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ABSTRACT

Deep learning based speech enhancement (SE) approaches could
suffer from performance degradation due to mismatch between train-
ing and testing environments. A realistic situation is that an SE
model trained on parallel noisy-clean utterances from one environ-
ment, the source domain, may fail to perform adequately in another
environment, the target (new) domain of unseen acoustic or noise
conditions. Even though we can improve the target domain perfor-
mance by leveraging paired data in that domain, in reality, noisy
data is more straightforward to collect. Therefore, it is worth study-
ing unsupervised domain adaptation techniques for SE that utilize
only noisy data from the target domain, together with exploiting the
knowledge available from the source domain paired data, for im-
proved SE in the new domain. In this paper, we present a novel
adaptation framework for SE by leveraging self-supervised learning
(SSL) based speech models. SSL models are pre-trained with large
amount of raw speech data to extract representations rich in phonetic
and acoustics information. We explore the potential of leveraging
SSL representations for effective SE adaptation to new domains. To
our knowledge, it is the first attempt to apply SSL models for domain
adaptation in SE.

Index Terms— Speech enhancement, unsupervised domain
adaptation, self-supervised representation, wav2vec

1. INTRODUCTION

The performance of learning-based speech enhancement (SE) sys-
tems can degrade due to mismatch between training and testing con-
ditions. Domain adaptation in SE [1, 2, 3] aims to mitigate the degra-
dation issue by adapting an SE model trained under one condition,
the source domain, towards another condition, the target domain. In
the case where the target (new) domain data labels (i.e., clean utter-
ances) are not available, it is referred to as the unsupervised domain
adaptation problem [4] for SE [5, 6, 7, 8, 9]. The goal in general is
to use the unlabeled noisy data from the target domain, along with
the noisy-clean labeled data from the source domain, to learn an ad-
equate model for the new domain. This problem has good appli-
cability to real-world scenarios, as collecting just noisy recordings
in new environments is more straightforward than collecting noisy-
clean paired data. However, compared to the vast in-domain, super-
vised learning SE literature [10, 11, 12, 13, 14, 15, 16], unsupervised
domain adaptation in SE has received relatively little attention.

On the other hand, self-supervised learning (SSL) based pre-
trained speech models have attracted considerable attention [17,
18, 19, 20]. They can extract rich acoustic information from huge
amount of raw speech data to benefit various downstream tasks [21],
including a handful of works on supervised SE [22, 23, 24, 25,
26, 27, 28]. A nice property of SSL models for SE is that, most
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Fig. 1. Representations extracted by wav2vec encoder. (Left) It
can be seen that noisy and clean data are well-separated in the SSL
latent space. (Right) When the clean data of the target domain
(VoiceBank+DEMAND) are not available, we approximate the exact
noisy-clean mapping for SE through ensemble mapping, i.e., map-
ping the noisy sample into the clean speech neighborhood by using
multiple source domain (CHiME-3) clean samples.

of the noisy and clean speech can be highly distinguishable in the
SSL latent space, which is preferable for performing SE [25]. Fig.
1 (Left) presents this observation by using a popular SSL model,
wav2vec [17], to encode noisy and clean utterances from the two
public datasets, CHiME-3 [29] and VoiceBank+DEMAND [30].
The representations are visualized by the t-SNE analysis [31] of
temporally-averaged wav2vec encoded features of the utterances.

In this paper, motivated by such observation, we explore the po-
tential of leveraging SSL representations for unsupervised domain
adaptation in SE. At a high level, as illustrated in Fig. 1 (Right),
we assume VoiceBank+DEMAND data as the target domain whose
clean utterances are not available. As there is no corresponding clean
reference for a noisy utterance xT

i in that domain, the exact noisy-
clean mapping is not available for training SE models. As such,
we propose to leverage multiple clean utterances yS

j , yS
k , yS

l , ...
from the source domain (CHiME-3) to realize ensemble mapping of
the noisy sample into the vicinity of clean speech. We show that
by approximating the exact mapping with a tactically designed en-
semble mapping process in the SSL feature space, improved SE can
be achieved with the proposed adaptation strategy. Our framework
is referred to as Self-Supervised Representation based Adaptation
(SSRA), taking advantage of publicly available SSL models as a
powerful tool for adaptation. To our knowledge, it is the first attempt
to leverage SSL representations for domain adaptation in SE.
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2. RELATED WORK

Unsupervised domain adaptation in SE: Works on unsupervised
domain adaptation for SE are relatively few [5, 6, 7, 8, 9] com-
pared to the in-domain, supervised learning SE schemes. Notably,
[5, 6] utilize domain adversarial training (DAT) for learning domain-
invariant features to reduce the mismatch between source and tar-
get domains. Despite effectiveness, DAT-based adaptation requires
the SE model to have an encoder-decoder architecture for learning
domain-invariant features. Moreover, it could be challenging to train
a stable model with the domain classifier in adversarial training [32].

SSL models for SE: SSL pre-trained speech models have been ap-
plied to SE in various ways. For example, [22, 23, 24] utilize SSL
representations as input features to downstream SE models. How-
ever, the entire denoising module (i.e., SSL + SE) becomes huge for
inference (as SSL model ≫ SE model typically). On the other hand,
[25, 26, 27, 28] leverage SSL models only for SE network training
by using loss functions defined in the SSL feature space instead of
the signal space. The SE performance improves by carefully engag-
ing the SSL-based supervision. Despite demonstrating the benefits
of using SSL models, most of the existing applications to SE are un-
der in-domain, supervised SE settings. The potential of SSL models
for unsupervised domain adaptation in SE remains unexplored.

3. PROBLEM FORMULATION

We consider the problem of finding an estimator f(·) that maps the
noisy speech utterance x ∈ X into its clean reference y ∈ Y , where
X and Y denote the spaces of noisy and clean speech, respectively.
We further consider paired noisy-clean speech data {(xS

i ,y
S
i )}NS

i=1

of a source domain distribution S(x,y) available for training, where
i denotes the sample index and NS is the number of samples. We
then assume there is a new target domain following the distribution
T (x,y) with NT samples of noisy, unlabeled data {xT

i }NT
i=1 avail-

able. Suppose that we now have an adequate estimator f(·;θS) pa-
rameterized by the SE model θS for the source domain obtained
by training using the paired data {(xS

i ,y
S
i )}NS

i=1. Due to domain
shift caused by unseen noise types and acoustic environments, the
SE model θS could suffer from performance degradation in the tar-
get domain. Our goal is to seek an adapted version of the SE model
θT that mitigates such degradation, by also leveraging target domain
noisy data for learning the estimator. The search of an adapted SE
model by utilizing both target domain unlabeled and source domain
labeled data is called unsupervised domain adaptation for SE [6].

4. PROPOSED FRAMEWORK

4.1. Self-supervised representation based adaptation (SSRA)

Given the training data of the source domain {(xS
i ,y

S
i )}NS

i=1 and
target domain {xT

i }NT
i=1, our framework aims to seek an optimal pa-

rameter set θ∗ (in some sense) for the SE model f(·;θ) by:

min
θ

Lrec + Lssra = min
θ

1

NS

NS∑
i=1

D1(f(x
S
i ;θ),y

S
i )︸ ︷︷ ︸

Lrec: Rec Loss

+
λ

NSNT

NT∑
i=1

NS∑
j=1

wijD2(h(f(x
T
i ;θ)), h(yS

j ))︸ ︷︷ ︸
Lssra: SSRA Loss

,

(1)
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Fig. 2. Illustration of the proposed SSRA framework where the SE
model is trained by jointly minimizing two loss terms. (Top) For
a source domain noisy sample xS

i we perform typical SE training
to estimate the corresponding clean reference yS

i via normal recon-
struction loss (Rec Loss). (Bottom) For a target domain noisy sam-
ple xT

i , since the corresponding clean speech yT
i is not available, we

propose to leverage multiple clean utterances {yS
j } from the source

domain to guide the SE model learning through the SSRA Loss.

where D1(·, ·) and D2(·, ·) are some distance measures and λ >
0 is a weighting term to control the relative strength between the
two loss terms. The framework is graphically illustrated in Fig. 2.
The first term in (1), Lrec, is the typical signal reconstruction loss in
normal supervised SE settings for the source domain labeled data.
It measures the discrepancy between each enhanced speech ŷS

i =
f(xS

i ;θ) and its corresponding clean reference yS
i . This term helps

the SE model transfer knowledge learned from the source domain.
The second term in (1), Lssra, is the proposed SSRA loss re-

sponsible for adapting the SE model to the new domain. Here, the
target domain enhanced speech ŷT

i = f(xT
i ;θ) and source domain

clean speech yS
j are first transformed to SSL representations via the

pre-trained SSL encoder h(·). Then, the distance between each i, j
pair is computed for the two SSL representations, h(ŷT

i ) and h(yS
j ).

Summation of the distance over all the formed i, j pairs is then car-
ried out, aiming to leverage multiple source domain clean samples
to guide the SE model learning through mapping each target domain
noisy sample into the clean speech neighborhood. This way, we are
approximating the exact noise-clean mapping by an ensemble map-
ping process. Here in Lssra, we heuristically adopt a weighting term
wij ∈ [0, 1] that is supposed to reflect the similarity between the tar-
get domain and source domain noisy samples, xT

i and xS
j . If the two

noisy samples are similar, then a larger weight is assigned to the cor-
responding distance, and vice versa. Intuitively, in the extreme case
that for a given target domain xT

i , if an identical xS
j from the source

domain is found, then we have the largest wij = 1, meaning that we
are confident the unknown target domain label can be constructed by
the corresponding source domain label, i.e., h(yT

i ) = h(yS
j ).

In sum, the main idea of the SSRA framework is to take advan-
tage of SSL representations for guiding the SE model adaptation to
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the target domain. This is motivated by the decent separability of
clean and noisy speech in the SSL latent space and that SSL repre-
sentations are rich in acoustic and phonetic information of speech.
Notably, the SSL model is utilized only during training and does not
increase the complexity in inference time. The framework is general
and can potentially adopt various SE networks and SSL models.

4.2. Practical implementations

The reconstruction loss: There are various choices for the distance
metric D1(·, ·) in the reconstruction loss Lrec and our framework
is not restricted to any specific one. For example, the time-domain
mean-squared-error loss (MSE), mean-absolute-error loss (MAE),
or scale-invariant signal-to-distortion ratio (SI-SDR) loss [33], etc.
It can also be computed in the time-frequency domain based on
the short-time Fourier transform (STFT), e.g., the power-law com-
pressed combined MSE loss and others [34].

The SSRA loss: Though generally speaking the D2(·, ·) in Lssra

can utilize various distance measures, we present an effective choice
that is usually used for contrasting embeddings – the negative cosine
similarity, imposed on temporally averaged SSL representations:

D2(h(f(x
T
i ;θ)), h(yS

j )) = −cossim(h̄(f(xT
i ;θ)), h̄(yS

j )), (2)

where cossim(a,b) = aTb/∥a∥∥b∥ is the cosine similarity of two
vectors a and b, and h̄(·) stands for the averaged SSL representation
over time frames. The intuition behind using (2) is to align the two
representations in a softer manner rather than strictly forcing them to
be frame-wise identical, as it is unlikely to be an exact noisy-clean
mapping from two different domains. Our findings suggest that such
soft alignment is more beneficial for adapting the SE model.

For the weighting term wij , we propose to use:

wij = 0.5 ∗ (cossim(h̄(xT
i ), h̄(xS

j )) + 1). (3)

The value of wij given by (3) lies in [0, 1] and is proportional to the
similarity between the time-averaged SSL representations of the i-th
target domain and j-th source domain noisy utterances.

Mini-batch optimization: Instead of the full batch problem (1),
practically we perform stochastic optimization based on using mini-
batches of data samples. More specifically, we draw BS ≪ NS
samples each time from the source domain data and BT ≪ NT
samples from the target domain data. Gradient is computed on (1)
with NS and NT replaced by BS and BT , respectively, for back-
propagation. In every new epoch, the two datasets can be reshuffled
to increase data pairing diversity of the target domain and source
domain samples for the SSRA loss.

5. EXPERIMENTS

Datasets: We validate the proposed SSRA approach for domain
adaptation of SE models from the source domain (CHiME-3) to the
target domain (VoiceBank+DEMAND), following the setup of [6].

• Source domain – CHiME-3 dataset [29]: The publicly available
CHiME-3 dataset is a 6-channel microphone recording of talkers
speaking in a noisy environment, sampled at 16 kHz. It consists
of 7138 and 1320 simulated utterances for training and testing, re-
spectively. In this paper, we only take the 5-th channel recordings
for the experiments. We use all noisy-clean data pairs of the train-
ing set as the source domain labeled data. The noises and speakers
are all different from the target domain data that we consider, i.e.
the VoiceBank–DEMAND dataset.

• Target domain – VoiceBank+DEMAND dataset [30]: In this
dataset, clean speech clips are collected from the VoiceBank
corpus [35] with 28 speakers for training and another 2 unseen
speakers for testing, mixed with noise profiles from the DEMAND
database [36]. There are totally 11527 utterances for training and
824 for testing. In our experiments, we take the noisy utterances
from the training set as the target domain unlabeled data and do
not include their clean references for training the SE model. For
testing, we evaluate the SE model performance on the test set data.

Model settings:
• The SSL model: we adopt the pre-trained wav2vec large1. It con-

sists of a convolutional encoder network and a context network.
We utilize the encoder network h(·) for extracting representations.

• SE Network 1: We use the gated recurrent units (GRUs) based SE
network from [34], which was chosen to maintain real-time con-
straints without delay and moderate complexity. The SE model
operates in the time-frequency domain, where an STFT size of
512 with 32 ms Hann window and 16 ms frame shift are used. The
network takes the logarithmic power spectrum (LPS) of the noisy
speech as input, and outputs a time-frequency mask to multiply
with the noisy STFT for denoising. It consists of a feed-forward
(FF) embedding layer followed by two GRUs and then three FF
layers with ReLU activations, and finally an output layer with sig-
moid activation. The architecture is depicted in Fig. 2 of [34].

• SE Network 2: We have another SE network for fair compari-
son with the DAT-based approach of [6], which consists of a bidi-
rectional long short-term memory (BLSTM) layer with 512 units,
followed by one FF layer of 257 units with sigmoid activation.
It takes the stack of static, delta, and acceleration features of the
noisy LPS as input and outputs a time-frequency mask, using 512-
point STFT with 32 ms Hann window and 16 ms frame shift.

All waveforms are resampled to 16 kHz for processing. We use
BS = BT = 32 for the batch size. During training, we randomly
crop 4-sec long audio clips while during testing the entire sequence
is processed and evaluated. For training SE Network 1, the com-
bined power-law compressed MSE loss of [34] is used for Lrec with
the suggested c = 0.3 and β = 0.3 in their paper. For SE Net-
work 2 of [6], the squared loss on the static, delta, and acceleration
features of the enhanced speech is utilized for Lrec, following [6].
Adam optimizer is used with a step size of 0.0001 for SE Network
1 (80 epochs) and 0.001 for SE Network 2 (40 epochs), where an
epoch means going through every sample of the source and target
domain data at least once. The SSRA loss weight is λ = 10−4 for
SE Network 1 and λ = 10−2 for SE Network 2 based on grid search.

Evaluation metrics: Here we use: PESQ: Perceptual Evaluation of
Speech Quality [37] (value: -0.5 to 4.5). SI-SNR: Scale-Invariant
SNR [38]. CSIG, CBAK, COVL: Mean opinion score (MOS)
predictors of signal distortion, background-noise intrusiveness, and
overall signal quality [39] (value: 0 to 5). SSNR: Segmental SNR
[39]. In all metrics a higher score indicates better SE performance.

Results: Table 1 presents the results for the SE model using SE Net-
work 1 and tested on the target domain test set. We compare the SE
models trained with i) only using the source domain labeled (noisy-
clean paired) data, referred to as “SE-unadapted” and ii) using both
source domain labeled data and target domain unlabeled (noisy) data
with our SSRA adaptation, referred to as “SE-SSRA”. It can be seen

1We use the pre-trained wav2vec large model publicly provided at:
https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec
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that SSRA improves the denoising results over the unadapted base-
line model for all metrics, validating its effectiveness. We further
confirm its superiority in Fig. 3 by plotting the PESQ and COVL
scores vs. input SNR. We see that SE-SSRA consistently outper-
forms the baseline unadapted model across difference SNR settings.

Being an adaptation method for SE, it would be interesting to
validate SSRA’s ability to take advantage of more target domain
unlabeled data. To this end, we include extra 23075 noisy utter-
ances taken from the larger 56-speaker training set of the Voice-
Bank+DEMAND dataset (note: there is no overlapping with the
original 11527 utterances from the 28-speaker training set normally
used) as additional target domain noisy samples for adaptation. In
Table 1 we also present the result of using the extra noisy data from
the target domain for SSRA-based adaptation (trained with λ = 5×
10−5 for 55 epochs). It can be seen that with additional noisy sam-
ples leveraged, the SSRA performance can be furthered improved.
Such a property of SSRA is desirable for domain adaptation in SE,
as in reality, collecting just noisy samples in a new environment is
more straightforward than collecting noisy-clean paired data.

Table 1. Performance on target domain (VoiceBank+DEMAND).

Methods PESQ SI-SNR CSIG CBAK COVL

Noisy 1.97 8.46 3.35 2.44 2.63
SE-unadapted 2.43 17.22 3.09 3.15 2.75
SE-SSRA 2.56 17.31 3.37 3.15 2.94
SE-SSRA + extra noisy data 2.61 17.43 3.51 3.17 3.02

Fig. 3. Performance vs. input SNR for SSRA and baseline.

After validating the performance of SSRA on the target domain,
we come back to see how the adapted model performs on the orig-
inal source domain of CHiME-3. Table 2 presents the results of
the SE models evaluated on the CHiME-3 test set. We can see that
the denoising performance of the SE-SSRA is not compromised for
the source domain while adapting to the target domain. In fact,
the results slightly improve with SSRA, and with extra target do-
main noisy data used. This may be attributed to that the SE model
has also become more generalizable and robust to noise conditions
while adapting to the new domain, by also exploiting the additional
noise information inherent in the target domain data. Indeed, Voice-
Bank+DEMAND encompasses ten noise types as compared to only
four types in CHiME-3, thus potentially richer in noise information.

With an aim to provide further insight on how the SSRA actually
affects the denoising outcomes, in Fig. 4 we visualize the wav2vec
features of the noisy, enhanced by SE-unadapted, enhanced by SE-
SSRA, and the clean speech utterances via t-SNE analysis [31] for
both target and source domains. Fig. 4 (Left) shows that for the
target domain, without SSRA the enhanced signals (orange) are still
close to the noisy ones (blue). The SSRA adaptation effectively pulls
the enhanced signals (green) towards the clean utterances (red). This

Table 2. Performance on source domain (CHiME-3).

Methods PESQ SI-SNR CSIG CBAK COVL

Noisy 1.27 7.51 2.61 1.92 1.88
SE-unadapted 1.70 12.58 3.04 2.53 2.34
SE-SSRA 1.73 12.69 3.09 2.54 2.38
SE-SSRA + extra noisy data 1.74 12.93 3.11 2.57 2.40

is in accordance to the improvements observed in Table 1 and Fig.
3. On the other hand, the feature maps shown in Fig. 4 (Right) for
the source domain show that the enhanced signals of both with and
without adaptation fall in the vicinity of the clean utterances. This
corresponds to the similar SE performance observed in Table 2.

Fig. 4. t-SNE analysis on wav2vec encoded feature maps.

Finally, we compare our SSRA method to the DAT-based ap-
proach of [6], i.e., SE-DAT, on the target domain test set. For fair-
ness, here we use SE Network 2 for the SE model, i.e., the same
BLSTM-based SE model as in [6], following their routines. Table 3
presents the results (since [6] did not report SI-SNR, we report SSNR
instead). For reference, we also show the conventional Wiener filter
[40] results taken from [11]. From the table we can see that without
adaptation (i.e., “SE-unadapted”), the model performs even worse
than the Wiener filter. This indicates that the domain mismatch issue
can lead to unsatisfactory performance for the learning-based SE ap-
proaches if careful consideration is not taken. With adaptation, the
SE performance is clearly improved, and our SSRA demonstrates
more improvements compared to DAT in most metrics.

Table 3. SE adaptation comparison to DAT-based approach on target
domain (VoiceBank+DEMAND).

Methods Training data PESQ CSIG CBAK COVL SSNR

Noisy - 1.97 3.35 2.44 2.63 1.68

Wiener none 2.22 3.23 2.68 2.67 5.07

SE-unadapted source dom. labeled 2.12 3.38 2.46 2.66 1.76

SE-DAT [6] source dom. labeled + 2.26 3.72 2.77 2.98 4.11
SE-SSRA (ours) target dom. unlabeled 2.46 3.53 3.10 2.98 7.76

6. CONCLUSION

We presented SSRA, a domain adaptation framework for SE by
leveraging speech representations extracted via SSL pre-trained
models. We explored the possibility of exploiting the nice proper-
ties of SSL encoded features for adapting the SE model to perform
adequately in a new domain with only noisy data available. Differ-
ent from existing DAT-based methods, our framework provides yet
another effective solution to unsupervised domain adaptation in SE.
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