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Abstract: It is often said that robots should have the ability to leverage knowl-1

edge from previously learned tasks in order to learn new ones quickly and effi-2

ciently. Meta-learning approaches have emerged as a popular solution to achieve3

this. However, these approaches have mainly been studied in either supervised4

learning settings or in full-state, reinforcement learning settings with shaped re-5

wards and narrow task distributions. Moreover, the necessity of meta learning over6

simpler, pretraining setups, have been called into question within the supervised7

learning domain. We investigate meta-learning approaches in a vision-based,8

sparse-reward robot manipulation setting, where evaluations are made on com-9

pletely novel tasks. Our findings show that, when meta-learning approaches are10

evaluated on different tasks (rather than different variations), multi-task pretrain-11

ing with fine-tuning on new tasks can perform equally as well as meta-pretraining12

with meta test-time adaptation. This is both enlightening and encouraging for fu-13

ture research in pretraining for robot learning, as multi-task learning tends to be14

simpler and computationally cheaper than meta-reinforcement learning.15

Keywords: Multi-task Pretraining, Meta-RL, Vision-based robot manipulation16

1 Introduction17

One of the major gaps between human and machine intelligence is the sample efficiency of learning.18

In contrast to how humans can leverage past knowledge to learn a new task from a few examples,19

current machine learning systems often require a large amount of data and heavy supervision to20

achieve even a single task. To bridge this gap, meta-learning has become a popular approach — it21

uses many tasks to meta-train an optimal learning strategy, which enables few-shot generalization22

on a test task. Efficient adaptation is particularly desirable in robot learning: it could significantly23

save on the cost of data collection, real-world exploration, etc. when learning a new task.24

Meta-learning methods have had the most success in supervised learning settings [1, 2, 3], specifi-25

cally few-shot image classification, where the goal is to learn a classifier to recognize unseen classes26

during a test-time training phase with limited labeled data. Recent work has found that variations27

of simple pretraining and fine-tuning can perform equally as well as more complex meta-learning28

approaches [4, 5, 6, 7].29

One popular line of approach to introduce meta-learning to robot learning systems is meta-30

reinforcement learning (meta-RL), where an agent is trained and adapts using a base reinforcment31

learning algorithm. In contrast to few-shot classification, simple pretraining and fine-tuning is not32

known to out perform meta-RL — our hypothesis for this intriguing discrepancy in literature is33

simple: the computer vision (CV) community evaluates their approaches on distinct test tasks (e.g.34

classifying dogs, cats, and birds), while the meta-RL community evaluates on variations of the35

same train-time tasks; for example, varying transition dynamics (e.g. different friction parameters)36

or varying reward functions (e.g. running forward v.s. running backward) are better categorized37
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Figure 1: We study a challenging setup in vision-based, sparse-rewarded robot manipulation, where training
and testing use strictly disjoint sets of tasks. We compare across different meta-reinforcement learning (meta-
RL) algorithms and multi-task pretraining with fine-tuning. Our investigation concludes that, fine-tuning on
novel tasks performs equally as well as meta test-time adaptation, can overcome sparse rewards on unseen test
tasks, and perform significantly better than training from scratch.

as variations rather than different tasks, as discussed in recent work [8, 9]. Variation adaptation is38

inherently easier than task adaptation, and does not paint a full picture of the shortcomings of meta-39

RL. Moreover, most meta-RL methods (with a few exceptions, discussed in 4.2) have been studied40

in fully observable settings or with shaped rewards [10, 11, 12], neglecting more realistic real-world41

scenarios of robot learning, where rewards are often sparse, and observations are high-dimensional42

(e.g. images, point-clouds, etc).43

In this work, we are hence motivated to study meta-RL across a truly diverse set of tasks that are44

better aligned with realistic robot learning challenges. We use RLBench [8], a simulation benchmark45

that provides numerous vision-based and sparse-rewarded manipulation tasks. We train and test on46

strictly disjoint sets of tasks: for example, an agent could be trained to pick up cups, take a USB47

out of a computer, and reach target locations, while at test time, adaptation would be evaluated on48

completely unseen tasks, such as lifting blocks and pushing buttons.49

We investigate two representative meta-RL algorithms of differing paradigms: Reptile [11] — a50

gradient-based method, and PEARL [12] — a context-based method. Results from this study are51

enlightening: multi-task pretraining, followed by fine-tuning on novel tasks, performs equally as52

well as the meta-RL algorithms, while being much simpler and less computationally expensive to53

train. In light of this, we advocate for future research in pretraining for robot learning to shift towards54

more challenging benchmarks, and involve multi-task pretraining with fine-tuning as a simple, yet55

strong baseline.56

2 Experiments57

2.1 Task Setup58

We use RLBench [8], a vision-based manipulation benchmark and learning environment with sparse59

rewards. The environment has more than 100 diverse, real-world inspired tasks, and provides easy60

access to expert demonstrations for all tasks, which has been shown as vital for overcoming the61

exploration problem imposed by the benchmark’s sparse rewards [13, 14].62

To ensure the experiment results do not get affected by arbitrary task selection, we design a compre-63

hensive set of train-test task splits that resemble cross-validation in the supervised learning setting.64

Specifically, we use a fixed set of 11 RLBench tasks and create 5 splits. Each split uses a (randomly65

selected) held-out task and trains an agent on the remaining 10 tasks.66
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2.2 Training Setup67

We use C2F-ARM [14] as the base off-policy RL algorithm. This was chosen because more widely-68

used RL algorithm, such as DDPG [15], TD3 [16], SAC [17], and DrQ [18] are known to fail [13]69

in RLBench due to the challenging setup. C2F-ARM [14] is a vision-based robot manipulation70

algorithm that can learn sparse-reward reinforcement learning tasks by using a small number of71

initial demonstrations. C2F-ARM is described in more detail in Section 4. Note that RL2 is excluded72

from this section because it is on-policy.73

Reptile-C2F-ARM modifies the off-policy batch update in C2F-ARM with an inner- and outer-loop74

proposed in Reptile [11]. At the beginning of training, each task is given a separate replay buffer,75

which is initialized with transitions collected from 5 demonstration trajectories and continuously76

appended with the agent’s online experiences. During training, for multiple steps in the inner loop,77

the agent draws a batch from the replay buffer of a randomly sampled task and performs updates to78

the Q-attention. In the outer loop, the network gets a soft update to mix the parameters from before79

and after the inner loop updates.80

PEARL-C2F-ARM conditions a context embedding to the Q-attention network. To obtain the81

context for a task, a batch of transitions is drawn from a window of recent agent experiences, and a82

separate convolution encoder is used to first encode the image observations individually. Then, each83

image embedding is concatenated with the action and reward, and together encoded into a single84

vector. Finally, the context embeddings are sampled as proposed in [12]. The context encoder is85

additionally trained with a KL loss.86

MT-C2F-ARM jointly trains C2F-ARM on all training tasks. During each replay batch update, both87

MT-C2F-ARM draw samples from multiple task replay buffers. During each replay update, a fixed88

number of tasks (less or equal to the total number of available training tasks) are randomly selected,89

then an equal number of samples are drawn for each task to construct the replay batch.90

2.3 Test-time Adaptation Setup91

Both MT-C2F-ARM and Reptile-C2F-ARM use the same C2F-ARM update and adapt the agent92

parameters to the new task via gradient descent. Adaptation for PEARL-C2F-ARM is done by93

gathering rollout samples in the new environment and re-computing the context embeddings, hence94

running only inference on the agent’s policy model.95

2.4 Results96

The first set of evaluations are the most challenging for adaptation: an unseen test-time task given97

0 demonstrations. The agent is expected to leverage knowledge and skills gained in the 10 training98

tasks and perform intelligent exploration on the test task, without any guidance from demonstrations.99

Results for this setup are presented in the top row of Figure 2. Across all 5 test tasks, multi-task fine-100

tuning performs equally as well as Reptile while performing significantly better than both PEARL101

and training from scratch.102

We next investigate the effect of reward sparsity on test-time performance. We now provide test-103

time demonstrations of each of the methods, as an aid for exploration under sparse reward. Results104

in the second and third row of Figure 2 show how the methods behave when given 1 and 2 test-105

time demonstrations. The fact that increasing the number of demonstrations improves training from106

scratch performance is unsurprising, however, one intriguing observation is that this effect is less107

apparent for MT-C2F-ARM and Reptile-C2F-ARM methods. This is encouraging evidence that108

fine-tuning significantly reduces (or even omit) the need for demonstrations in sparse rewarded109

tasks, with little loss to performance. We further investigate the various properties of fine-tuning110

C2F-ARM in Section 4.111

Apparent from Figure 2 is that PEARL does not seem equipped to handle such a disjoint train-test112

split. Recall that PEARL adapts without model parameter updates, and the only way to understand a113
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Figure 2: When varying the number of test-time demonstrations (from 0-2 trajectories), does multi-task pre-
training and fine-tuning outperform meta-RL methods on unseen tasks? We perform a “cross-validation” style
evaluation: from a set of 11 RLBench tasks, 1 is held out for test-time evaluation, while the other 10 are used
for training (and are given 5 demos). This is done for each of the 5 tasks above. Multi-task pretraining and
fine-tuning perform equally as well or better than meta-RL. Unsurprisingly, fine-tuning (from either the Multi-
task or Reptile agent) requires fewer demonstrations than training from scratch. Solid lines are average over 5
seeds, with shaded regions representing standard errors

new task is via aggregating new experiences into the context. However, the context encoder clearly114

fails at providing a useful context for the unseen tasks. we hypothesize this is due to our tasks setup:115

the training tasks are so visually disjoint that the agent never needs to learn high-quality context116

embeddings to infer which task it should do. This is different from the original experiment setup117

in PEARL, where variations are treated as “tasks”, meaning that the observations from different118

“tasks” are similar or even identical; in order to disentangle the correct task to perform, the network119

is heavily motivated to read the context. Further evidence towards this hypothesis can be seen by120

looking at the zero-shot performance of the PEARL agent (i.e., environment steps = 0), where it121

starts with the same performance as multi-task and Reptile agents but doesn’t improve. This suggests122

the meaningful performance that PEARL does achieve should be attributed to the pretraining and123

not test-time adaptation.124

3 Conclusion125

We study the setting of meta-RL on vision-based robot manipulation with sparse rewards, across a126

truly diverse set of tasks. We showed that when meta-RL is tested on truly diverse robot reinforce-127

ment learning tasks, simple multi-task RL followed by finetuning can perform equally as well, while128

being simpler and less expensive to train. Our conclusion is consistent with findings within the CV129

community, and we hope it is an initial step towards understanding the subtleties between meta-130

RL and multi-task pretraining on robot learning systems. Our study lies within the manipulation131

domain, and calls for future investigations on other robotic tasks and settings.132
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[48] A. Anand, J. Walker, Y. Li, E. Vértes, J. Schrittwieser, S. Ozair, T. Weber, and J. B. Ham-243

rick. Procedural generalization by planning with self-supervised world models. arXiv preprint244

arXiv:2111.01587, 2021.245

7

https://proceedings.neurips.cc/paper/2018/file/7876acb66640bad41f1e1371ef30c180-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/7876acb66640bad41f1e1371ef30c180-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/7876acb66640bad41f1e1371ef30c180-Paper.pdf


4 Appendix246

4.1 Ablation Experiments247

Figure 3: Is it is better to fine-tune an unseen task in iso-
lation, or together with other tasks? We use a set of 11 RL-
Bench tasks, where 1 is held out for test-time evaluation (and
given 0 demos), while the other 10 are used for pretraining
(and are given 5 demos). This is done for each of the 3 tasks
above. Each color bar represents the average evaluation over
30 episodes while the error bars represent the standard devi-
ations.

We investigate whether it is better to fine-248

tune an unseen task in isolation, or to-249

gether with other tasks (in a multi-task250

setup). The intuition for the former is251

that train-time tasks (where we have ac-252

cess to demos), can be used to learn good253

representations and exploration strategies;254

while the latter intuition is that mixing255

with train-task data can act as auxiliary256

tasks, and the test-time task is treated as257

the main task. As shown in Figure 3, fine-258

tuning in isolation is superior to training259

in a multi-task setting. The hypothesis260

here is that the agent can keep the repre-261

sentations and skills that are useful to the262

fine-tune task, while forgetting non-useful263

ones; whereas training with other tasks re-264

quires that the network have the capacity265

to remember all skills.266

4.2 Related Work267

Meta-Reinforcement Learning Meta-RL aims to find the best learning strategy that enables fast268

adaptation to a new task via reinforcement learning. This often relies on meta-training with a distri-269

bution of tasks and exploiting their shared structures. Two main approaches include context-based270

methods and gradient-based methods. Context-based methods are trained to use recent rollout ex-271

periences from a new task to form a context that can be used to distinguish what task the policy is272

solving. Previously, this context has been formed implicitly via an LSTM [19, 20], or explicitly,273

by passing trajectories through a separate encoder, whose output is given to a context-conditioned274

policy [12, 21]. Gradient-based methods perform test-time optimisation of hyperparameters [22],275

loss functions [23, 24], or network parameters [3, 25, 26].276

The meta-RL approaches above have only been studied in fully observable state settings with shaped277

rewards; neglecting more realistic real-world scenarios, where rewards are often sparse, and obser-278

vations are high-dimensional (e.g. images, point clouds, etc). There is limited work that study these279

issues: for example, hindsight relabeling is used to aid in sparse reward setups e.g. [27], but uses280

fully observable states. Other approaches to sparse reward and partial observability include HyperX281

[28], DREAM [29], and MetaCure [30]. Out-of-distribution variation adaptation within the same282

task is another challenging setup, where recent methods include model-identification, experience283

relabeling, [31], and adding symmetries [32].284

Beyond context-based and gradient-based methods built on model-free RL algorithms, other lines285

of work include: model-based meta-RL, via meta-training a dynamics model and has seen success286

in enabling adapting to different hardware or terrain conditions on a legged millirobot [33]; meta-287

imitation learning, has been applied to vision-based robot manipulation [10, 34, 35]; meta-learn288

RL algorithms, which aims to discover RL objectives or update rules that can be transferred across289

different task environments [36, 37, 38, 39, 40].290

Although in our experiments, we follow the original designs pf PEARL and RL2 which don’t allow291

gradient updates during test time, recent work [41] has looked into the theoretical limitations of292

context-based meta-RL algorithms in out-of-distribution variation adaptation setting [41], and shown293

that adding gradient updates (i.e. finetuning) at test time helps improve adaptation.294
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Multi-task Reinforcement Learning The pretraining procedure in our experiments is multi-task295

reinforcement learning (MTRL), where the training objective is simply finding a single best policy296

across multiple tasks. The main challenge in multi-task learning in general lies in multi-objective297

optimization, and has been investigated in MTRL [42, 43] and applied to robotics [44]. Recently,298

Kurin et al. [45] demonstrated that joint training with proper regularization achieves competitive299

performance with the more complicated multi-task algorithms. This observation aligns with our300

multi-task training results.301

Meta- v.s. Multi-task pretraining in RL Multi-variation pretraining followed by fine-tuning,302

also called domain random search (DRS), is also shown to achieve comparable performance to303

meta-RL on existing state-based benchmarks [46]. Our work expands on this setup by training on304

more distinct tasks instead of variations, and excluding the test-time task from training. Notably,305

the meta-learning suite (e.g. ML10, ML45) in the MetaWorld [47] benchmark also poses such task306

generalization challenges, and finetuning is recently shown to be better than meta-RL algorithms307

such as RL2 and MAML [48].308
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