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ABSTRACT

The Earth’s weather system involves intricate weather data modalities and diverse
weather understanding tasks, which hold significant value to human life. Existing
data-driven models focus on single weather understanding tasks (e.g., weather
forecasting). While these models have achieved promising results, they fail to
tackle various complex tasks within a single and unified model. Moreover, the
paradigm that relies on limited real observations for a single scenario hinders the
model’s performance upper bound. Inspired by the in-context learning paradigm
from visual foundation models and large language models, in this paper, we
introduce the first generalist weather generalist foundation model (WeatherGFM)
to address weather understanding tasks in a unified manner. Specifically, we first
unify the representation and definition for diverse weather understanding tasks.
Subsequently, we design weather prompt formats to handle different weather
data modalities, including single, multiple, and temporal modalities. Finally, we
adopt a visual prompting question-answering paradigm for the training of unified
weather understanding tasks. Extensive experiments indicate that our WeatherGFM
can effectively handle up to ten weather understanding tasks, including weather
forecasting, super-resolution, weather image translation, and post-processing. Our
method also showcases generalization ability on unseen tasks.

1 INTRODUCTION

Modeling Earth weather systems involves a series of complex subprocesses that are intended to trans-
form intricate Earth observation data into applications like weather forecasting (Chen et al., 2023a; Bi
et al., 2023), downscaling (Chen et al., 2022), assimilation (Huang et al., 2024), retrieval (Liu et al.,
2011), and bias correction (Gong et al., 2024). During the past decade, many data-driven machine
learning methods have been investigated for various weather understanding tasks and delivering
desirable performance on specific tasks. For example, recent studies using large-scale training data
(e.g., ERA5 reanalysis data (Hersbach et al., 2020)) have exceeded the accuracy of conventional nu-
merical weather forecasts. However, current weather foundational models face challenges regarding
generalizability and data scale limitations. On the one hand, the Earth observation system consists
of a variety of observation devices, such as satellites, radar, and weather stations, which produce
diverse modalities of data. Consequently, designing a specific model for a single-task scenario is
highly complex, time-consuming, and labor-intensive. On the other hand, large-scale data in fields
such as computer vision can be obtained at a low cost, whereas weather understanding tasks face
an intrinsic bottleneck in data scale due to restrictions on individual scenes and single observation
devices as shown in Table 1. For instance, local short-term precipitation forecasting models can only
utilize a finite range of observational data.

A significant trend in AI research is the development of foundation models, shifting towards large-
scale pre-training and in-context learning. This paradigm enables unified processing of a multitude
of complex tasks and generalization to unseen tasks. For example, large language models (LLMs)
can perform a variety of language-centric tasks (e.g., sentiment analysis, question answering and
machine translation) by combining language input-output examples with new query inputs (prompts)
without optimizing model parameters (Brown, 2020). Similarly, vision foundation models (Wang
et al., 2023b; Liu et al., 2023b; Chen et al., 2024b) employ visual prompts with query inputs to
carry out diverse image-centric tasks, such as semantic segmentation, depth estimation, and image
restoration. These studies highlight the significant potential of generalist foundational models.
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Table 1: Comparison of existing task-specific and general models across Earth science and computer
vision fields. Our WeatherGFM demonstrates its ability to handle multi-tasks, multi-modal data, and
general capabilities, showcasing its strength in acquiring hard-to-access weather data.

Category Method
Data Acquisition

Difficulty
Supported Tasks

Multi-tasks

support?

Multi-modal

support?

Generalist

support?

Computer

Vision

HAT (Chen et al., 2023b) Low-cost Image super-resolution (SR) ✗ ✗ ✗

IPT (Chen et al., 2021) Low-cost Image restoration, Derain, Dehaze ✓ ✗ Requires fine-tuning

Painter (Wang et al., 2023a) Low-cost
Image restoration

Segmentation, Keypoint detection
✓ ✗ ✓

PromptGIP (Liu et al., 2023a) Low-cost Image restoration, Derain, Dehaze ✓ ✗ ✓

GenLV (Chen et al., 2024a) Low-cost Image restoration, enhancement, translation ✓ ✗ ✓

Earth

Science

Prediff (Gao et al., 2024) High-cost Weather forecasting ✗ ✗ ✗

Cascast (Gong et al., 2024) High-cost Post-processing ✗ ✗ ✗

Climax (Nguyen et al., 2023) High-cost Weather forecasting, Super-resolution ✓ ✗ Requires fine-tuning

Aurora (Bodnar et al., 2024) High-cost
Weather forecasting

Atmospheric chemistry prediction
✗ ✓ Requires fine-tuning

WeatherGFM

(ours)
High-cost

Weather forecasting, Weather image SR

Weather image translation, Post-processing
✓ ✓ ✓

The study of foundation models remains largely limited in weather understanding, with the majority
focused on Computer Vision and Natural Language Processing. While there has been some progress
with large foundation models in weather and climate, the focus is mainly on weather forecasting
and downscaling tasks. For example, Climax (Nguyen et al., 2023) uses a pre-training-finetuning
paradigm for weather forecasting and downscaling. Aurora (Bodnar et al., 2024) employs LoRA
to unify weather forecasting and quick prediction of atmospheric chemistry. However, as shown
in Table 1, these studies do not take into account the modeling of multi-modalities and multi-tasks.
This poses a challenge: Is it possible to design a universal foundation model capable of handling the
variety of complex weather understanding tasks and data modalities?

In this paper, we first propose a weather generalist foundation model, WeatherGFM, to uniformly
address a variety of complex weather understanding tasks and data modalities. Unlike prior studies
that focused on weather forecasting, our proposed method can expand the task scope to weather
forecasting, weather super-resolution (i.e., weather downscaling) (Veillette et al., 2020), weather
image translation (similar to retrieval in weather) (Veillette et al., 2020), and post-processing (Gong
et al., 2024). These tasks all belong to the domain of weather understanding, but their modalities are
distinct. Specifically, Sequence modal data can be utilized for weather forecasting, such as short-term
predictions based on radar data. Multi-modal data can be employed for weather image translation,
such as converting multi-modal satellite data to generate radar data. Single-modal data can be applied
to various common scenarios, such as radar image super-resolution and post-processing. To unify the
diverse weather data modalities into a general representation, we introduce a weather prompt format
that assigns different prompt phrases to various modalities. By leveraging in-context learning, our
WeatherGFM achieves a promising in-context ability on both various seen tasks and unseen tasks.
The significance of our work can be summarized as:

• We propose the first weather generalist foundation model (i.e., WeatherGFM), which can
handle more than ten weather understanding tasks.

• Our weather prompt design supports a diversity of weather data modalities, including
time-series, multi-modal, and single-modal data.

• Our WeatherGFM with in-context learning first demonstrates the generalization ability to
unseen weather understanding tasks.

2 RELATED WORK

Weather understanding and beyond. Over the past decade, machine learning techniques have
consistently attracted attention in the field of weather and climate. Numerous data-driven machine
learning models have been proposed to address classical tasks in weather understanding (Veillette
et al., 2020), such as forecasting, super-resolution, image translation, and post-processing. Weather
forecasting (Bi et al., 2023)) aims to predict future observations from past data. Weather super-
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resolution tasks, i.e., weather downscaling, Chen et al. (2022) focus on recovering high-resolution
data from low-resolution observations. Weather image translation tasks (Stock et al., 2024) involves
converting existing observational data into desired target modalities, such as transforming satellite
observations into ground-based weather radar data. Post-processing tasks seek to enhance existing
model results, such as bias correction and deblurring (Gong et al., 2024). Despite significant
advancements, current methods often rely on specialized datasets and customized single-task models
for certain scenarios. Consequently, single-task models struggle to exhibit strong generalization
abilities and fail to capture the interconnections between diverse tasks, which hinders the establishment
of simulations for the Earth system.

Weather foundation model. The rise of foundation models (Liu et al., 2024; Zhao et al., 2024a;b) in
Natural Language Processing and computer vision has sparked interest in their application for weather
and climate. Large foundation models, enhanced through pre-training, improve the generalization
of AI climate models and can be fine-tuned for specific tasks. Pathak et al. (2022) proposed
FourCastNet, a climate pre-trained model using Vision Transformer for high-resolution predictions
and rapid inference through self-supervised pre-training and autoregressive fine-tuning. Pangu-
Weather (Bi et al., 2023) utilizes a 3D Earth-specific Transformer for accurate global predictions.
ClimaX (Nguyen et al., 2023) introduces supervised pre-training to weather prediction, offering
flexibility for diverse forecasting tasks. A pre-training foundation model usually requires mask
modeling for pre-training and then undergoes fine-tuning on specific tasks, such as fine-tuning the pre-
trained model on weather forecasting, remote sensing classification and segmentation tasks Bodnar
et al. (2024); Cong et al. (2022); Noman et al. (2024); Li et al. (2024).

Visual in-context learning. In recent advancements, visual in-context learning has emerged as a
promising research area, inspired by the success of language models like GPT-3 (Brown, 2020).
These models adapt to various NLP tasks using prompts or in-context examples without extensive
retraining. Similarly, in the vision domain, models such as MAE-VQGAN (Hojel et al., 2024) and
Painter (Wang et al., 2023b) have begun exploring in-context learning. However, challenges persist,
especially in low-level tasks requiring detailed pixel manipulation. To address this, PromptGI (Liu
et al., 2023b) and GenLV have incorporated in-context learning concepts into their designs to
unify low-level vision tasks with diverse input and output modalities, aiming to develop generalist
models. Vision-language models like Unified-IO (Lu et al., 2022) and Unified-IO 2 (Lu et al., 2024)
have made significant progress in integrating multiple tasks, highlighting the potential for unified
approaches across modalities. Additionally, compositional visual reasoning, exemplified by Visual
Programming (Gupta & Kembhavi, 2023), aligns with in-context learning goals by emphasizing
visual task synthesis. ViperGPT (Surís et al., 2023) further demonstrates foundational models for
visual reasoning, employing computational techniques similar to our objectives, though without
relying on programmatic inputs. These collective efforts pave the way for more sophisticated and
versatile visual in-context learning frameworks.

3 METHOD

3.1 UNIFIED REPRESENTATION OF WEATHER UNDERSTANDING TASKS.

Weather understanding tasks involve processing multi-source observational data (Veillette et al., 2020),
such as geostationary satellites (GEOS), polar-orbiting satellites (POES), weather radars, and ground
observation stations. Each task (e.g., weather forecasting, spatial and temporal super-resolution,
weather image translation, and post-processing) utilizes different types of input and output data. To
address this challenge, we first developed a unified data representation that can standardize these
diverse tasks. Unlike traditional methods that rely on task-specific models for each distinct task, we
introduce a universal foundational model capable of addressing various weather understanding tasks
through a single and general solution.

As shown in Figure 1, several key weather understanding tasks can be framed using different types of
input and output data. For instance, the weather spatial super-resolution (SR) task generates a high-
resolution image xHR from a low-resolution image xLR, while weather temporal super-resolution
predicts a high-resolution image xt

HR based on two consecutive observed input images xt−1
LR and xt+1

LR ,
where t represents a particular moment in time. The weather temporal super-resolution task aims to
restore the missing observed data in time t. Weather forecasting relies on a sequence of observed
data points {x1, x2, . . . , xt} that are gathered over the past t time steps. These observed data points
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Figure 1: Illustration of the unified representation for weather understanding tasks.

serve as condition, enabling the prediction of future data points such as points {xt+1, xt+2, . . .}. The
image translation task focuses on converting an input image from one modality (e.g., satellite image)
to another modality (e.g., radar image). Formally, we can represent these tasks as projections from
the source input data XS to the target output data XT :

τ : XS −→ XT . (1)

When XS = xLR and XT = xHR, the task corresponds to spatial SR. Similarly, when XS =
{x1, x2, . . . , xt} and XT = {xt+1, xt+2, . . .}, the task represents weather forecasting. As these
tasks differ in their input and output formats, as well as sequence lengths, the key challenge lies in
unifying them within one coherent data representation.

3.2 WEATHERGFM: WEATHER GENERALIST FOUNDATION MODEL

We present the Weather Generalist Foundation Model (WeatherGFM) to tackle the challenges
inherent in a range of weather understanding tasks. Through in-context learning, our WeatherGFM
can uniformly handle various weather understanding tasks involving multiple data modalities.

Weather prompt designing. In large language models and vision foundation models, task prompts
commonly provide specific task-related input-output pairs. As shown in Figure 2, in machine
translation (Stahlberg, 2020), the model is given English to French text pairs as prompts. The model
can perform machine translation tasks based on these sample prompts for a given input. In visual
tasks (Wang et al., 2023a), the visual prompt image1 may be a natural image, and image2 is the
corresponding segmented image. The model will conduct the segmentation task for a new input
image3 to obtain the segmented image.

Text Prompt:    {example: sea otter, loutre de merr}         query: cheese                output: fromage
Visual Prompt: {example:  image1, image2}                    query: image3               output: image4

Weather Prompt1: {example: image1, image2}               query: image3               output: image4
Weather Prompt2: {example: image1,image2, image3}  query: image4,image5  output: image6
Weather Prompt3: {example: sequence1, sequence2}     query: sequence3          output: sequence4

Weather Prompts

Figure 2: Comparison of weather prompts with text and visual prompts design.

Following this paradigm, we designed weather prompts for weather understanding tasks. Since
the input for weather understanding tasks involves multiple modalities, such as a single weather
observation variable, multiple different weather variables, and time-series weather variables, we
proposed three prompts to handle different modalities of input. In Figure 2, weather prompt1 is
similar to visual prompts, converting a single modality image into a target image. In weather prompt2,
the input modality can be two different channel satellite observation images (e.g., IR069 and IR107
data), and the output can be weather radar observation data for image translation tasks. In weather
prompt3, time-series prompts can be input to perform weather forecasting-related tasks. With these
forms of prompt design, our method can handle most weather understanding tasks.
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Figure 3: Overall approach of our weather generalist foundation model (WeatherGFM).

Weather in-context learning. Inspired by the success of in-context learning in large language
models (Dong et al., 2022) and vision foundation models (Wang et al., 2023a), we propose to unify
the weather understanding problem as the visual prompting question-answer paradigm, as illustrated
in Eq. 3. Specifically, given a visual question-answer prompt pair (Pin, Ptarget) as a task-guided
prompt and a query input Xin, the model is expected to perceive the context of the prompt (i.e., what
task it represents). Consequently, the model can perform the corresponding operations on the query
with the prompt. This process can be formulated as follows:

Xtarget = Fτ (Pin, Ptarget, Xin; θ); (2)

where Fτ represents a universal foundation model parameterized by θ. Pin and Ptarget denotes the
input and target of task prompts. We can determine what task will be performed on the input Xin

by selecting the task-specific prompt Pin and Ptarget, and then obtain the target Xtarget for the
corresponding task through the model Fτ .

Mixed-modal mask modeling. Upon redefining the output spaces of the aforementioned representa-
tive vision tasks, it is observed that both the input and output of these tasks are in the form of images
as transformers-based architectures could provide flexibility by treating the image-like data as a set of
tokens. Therefore, we build the WeatherGFM architecture on Vision Transformers (ViT) and propose
a mixed-modal masked image modeling (MMIM) pipeline to train multiple weather understanding
tasks as shown in Figure 3. Inspired by the concept of Visual Question Answering Wang et al.
(2023a); Liu et al. (2023b); Chen et al. (2024a), we introduce mixed-modality masking on various
weather modalities for visual question-and-answer modeling in weather understanding tasks. This
process can be formulated as follows:

P
′

target, X
′

target = Fτ (Pin,M(Ptarget), Xin,M(Xtarget); θ); (3)

where we randomly conduct mask operation M on the prompt target Ptarget as well as the ground
truth Xtarget according to the mask ratio. Meanwhile, the prompt input Pin and the input query Xin

will be retained entirely. P
′

target and X
′

target represent the predicted target output of model Fτ . The
optimization objectives are as follows:

Ltotal
θ = L2(P

′

target, Ptarget) + L2(T
′

target, Ttarget). (4)

where we use MSE (mean square error) loss L2 to train the weather generalist foundation model. In
the inference stage, we keep the Pin, Ptarget, and Xin intact while the target image is fully masked.
This target full masking strategy allows generalist foundation models to generate the corresponding
target through a visual question-and-answer format. Our WeatherGFM comprises two main elements:
the format for input data and the architectural design.

Input format: Given an input of shape (C,H,W ), ViT predicts an output of shape (C
′
, H

′
,W

′
),

where C represents the input channels and C
′

represents the output channels. As shown in Figure 3,
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different tasks have different channels. The model tokenizes the input into a sequence of patches,
with each patch having a size of C × p2, where p is the patch size. Unlike RGB-based image data,
where the channels are fixed, the number of physical variables in climate and weather data can vary
between different datasets and tasks. To adapt the ViT to different weather-related downstream tasks,
we designed task-specific patch embedding layers within the architecture. After the patch embedding
layer, we use an MLP layer to align the embeddings of different tasks to the same space:

zC = PatchEmbedC(x), x ∈ RC×H×W , zC ∈ RN×D,

z0 = MLPC(LN(zC)), z0 ∈ RN×D
(5)

where N,D denotes the number of input tokens and the transformer dimension, respectively. For the
masked area, we follow previous works (Liu et al., 2023a) to use a learnable token vector to replace
each masked patch. We adopt the block-wise masking strategy, taking the masking ratio as 75%.

Architecture: A vanilla vision Transformer (ViT) is adopted as the backbone architecture. It
consists of task-specific patch-embedded layers and several alternating layers made of Multi-Head
Self-Attention (MHSA) and MLP blocks. Layer Normalization (LN) is applied before every block,
and residual connections are applied after every block. As shown in Figure 3, this process can be
formulated as follows:

z
′

ℓ = MHSA(LN(zℓ−1)) + zℓ−1, ℓ = 1...L,

zℓ = MLP(LN(z
′

ℓ)) + z
′

ℓ, ℓ = 1...L,
(6)

where L denotes the number of layers. After the attention layers, we employ a prediction head and
then unpatchify the output of the prediction head. The prediction head is a one-layer MLP with a
hidden dimension of 1024.

4 EXPERIMENTS

4.1 WEATHER UNDERSTANDING TASKS.

We incorporate up to 10 tasks including diverse weather forecasting, weather super-resolution,
weather image translation and weather post-processing tasks into our experiments.

SEVIR. The Storm EVent ImageRy dataset (SEVIR) (Veillette et al., 2020) is a spatiotemporally
aligned dataset that contains over 10,000 weather events represented by five spatially and temporally
aligned sensors. These sensors consist of three channels (C02, C09, C13) from the GOES-16 satellite,
one NEXRAD derived vertically integrated liquid (VIL) mosaic variable, and lighting detections
from the GOES GLM sensor. Each SEVIR event spans 4 hours with 5-minute intervals, sampled
randomly (with oversampling of events with moderate and high precipitation) using the NOAA Storm
Event Database. In our task, we uniformly resize the resolution of images from different modalities
to 256×256. Moreover, we filter the events within the SEVIR dataset and pick out those events that
include both the three channels of the GOES-16 satellite and the one variable derived from weather
radar. Ultimately, the dataset we utilize comprises 11,508 events with four distinct sensing modalities.
Among them, 11,308 events are selected as the training set, while 100 events are designated as the
validation set and 100 events are designated as the test set. Consequently, the training set contains a
total of 2.2M images, while the validate/test set has a total of 19.6K images. We provide a detailed
introduction in Appendix A.

POMINO-TROPOMI, GEOS-CF. In addition, we add a weather image translation task for en-
vironment monitoring: Translate geostationary NO2 data to polar-orbiting satellites NO2 data
(GEOS2POES-NO2) based on POMINO-TROPOMI product (Liu et al., 2020) and GEOS-CF
dataset (Keller et al., 2021). In this task, the input images are sourced from GEMS as well as the
GEOS-CF datasets, while the output images are obtained from the TROPOMI dataset. The original
image has a resolution of 1400×800. We also divide it into grids of 256×256 with a sliding step size
of 128. Each original image can thus be segmented into 45 pieces of 256×256 pictures. We utilize
the observational data from January 2021 to April 2022. After processing, each modality has 20,000
images with a resolution of 256×256. Among them, we allocate 18,000 images as the training set,
1,000 images as the validation set, and 1,000 images as the test set.
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Figure 4: Visual results of the weather understanding tasks by our WeatherGFM.
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Table 2: Quantitative results on weather understanding tasks. #: single-task model. †: trained with all
ten weather understanding tasks. RMSE and CSI are calculated as the quantitative metric. A lower
RMSE and a higher CSI indicate better results. The best results are highlighted in bold, and the
second-best results are underscored.

Weather super-resolution (SR)

Task name
Satellite Spatial SR Radar Temporal SR Radar Spatial SR

Metrics RMSE CSI/-4000 CSI/-6000 RMSE CSI/74 CSI/160 CSI/219 RMSE CSI/74 CSI/160 CSI/219

UNet# 0.932 0.650 0.912 0.739 0.485 0.182 0.034 0.650 0.675 0.400 0.184
ViT# 0.047 0.987 0.990 0.333 0.591 0.285 0.061 0.120 0.830 0.637 0.358
WeatherGFM† 0.042 0.988 0.996 0.327 0.597 0.287 0.073 0.121 0.831 0.644 0.375

Weather Forecasting Post-processing

Task name
Satellite extrapolation Radar extrapolation Deblur

Metrics RMSE CSI/-4000 CSI/-6000 RMSE CSI/74 CSI/160 CSI/219 RMSE CSI/74 CSI/160 CSI/219

UNet# 1.033 0.617 0.900 0.815 0.353 0.082 0.007 0.713 0.457 0.145 0.027
ViT# 0.408 0.840 0.943 0.490 0.440 0.079 0.007 0.163 0.594 0.291 0.104
WeatherGFM† 0.347 0.863 0.951 0.467 0.465 0.128 0.021 0.264 0.629 0.255 0.082

Weather image translation

Task name
GOES2Radar GOES-IR2GOES-IR

Metrics RMSE CSI/16 CSI/74 CSI/160 CSI/181 CSI/219 RMSE CSI/-6000 CSI/-4000 CSI/0 CSI/2000

UNet# 0.821 0.222 0.370 0.180 0.153 0.079 0.915 0.929 0.741 0.638 0.078
ViT# 0.445 0.602 0.436 0.180 0.131 0.042 0.257 0.987 0.972 0.809 0.136
WeatherGFM† 0.436 0.619 0.447 0.208 0.157 0.053 0.310 0.993 0.968 0.808 0.222

Task name GOES-IR2GOES-Visible GOES2POES-NO2

Metrics RMSE CSI/2000 CSI/3200 CSI/4400 CSI/5600 CSI/6800 RMSE CSI/1 CSI/5 CSI/10 CSI/15

UNet# 0.915 0.422 0.285 0.179 0.100 0.040 0.866 0.799 0.360 0.274 0.202
ViT# 0.448 0.574 0.437 0.303 0.184 0.071 0.549 0.841 0.432 0.328 0.253
WeatherGFM† 0.439 0.580 0.439 0.298 0.166 0.068 0.302 0.682 0.562 0.382 0.197

4.2 IMPLEMENTATION AND EVALUATION

Training details. During training, we resize the weather images of different resolutions to a
resolution of 256×256 and input them into the model in accordance with the combination mode
of Pin, Pout, Xin, Xout in the task-specific prompt format, resulting in a N × 256 × 256 total input
resolution. The L1 loss is employed as the loss function. For optimization, the AdamW optimizer
with a cosine learning rate scheduler is utilized. The base learning rate is 1e4. The batch size is 20.

Evaluation metrics. Besides RMSE, we also include the Critical Success Index (CSI), which is
commonly used in weather understanding tasks (e.g., precipitation nowcasting) and is defined as

CSI =
Hits

Hits + Misses + F.Alarms

To count the Hits (truth=1, pred=1), Misses (truth=1, pred=0) and F.Alarms (truth=0, pred=1), the
prediction and the ground-truth are normalized using mean-variance normalization and binarized
at different thresholds. Following SEVIR (Veillette et al., 2020), for radar output tasks, we have
established thresholds at [16, 74, 133, 160, 181, 219]. GEOS-visible output tasks are assigned
thresholds of [2000, 3200, 4400, 5600, 6800]. The GEOS-IR107 output tasks operate with thresholds
set to [-6000, -4000, 0, 2000]. Lastly, the GEOS-IR069 output task employs thresholds of [-4000,
-5000, -6000, -7000].

4.3 EXPERIMENTAL RESULTS

Currently, there is no general weather foundation model that can comprehensively handle all the
discussed weather understanding tasks simultaneously. Although many machine learning methods
have been investigated for single tasks, they generally adopt different backbone networks and design
strategies tailored to them. For a fair comparison, we have trained a series of baselines (i.e., single-task
model) for each weather understanding task under a consistent training setup, including commonly
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Table 3: Standard deviation of the performance computed based on 20 different prompts. Avg. CSI
denotes the mean of the CSI score across thresholds [16, 74, 133, 160, 181, 219].

GOES2Radar Radar extrapolation GOES-IR2GOES-IR Radar Spatial SR Radar Temporal SR Deblur

Avg. RMSE 0.0087 0.0012 0.0481 0.0001 0.0002 0.0016
Avg. CSI 0.0187 0.0201 0.0284 0.0006 0.0010 0.0047

Time-series Prompt Input 1
Time-series

Prompt Target 1
Time-series Input 1 Time-series Output 1 Ground Truth

Time-series Prompt Input 2
Time-series

Prompt Target 2
Time-series Input 2 Time-series Output 2 Ground Truth

Figure 5: Case studies of our WeatherGFM with different prompts in the radar extrapolation task.

used UNet (Trebing et al., 2021) and ViT (Nguyen et al., 2023) networks. Notably, the purpose of this
paper is not to achieve state-of-the-art performance on every task. We focus on examining whether a
generalist foundation model can handle multiple complex weather understanding tasks and weather
data modalities. Beyond quantitative performance results, we are more concerned with the prompt
learning capabilities of the generalist foundation model and the generalization ability it brings.

Weather Generalist foundation model can achieve strong universal capabilities. As seen in
Table 2, our WeatherGFM, equipped with a straightforward ViT backbone, shows impressive per-
formance and adaptability in ten weather understanding tasks. It is not only capable of conducting
weather forecasting and super-resolution tasks but is also proficient in dealing with weather image
translation and post-processing tasks. Overall, our WeatherGFM achieves promising performance on
a diversity of weather understanding tasks.

Weather Generalist foundation model outperforms the performance of the single-task model.
In Table 2, we notice that our WeatherGFM achieves results that outperform the baseline in weather
forecasting, weather super-resolution, and image translation tasks. For instance, in radar extrapolation
tasks, our WeatherGFM with universal ViT-based model outperforms the single-task ViT model. This
indicates that a unified approach to weather understanding tasks can potentially break the performance
upperbound of single-task models.

In-context learning can generate correct outputs across a variety of data modalities and tasks. As
depicted in Figure 4, our WeatherGFM effectively carries out a wide array of weather understanding
tasks on multi-modal weather data. In practical scenarios, weather forecasting and weather image
transformation represent two substantially different tasks due to differences in temporal modalities.
Despite their intricacies, our WeatherGFM with in-context learning can successfully recognize distinct
task types, highlighting its significant generalization capacity.

4.4 ABLATION STUDIES AND EXPLORATIONS

Exploration of different task prompts. To investigate the impact of various visual prompts on
quantitative performance, we randomly select 20 meteorological prompts for each task and calculate
their quantitative metrics on the test set. Table 3 presents the standard deviation of performance for
each task across the 20 distinct meteorological prompts. We note that weather super-resolution tasks
are minimally affected by the randomness of weather prompts, whereas weather forecasting tasks and
image transformation tasks exhibit more significant variability, reaching approximately 0.02 in CSI.
Figure 5 illustrates that for certain weather events, employing different prompts yields more precise
outputs. This indicates that our method can comprehend specific weather cases based on weather
prompts rather than being a black box model incapable of interactive operations.
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Figure 6: Visual results of our our WeatherGFM on OOD tasks.

Figure 7: The effect of model sizes. ViT-ST: single-task ViT trained on 0.5 million samples. Base:
our WeatherGFM with 100 M parameters trained on 4 million samples. Large: our WeatherGFM
with 330 M parameters trained on 4 million samples.

Exploration on out-of-distribution tasks. To evaluate the generalization ability of our WeatherGFM,
we have devised a variety of out-of-distribution (OOD) tasks that were not encountered during the
training phase, including GEOS-IR107 extrapolation, weather image translation GEOS-IR107 to
GEOS-IR069, weather temporal SR at 15 minutes and GEOS-visible satellite extrapolation. As shown
in Figure 6, our WeatherGFM generates correct outputs for the first three tasks, which are similar
to the training distribution. However, the model encounters difficulties with the more challenging
task of multiple-modal satellite spatial SR, where its outputs fail to provide effective meteorological
information. These OOD tests demonstrate the model’s ability to identify tasks outside the training
distribution from new prompts, showcasing a degree of generalization.

Scaling law of weather foundation model. To evaluate the impact of data and model scale on
performance, we compared single-task models, the base version of our WeatherGFM, and its large
version. We established a baseline using a 30M parameter ViT under a single-task with 0.5 million
samples. Subsequently, in a multi-task setting with 4 million samples, our model was configured
with a base version of 110M and a large version of 330M parameters. Figure 7 illustrates that
improvements in performance on various tasks are achieved with the increase of model and data scale.
In specific tasks like radar super-resolution, we observe that scaling up both the data and the model is
essential for performance gains.

5 CONCLUSION

We introduce the first weather generalist foundation model, WeatherGFM. By employing a unified
representation for multiple weather understanding tasks and a multi-modal prompt design, our
WeatherGFM skillfully addresses various tasks, such as weather forecasting, super-resolution, image
translation, and post-processing through in-context learning. We conduct comprehensive explorations
of the model’s adaptability for various tasks and its generalization capabilities to unseen tasks, and its
scaling law at the data and model size. This study will facilitate the development of future large-scale
generalist weather and climate foundation models.
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A DETAILS OF WEATHER UNDERSTANDING TASKS

Weather forecasting. Radar echo extrapolation aims to forecast data for the subsequent 1-2 hours
utilizing observations from past moments (Gao et al., 2024). This task, similar to precipitation
nowcasting, plays a significant role in predicting local weather conditions. It can directly impact
traffic plans, disaster warnings, and energy management. Likewise, meteorological satellite image
extrapolation is crucial for monitoring and analyzing meteorological conditions. Based on the SEVIR
dataset, we consider two weather forecasting tasks: radar echo extrapolation Gong et al. (2024)
and satellite image extrapolation (Shukla et al., 2011). Our weather prediction tasks incorporate
observations from the hour before (0, 30, 60, and 90 minutes past) and the hour ahead (120 and 180
minutes into the future) for both radar and satellite IR-069 extrapolation. Consequently, for this task,
the SEVIR data was extracted and processed to generate 135,696 sequences for training, along with
an independent set of 1,200 sequences to validate/test the fitted model.

Weather super-resolution (SR). Weather spatial super-resolution task (Veillette et al., 2020) gen-
erates a high-resolution image from a low-resolution(LR) image, while temporal super-resolution
predicts a high-resolution(HR) image based on two consecutive observed input images. We take into
consideration three weather super-resolution tasks: spatial SR for satellite IR-069, spatial SR for radar
VIL, and temporal SR for radar VIL with a one-hour interval. We utilize the SEVIR dataset as the
source of the HR image. To obtain the LR image, we employ the "Bicubic" interpolation approach,
which is commonly used in vision image SR. In the context of meteorology, this is analogous to
statistical downscaling, as described in statistical downscaling (Vandal et al., 2017). Specifically,
for the VIL image, given that its original resolution is 384×384, we resize it to 256×256 to serve
as the HR image and resize it to 64×64 to function as the LR image, thereby implementing a 4x
super-resolution task. For the IR-069 image, since its original image has a resolution of 196×196, we
resize it to 256×256 to be the HR image and resize it to 64×64 to be the LR image, thus carrying
out a 3x super-resolution task. For each spatial SR for satellite tasks, the SEVIR data was extracted
and processed to yield 542,784 images for training, along with an independent set of 4,800 images
for validating/testing. For the weather temporal SR, we use the radar VIL image at 1 hour (0 and 60
minutes) as the input to predict the radar VIL image at 30 minutes. For the temporal SR task, the
SEVIR data was further extracted and processed to generate 407,088 sequences for training, along
with an independent set of 3,600 sequences to validate/test the fitted model.

Weather image translation. Weather image translation involves converting observation data (e.g.,
satellite data) to a desired weather image (Veillette et al., 2020). For example, depictions of storms
obtained from weather radar are extremely important. However, most areas of the world do not have
access to ground-based radar. It is useful for generating weather radar images of storm depictions from
satellite observation (Veillette et al., 2020). We consider three weather image translation tasks based
on SEVIR dataset: translate geostationary IR-069 to geostationary IR-107 data (GEOS-IR2GEOS-IR),
geostationary IR-069 to geostationary Visible data (GEOS-IR2GEOS-Vis), translate geostationary
IR-069 and IR-107 to radar VIL data (GEOS-IR2Radar). In addition, we add a weather image
translation task for environment monitoring: Translate geostationary NO2 data to polar-orbiting
satellites NO2 data (GEOS2POES-NO2) based on POMINO-TROPOMI product (Liu et al., 2020).
For the image translation tasks based on SEVIR dataset, we split SEVIR into 542,784 training
samples, 4,800 validation samples and 4,800 test samples. For translating geostationary NO2 data,

Weather post-processing: Post-processing (e.g., bias correction) aims to minimize or eliminate
systematic biases in model outputs and observational data, which emerge due to uncertainties in
weather models and measurement errors. Various methods, including statistical, machine learning,
and deep learning techniques, can be employed for post-processing, tailoring the approach based on
the specific application and data characteristics. By minimizing or eliminating systematic biases,
post-processing improves the quality and reliability of weather and climate data. In our experiment,
we consider a classic post-processing task: Debluring for radar VIL nowcasting. We employ the
output of Earthformer and the corresponding high-quality image as a training sample. Deblurring
aims to learn how to map from the output of Earthformer to the corresponding high-quality image.

B IMPLEMENTATION DETAILS

B.1 IMPLEMENTATION DETAILS AND HYPERPARAMETERS
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The hyperparameters for WeatherGFM in our experiments is shown in Table refhyperparameters.
The L1 loss is employed as the loss function. For optimization, the AdamW optimizer with a cosine
learning rate scheduler is utilized. The base learning rate is 1e-4. The batch size is 20 and the
accumulation gradient iterations are 4. We use 16 Nvidia A100 GPUs for training. A total of 50
epochs are executed. We leverage fp16 floating point precision in our model.

Table 4: Default hyperparameters of WeatherGFM

Hyperparameter Meaning Large Base

p Patch size 16 16
Encoder dimension Encoder Embedding dimension 1024 768
Decoder dimension Decoder Embedding dimension 512 512
Encoder depth Number of Encoder blocks 24 12
Decoder depth Number of Encoder blocks 8 8
Encoder Heads Encoder’s attention heads 16 12
Decoder Heads Decoder’s attention heads 16 16
MLP ratio The hidden dimension of the MLP layer in a ViT block 4 4
Masked ratio Percentage of the masked target data 75% 75%

B.2 VIT HYPERPARAMETERS

We borrow our ViT implementation from (Beyer et al., 2022). We use the following hyperparameters
for ViT in all of our experiments.

Table 5: Hyperparameters of ViT

Hyperparameter Meaning Value

p Patch size 16
Dimension Embedding dimension 512
Depth Number of Encoder blocks 16
Heads Encoder’s attention heads 8
MLP dim Encoder’s attention heads 1024

B.3 UNET HYPERPARAMETERS

We use the following hyperparameters for UNet in all of our experiments.

Table 6: Hyperparameters of UNet

Hyperparameter Meaning Value
Padding size Padding size of each convolution layer 1
Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1
Channel multiplications Number of output channels for Down and Up blocks [1, 2, 4, 8, 8]
Blocks Number of blocks 3
Use attention If use attention in Down and Up blocks False
Dropout Dropout rate 0
Inner channel Number of channels in the intermediate layers 64

C EXTENDABILITY

To assess the generalizability of our framework, we also utilize the ERA5 dataset (Hersbach et al.,
2020). With the introduction of new meteorological variables, we add a new patch embedding layer
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for each of these variables to the original model. Following the approach of ClimaX (Nguyen et al.,
2023), we use a cross-attention module to aggregate all variable embeddings into a single vector.
This allows us to handle the task using the single-modal mode in WeatherGFM. Specifically, we
employ an MLP layer to align the embeddings for this task. In line with ClimaX (Nguyen et al.,
2023), we use 48 ECMWF (European Centre for Medium-Range Weather Forecasts) variables as
input and evaluate the performance of WeatherGFM using the temperature at 2 meters above ground
(T2m). We consider seven lead times: 6 hours and 1, 3, 5, 7 days, covering a range from nowcasting
to short- and medium-range forecasting. Instead of training separate models for each target variable,
our WeatherGFM is trained once to predict all variables across all lead times simultaneously. During
fine-tuning, we randomize the lead time from 6 hours to 7 days. Table 7 shows that our approach
significantly outperforms ClimaX in the 120-hour and 168-hour forecast results, even surpassing the
IFS method of ECMWF. Our method achieves comparable results to ClimaX at other lead times. It’s
worth noting that Climax fine-tunes the pre-train model for each lead time, meaning Climax requires
N models for weather forecasting at N lead times. In contrast, our universal model can handle all
lead time tasks with just a single model, without the need for task-specific fine-tuning. Moreover, the
Climax method trained for 100 epochs using 80 V100 GPUs, while our generalist model trained for
20 epochs using 8 A100 GPUs. This indicates that our generalist model converges much faster than
Climax.

Table 7: Comparison of RMSE and ACC across different lead times for IFS, ClimaX,and ours
WeatherGFM on t2m variable. ClimaX views predicting at each lead time as a separate task and
fine-tunes a separate model for every individual task. In contrast, our WeatherGFM utilizes a single
model to deal with all of these tasks.

Lead Time RMSE ↓ ACC ↑
[hr.] IFS ClimaX WeatherGFM IFS ClimaX WeatherGFM

6 0.97 1.11 1.08 0.99 0.98 0.98
24 1.02 1.19 1.23 0.99 0.97 0.97
72 1.30 1.47 1.56 0.98 0.96 0.96

120 1.71 1.83 1.68 0.96 0.94 0.95
168 2.23 2.17 1.76 0.93 0.91 0.94

D EFFECTS OF MULTI-TASK TRAINING

In order to assess the influence of multi-task training on performance, we contrasted the versions
of our WeatherGFM that were trained on 4 tasks and 10 tasks respectively. Additionally, for the
purpose of comparison with WeatherGFM, we also made use of the single-task Vision Transformer
(ViT). As shown in the table 10, WeatherGFM-4tasks is trained on four tasks: Radar Temporal
SR, GOES2GOES, GOES2Radar, and Radar Spatial SR. It uses more data and encompasses more
tasks than the ViT-ST specialized model, which is trained on these four tasks separately. However,
WeatherGFM-4tasks utilizes less data and fewer tasks compared to WeatherGFM-10tasks, which
is trained on ten tasks. The results indicate that for radar image generation tasks (Radar Temporal
SR, GOES2Radar, and Radar Spatial SR), both WeatherGFM-4tasks and WeatherGFM-10tasks
outperform ViT-ST. This is likely because most of the selected tasks are related to radar image
generation. However, for the satellite image generation task (GOES2GOES), WeatherGFM-4tasks
does not perform as well. This suggests that multi-task learning of similar tasks can enhance the
model’s performance on those tasks.

E MORE DETAILS OF SCALING LAW

In Figure 9, we present the results of the RMSE metric that compares single-task models, the base
version of our WeatherGFM, and its large version. It can be observed that increasing the capacity of
the model generally leads to better performance when the data size remains constant. In contrast, for
smaller models, an increase in training data may result in poorer performance. We hypothesize that
this could be due to the specificity of different tasks within the training data, which makes it more
challenging for the model to fit effectively.
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Table 8: Influence of employing different visual prompts on different tasks. The color red is used for
the poorest-performing prompts, and green is used for the best-performing prompts.

Prompts Idx0 Idx1 Idx2 Idx3 Idx4 Idx5 Idx6 Idx7 Idx8 Idx9

GOES2Radar
RMSE 0.4759 0.471 0.5117 0.4748 0.4691 0.4725 0.4726 0.4692 0.4722 0.473
CSI 0.3401 0.3335 0.3233 0.3300 0.3452 0.3298 0.3272 0.2467 0.3302 0.3317

Radar
Extrapolation

RMSE 0.4912 0.4908 0.4891 0.4925 0.4933 0.4937 0.4933 0.493 0.4933 0.4951
CSI 0.3401 0.2497 0.2534 0.2479 0.2484 0.2467 0.2462 0.2467 0.2453 0.2467

GOES-IR2GOES-IR
RMSE 0.283 0.2947 0.2593 0.3791 0.2424 0.2989 0.3213 0.2811 0.4372 0.387
CSI 0.6851 0.6907 0.6963 0.6559 0.6958 0.7525 0.6835 0.7314 0.6240 0.6529

Radar Spatial SR
RMSE 0.1331 0.1331 0.1334 0.1331 0.1332 0.1335 0.1334 0.1333 0.1333 0.1335
CSI 0.7208 0.7206 0.7209 0.7208 0.7228 0.7222 0.7221 0.7227 0.7217 0.7225

Radar Temporal SR
RMSE 0.3166 0.3166 0.3164 0.3164 0.3168 0.3172 0.3168 0.3166 0.317 0.3172
CSI 0.3387 0.3395 0.3389 0.3359 0.3398 0.3366 0.3376 0.3376 0.3372 0.3388

Deblur
RMSE 0.2272 0.2236 0.2236 0.2255 0.2253 0.2274 0.2273 0.2286 0.2241 0.2233
CSI 0.3412 0.3405 0.3420 0.3413 0.3407 0.3406 0.3408 0.3408 0.3410 0.3419

Prompts Idx10 Idx11 Idx12 Idx13 Idx14 Idx15 Idx16 Idx17 Idx18 Idx19

GOES2Radar
RMSE 0.4711 0.4762 0.4731 0.4706 0.4743 0.4752 0.4747 0.4764 0.4735 0.4725
CSI 0.3260 0.3252 0.3277 0.3266 0.3264 0.3297 0.3248 0.3247 0.3276 0.3265

Radar
Extrapolation

RMSE 0.4927 0.4931 0.4934 0.493 0.4938 0.4929 0.4932 0.4934 0.4937 0.4934
CSI 0.2478 0.2474 0.2483 0.2483 0.2493 0.2488 0.2474 0.2477 0.2479 0.2474

GOES-IR2GOES-IR
RMSE 0.4052 0.3017 0.2917 0.3136 0.3027 0.2828 0.2886 0.3189 0.3147 0.3102
CSI 0.6451 0.7057 0.7034 0.6930 0.7064 0.7044 0.7076 0.6899 0.6982 0.7040

Radar Spatial SR
RMSE 0.1332 0.1333 0.1332 0.1332 0.1332 0.1332 0.1332 0.1333 0.1332 0.1332
CSI 0.7222 0.7221 0.7215 0.7216 0.7217 0.7219 0.7218 0.7215 0.7224 0.7213

Radar Temporal SR
RMSE 0.3166 0.3168 0.3167 0.3168 0.3166 0.3167 0.3166 0.3169 0.317 0.3166
CSI 0.3359 0.3374 0.3370 0.3371 0.3381 0.3367 0.3375 0.3374 0.3371 0.3376

Deblur
RMSE 0.2252 0.2233 0.2272 0.2257 0.2259 0.2257 0.2264 0.2267 0.2235 0.2263
CSI 0.3405 0.3405 0.3413 0.3417 0.3416 0.3418 0.3416 0.3417 0.3414 0.3415

Table 9: Comparison of the models with random prompts, high-quality prompts, and searched
prompts according to RMSE.

Tasks GOES2Radar Radar Extrapolation

Metrics CSI/74 CSI/133 CSI/160 CSI/181 CSI/219 CSI/74 CSI/133 CSI/160 CSI/181 CSI/219

random prompts 0.389 0.238 0.194 0.15 0.048 0.423 0.187 0.106 0.069 0.017
high prompts 0.399 0.249 0.208 0.164 0.057 0.426 0.191 0.11 0.072 0.019
searched prompts 0.401 0.24 0.199 0.155 0.049 0.425 0.188 0.108 0.071 0.018

Table 10: The effect of multi-task training. ViT-ST: single-task ViT. WeatherGFM-4Tasks: our
WeatherGFM trained on 4 tasks. WeatherGFM-10Tasks: our WeatherGFM trained on full tasks.

Tasks GOES2Radar Radar Temporal SR

Metrics RMSE CSI/74 CSI/133 CSI/181 CSI/219 RMSE CSI/74 CSI/133 CSI/181 CSI/219

ViT-ST 0.445 0.424 0.242 0.134 0.045 0.333 0.585 0.366 0.215 0.063
WeatherGFM-4Tasks 0.460 0.443 0.263 0.166 0.059 0.353 0.576 0.355 0.209 0.074
WeatherGFM-10Tasks 0.436 0.447 0.266 0.157 0.053 0.327 0.597 0.376 0.217 0.073

Tasks Radar Spatial SR GOES2GOES

Metrics RMSE CSI/74 CSI/133 CSI/181 CSI/219 RMSE CSI/-6K CSI/-4K CSI/0 CSI/2K

ViT-ST 0.120 0.820 0.703 0.573 0.387 0.257 0.987 0.972 0.809 0.136
WeatherGFM-4Tasks 0.120 0.831 0.714 0.574 0.380 0.317 0.994 0.968 0.766 0.148
WeatherGFM-10Tasks 0.121 0.831 0.712 0.570 0.375 0.310 0.993 0.968 0.808 0.222
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Figure 8: Case studies of our WeatherGFM with different prompts in GEOS-IR2Radar task.

Figure 9: RMSE performance comparison across different model configurations.

F EFFECTS OF VISUAL PROMPTS

To assess the effectiveness of visual prompts within the WeatherGFM framework, we conducted
a series of tests across various scenarios, including GOES2Radar, Radar Extrapolation, GOES-
IR2GOES-IR, Radar Spatial SR, Radar Temporal SR, and Deblur tasks. In our main paper, we detail
a thorough process of prompt selection, curating 20 unique prompts for each task and subsequently
reporting the most favorable quantitative outcomes. The comprehensive results of these prompt
variations on several representative tasks are presented in the tables.

By examining Table 8, we observed that prompts have a significant impact on the GOES2Radar
and Radar Extrapolation tasks. Consequently, we conducted further experiments on these two tasks.
The results are shown in Table 9. In these experiments, “random prompt” refers to prompts selected
randomly, while “high prompt” refers to prompts selected from a high-quality prompt base derived
from radar data. Specifically, we grouped 100 events and selected samples that contained values
exceeding a threshold of 50 within each group, totaling 113 samples. Prompts were then randomly
selected from this high-quality base for the experiments. “Searched prompt” refers to a method where
prompts are selected based on the RMSE metric calculated from the input images to find similar
prompts.

G ADDITIONAL QUANTITATIVE RESULTS

In this section, we present more quantitative results on various weather understanding tasks. Table 11
provides quantitative evaluation on OOD tasks. Table 12 provides a detailed comparison of these
metrics for the UNet, ViT, and WeatherGFM models. AVG.POD and AVG.FAR represent the mean
scores across different thresholds for various tasks. For radar output tasks, the thresholds are [16,
74, 133, 160, 181, 219]; for GEOS-visible output tasks, the thresholds are [2000, 3200, 4400, 5600,
6800]; and for GEOS-IR069 output tasks, the thresholds are [-4000, -5000, -6000, -7000].
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Table 11: Quantitative evaluation on OOD tasks. ∗ denotes that WeatherGFM has not been trained or
fine-tuned for the tasks listed below and conducts generalized inference directly. # indicate that UNet
and ViT undergo supervised training on the corresponding training dataset.

Tasks IR107 Satellite extraplotion IR107 2 IR069

Metrics RMSE CSI/-4K CSI/0 CSI/2K RMSE CSI/-4K CSI/-6K

UNet# 0.991 0.695 0.642 0.074 0.942 0.642 0.910
ViT# 0.413 0.899 0.776 0.245 0.212 0.958 0.986
WeatherGFM∗ 0.389 0.903 0.774 0.244 0.340 0.934 0.986

Tasks Temporal SR at 15min

Metrics RMSE CSI/16 CSI/74 CSI/133 CSI/160 CSI/181 CSI/219

UNet# 0.676 0.211 0.627 0.428 0.351 0.262 0.083
ViT# 0.218 0.838 0.761 0.598 0.525 0.445 0.190
WeatherGFM∗ 0.272 0.814 0.703 0.507 0.419 0.336 0.117

Table 12: More quantitative results on weather understanding tasks. We also report the results of the
POD and FAR metrics.

Downscaling Forecasting

Task name Satellite Spatial SR Radar Temporal SR Radar Spatial SR Radar Extrapolation

Metrics AVG. POD AVG. FAR AVG. POD AVG. FAR AVG. POD AVG. FAR AVG. POD AVG. FAR

UNet 1.0000 0.7466 0.4380 0.1738 0.6568 0.1702 0.3207 0.1751
ViT 0.9941 0.0560 0.4520 0.0139 0.7219 0.0047 0.2749 0.0228
WeatherGFM 0.9973 0.05400 0.4362 0.0111 0.7320 0.0039 0.3028 0.01620

Inversion Forecasting

Task name GOES2Radar GOES-IR2GOES-Visible GOES2POES-NO2 Satellite Extrapolation

Metrics AVG. POD AVG. FAR AVG. POD AVG. FAR AVG. POD AVG. FAR AVG. POD AVG. FAR

UNet 0.4691 0.1821 0.4260 0.1358 0.5993 0.2548 1.0000 0.7841
ViT 0.3537 0.0229 0.4626 0.0829 0.5421 0.1686 0.9599 0.3514
WeatherGFM 0.3524 0.0147 0.3630 0.1388 0.5023 0.0024 0.9578 0.2379

H MORE VISUAL RESULTS

To comprehensively assess the performance of WeatherGFM, we present a range of qualitative
visual results across various tasks, including weather forecasting, weather super-resolution, and
weather image translation. Additionally, we conduct a comparative evaluation against the unified
ViT-large model, as well as single-task ViT and UNet models. The visual outputs and comparisons
are thoughtfully illustrated in Figure 10.

WeatherGFM’s proficiency in generating visually appealing outputs is readily evident in the presented
results. Notably, the visual quality surpasses that of the baseline models. However, the significance
of WeatherGFM’s capability extends beyond visual quality. Its distinctive strength lies in its ability
to effectively handle a wide array of image enhancement tasks and image detection. This marks a
noteworthy distinction from traditional models, which often struggle to concurrently address such a
diverse spectrum of tasks.
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Figure 10: Visual results of the weather understanding tasks by our WeatherGFM.
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