaluation (main question and subquestions) for all tested models.

A BENCHMARK COMPOSITION AND ADDITIONAL EVALUATION RESULTS

Performance on final-answer subquestions In Fig. 10, we present the average scores obtained by all 10 evaluated models on the final-answer subquestions, using the author-appointed weights that reflect importance or difficulty. As shown in the figure, GROK-4 achieves the highest performance, with almost a 10% margin over the second-ranked model, GPT-5.

Token usage In Fig. 11, we show the distribution of reasoning and output tokens across the evaluated questions. GROK-4 produces the longest reasoning traces but the shortest outputs among all models in the benchmark, consistent with the trend described in §4.4. In contrast, the OpenAI models show a more balanced ratio of reasoning to output tokens. The Gemini models use slightly more reasoning tokens, while the Claude models generate more verbose outputs. With respect to

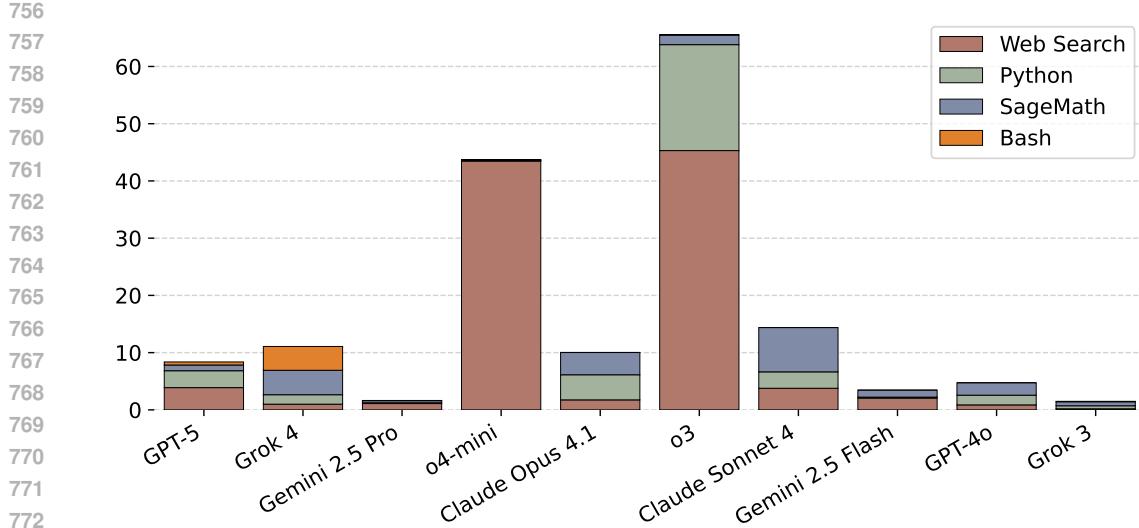


Figure 12: Average tool usage for all tested models.

token limits, which allow 300k tokens for the main question and 100k tokens for each subquestion, models almost always remain well below these thresholds.

Tool usage In Fig. 12, we show the average tool usage across models. The patterns differ substantially. O4-MINI and O3 each make around 50 tool calls per problem, relying more heavily on the web search tool than any other model in the leaderboard. Further, GROK-4 is the only model that makes frequent use of the bash tool. Other models display broadly similar usage patterns, distributing their calls among web search, Python, and SageMath.

Topics in IMPProofBench In Fig. 13, we display the distribution of problem tags in IMPProofBench. The topic of "Algebraic Geometry" currently dominates, reflecting the research focus of the benchmark organizers. These organizers both contributed problems themselves and solicited input primarily from colleagues in their own academic networks. Future development of the benchmark will aim to broaden its coverage to include a wider range of topics in pure and applied mathematics, as outlined in App. F.

B HUMAN INTERFACE AND INSTRUCTIONS

In this appendix, we discuss how contributors and benchmark administrators interact with IMPProofBench, including the instructions and interface for different steps of the submission process (question generation, review, and grading). In App. B.1, we give a brief overview of the main pages on the web interface. Then, in App. B.2, we provide details on how questions are created and edited. In App. B.3, we explain the review process. Finally, in App. B.4, we discuss the grading interface.

B.1 SUBMISSION WEBSITE

Contributors submit problems via a secure website designed for submitting and reviewing questions, and grading AI answers (see Fig. 14). Features include:

- **User accounts and permissions:** Contributors can create an account tied to a (verified) email, which allows them to author questions and use website features like the free AI solution previews for these questions. Benchmark administrators have additional access to manage model evaluations, review requests, and access a live view of benchmark results.
- **Community features:** The website shows a list of contributors (ordered by the number of accepted questions or similar parameters) to encourage active participation, and links to a project Zulip with further news and an opportunity to provide feedback.

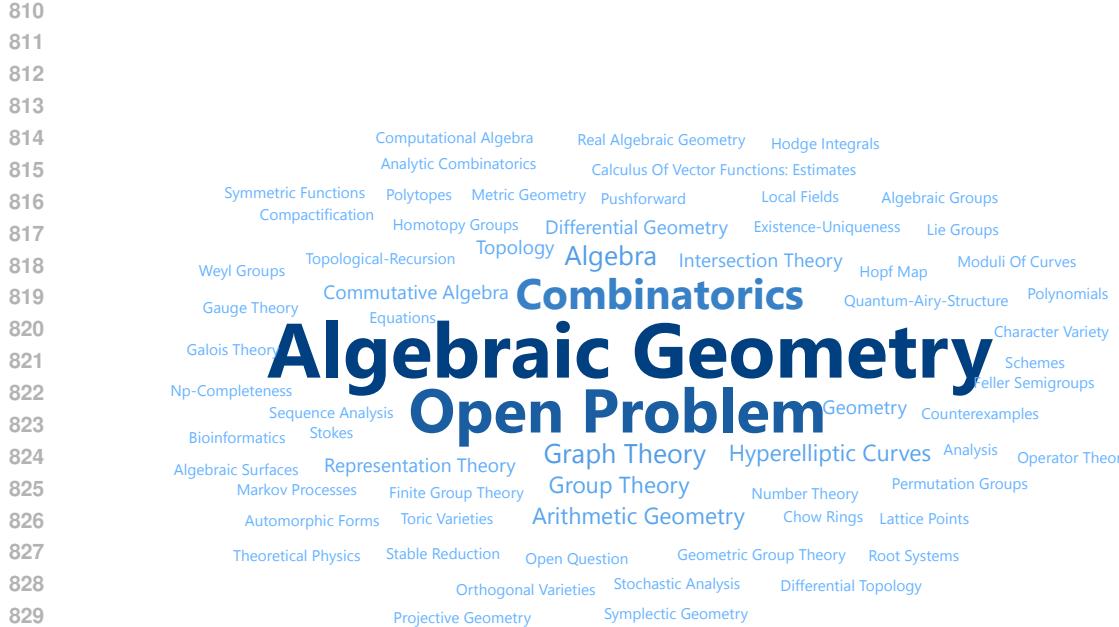


Figure 13: Word cloud of tags assigned to IMPProofBench problems.

- **Benchmark dashboard:** Total numbers of contributors and questions in different stages of the submission process are displayed to show project progress. An overview page with both live results and archived snapshots of the benchmark state will be added in the future.
- **About the project:** Information about the IMPProofBench is provided. This information contains the initial whitepaper, an overview of core team members, a timeline of planned steps, and a page with frequently asked questions. A privacy policy detailing our handling of user data is linked in the footer of the page.

B.2 QUESTION CREATION AND EDITING

Benchmark problems are created through a structured interface that guides contributors through the submission requirements. The system provides comprehensive guidelines (see Figure 15) emphasizing the key characteristics of suitable benchmark problems.

Problem guidelines Effective benchmark problems must meet several criteria:

- **PhD-level difficulty:** Problems should be suitable for oral exams of graduate courses, research papers, or advanced seminars, representing mathematics close to or at research-level.
- **Genuine mathematical insight:** Solutions must require non-routine approaches that cannot be solved through pattern matching or standard algorithm application.
- **Clear proof-based main question:** The primary answer should consist of a complete mathematical argument rather than merely a numerical result.
- **Auto-gradable subquestions:** Each problem requires 2–3 subquestions with unique answers (e.g., “Is the statement true for $n = 5$?” or “What is the rank of this group?”), enabling automated evaluation.

Contributors should avoid problems solvable by lucky guessing, standard textbook exercises (even from graduate texts), or purely computational problems that mathematical software can solve directly.

864 **Question editing interface** The question creation and editing window (see Figure 16) provides a
 865 comprehensive authoring environment with the following components:
 866

- 867 • **Main question editor:** A text area supporting Markdown with LaTeX mathematics, featuring a
 868 live preview pane that renders the formatted content in real-time. Contributors can use standard
 869 LaTeX delimiters ($\$ \dots \$$ for inline and $\$ \$ \dots \$ \$$ for display mathematics).
- 870 • **Problem metadata:** A tags field allows contributors to categorize problems by area (e.g., “group
 871 theory”, “representation theory”, or “permutation groups”) and special characteristics (e.g.,
 872 “open problem” for questions where the author seeks but does not know the answer).
- 873 • **AI solution preview:** Contributors can test their questions against a frontier AI model (currently
 874 GPT-5 with high reasoning effort) using up to 20 free attempts per day. This feature helps
 875 authors evaluate whether their problem has appropriate difficulty and clarity.
- 876 • **Sample solution:** A dedicated editor for the complete solution, which serves as the reference for
 877 reviewers and graders. The solution should demonstrate the expected level of rigor and detail to
 878 allow expert review to verify correctness and serve as a reference for grading model answers.
- 879 • **Subquestions management:** A dynamic form system for adding multiple subquestions, where
 880 each subquestion consists of:
 - 881 – Question text (supporting Markdown and LaTeX)
 - 882 – Expected answer field for the unique answer
 - 883 – Evaluation method selector (e.g., exact match)
 - 884 – Optional points value (defaulting to 1) for weighting subquestions by difficulty or impor-
 885 tance
 - 886 – Rationale field for explaining the correct answer

887 **Question detail view** Once submitted, questions are displayed in a detail view (see Figure 17) that
 888 presents all components in their rendered form. This view shows:
 889

- 890 • The question status in the submission pipeline (Draft → Under Review → Approved → Active)
- 891 • Rendered the main question and sample solution with properly formatted mathematics
- 892 • List of subquestions with their expected answers
- 893 • AI solution attempt preview when available
- 894 • Review comments from expert reviewers (when in review stage)
- 895 • Response interface allowing authors to address reviewer feedback and revise their submission

896 The detail view serves as the central hub for tracking a question’s progress through the review process
 897 and facilitating communication between authors and reviewers.
 898

901 B.3 REVIEW PROCESS AND INSTRUCTIONS

902 Each question is reviewed by at least one expert before being included in the benchmark. These
 903 experts are invited to submit a review via email. An example of such an email is included below.

904 Reviewer invitation email

905 Dear [invited_user],

906 My name is [inviting_user] and I am part of a small team of mathematicians studying the
 907 question of how good today’s AI models are at solving research-level math questions. As
 908 part of this IMPProofBench project, we are building a collection of challenging
 909 mathematical problems to use for testing the AI performance.

910 We would like to ask for your help in verifying the mathematical correctness of one such
 911 question. If you are interested to learn more about the project, further information is
 912 available at <https://improofbench.math.ethz.ch/faq/>

913 The following question was submitted for inclusion in the IMPProofBench dataset:

914 Title: Permutation representation
 915 Author: Example Participant

918 Would you be willing to review this question and:
 919 - Verify that the phrasing is well-defined and unambiguous
 920 - Confirm the provided solution is mathematically correct
 921 - Make any suggestions for improvements (e.g., additional unique-answer subquestions)

922 We estimate that for most problems, this should take between 10 and 30 minutes.

923 You can view the full submitted problem and write a review at:
 924 [ACCEPT_URL]

925 There, you will also have the option to decline this review request after viewing the
 926 question.
 927 Alternatively, you can decline immediately by clicking:
 928 [DECLINE_URL]

929 If you provide a review, the question's author will be notified and have the chance to
 930 revise the question and compose a response. After seeing the response, you have the
 931 option to submit a further review or recommend the question for acceptance in the
 932 benchmark.

933 Thank you for considering this request!

934 Best regards,
 935 [inviting_user]

936 Note: To track your review and allow you to see the author's replies, accepting the
 937 review request will create a user account for you on our website. You can optionally set
 938 a password after submitting your review to log back in and e.g., contribute a question to
 the benchmark yourself.

939 When the reviewer accepts the review invitation by clicking on the link, they are forwarded to
 940 a webpage displaying the problem to be reviewed, along with a form for review submission and
 941 further information (see Figure 18). The reviewer may also view the full review guidelines displayed
 942 in Figure 19. The review consists of a short comment by the reviewer indicating improvements
 943 and/or mistakes in the question statement. Before submitting the review, the reviewer decides on
 944 a recommended action among the following: "Recommended for acceptance", "Needs revision"
 945 and "Not suitable". The site admins are notified when a review is complete and can take action
 946 accordingly. If the reviewer selects "Not suitable", the question is automatically reset to the "draft"
 947 status. Independent of the outcome, the author is permitted to submit an answer to the reviewer's
 948 comments and change the question if necessary. The reviewer may then either submit a new review
 949 taking into account the changes, or a new reviewer may be invited.

950 B.4 GRADING INTERFACES

952 The grading system provides a structured interface for human evaluation of model-generated proofs
 953 through a dedicated web page.

955 **Human grading interface** The main grading interface (see Figure 20) employs a three-column
 956 layout designed to facilitate easy access to relevant information and the feedback form:

- 957 • **Left column:** Displays the question statement and sample solution for reference
- 958 • **Center column:** Shows the model's complete response with mathematical rendering
- 959 • **Right column:** Contains the interactive grading panel with scoring controls

961 To prevent bias, model identities are concealed behind randomized aliases (Answer A, B, C, etc.) that
 962 remain hidden until all answers for a question have been graded. The system maintains independent
 963 grading sessions for each evaluator, with aliases shuffled differently to ensure blind evaluation.

965 **Grading categories** The scoring form consists of three main components providing multifaceted
 966 evaluation, with relevant information available via concise tooltips:

968 **AI mistake indicators:** Four binary categories identifying common failure modes:

- 969 1. **Incorrect Logic:** Flawed logical steps or invalid reasoning
- 970 2. **Hallucinated:** References to non-existent theorems, papers, or results
- 971 3. **Calculation:** Arithmetic or algebraic errors

972 4. **Conceptual:** Fundamental misunderstanding of mathematical concepts
 973

974 **AI achievement indicators** Four binary categories recognizing positive aspects:
 975

976 5. **Understanding:** Correctly identifies what needs to be proven or calculated
 977 6. **Correct Result:** Arrives at the correct final answer (with N/A option for open-ended problems
 978 or when the correct answer is unknown)
 979 7. **Insight:** Shows creative problem-solving or novel approaches
 980 8. **Usefulness:** Solution would be helpful to someone learning this topic
 981

982 Each binary category offers three response options: “True”, “False”, or “Not Sure”, allowing graders
 983 to indicate uncertainty when evaluation is ambiguous.

984 **Overall progress** A four-point scale (0–3) rating overall solution progress:
 985

986 • **0/3:** No progress toward solution
 987 • **1/3:** Minor progress with limited advancement
 988 • **2/3:** Major progress with substantial work completed
 989 • **3/3:** Complete solution achieved
 990

991 This overall progress score serves as the primary metric for model ranking and comparison.
 992

993 **Additional grading features** The interface includes several supporting elements to ensure grading
 994 consistency and quality:
 995

996 • **Grading notes:** A persistent text area where graders record their evaluation criteria and decision
 997 patterns across all answers (e.g., “Matrix errors count as Calculation, Theory errors as Logic”).
 998 These notes help maintain consistency when grading multiple model responses and facilitate
 999 reproducibility in future grading sessions.
 1000 • **Comments field:** Answer-specific observations about edge cases or explanations for grading
 1001 decisions.
 1002 • **Auto-save functionality:** Grading selections are automatically preserved with a 2-second
 1003 debounce to prevent data loss.
 1004 • **Focus mode:** An optional distraction-free interface that maximizes screen space by hiding
 1005 navigation elements and allowing collapsible panels, enabling graders to concentrate on detailed
 1006 evaluation.
 1007 • **Flag for organizers:** Option to mark responses requiring special attention due to serious issues
 1008 or technical problems.
 1009

1010 The grading workflow supports iterative evaluation, allowing graders to mark answers as complete,
 1011 incomplete, or given up (for responses that cannot be meaningfully evaluated). Once all model
 1012 answers for a question are marked complete, the system reveals the true model identities, enabling
 1013 post-hoc analysis of performance patterns.
 1014

1015 C SAMPLE PROBLEM 1016

1017 Below, we present an example of a problem from the benchmark and discuss model performance and
 1018 solution strategies from our evaluation.
 1019

1020 **Background for reader (not included in benchmark question)** A *stable graph* is a connected
 1021 graph $\widehat{\Gamma}$, multi-edges and loops allowed, together with a vertex-labeling by non-negative integers
 1022 $(g_v)_{v \in V(\widehat{\Gamma})}$ satisfying that each vertex v with $g_v = 0$ has valence at least 3. These combinatorial
 1023 objects appear in algebraic geometry in the study of moduli spaces of stable curves, see e.g. (Schmitt
 1024 and van Zelm, 2020, Section 2). The *genus* of $\widehat{\Gamma}$ is defined as $g = b_1(\widehat{\Gamma}) + \sum_{v \in V(\widehat{\Gamma})} g_v$, with b_1 the
 1025 first Betti number (or cyclomatic number) of $\widehat{\Gamma}$.

1026 **Question** Given an integer $g \geq 2$, let N_g be the number of isomorphism classes of stable graphs of
 1027 genus g with precisely 3 edges. Give a closed formula for N_g valid for all $g \geq 2$.
 1028

1029 **Solution** To compute N_g , we note that each stable graph $\widehat{\Gamma}$ has an undecorated underlying graph Γ ,
 1030 which is one of the 10 connected multi-graphs with precisely 3 edges. Then N_g can be calculated
 1031 by summing over those graphs Γ and counting the number of assignments g_v to the vertices of Γ ,
 1032 avoiding double-counting by taking into account symmetries of Γ .
 1033

1034 The final answer is that for $g = 2$ we have $N_2 = 2$ and for $g \geq 3$, we have

$$1035 \quad N_g = \begin{cases} \frac{1}{9}g^3 + \frac{7}{8}g^2 + \frac{5}{12}g - 2 & \text{if } g \equiv 0 \pmod{6} \\ 1036 \quad \frac{1}{9}g^3 + \frac{7}{8}g^2 + \frac{1}{6}g - \frac{155}{72} & \text{if } g \equiv 1 \pmod{6} \\ 1037 \quad \frac{1}{9}g^3 + \frac{7}{8}g^2 + \frac{5}{12}g - \frac{20}{9} & \text{if } g \equiv 2 \pmod{6} \\ 1038 \quad \frac{1}{9}g^3 + \frac{7}{8}g^2 + \frac{1}{6}g - \frac{19}{8} & \text{if } g \equiv 3 \pmod{6} \\ 1039 \quad \frac{1}{9}g^3 + \frac{7}{8}g^2 + \frac{5}{12}g - \frac{16}{9} & \text{if } g \equiv 4 \pmod{6} \\ 1040 \quad \frac{1}{9}g^3 + \frac{7}{8}g^2 + \frac{1}{6}g - \frac{187}{72} & \text{if } g \equiv 5 \pmod{6} \end{cases}$$

1042 **Subquestions** What is N_3 ? (Answer: 9) What is N_8 ? (Answer: 114) What is N_{10000} ? (Answer:
 1043 111198615276)
 1044

1045 Model approaches and performance 1046

- 1047 • GPT-5 instantly identifies the solution strategy in its first reasoning step, writing *"Essentially,
 1048 I'm computing N_g as a sum of connected multigraph types limited by 3 edges and considering
 1049 partitions of genera"*. It performs a Python calculation to obtain the first experimental data.
 1050 From theoretical considerations, it correctly identifies the shape of the final answer, writing
 1051 *"Ultimately, I want a final closed formula for N_g as a degree-3 quasi-polynomial with a period of
 1052 6."*. After a few attempts, it calculates this polynomial via Lagrange interpolation on datapoints
 1053 with fixed residue modulo 6, discovering that the case $g = 2$ needs separate treatment. This not
 1054 only represents a perfect solution to the given problem, but also mirrors precisely the approach
 1055 of the human question author to solving the problem.
- 1056 • GROK-4 obtains an expression for N_g in a single reasoning step, though no further details are
 1057 available as the GROK-4 API does not expose reasoning summaries. The model then uses a
 1058 Python tool to calculate the first values and the SageMath tool to look up the resulting integer
 1059 sequence in the OEIS database OEIS Foundation Inc. (2025). This being unsuccessful, it submits
 1060 a very concise sketch of its answer, which is slightly less simple than the formula for N_g above,
 1061 as it still features a summation over $g - 2$ terms.
 1062 In a second evaluation, GROK-4 uses the bash tool to download textbooks on algebraic graph
 1063 theory and moduli spaces of curves and convert them to text. Lacking the software tools for the
 1064 latter, it tries and fails to install new packages on the sandboxed Docker container, receiving an
 1065 error for attempting to use sudo rights. Finally, it abandons these attempts and just submits a
 1066 solution that is mostly correct, but has some small errors in one of the terms.
 1067 • CLAUDE-OPUS-4.1 also tries to combine combinatorial arguments with computer calculations
 1068 in SageMath, but fails to find even the contribution from 2-vertex graphs, forgetting some
 1069 topological possibilities for Γ . One noteworthy pattern is that the model includes very verbose
 1070 reasoning in the form of comments and static print statements within the SageMath code.
 1071 • GEMINI-2.5-PRO starts with a correct calculation of N_2, N_3, N_4 . However, then it makes
 1072 the completely unfounded claim that *"This implies that N_g is a quadratic polynomial in g "*,
 1073 whereas in reality it is a *cubic* quasi-polynomial. It then submits an answer based on that wrong
 1074 assumption. It does get partial credit in the subquestions for calculating $N_3 = 9$ correctly.

1075 D MODEL TIERS 1076

1077 We evaluate models across four tiers based on their capabilities and release timeline. Tier 1 comprises
 1078 current frontier models with state-of-the-art mathematical reasoning capabilities. Tier 3 includes
 1079 previous-generation models that have demonstrated strong mathematical performance. Tier 4 contains
 legacy models included for historical comparison and baseline establishment. Currently, only models

1080 in Tiers 1–3 are included in human grading to focus evaluation resources on the most relevant
 1081 comparisons.¹
 1082

1083 Table 1: Models evaluated in IMPProofBench, organized by tier
 1084

Tier	Model	API Endpoint	Parameters
1	CLAUDE-OPUS-4.1	claude-opus-4-1-20250805	cache_prompt="auto" max_tokens=32000 reasoning_tokens=31000
	GPT-5	gpt-5	reasoning_effort="high" reasoning_summary="auto"
	GEMINI-2.5-PRO	gemini-2.5-pro	reasoning_tokens=32768
	GROK-4	grok-4-0709	—
3	O4-MINI	o4-mini-2025-04-16	reasoning_effort="high" reasoning_summary="auto"
	CLAUDE SONNET 4	claude-sonnet-4-20250514	cache_prompt="auto" max_tokens=64000 reasoning_tokens=63000
	GPT-4O	gpt-4o-2024-11-20	—
	GEMINI-2.5-FLASH	gemini-2.5-flash	reasoning_tokens=24576
	GROK-3	grok-3	—
4	O3	o3-2025-04-16	reasoning_effort="high" reasoning_history="auto" reasoning_summary="auto" reasoning_tokens=100000

1107 All models are evaluated using the Inspect framework with standardized prompting and tool access,
 1108 including Python execution, web search, and SageMath for advanced mathematical computation
 1109 (see App. E). The `reasoning_effort` parameter, when specified as "high", enables enhanced
 1110 reasoning capabilities for models that support it. The `reasoning_tokens` parameter controls
 1111 the maximum length of the model's internal reasoning process, while `max_tokens` limits the total
 1112 response length, including both reasoning and final answer.

1113
 1114

E DETAILED TOOL DESCRIPTIONS

 1115

1116 The evaluation environment for IMPProofBench was designed to emulate the computational resources
 1117 available to research mathematicians when solving complex problems. Rather than restricting models
 1118 to basic arithmetic operations, we provide access to the same sophisticated mathematical software that
 1119 researchers routinely use in their work. This approach reflects the reality that modern mathematical
 1120 research frequently involves computational exploration, symbolic manipulation, and verification of
 1121 conjectures through extensive calculation.

1122
 1123

E.1 TECHNICAL SPECIFICATIONS

1124 All tools operate within the following constraints to balance computational power with practical
 1125 limitations:

- 1127 • **Timeout:** 15 minutes per tool invocation
- 1128 • **Memory limit:** 8 GB RAM per execution
- 1129 • **Environment:** Isolated Docker container running Arch Linux
- 1130 • **Execution model:** Independent tool calls (no variables persist between calls), but files written to
 1131 the filesystem remain accessible throughout the evaluation session

1133 ¹Tier 2 is reserved for testing Command Line Interface models such as Claude Code, but implementation has
 1134 been deferred to a future version of the benchmark.

1134 E.2 CORE COMPUTATIONAL TOOLS
11351136 E.2.1 PYTHON ENVIRONMENT
11371138 The Python tool provides access to a comprehensive scientific computing environment (Python
1139 3.13.7). This language was chosen for its prevalence in scientific computing and the extensive
1140 familiarity that language models demonstrate with its syntax and libraries. The environment includes
1141 standard numerical and symbolic computation packages:1142 • **Numerical computing:** NumPy, SciPy, pandas
1143 • **Symbolic mathematics:** SymPy, SymEngine
1144 • **Visualization:** Matplotlib (though output is text-based)
1145 • **Graph theory:** NetworkX, igraph, graph-tool
1146 • **Optimization:** CVXPY with multiple backend solvers (GLPK, ECOS, OSQP, SCS, CSDP)
1147 • **Machine learning:** Basic scikit-learn functionality
11481149 Each Python execution runs independently with no variables or imports preserved between invocations,
1150 though files written to disk remain accessible for subsequent tool calls.
11511152 E.2.2 BASH SHELL ACCESS
11531154 The bash tool provides command-line access to the evaluation environment, enabling models to
1155 leverage specialized mathematical software that operates through command-line interfaces. This tool
1156 serves as the gateway to domain-specific mathematical systems detailed in Section E.3.
11571158 E.2.3 SAGEMATH
11591160 SageMath (sag, 2025) (version 10.6) serves as the primary computer algebra system, providing a
1161 unified Python-based interface to numerous mathematical software packages. Its significance in
1162 the research community stems from its comprehensive coverage of mathematical domains and its
1163 philosophy of combining the best open-source mathematics software into a coherent system.
11641164 Key features available through the `sage_computation` tool include:
11651166 • Natural mathematical syntax through automatic preparsing (e.g., x^2 for exponentiation, $K.\langle a \rangle$
1167 for field extensions)
1168 • Extensive algebraic capabilities: polynomial rings, number fields, elliptic curves, modular forms
1169 • Combinatorial structures: graphs, matroids, posets, designs
1170 • Specialized packages: `admcycles` for moduli spaces of curves, `ore_algebra` for D-finite
1171 functions and recurrence operators, `pari_jupyter` for enhanced PARI/GP integration
1172 • Integration with external systems: automatic interfacing with GAP, Maxima, PARI/GP, Singular
11731174 E.3 SPECIALIZED MATHEMATICAL SOFTWARE
11751176 The evaluation environment includes a comprehensive suite of specialized mathematical software,
1177 accessible through the bash tool:
11781179 E.3.1 COMPUTER ALGEBRA SYSTEMS
11801181 • **GAP** (Groups, Algorithms, Programming): Specialized system for computational discrete
1182 algebra, particularly group theory and combinatorics GAP (2024)
1183 • **Maxima**: General-purpose computer algebra system for symbolic computation, descended from
1184 MIT's Macsyma Maxima (2025)
1185 • **PARI/GP** (version 2.17.2): High-performance system focused on number theory computa-
1186 tions The (2024)
1187 • **Singular**: Specialized system for polynomial computations, commutative algebra, and algebraic
1188 geometry Decker et al. (2024)

1188 • **Polymake** (version 4.14): System for research in polyhedral geometry and related areas Assarf
 1189 et al. (2017)

1190

1191 **E.3.2 ALGEBRAIC AND GEOMETRIC COMPUTATION**

1192

- **Normaliz**: Computation of normalizations of affine semigroups and rational cones Bruns et al.
- **LattE integrale**: Lattice point enumeration and integration over convex polytopes Baldoni et al. (2013)
- **Gfan**: Gröbner fans and tropical varieties computation
- **4ti2**: Algebraic, geometric, and combinatorial problems on linear spaces
- **msolve**: Polynomial system solving over finite fields and rational numbers

1200 **E.3.3 GRAPH THEORY AND COMBINATORICS**

1201

- **nauty and Traces**: Graph automorphism and canonical labeling McKay and Piperno (2014)
- **bliss**: Another efficient graph automorphism tool
- **igraph**: Network analysis and graph algorithms library

1202 **E.3.4 OPTIMIZATION SOLVERS**

1203

- **Linear Programming**: GLPK (GNU Linear Programming Kit), Gurobi-compatible interfaces
- **Mixed-Integer Programming**: SCIP (Solving Constraint Integer Programs) Bolusani et al. (2024)
- **Semidefinite Programming**: CSDP, DSDP for SDP problems
- **SAT Solvers**: glucose, kissat, cryptominisat for Boolean satisfiability

1204 **E.3.5 PROOF ASSISTANTS AND VERIFICATION**

1205

- **Lean** (de Moura and Ullrich, 2021): Interactive theorem prover and functional programming language
- **Mathics**: Open-source alternative to Mathematica for symbolic computation

1206 **E.3.6 NUMERICAL AND SCIENTIFIC COMPUTING**

1207

- **Julia**: High-performance language for numerical computing
- **SciLab**: Numerical computational package similar to MATLAB
- **FLINT**: Fast Library for Number Theory
- **NTL**: High-performance number theory library

1208 **E.4 DATA RESOURCES**

1209

1210 The environment includes numerous mathematical databases accessible through SageMath:

1211

- Stein-Watkins database of elliptic curves
- Jones' database of number fields
- Kohel database for elliptic curves and modular polynomials
- Cunningham tables for factorizations
- OEIS (Online Encyclopedia of Integer Sequences) integration
- Various polytope databases and mutation class data

1212 **E.5 WEB SEARCH CAPABILITIES**

1213

1214 The `web_search` tool provides access to current mathematical literature and online resources. The
 1215 implementation follows a provider-based architecture:

- **Internal providers:** Models from OpenAI, Anthropic, and Grok utilize their respective built-in web search capabilities, requiring no additional API keys
- **External provider:** Tavily is configured as a fallback for models without internal search capabilities (e.g., Gemini), providing AI-optimized search results

Some models, notably GROK-4, combine web search capabilities with the `wget` bash command to download full research papers for detailed analysis.

E.6 EXAMPLE TOOL USES FROM BENCHMARK EVALUATION

Below, we list some example tool applications that occurred during our model evaluations. In each case, the full log file of the multi-turn evaluation reveals that the respective calculation played a decisive role in allowing the model to find the correct answer. To preserve benchmark privacy, we describe the relevant tool uses in general terms while leaving out the details of the specific benchmark problem.

- **Generating functions** (Model: GROK-4, Tool: SageMath)
Solved combinatorics problem by calculating a generating function $F(x)$ and forming the exponential $G(x) = \exp(F(x))$ to extract a specific coefficient from G
- **Modular forms** (Model: GROK-4, Tool: SageMath)
Compute q -expansion of the weight 12 cusp form Δ
- **Group theory** (Model: GPT-5, Tool: GAP (2024) via Bash Shell)
Accessed entries of the character table of a sporadic group
- **Literature access** (Model: GROK-4, Tool: Bash Shell)
Model uses `curl` to download PDF of paper from arXiv, installs the PyPDR2 package via `pip`, and converts the PDF to text to obtain relevant information for the benchmark problem. Note: after an initial failed attempt at installing the PyPDR2 package, the model uses the `pip` argument `--break-system-packages` to force a user installation in the externally managed Python environment of our sandboxed evaluation environment.

F PLANS FOR FUTURE DEVELOPMENT

Below, we give further details on our plans for the continuous development of IMPProofBench.

- **Scale and outreach:** We aim to expand the benchmark to 150–300 problems, e.g. through strategic partnerships with leading mathematical institutions (e.g., MFO Oberwolfach, IAS, Fields Institute) and by recruiting domain-specific ambassadors who can promote participation at conferences and within their research networks.
- **Quality assurance and grading:** To strengthen the scientific validity of our evaluations, we will study inter-rater reliability by comparing expert gradings on the same problems. We will support graders via AI-assisted pre-screening of model answers and refine our error classification system to localize specific mistakes within solution texts rather than applying only global categories.
- **Dynamic problem management:** As mathematical knowledge evolves, problems may become easier due to new publications or techniques. We will implement a generous retirement policy allowing authors to withdraw problems affected by recent research, while regularly adding fresh problems to maintain benchmark difficulty. We also plan to release small sets of sample problems to provide the community with concrete reference points for gauging AI progress.
- **Technical innovation:** We plan to develop automated difficulty classifiers to predict which problems challenge current AI systems, explore alternative evaluation formats (such as formula reconstruction tasks and interactive problem-solving sessions), and implement bring-your-own-agent interfaces to enable companies to test internal models against the benchmark.
- **Model coverage:** Beyond proprietary frontier models, we will evaluate leading open-source reasoning systems like DeepSeek-V3.1-Terminus and Qwen3-235B-Think, promoting the strongest to Tier 1 status for human grading, ensuring long-term comparison baselines even as commercial models are deprecated. *Note:* One reason why these models were not included in this initial version of the benchmark is the ongoing challenges with enabling tool use for these models

1296 - a requirement to put them on equal footing with other models within the inspect evaluation
 1297 framework of IMPProofBench.

1298 • **Evaluation modalities:** Building on the existing IMPProofBench platform and contributor
 1299 network, we plan to explore further problem types and evaluation methodology. This includes:
 1300 – combinations of informal and formalized questions and solutions (e.g., in collaboration
 1301 with the ProofBench project Bowler and Carmesin),
 1302 – specialized task formats with wide importance to mathematical research, such as formula
 1303 reconstruction for sequence data of natural/rational numbers, polynomials, ... (see e.g.
 1304 Gauthier and Urban (2023); Belcak et al. (2022); D’Ascoli et al. (2022)),
 1305 – interactive or collaborative proof attempts, including provision of hints or feedback to the
 1306 model during evaluation time, more closely mimicking the setting of a researcher using
 1307 commercially available AI systems.

1308

1309 G USE OF LARGE LANGUAGE MODELS

1310

1311 We report our use of LLMs throughout this research project. The authors take full responsibility for
 1312 all content in this paper, including any LLM-assisted portions.

1313

1314

1315 G.1 WRITING AND PRESENTATION

1316 Claude Opus was used to generate an initial draft of Sections 3 and Appendices B, D, E, G, and I
 1317 and provided feedback and suggestions for our Reproducibility and Ethics Statements. Additionally,
 1318 Claude Opus provided proofreading assistance and offered stylistic and structural suggestions. GPT-5
 1319 was used to collect bibliography entries of software packages in Appendix D. All LLM-generated
 1320 content was thoroughly reviewed, fact-checked, and edited by the authors.

1321

1322

1323 G.2 LITERATURE DISCOVERY AND RELATED WORK

1324 During the ideation phase and preparation of the benchmark whitepaper, we used ChatGPT o3 and
 1325 Claude Opus Research to conduct comprehensive searches of the benchmarking literature and identify
 1326 related projects. These tools helped surface relevant prior work and ensure thorough coverage of the
 1327 existing landscape, though all citations were independently verified by the authors.

1328

1329

1330 G.3 RESEARCH IMPLEMENTATION AND DEVELOPMENT

1331 LLMs played a substantial role in implementing the benchmark infrastructure. Claude Code, supple-
 1332 mented by ChatGPT’s Codex CLI tool, assisted with:

1333 • Development of the benchmark website and database architecture
 1334 • Adaptation of the Inspect framework for model evaluation
 1335 • Extraction and visualization of quantitative results

1336 Additionally, Claude Opus provided support for organizational tasks, including meeting summaries
 1337 and the creation of promotional materials. The background image for our benchmark poster was
 1338 generated using GPT-5’s multimodal capabilities.

1339 All code and implementations were tested, validated, and debugged by the authors to ensure correct-
 1340 ness and functionality.

1341

1342

1343 H EVALUATION PROMPTS

1344

1345

1346 Main Question Prompt

1347 # Background

1348 The IMPProofBench project is a mathematical reasoning benchmark for AI systems, testing
 1349 their ability to solve research level math problems. Each such problem consists of one **
 main question**, where the expected answer is a longform mathematical proof, and several

related **subquestions** which have short, unique answers (e.g. a natural number). The main answer will be graded by both human expert mathematicians (often the author of the question) and AI evaluators, whereas subquestion answers are checked automatically using a Python script.

Structure of the evaluation
In the following we would like to evaluate your mathematical reasoning abilities on one such problem. The overall structure of the conversation below is that we iterate through the questions in order (main question, sub-question 1, sub-question 2, ...) and in each step, you can:

- Read the current question
- Think about it in a multi-turn environment with tool use (see below)
- Submit the answer to the current question

At each point in the conversation, you have the context of the entire previous conversation including your outputs in the thinking steps and the record of any tool uses. Note that you will **not necessarily** have access to records of your internal reasoning traces and internal tool uses, so any helpful information from these should be documented in your (external) thinking outputs.

Multi-turn reasoning environment
To help you solve the problem, you will have access to a multi-turn conversation environment with optional tool use, based on the Inspect AI framework. At each step, you can:

- Think out loud to analyze the problem, devise a solution approach, think through the steps of mathematical arguments, etc.
- Use the 'python' tool to run self-contained experiments in a standard python environment
- Use the 'bash' tool to execute commands inside a docker container (running ArchLinux with some open-source mathematical software installed)
- Use the 'web_search' tool to search for current information, mathematical definitions, theorems, or recent research
- Use the 'sage_computation' tool for conducting an experiment in a self-contained SageMath terminal session
- Use the 'submit' tool to provide your final answer to the current question (main or sub-question)

All tools have a timeout of 15 minutes, maximal memory usage (RAM) of 8 GB and run on standard 2025 hardware.

Token constraints
You have {main_question_token_limit:,} tokens to solve the main question, and {subquestion_token_limit:,} tokens for each of the following sub-questions. This counts both your output tokens (including in tool calls) and your reasoning tokens. You are informed about your current usage after each conversation turn.

Answer format for main question
Below you will see the text of the main question. Once you finished reasoning about it, you can register your answer using the 'submit' tool. The answer for the main question should be a detailed mathematical argument, formatted in Markdown with LaTeX formulas using \$...\$ for inline mathematical expressions and \$\$...\$\$ for equations. Use Markdown [link formatting](<https://www.markdownguide.org/basic-syntax/#links>) for including online references, **not** any internal web-referencing system.

Problem:
{question_text}

Please work through this problem step by step. When you have your final answer, use the submit() tool to submit it.

Subquestion Prompt

```
1395 ----
1396
1397 **Great work on the previous part!**
1398 You have successfully completed the previous question. Now please solve the following
1399 subquestion while keeping the context of your previous work:
1400 **Subquestion {subquestion_order}:**
1401 {subquestion_text}
1402 **Instructions:**
1403 - You can reference your work from previous parts
- Use the same mathematical tools available to you
```

1404
 1405 - When you have your final answer, use the submit() tool to submit it
 1406 - Be precise and specific in your answer format

1407 Please proceed with solving this subquestion.

1408 1409 Conversation Status Update

1410 Please continue working on the current question. To formally register your answer, use
 1411 the 'submit' tool as per the original instructions above. Note: the conversation will
 1412 only proceed to the next stage once you use the 'submit' tool.

1413 Token usage: {current_tokens:,} of {token_limit:,} tokens used for this stage.

1414 1415 Python tool description

1416 Use the python function to execute Python code.

1417 The Python tool executes single-run Python scripts. Important notes:

1. Each execution is independent - no state is preserved between runs
2. You must explicitly use print() statements to see any output
3. Simply writing expressions (like in notebooks) will not display results
4. The script cannot accept interactive input during execution
5. Return statements alone won't produce visible output
6. All variables and imports are cleared between executions
7. Standard output (via print()) is the only way to see results
8. This tool has a timeout of 15 minutes and maximal memory usage (RAM) of 8 GB

1425 1426 Bash tool description

1427 Use this function to execute bash commands. Underlying system is ArchLinux with many
 1428 standard open-source computer algebra systems (like GAP) pre-installed.

1429 This tool has a timeout of 15 minutes and maximal memory usage (RAM) of 8 GB.

1431 1432 Web search tool description

1433 Use this function to search the web for current information, mathematical definitions,
 1434 theorems, or recent research.

1435 This tool gives you access to up-to-date information that can help with:

- Looking up mathematical definitions and theorems
- Finding recent research papers or results
- Verifying computational results against known databases
- Checking current mathematical conventions or notation
- Finding examples of similar problems or techniques

1436 The search results will include titles, URLs, and relevant excerpts from web pages.
 1437 Use this tool when you need information that might not be in your training data or when
 1438 you want to verify facts.

1443 1444 Sage tool description

1445 Use the sage_computation function to run calculations in the open-source mathematics
 1446 software system SageMath.

1447 The sage_computation tool executes single-run SageMath scripts. Important notes:

1. Each execution is independent - no state is preserved between runs
2. You must explicitly use print() statements to see any output
3. Simply writing expressions (like in notebooks) will not display results
4. The script cannot accept interactive input during execution
5. Return statements alone won't produce visible output
6. All variables and imports are cleared between executions
7. Standard output (via print()) is the only way to see results
8. This tool has a timeout of 15 minutes and maximal memory usage (RAM) of 8 GB

1448 All standard SageMath functions are pre-imported and available.
 1449 The SageMath preparser is applied, so you can use natural mathematical syntax.

1450 Key Features:

- Natural syntax: Use x^2 for powers, $K.\langle a \rangle$ for field extensions

```

1458 - All mathematical objects pre-imported: Matrix, EllipticCurve, PolynomialRing, etc.
1459 - Advanced packages available: admcycles for moduli spaces, and many more
1460
1461 Examples:
1462   # Factor a polynomial
1463   factor(x^100 - 1)
1464
1465   # Define a number field
1466   K.<a> = NumberField(x^3 - 2)
1467
1468   # Work with elliptic curves
1469   E = EllipticCurve([0, 1])
1470   print(E.rank())
1471
1472   # Use specialized packages (example with admcycles)
1473   from admcycles import *
1474   G = StableGraph([1,1], [[1,3],[2,4]], [(1,2),(3,4)])
1475   print(f"Automorphisms^2: {G.automorphism_number()^2}")
1476
1477 IMPORTANT: Like the python() tool, you must use print() to see any output.
1478 Nothing is returned automatically - always print your results!
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

```

Submit tool description

Submit your final answer for the current question or subquestion. Use Markdown + LaTeX formatting. The answer for the main question should be a detailed mathematical argument.

Your answer should be formatted as natural Markdown text with LaTeX formulas. Use \$ for inline math and \$\$ for display math, or \begin{equation} environments. Use standard [Markdown link syntax] (<https://www.markdownguide.org/basic-syntax/#links>) for online references.

RECOMMENDED: Use raw strings (r''' or r"") to write LaTeX naturally without escaping.

Important formatting notes:

- Write your answer exactly as you would in a math document
- Use raw triple quotes r''' for multiline answers with LaTeX
- This lets you write \frac, \sqrt, \int naturally (no escaping needed)
- Include full mathematical reasoning with the final answer clearly stated
- Do not use custom macros (e.g., \Z, \Q, \RR, etc.). Only use valid standard LaTeX commands

I FURTHER EXPERIMENTS AND STATISTICAL EVALUATIONS

In the section below we report on several additional evaluations, to test the effectiveness of our agent harness and the reliability of our human grading scheme, and on statistical reliability of our final-answer subquestion scores.

I.1 ABLATION TESTS USING NON-AGENTIC EVALUATION SETUP

Our first additional experiment aims to test the effectiveness of our evaluation setup, which uses the inspect framework and with tool access as described in App. E. For this we conducted ablation tests where models were presented with the main question, followed sequentially with all the subquestions, but with

- minimal additional prompting, and single-turn thinking (answer is given by single model reply),
- either no tools or selected sets of their native tools (like web search and code interpreter) hosted by the API provider.

More precisely, the initial message to the model is simply the main question text. After an answer is received, the follow-up prompt introducing the first subquestion is:

1512

Non-agentic prompt for first subquestion

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

Thanks! Below I'll ask some follow-up questions, where answers will be parsed automatically. They might repeat the main question or ask for results in special cases. Please provide the final answer in a `\boxed{}` environment for easier extraction. This desired answer will typically be short, either `\boxed{Yes}` or `\boxed{No}` or a numerical result like `\boxed{172}` or `\boxed{-13/45}`. Do not use additional (LaTeX) formatting within the `\boxed` environment.

Subquestion 1:
`{subquestion_text}`

Any further subquestions are presented as follows:

Non-agentic prompt for further subquestions

Thanks!
Subquestion {number}:
`{subquestion_text}`

In Table 2 we compare the performance of GPT-5 inside inspect (left) with the ablation setup given various tools (right). We see that the best performance is actually achieved by only granting web

Code Interpreter			
Inspect	Web Search	No	Yes
52.5%	No	55.0%	47.6%
	Yes	57.4%	51.2%

Table 2: Average final-answer subquestion scores

search, surpassing the score inside the inspect setup. In fact a striking pattern is that in the 2×2 grid on the right, granting web search leads to a boost of 2 – 3 percentage points, whereas granting code interpreter access actually *decreases* model performance by 6 – 9 percentage points.

As a second experiment we compared the inspect setup with a no-tools ablation: While the score

Model	Inspect	No Tools
GEMINI-2.5-PRO	38.1%	39.4%
GROK-4	60.8%	44.4%

Table 3: Inspect vs. no-tool ablation results on final-answer subquestions

of GEMINI-2.5-PRO is basically unchanged, the example of GROK-4 shows that the inspect agent framework can significantly boost the performance of some models.

I.2 PRELIMINARY ANALYSIS OF HUMAN GRADING RELIABILITY

To assess inter-rater reliability of our human grading scheme, we conducted a preliminary analysis during which 15 questions were independently graded by multiple evaluators (11 questions by 2 graders, 4 questions by 3 graders), yielding 55 pairwise answer comparisons. Each grader worked blindly, with model identities hidden behind randomized aliases.

For the overall progress grade (scored 0–3), graders achieved exact agreement in 50.9% of cases and agreed within one point in 89.1% of cases, suggesting that the coarse-grained progress assessment is reasonably reliable. At the question level, 18.2% of questions showed high overall agreement ($\geq 80\%$), 72.7% showed moderate agreement (60–79%), and only 9.1% showed low agreement ($< 60\%$).

1566 Agreement varied considerably across the eight binary grading categories, as shown in Table 4.
 1567 Objective categories such as “Correct End Result” showed high agreement (84.9%), while more
 1568 subjective error classifications like “Incorrect Logic” and assessments of “Mathematical Insight”
 1569 proved harder to pin down (both 58.2%). This suggests that while graders largely agree on whether a
 1570 solution succeeds and makes meaningful progress, diagnosing the precise nature of errors in failed
 1571 attempts involves more subjective judgment.

Category	Agreement
Correct End Result	84.9%
Hallucinated Facts	74.5%
Problem Understanding	72.7%
Useful Progress	70.9%
Calculation Error	65.5%
Conceptual Error	61.8%
Mathematical Insight	58.2%
Incorrect Logic	58.2%

1585 Table 4: Inter-rater agreement by grading category, based on 55 pairwise comparisons across 15
 1586 questions.

1588 I.3 STATISTICAL UNCERTAINTY FROM STOCHASTIC LLM BEHAVIOR

1590 For any AI benchmark, the reported model scores are empirical estimates subject to statistical
 1591 uncertainty. Following Miller (2024), there are two distinct sources of this uncertainty:
 1592

- 1593 **1. Finite question sampling:** The benchmark questions represent a finite sample from a
 1594 hypothetical super-population of all questions testing the relevant skills. Even with deter-
 1595 ministic model behavior, the score on n questions would differ from the “true” score on that
 1596 super-population.
- 1597 **2. Stochastic model behavior:** Due to temperature sampling and other sources of randomness,
 1598 a model may produce different answers—and hence different scores—when presented with
 1599 the same question multiple times.

1600 The framework of Miller (2024) addresses the first source by computing standard errors from the
 1601 variance of scores between the actual set of test question and the whole hypothetical super-population.
 1602 However, this approach has limitations for our purposes: the resulting confidence intervals depend
 1603 only on the mean score and number of questions, adding no information beyond what is already visible
 1604 in the results. Moreover, such intervals could easily be misinterpreted as quantifying measurement
 1605 noise from stochastic model behavior, when they actually capture uncertainty about the question
 1606 sample.

1607 We therefore focus on directly measuring the second source of uncertainty. For our Tier 1 models, we
 1608 conducted two independent evaluations per question, allowing us to estimate the variance attributable
 1609 to non-deterministic LLM behavior. Specifically, for each model M and question Q , we compute the
 1610 sample variance $V(M, Q)$ of the weighted subquestion scores across the two evaluations. We then
 1611 estimate the standard deviation of the average score as

$$1613 \sigma(M) = \frac{1}{N} \sqrt{\sum_Q V(M, Q)},$$

1615 where N is the number of questions. The results are shown in Table 5.

1617 The standard deviations range from approximately 3 to 4 percentage points across models, indicating
 1618 that the stochastic nature of model responses contributes meaningful but moderate uncertainty to the
 1619 final scores. A 95% confidence interval for each model’s score can be approximated as $\pm 2\sigma$, i.e.,
 roughly ± 6 –8 percentage points.

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649

Model	Score	Std. Dev. (σ)
GROK-4	60.8%	3.54
GPT-5	53.6%	3.8
GEMINI-2.5-PRO	38.1%	4.1
CLAUDE-OPUS-4.1	36.4%	3.1

1650 Table 5: Estimated standard deviations of average subquestion scores due to stochastic LLM behavior,
 1651 based on two evaluations per question (for $n = 44$ questions with at least one subquestion).

1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

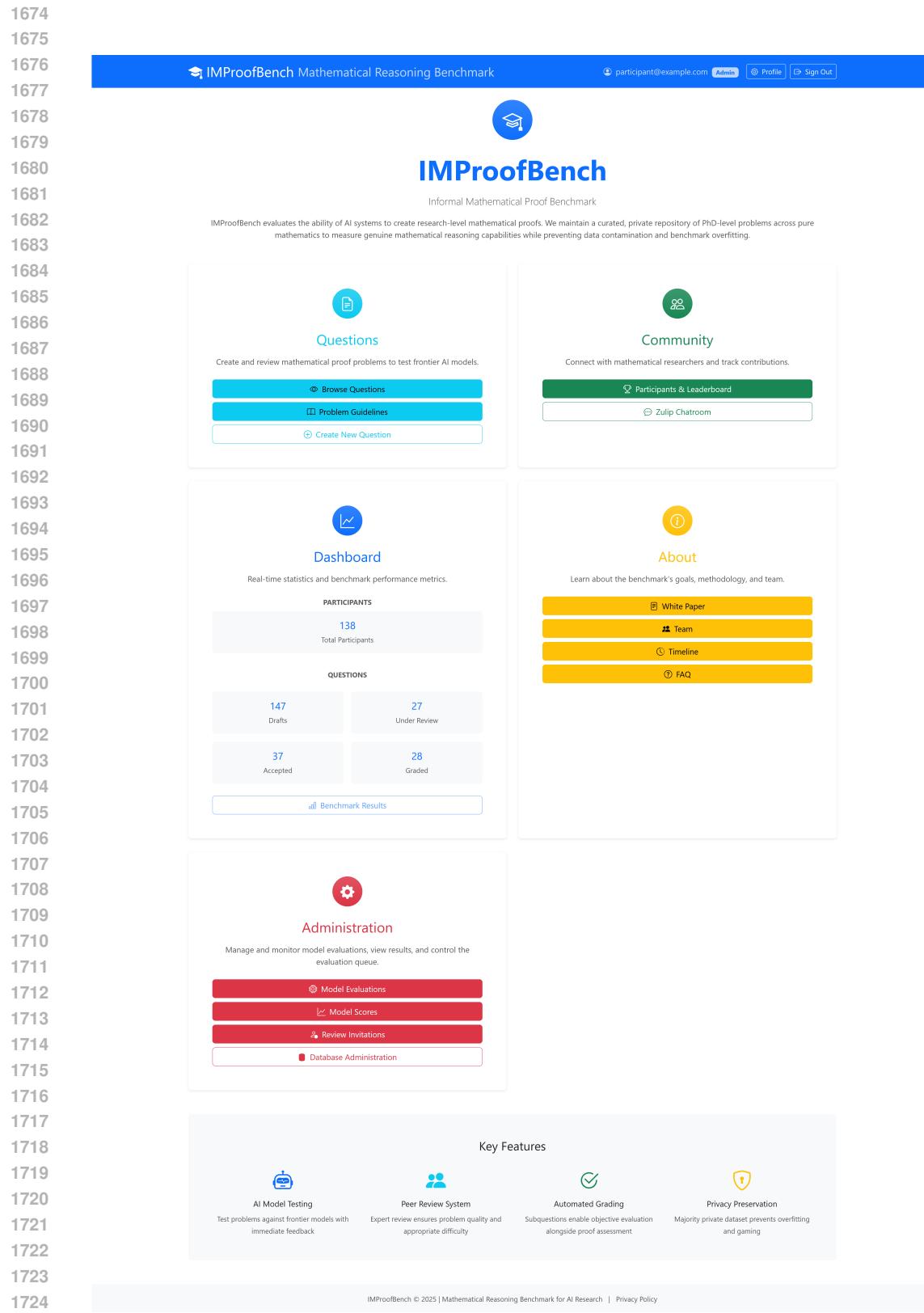


Figure 14: Landing and overview page of IMProofBench website.

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

The screenshot shows the IMProofBench Mathematical Reasoning Benchmark website. The top navigation bar includes a logo, the site name, a participant@example.com link, an Admin button, a Profile button, and a Sign Out button. The main title is "Problem Guidelines" with the subtitle "Creating high-quality benchmark problems for mathematical AI evaluation".

Quick Start: Effective benchmark problems require **PhD-level difficulty**, **genuine mathematical insight**, and **2-3 auto-gradable subquestions**. Think about recent calculations from your research that required a clever insight or non-obvious proof techniques.

Required Characteristics:

- **PhD-level difficulty:** Suitable for qualifying exams, research papers, or advanced seminars
- **Requires genuine insight:** Not solvable by routine application of known algorithms
- **Clear proof-based main question:** Answer should be a complete mathematical argument, not just a number
- **2-3 unique-answer subquestions:** Enable automated evaluation (e.g., "Is the statement true for $n=5$?", "What is the rank of this group?")

What to Avoid:

- Problems solvable by pattern matching or lucky guessing
- Standard textbook exercises (even from graduate texts)
- Purely computational problems that Mathematica/SageMath can solve directly
- Problems without clear subquestions for automated evaluation

Problem Templates:

Intersection Theory:

Main: Let X be [variety]. Compute the class of [specific cycle] in the Chow ring $A^*(X)$.
Subquestions: What is the degree of this class? Does it vanish in $A^2(X)$?

Classification Problems:

Main: Classify all [objects] with [property]. Give explicit representatives for each isomorphism class.
Subquestions: How many classes are there? Which have additional property P ?

Example Problems:

Example 1: Stable Graphs
Main question: Find a closed formula for the number $N(g)$ of stable graphs of genus g with no legs and precisely 3 edges, for all $g \geq 2$.
Subquestions:

- What is $N(3)$?
- What is $N(8)$?
- What is $N(1000)$?

Example 2: Permutation Representations
Main question: Let G be a finite group. Is the functor $\text{Perm} : G\text{-sets} \rightarrow \text{Rep}_{\mathbb{C}}(G)$ sending X to its permutation representation fully faithful? Prove or provide a counterexample.
Subquestions:

- Is the statement true for all finite groups?
- Is the statement true for all finite cyclic groups?
- Is the statement true for all finite abelian groups?

Brainstorming Tips:

- A tricky calculation from your recent work that required a clever insight
- An "obvious" statement that actually needs a non-trivial proof
- A self-contained lemma that came up in a research project
- An oral exam question for an advanced course

Ready to Contribute?
Start creating your problem using our editor with LaTeX support and AI testing.
[Create New Problem](#)

Figure 15: Guidelines for authoring benchmark problems.

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

The screenshot shows the IMProofBench interface for editing questions and solutions. At the top, a navigation bar includes 'IMProofBench Mathematical Reasoning Benchmark', 'Questions / Permutation representation / Edit', and user status ('Participant@example.com', 'Profile', 'Sign Out').

① Basic Information (Question Title: Permutation representation, Status: under_review, Tags: group theory, representation theory, permutation groups)

② Question Content (Editor with preview and code block for LaTeX)

③ AI Solution Attempt (Test with GPT-3, 100/100 tests remaining)

④ Solution (Editor with preview and code block for LaTeX)

⑤ Difficulty Ratings (Background Knowledge: 2 - Easy, Reasoning Complexity: 2 - Easy, Mathematical Insight: 3 - Moderate, Computational Requirements: 2 - Easy)

⑥ Subquestions (Add Subquestion, Expected Answer: No, Points: 5, Evaluation Method: Exact Match, Rationale: The counter-example from the main solution applies here as well.)

Figure 16: Window for editing questions, solutions, and their associated subquestions; via the blue button, the user can request up to 20 free AI solution previews per day to check the suitability of the question.

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

The screenshot shows a question page on the IMProofBench platform. The main question is about the permutation representation of a finite group G acting on a finite set X . It asks for a proof or counter-example of the statement that if two finite G -sets X_1, X_2 admit a G -equivariant bijection $\phi: X_1 \rightarrow X_2$, then the representations $\text{Perm}(X_1)$ and $\text{Perm}(X_2)$ are isomorphic as complex G -representations. The solution provided is a counter-example involving subgroups of $\mathbb{Z}/2\mathbb{Z}$. The AI solution attempt is shown as a generated text block. Subquestions are listed below, with one being reviewed. The interface includes a sidebar for difficulty ratings (Background: 2, Reasoning: 2, Insight: 3, Compute: 3) and a footer with copyright and privacy information.

Figure 17: Overview page of question data (with main question, sample solution, AI answer preview, and subquestions).

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

The screenshot shows the IMProofBench Mathematical Reasoning Benchmark review interface. The left sidebar lists line numbers from 1890 to 1943. The main area is divided into two sections: 'Question to Review' and 'Submit Review'.

Question to Review:

- Permutation representation:** Given a finite group G acting on a finite set X , let $\text{Perm}(X)$ be the complex permutation, whose underlying vector space is \mathbb{C}^X . Give a proof or a counter-example of the following statement:
- Claim (1):** In the setting above, two finite G -sets X_1, X_2 admit a G -equivariant bijection $\phi: X_1 \rightarrow X_2$ if and only if the representations $\text{Perm}(X_1)$ and $\text{Perm}(X_2)$ are isomorphic as complex G -representations.
- Author's Solution:** The claim is false. A counter-example is $G = (\mathbb{Z}/2\mathbb{Z})^{\oplus 3}$. Let $Y_1 = \bigoplus_{|H|=4} G/H, Y_2 = \bigoplus_{|H|=2} G/H, Y_3 = G$, where the sums are over subgroups $H \subseteq G$ of the given cardinalities and all actions carry their natural transitive G -action by translation. Then for $X_1 = Y_1 \sqcup Y_3^{\times 7}, X_2 = Y_2^{\times 3}$ we have:
 - X_1 is not G -equivariantly bijective to X_2 since X_1 has 8 orbits and X_2 has 3 orbits under the G -action.
 - We have an equality of permutation representations $\text{Perm}(X_1) \cong \text{Perm}(X_2)$ since the characters of these two permutations satisfy $\chi(0) = |X_i| = 84$ and $\chi(a) = |X_i^a| = 3$ for all $a \in G \setminus \{0\}$, where X_i^a is the fixed set of a acting on X_i . Here we use that each such a is contained in precisely 3 subgroups H of G of order 4 and precisely one such subgroup of order 2.
- Author:** Johannes Schmitt **Created:** Sep 2, 2025 **Tags:** group theory, representation theory, permutation groups **Difficulty Ratings (1-5):** 2 Background, 3 Insight, 2 Reasoning, 2 Compute
- Subquestions:**
 - Subquestion a:** Is Claim (1) from the main question above true? **Answer:** No **Rationale:** See counter-example in main solution. **1 pts**
 - Subquestion b:** Is Claim (1) from the main question above true under the additional assumption that G is Abelian? **Answer:** No **Rationale:** The counter-example uses an Abelian group $G = (\mathbb{Z}/2\mathbb{Z})^{\oplus 3}$. **1 pts**
 - Subquestion c:** Is Claim (1) from the main question above true under the additional assumption that G is cyclic? **Answer:** Yes **Rationale:** A G -set is determined by its mark, i.e. by the cardinalities $(|X^H|)_{H \subseteq G}$ subgroup. As every subgroup $H = \langle h \rangle$ is cyclic, and we have $X^H = X^h$ we can reconstruct these numbers since the cardinality of X^h equals the trace of the permutation matrix associated to the element $h \in G$. That trace is the character of $\text{Perm}(X)$, evaluated at h . **2 pts**
 - Subquestion d:** Is Claim (1) from the main question above true under the relaxed assumption that G is a compact Lie group acting on a compact manifold X , replacing $\text{Perm}(X)$ with the smooth functions $C^\infty(X)$ seen in the category of Fréchet spaces with continuous G -action? **Answer:** No **Rationale:** The counter-example from the main solution applies here as well. **2 pts**

Submit Review:

- Decision***: **Submit anonymously**: Check to submit review anonymously (your name will not be shown to the author).
- Recommend for acceptance**: You must select a decision for your review.
- Comment***: Good question with correct answer!
- Formulation of question could ask more explicitly which of the claimed directions \$\implies\$ or \$\impliedby\$ holds.**
- Suggest adding tag: "group actions"**
- Your review feedback using Markdown + LaTeX**: Be constructive and specific about issues or improvements needed.
- Review Guidelines**: What makes a good benchmark question?
 - Clear problem statement:** Unambiguous mathematical notation and well-defined objectives
 - Appropriate difficulty:** Challenging but solvable within the target domain
 - Complete solution:** Author should provide a correct, detailed solution
 - Proper formatting:** Good use of LaTeX and clear mathematical presentation
- Common issues to look for:**
 - Typos or grammatical errors
 - Unclear or ambiguous wording
 - Missing or incorrect mathematical notation
 - Solution errors or incomplete reasoning
 - Inappropriate difficulty rating
- Decision guidelines:**
 - Accept:** Ready for benchmark inclusion with minimal or no changes
 - Needs revision:** Good question but requires specific improvements
 - Not suitable:** Fundamental issues that make it inappropriate for the benchmark
- View Full Guidelines**
- Cancel** **Submit Review**

Figure 18: Question review window showing text box for feedback and review instruction summary.

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

IMProofBench Mathematical Reasoning Benchmark

participant@example.com Admin Profile Sign Out

Review Guidelines

Standards and best practices for reviewing mathematical proof questions

What Makes a Good Benchmark Question?

Mathematical Content

- **Clear problem statement:** Unambiguous mathematical notation and well-defined objectives
- **Appropriate difficulty:** Challenging but solvable within the target domain
- **Mathematical rigor:** Precise definitions and logically sound reasoning
- **Benchmark relevance:** Tests important mathematical reasoning skills

Presentation Quality

- **Complete solution:** Author provides correct, detailed solution with clear reasoning steps
- **Proper formatting:** Good use of LaTeX and clear mathematical presentation
- **Professional language:** Grammar, spelling, and mathematical terminology
- **Appropriate metadata:** Accurate difficulty ratings and relevant tags

Common Issues to Look For

Content Issues

- Ambiguous or unclear problem statements
- Missing or incorrect mathematical notation
- Solution errors or incomplete reasoning
- Inappropriate difficulty rating for the content
- Questions that are too easy or impossibly hard

Presentation Issues

- Typos, grammatical errors, or unclear wording
- Poor LaTeX formatting or rendering issues
- Missing tags or inappropriate categorization
- Inconsistent mathematical notation
- Unprofessional language or tone

Review Decision Guidelines

Accept
Accept for Benchmark
Ready for benchmark inclusion with minimal or no changes. High quality content and presentation.

Needs Revision
Needs Revision
Good question but requires specific improvements. Provide clear, actionable feedback.

Not Suitable
Not Suitable
Fundamental issues that make it inappropriate for the benchmark. Explain why clearly.

How to Write Constructive Feedback

Good Feedback

- **Be specific:** Point out exact locations of issues
- **Be constructive:** Suggest how to improve, not just what's wrong
- **Be respectful:** Professional tone, acknowledge effort
- **Be complete:** Address all major issues you notice
- **Use examples:** Show corrected notation or phrasing

Avoid This

- **Vague criticism:** "This is wrong" without explanation
- **Personal attacks:** Comments about the author rather than the work
- **Overwhelming details:** Listing every minor typo without priorities
- **Unhelpful rejection:** "Not suitable" without explaining why
- **Contradictory advice:** Conflicting suggestions

Example:
"In line 3, the notation $f : X \rightarrow Y$ should be $f : \mathbb{R} \rightarrow \mathbb{R}$ to be more specific about the domain. Consider rephrasing the conclusion to be more precise about the uniqueness condition."

Bad Example:
"This question is terrible and has lots of errors. The math is wrong and the formatting is bad. You should rewrite the whole thing."

Review Process

Expected Timeline

- **Review submission:** Within 1-2 weeks of assignment
- **Thorough review:** Allow 30-60 minutes per question
- **Complex questions:** May require additional time for verification

Anonymity Options

- **Named reviews:** Default, promotes accountability
- **Anonymous reviews:** Use when concerned about conflicts
- **Admin visibility:** Admins can always see reviewer identity

← Back to Questions Find Questions to Review

IMProofBench © 2025 | Mathematical Reasoning Benchmark for AI Research | Privacy Policy

Figure 19: Detailed explainer of review instructions and process.

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Figure 20: Grading form, displaying sample solution, model answer, and scoring form side by side. Model identities (A–E) at the top are randomized on starting the grading, and only revealed when grading is complete, to avoid bias.