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Abstract

Large Language Models (LLMs) have shown001
promise in assisting scientific discovery. How-002
ever, such applications are currently limited003
by LLMs’ deficiencies in understanding in-004
tricate scientific concepts, deriving symbolic005
equations, and solving advanced numerical006
calculations. To bridge these gaps, we intro-007
duce SciGLM, a suite of scientific language008
models able to conduct college-level scien-009
tific reasoning. Central to our approach is010
a novel self-reflective instruction annotation011
framework to address the data scarcity chal-012
lenge in the science domain. This framework013
leverages existing LLMs to generate step-by-014
step reasoning for unlabelled scientific ques-015
tions, followed by a process of self-reflective016
critic-and-revise. Applying this framework,017
we curated SciInstruct, a diverse and high-018
quality dataset encompassing physics, chem-019
istry, math, and formal proofs. We fine-tuned020
the ChatGLM family of language models with021
SciInstruct, enhancing their capabilities in022
scientific and mathematical reasoning. Re-023
markably, the SciGLM consistently improves024
both the base model (ChatGLM3-6B-Base) by025
4.87% and larger-scale models (32B) by 2.67%,026
without sacrificing the language understanding027
capabilities of the base model. This makes028
SciGLM a suitable foundational model to facil-029
itate diverse scientific discovery tasks. For the030
benefit of the wider research community, we031
release SciInstruct, and SciGLM, alongside a032
self-reflective framework and fine-tuning code.033

1 Introduction034

Large language models (LLMs) have shown po-035

tential to assist and accelerate scientific discov-036

ery (Taylor et al., 2022; AI4Science and Quantum,037

2023), helping tasks like protein prediction (Chen038

et al., 2023a), weather forecasting (Bi et al., 2023)039

and geoscience understanding (Deng et al., 2023).040

Despite these promising proof-of-concept trials, re-041

cent studies (Sun et al., 2023; Wang et al., 2023c;042
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Figure 1: Average accuracy on CEval-Sci, SciEval,
MATH, and SAT-Math benchmarks of different LLMs.
Our SciGLM models fine-tuned from ChatGLM3 achieve
consistent improvement for different parameter sizes.

Rein et al., 2023) show that even advanced LLMs 043

like GPT-3.5 and GPT-4 struggle with basic scien- 044

tific problems, achieving only 28.52% accuracy on 045

some college-level textbook questions. These scien- 046

tific questions, such as calculating energy with the 047

Planck distribution, require a diverse set of skills, 048

including finding the correct combination of physi- 049

cal concepts and axioms, choice and deduction of 050

formal equations, and rigorous numerical comput- 051

ing. Before letting LLMs equip these skills to solve 052

basic scientific questions, all ambitious visions of 053

building LLM agents to assist scientific discov- 054

ery could be unreliable. This brings a substantial 055

incentive for developing a foundational scientific 056

language model. 057

However, training LLMs to understand science 058

(e.g., physics, chemistry, math) is much more chal- 059

lenging than many general reasoning tasks, requir- 060

ing more complicated skills. Therefore, the core of 061

improving LLMs’ scientific problem-solving capa- 062

bilities is to build large-scale and high-quality in- 063

struction datasets, which shall cover all the required 064

skills. We thus aggregate data to improve each skill: 065

1) for scientific concept understanding, we gather a 066
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substantial amount of physics and chemistry ques-067

tions that require basic science knowledge; 2) for068

numerical calculation, we crawl and utilize addi-069

tional and more advanced mathematical calculation070

data; 3) for rigorous deduction of symbolic equa-071

tions, we incorporate formal theorem proofs writ-072

ten in Lean. Such a mixture of data sources enables073

the trained model not to overfit to a single subject074

but to acquire some general and fundamental skills075

to solve different scientific tasks.076

On the other hand, the scale of available instruc-077

tion data from the internet for scientific problems078

is way smaller than other tasks. As scientific con-079

tent often requires certain expertise to create, and080

high-quality information is often protected by in-081

tellectual property, most data we can legally ac-082

cess only contain question-answer (QA) pairs with-083

out detailed chain-of-thought reasoning steps (R).084

However, merely training LLMs on QA pairs will085

lead to very bad results and even harm their general086

language capability. To get high-quality reasoning087

steps (R) as instruction, we propose a self-reflective088

instruction annotation framework that asks LLM089

to autonomously annotate, critique, and revise rea-090

soning steps, with minimal human intervention.091

Specifically, LLM first tries to generate both rea-092

soning steps and answer the given question (Q)093

only; then, for those outputs with incorrect answer094

prediction, we ask LLM itself to identify the er-095

ror type, based on which to address the error and096

revise the output, until getting the correct answer.097

Such a self-reflective annotation framework solely098

utilizes AI rather than humans to collect reasoning099

traces (R) as instructions, while guaranteeing the100

quality and addressing the potential mistakes of101

existing LLM with careful answer checking and102

LLM self-reflection.103

After consolidating the questions and answers104

produced by self-reflective annotation, we con-105

struct SciInstruct, a comprehensive dataset in-106

struction tuning a scientific language model. In107

this work, we choose the bilingual ChatGLM (Du108

et al., 2022; Zeng et al., 2022) series model, an109

open-source dialogue pre-training model with low110

deployment barriers, as our backbone base model.111

By fine-tuning the ChatGLM series model on112

SciInstruct, we obtain the SciGLM model. We113

evaluate SciGLM through three types of evaluation114

tasks, including scientific test sets, mathematical115

benchmarks, and general language and coding116

tasks. Through instruction tuning, we achieve a117

4.87% improvement over the 6B model, and 2.67% 118

improvement over the 32B model, outperforming 119

many previous state-of-the-art models with the 120

same parameter size, including Galactica (Tay- 121

lor et al., 2022) for science problems, and MAm- 122

moTH (Yue et al., 2023) for math problems. We 123

also show tuning our instruction datasets does not 124

sacrifice general language understanding capabili- 125

ties, making SciGLM a good suite of scientific lan- 126

guage models for both human-AI communication 127

as well as domain-knowledge expertise. 128

We highlight our contributions are listed below 129

from three perspectives: 130

• From the data perspective, we construct 131

SciInstruct, a comprehensive scientific in- 132

struction tuning dataset that includes physics, 133

chemistry problems, math, and formal proofs. 134

• From the method perspective, we propose a self- 135

reflective annotation pipeline for LLMs to au- 136

tonomously curate instruction datasets. 137

• From the model perspective, we utilize the Chat- 138

GLM series model as the backbone, training 139

SciGLM on SciInstruct, and show performance 140

improvements up to 3.06% and 6.68% over the 141

6B model on various scientific and mathemati- 142

cal benchmarks, without sacrificing general lan- 143

guage understanding tasks. 144

2 SciInstruct Dataset Construction 145

Many research (Zeng et al., 2023; Yue et al., 2023) 146

have shown that fine-tuning pre-trained LLMs on 147

high-quality CoT reasoning data can gain perfor- 148

mance improvement by enabling the model to bet- 149

ter utilize the knowledge memorized through pre- 150

training, follow more accurate and human-readable 151

reasoning styles and language formats. However, 152

the main challenges of constructing scientific in- 153

structions include the knowledge and complexity 154

required and the smaller scale of available data. 155

Therefore, we seek to tackle these obstacles by 156

creating SciInstruct to enhance the LLMs’ sci- 157

entific problem-solving capabilities. Figure 2 il- 158

lustrates our meticulous design of essential sub- 159

modules aimed at gathering large-scale, high- 160

quality instructions. These critical sub-modules en- 161

compass self-reflective instruction annotation and 162

noisy instruction filtering. SciInstruct comprises 163

a total of 254,051 verified instructions. 164
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The number of asymptotes of the 
curve y=\\frac{x^2+x}{x^2-1} is
___.

How to determine the harmonic 
vibration frequency of a single 
degree of freedom system?

Try to calculate the boiling point 
of water at 670kPa external 
pressure.
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Figure 2: The pipeline of constructing SciInstruct. On the far left is a mix of training datasets. The purpose of
the annotation is to supplement chain-of-thought processes with reflective generation. The goal of the filter is to
train an instruction-quality classifier and only keep high-quality reasoning traces as instructions.

2.1 Diverse Instruction Collection165

Our objective is to build a comprehensive and di-166

verse dataset that encompasses scientific knowl-167

edge in terms of depth, wide coverage, and diver-168

sity. To achieve this, we will focus on scientific169

fields and curate several top-tier datasets that are170

extensively utilized and cover a wide range of sci-171

entific disciplines, such as physics, chemistry prob-172

lems, mathematics, and formal proofs. To initiate173

the process, we collect questions from a variety of174

sources, including textbooks, pedagogical materi-175

als, and problem sets.176

Instruction Subject. As show on the left side of177

Figure 2, we create data from the following subject:178

• Physics. This subject aims to address the chal-179

lenge of processing complex physical problems180

with step-by-step solutions and assessing the ability181

of LLMs to comprehend and analyze physics prob-182

lems. It is observed that public training datasets183

lack college-level physics knowledge, such as Fun-184

damentals of Physics and Physical Chemistry. To185

address this gap, we collected a large set of physi-186

cal questions from various subjects (e.g., dynamics,187

quantum physics, electrodynamics, etc.) from typi-188

cal physical textbooks, along with a comprehensive189

dictionary of physics problems and solutions. Note190

that most of these physics questions only contain a191

single answer without a step-by-step solution.192

• Chemistry. We gathered questions from various193

chemistry subjects, including college-level General194

Chemistry, Analytical Chemistry, Biochemistry,195

and Inorganic Chemistry. Unlike Physics, these196

Chemistry problems emphasize more on knowl-197

edge concepts and require less calculation.198

• Math. College-level mathematical tasks are char- 199

acterized by their intricate logic and high complex- 200

ity. We have gathered a wide array of math prob- 201

lems encompassing various mathematical subjects 202

such as Calculus, Algebra, and Advanced Mathe- 203

matics. These problems come in different formats, 204

including multi-choice questions, calculations, and 205

complex problem-solving scenarios. Our collection 206

process involves sourcing problems from public 207

Q&A websites, problem sets, and textbooks. 208

• Formal Proofs (Lean). SciInstruct also in- 209

cludes data from formal mathematics. In formal 210

math, theorems and proofs are expressed in for- 211

mal logic instead of natural language. They look 212

like computer programs. For example, “theorem 213

gcd_self (n : Nat) : gcd n n = n” is 214

a theorem that says: For any natural number n, 215

the greatest common divisor of n and itself is n. 216

And “cases n <;> simp [gcd, mod_self]” is 217

a proof of this theorem. There are many languages 218

for writing formal theorems and proofs; examples 219

include Coq (Barras et al., 1997), Isabelle (Nip- 220

kow et al., 2002), and Lean (de Moura et al., 2015). 221

We chose to include data from Lean, as it is cur- 222

rently the most popular in the math community. 223

Therefore, it has abundant theorems and proofs 224

written by mathematicians, covering diverse topics 225

in graduate-level mathematics, such as analysis, ge- 226

ometry, and algebra. Specifically, we process the 227

data from LeanDojo (Yang et al., 2023) and obtain 228

40,248 instructions for theorem proof. Like 7.1, we 229

form an instruction for each theorem and its proof. 230

Summary. In total, we gathered 257,143 raw ques- 231

tions, the majority of which lacked step-by-step rea- 232
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soning steps. We aim to supplement these through233

a self-reflective annotation process.234

2.2 Self-Reflective Instruction Annotation235

Given a language model π to answer question Q,236

recent studies (Wei et al., 2022a) have shown that237

by first forcing it to generate step-by-step reasoning238

steps (R) first, the overall performance for correctly239

generating answer A can be significantly improved:240

Pπ(A | Q) = ER∼Pπ(R|Q) P (A | R,Q) (1)241

This is why many instruction datasets aim to collect242

high-quality intermediate solutions to train LLMs243

generating correct step-by-step solutions. The key244

challenge for the science domain, as we state above,245

is that most of the QA pairs we collect do not con-246

tain ground-truth reasoning paths (R). Getting the247

correct intermediate reasoning R given QA can248

be regarded as a discrete latent variable inference249

problem via posterior sampling. However, in prac-250

tice, we cannot afford to sample all possible R251

from LLM. Here we adopt a simplified strategy252

for solving it: 1) Utilizing a powerful LLM (we253

use GPT-4-0613), we sample multiple times for254

each question, recording its reasoning traces as255

well as the predicted answer; 2) We filter out only256

the traces with a correct predicted answer, by as-257

suming only with correct traces, LLM can get a258

correct answer.259

LLM Self-Reflection. However, even GPT-4 can-260

not consistently produce accurate answers after261

multiple trials, and the above procedure can only262

collect R for a portion of questions. Drawing263

on prior research demonstrating the capacity of264

language models for self-correction (Shinn et al.,265

2023; Li et al., 2023a), we refine the CoT process266

using a self-reflective framework, as depicted in267

the middle of Figure 2. The final reflective gen-268

eration process entails three stages. Initially, we269

employ a simple CoT prompt (Prompt 1) to ob-270

tain step-by-step solutions for each question. By271

applying the GPT-4 labeling method, we filter out272

incorrect solutions, resulting in 19,824 correct so-273

lutions. Subsequently, the incorrect solutions from274

stage one, along with their respective questions,275

enter stage two. Here, a reflective prompt (Prompt276

2) assists GPT-4 in generating correct answers by277

analyzing its errors from stage one. The newly gen-278

erated solutions are then filtered again by GPT-4,279

and the undesirable ones proceed to stage three. In280

stage three, based on Prompt 2, we incorporate the281

Type Ave. Sci Ave. Math Ave. {Sci+Math}

Unfiltered 43.57 48.50 46.03
Filtered 43.85 49.24 46.54

Table 1: Ablation study of filter step. We arranged the
samples by score and excluded the lowest 10%. The
resulting numbers represent the average weighted accu-
racy on evaluation tasks.

real answer as a direct hint in the prompt (Prompt 282

3) to further aid in question resolution. The final 283

segment of correct solutions is obtained after the 284

generation and filtering process. We illustrate the 285

reflective generation in Figure 3 and quantify the 286

amount of data generated by each process. 287

2.3 Filtering Out Low-Quality Instruction 288

Though the above procedures give us the annotated 289

reasoning steps (R), not all of them are correct. 290

The error can come from two sources: 1) though 291

LLM generates a correct answer, the intermediate 292

reasoning can still be wrong (Lanham et al., 2023); 293

2) the question and ground-truth solutions trans- 294

formed via OCR may be incomplete and unable to 295

be successfully compiled. Therefore, we propose 296

an additional step to train an instruction-quality 297

classifier and filter out low-quality instructions. 298

Quality Data Synthesis. We randomly selected 299

a subset of questions from our labeled dataset of 300

11,553 questions as positive samples. To gener- 301

ate negative samples, we prompted ChatGLM2-6B, 302

GPT-3.5-turbo-0613, and GPT-4-0613 to provide 303

step-by-step answers to selected questions. We fil- 304

tered inaccurate answers from ChatGLM2-6B and 305

labeled the solutions from GPT-3.5-turbo and GPT- 306

4 using a formatted prompt method demonstrated in 307

Figure 7. These solutions were merged with anno- 308

tated solutions from the original dataset to train our 309

classifier. The composition of the merged dataset 310

is detailed in Table 6. 311

Instruction-quality Classifier. We improved 312

dataset quality by training an instruction-quality 313

classifier based on Table 6 using ChatGLM3-6B- 314

Base features. Using these data, we train an 315

instruction-quality classifier via the feature pre- 316

extracted by a ChatGLM3-6B-Base model. The 317

classifier outputs a logit ranging from -1 to 1, with 318

higher scores indicating more reliable answers. 319

This logit is used to rank and select high-quality 320

data from the noisy dataset. Table 1 demonstrates 321

the effectiveness of supervised fine-tuning on both 322
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Total Correct Solutions
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Label=0

Label=0

Label=1

Label=1

Label=1

Stage 1

Stage 2

Stage 3

[Prompt 3] The following input consists of a 
science problem, a corresponding
solution and the real answer. The given 
solution is incorrect, please reflect
on its errors and then generate a correct step-
by-step solution to the problem based on the 
real answer.

[Prompt 2] The following input consists of a 
science problem and a corresponding solution. 
However, this solution is incorrect, please 
reflect on its errors and then generate a 
correct step-by-step solution to the problem.

[Prompt 1] The following input consists of a 
science problem, please generate an elaborate 
step-by-step solution to the problem.

Chain-of-Thought

Reflective Generation

Prompt Answer

Generate

Generate

[Sampled Output] The phase difference Δφ = π/6, the distance between 
two points Δx = 0.2m, and the vibration period T = 0.4s are known. According 
to the phase difference and the relationship between the wavelength: Δφ = 2 PI 
(Δx/lambda), we have wavelength lambda = 1.2m. Then according to the 
relationship between wavelength λ and period T and wave speed v: v = λ/T, the 
known value is substituted into the above formula: v = 1.2/0.4 = 3m/s. The 
wave speed is 3m/s.

LLM

[Reflection] The error in the solution is that the relationship between 
phase difference and wavelength used in the calculation of wavelength is 
incorrect. The correct relation should be Δφ = 2PI (Δx/lambda). 
[Answer] First, according to the formula ∆phi = 2 PI (∆x/lambda), we 
know that lambda = 2 PI (0.2)/(PI / 6) = 1.2 m. Next, known vibration period T 
= 0.4s, according to the definition of wave speed v formula v = lambda/T, we 
have v = 1.2m / 0.4s = 3m/s. In summary, the wavelength is 1.2m and the 
wave speed is 3m/s.

LLM

[Reflection] The error in the solution is that the ratio of the phase 
difference π/6 to the full wave phase 2π, rather than half wave phase π, i.e. 
π/6 ÷ 2π, should be used to determine the ratio of the distance between two 
points to the wavelength.
[Answer] First, known phase difference Δphi=PI / 6, distance between
two points Δx = 0.2 m, we can use the formula Δphi = 2 PI (Δx/lambda) to
solve the wavelength lambda. We can know that lambda = (2 PI (0.2)/(PI / 6)
= (2 x 0.2)/(1/6) = 2.4 m. Next, known vibration period T = 0.4s, according
to the definition of wave speed v formula v = λ/T, we obtain v = λ/ T = 2.4m
/ 0.4s = 6m/s. To sum up, the wavelength is 2.4m and the wave speed is 6m/s.

LLM

[Prompt] On a ray of simple harmonics, the vibration phase difference between two points 
0.2\\mathrm{~m} is \\pi/6. It is also known that the vibration period is 0.4\\mathrm{~s}, then the 
wavelength is, and the wave speed is?

Figure 3: The workflow and quantity of data for self-reflective instruction annotation framework.

Subject Physics & Chemistry Math Formal Proofs (Lean) Total

# Number 123,869 89,934 40,248 254,051

Table 2: Statistics of SciInstruct across subjects.

filtered and unfiltered datasets at a 6B scale, show-323

ing that models trained on a filtered dataset perform324

better.325

Error Analysis. As our classifier filter is trained on326

labeled datasets and generated solutions, errors in327

negatively labeled solutions from ChatGLM2-6B,328

GPT-3.5-turbo, and GPT-4 can significantly impact329

the classifier’s performance. Therefore, we conduct330

an error analysis and categorize them into Compre-331

hensive mistakes, Calculation mistakes, and False332

reasoning. This analysis is detailed in Figure 8,333

demonstrating the classifier’s capacity to recognize334

these errors in the dataset.335

Summary. Based on the aforementioned key sub-336

modules, we have constructed the SciInstruct337

dataset, which comprises 254,051 instructions, as338

illustrated in Table 2.339

2.4 Instruction-Tuning with SciInstruct340

We choose the ChatGLM series model as our foun-341

dational model. More specifically, we have opted342

for the open bilingual chat LLM, ChatGLM3-6B-343

Base. After establishing the base model, we have344

standardized all data into a chatbot-style format.345

Subsequently, we have fine-tuned the foundational346

model using the SciInstruct, enabling us to val-347

idate our constructed SciInstruct. Throughout 348

the fine-tuning process, we have conducted experi- 349

ments using the Huggingface transformers library. 350

For both the 6B and 32B models, we have utilized 351

a learning rate of 3e-6, employed a linear scheduler, 352

and trained for two epochs. To efficiently train the 353

model, we have leveraged DeepSpeed (Rajbhandari 354

et al., 2020) training. 355

3 Experiments 356

3.1 Experimental Setup 357

Scientific and Mathematical Tasks. In Ta- 358

ble 7, the evaluation tasks are summarized. Ten 359

tasks have been chosen as out-of-domain bench- 360

mark datasets, encompassing CEval-Hard (Huang 361

et al., 2023), CEval-Sci (Huang et al., 2023), 362

MMLU-Sci (Hendrycks et al., 2020), SciEval (Sun 363

et al., 2023), SciBench (Wang et al., 2023c), 364

GSM8K (Cobbe et al., 2021), MATH (Hendrycks 365

et al., 2021), Mathematics (Davies et al., 366

2021), SAT-Math (Zhong et al., 2023), MMLU- 367

Math (Hendrycks et al., 2020) from MathInstruc- 368

tion, and CEval-MATH (Huang et al., 2023). These 369

evaluation datasets cover a broad range of subjects, 370

including physics, chemistry, and math. 371

General Tasks. Furthermore, we assess the gen- 372

eralization abilities of tasks across various scales 373

when fine-tuning models. These tasks include as- 374

sessing knowledge abilities (MMLU (Hendrycks 375

et al., 2020) and CEval (Huang et al., 2023)) and 376

code generation (MBPP) (Austin et al., 2021). 377
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Model CEval-Hard CEval-Sci MMLU-Sci SciEval SciBench Avg. Sci Avg. {Sci+Math}

(API, parameter details unknown)

GPT-4 54.96 60.55 - 73.93 28.52 - -
GPT-3.5-turbo 41.37 46.83 - 66.97 12.17 - -
Claude-v1.3 39.14 44.64 - 63.45 - - -

(# parameter = 6B∼7B)

LLaMA-2-7B 28.29† 30.00† 30.41 28.37 0.40 23.49 20.89
Galactica-6.7B 11.84† 11.44† 30.68 50.87 - - -
ChatGLM2-6B 29.61† 45.71† 37.09† 53.02† 1.54† 33.39 30.55

ChatGLM2-6B-Base 32.90† 40.95† 38.06† 50.38† 1.20† 32.70 30.56
ChatGLM3-6B 36.84† 38.57† 41.78† 56.56† 2.40† 35.23 30.91

ChatGLM3-6B-Base 45.40† 54.29† 40.16† 61.69† 2.40† 40.79 41.67
SciGLM (ChatGLM3-6B-Base) 51.97 60.00 41.40 62.09 3.77 43.85 46.54

(# parameter = 12B∼13B)

LLaMA-2-13B 19.74† 19.05† 35.85 36.96 - - -
Vicuna-13B - - 32.13 53.93 - - -

(# parameter = 30B∼32B)

Galactica-30B - - 35.53 54.96 - - -
ChatGLM3-32B-Base 53.95† 64.29† 50.30† 67.38† 4.29† 48.04 50.77

SciGLM (ChatGLM3-32B-Base) 56.58 66.19 49.38 69.84 5.15 49.43 53.44

Table 3: Results on scientific reasoning tasks. Experiments indicate that SciGLM fine-tuning consistently
outperforms the base ChatGLM3 across various parameter scales. Avg. Sci represents the weighted average score
of all scientific tasks within the same evaluation category, while Avg. {Sci+Math} signifies the weighted average
score on both scientific and mathematical tasks. Within each parameter setup, Bold spotlights the one with best
performance, and Underline denotes the second-best result. Results marked as † are benchmarked by ourselves.

Evaluation Metrics. The default setting for the378

fine-tuned SciGLM inherently provides the CoT so-379

lution. Hence, we conduct all experiments using380

CoT settings. To thoroughly and accurately evalu-381

ate the capabilities of different models, we employ382

the accuracy metric for all tasks except for code383

generation, for which we use the pass@1 metric.384

Baselines. We consider the following baselines,385

GPT-4 (OpenAI, 2023), GLM (Du et al., 2022;386

Zeng et al., 2022) and LLaMA (Touvron et al.,387

2023) Base, Continue Pre-training, and Dataset-388

specific Tuning. We employ a standardized eval-389

uation framework to compare GLM and LLaMA390

Base baselines fairly. To gauge performance in the391

MATH task, we utilize zero-shot and 8-shot config-392

urations to determine the highest accuracy. Addi-393

tionally, for Mathematics, SAT-Math, MMLU, and394

CEval, we employ a chat module for assessment.395

When dealing with multiple-choice questions, we396

formulate the prompt as "Therefore, among A397

through D, the answer is".398

3.2 Main Results and Analysis399

Table 3, Table 4, and Table 5 present experimen-400

tal findings for scientific and mathematical bench-401

marks, as well as general tasks. The results show402

that training on the provided SciInstruct benefits 403

reasoning tasks, improving performance in scien- 404

tific reasoning (i.e., CEval-Sci, SciEval, SciBench, 405

MMLU-Sci) and transferring to mathematical tasks. 406

Such performance improvement is consistent with 407

different scales of based model parameters, across 408

6B and 32B. In addition, SciGLM’s performance 409

improvement in scientific reasoning does not sac- 410

rifice its general language understanding capabili- 411

ties. As shown in Figure 4, on standard tasks like 412

MMLU and CEval, SciGLM even achieves slight 413

performance improvement. On code generation 414

like MBPP, the performance is slightly lower but is 415

overall consistent. 416

Influence of Data Mixture. We further explore 417

how the diverse subjects within the SciInstruct 418

mixture affect downstream tasks when training the 419

SciGLM-6B model. By employing a Leave-One- 420

Out strategy, i.e., omitting one subject at a time 421

from the dataset and retraining, we assess the sig- 422

nificance of each subject based on the performance 423

impact across various tasks. As shown in Figure 5, 424

we have an interesting finding: each subject con- 425

tributes tasks that are not restricted to its immediate 426

domains. For instance, Physics and Chemistry data 427

significantly aid in CEval-Math tasks, while Math 428
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Model GSM8K MATH Mathematics SAT-Math MMLU-Math CEval-Math Avg. Math

(API, parameter details unknown)

GPT-4 92.00 42.50 - 95.00 - 53.91 -
GPT-3.5-turbo 80.80 34.10 - 70.90 - 40.81 -
Claude-v1.3 - - - - - 37.66 -

(# parameter = 6B∼7B)

LLaMA-2-7B 14.60 2.50 6.00 26.80 29.80 30.00† 18.28
Galactica-6.7B 10.20 2.20 4.60 17.50 28.00 14.48† -
WizardMath-7B 54.90 10.70 9.30 25.40 31.10 - -

MAmmoTH (CoT)-7B 53.60 10.40 9.20 32.70 39.90 - -
MetaMath-7B 66.50 19.80 - - - - -

MAmmoTH & MetaMath-7B 66.30 24.10 18.30 41.40 44.40 - -
ChatGLM2-6B 25.85 6.90† 14.30† 39.55† 38.91† 36.67† 27.03

ChatGLM2-6B-Base 31.54 7.84† 17.10† 34.55† 40.45† 32.22† 27.28
ChatGLM3-6B 29.05 9.92† 11.60† 39.09† 41.07† 21.11† 25.31

ChatGLM3-6B-Base 72.93 25.38† 29.30† 55.91† 31.83† 40.00† 42.56
SciGLM (ChatGLM3-6B-Base) 73.62 25.18 31.80 65.46 49.38 50.00 49.24

(# parameter = 12B∼13B)

LLaMA-2-13B 28.70 3.90 11.50 32.70 34.40 18.89† 21.68
Vicuna-13B 28.40 5.80 10.00 34.00 34.10 - -

WizardMath-13B 63.90 14.00 14.10 24.50 32.10 - -
MAmmoTH (CoT)-13B 62.00 10.20 9.60 40.90 36.60 - -

MAmmoTH & MetaMath-13B 71.04 26.18 20.60 48.18 48.25 - -

(# parameter = 30B∼32B)

Galactica-30B 41.70 12.70 11.80 37.70 37.90 - -
ChatGLM3-32B-Base 81.80 31.60† 38.60† 67.73† 50.10† 51.11† 53.49

SciGLM (ChatGLM3-32B-Base) 83.70 32.86 35.00 76.36 61.29 55.56 57.46

Table 4: Results on mathematical reasoning. SciGLM outperforms all base models across various parameter scales.
The Avg. Math represents the weighted average score of all mathematical tasks within the evaluation category.
Within each parameter setup, Bold spotlights the one with best performance, and Underline denotes the second-best
result. Results marked as † are benchmarked by ourselves.

Model MMLU CEval MBPP Avg.

GPT-4 86.40 68.70 83.00 81.30

ChatGLM3-6B-Base 61.32 67.09 55.80 60.27
SciGLM (6B-Base) 61.38 67.16 45.00 57.56

ChatGLM3-32B-Base 69.05 79.94 58.20 79.37
SciGLM (32B-Base) 70.08 79.64 56.60 68.78

Table 5: Results on general language understanding
tasks. Fine-tuning does not sacrifice most language
tasks and only drops a bit on the code generation task.

and Formal Proof improve SciBench performance.429

This shows that our mixture dataset enables LLMs430

to acquire some general reasoning skills for solving431

scientific questions instead of merely overfitting to432

a certain task distribution, and achieving universal433

improvement on different downstream tasks.434

Influence of Data Scaling. One central ques-435

tion for instruction dataset creation is how many436

samples are needed for a model to learn specific437

skills (Yuan et al., 2023). Prior works (Zhou et al.,438

2023) have shown that for dialogue tasks, as few439

as 1000 high-quality instruction samples can lead440
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Figure 4: SciGLM consistently improving the
ChatGLM3-Base for different scientific tasks, without
sacrificing general language understanding capabilities

to significant improvements. We’re interested in 441

analyzing data scaling law for scientific problem- 442

solving. Through retraining the model with vary- 443

ing data proportions and analyzing the outcomes 444

in science and math, as shown in Figure 6. One 445

interesting pattern we find is initial data augmenta- 446
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Figure 6: Performance improvement over different
scale of instruction data. The x-axis represents the
proportion of instruction per domain, and the y-axis rep-
resents the relative performance compared with SciGLM
trained with the whole set.

tion of 10% yields improvements, but further addi-447

tions show no significant gains until surpassing a448

50% threshold. We hypothesize that the early gains449

are due to the model learning basic reasoning and450

task formatting, which requires fewer instruction451

data (less than 10k). Advancing to more complex452

skills, such as equation deduction, necessitates a453

larger dataset for effective learning and generalize.454

Future research on improving data quality could455

potentially lower the data requirement for LLM456

skill learning.457

4 Related Works458

Recently, there have been advances to bridge the459

gaps in reasoning difficulty and evaluation sub-460

jects from three perspectives for scientific reason- 461

ing with LLMs. 462

High-level evaluation like SciBench (Wang et al., 463

2023c) and GPQA (Rein et al., 2023), which evalu- 464

ates the scientific reasoning capabilities of LLMs 465

at the college level and even graduate level. In ad- 466

dition, SciEval (Sun et al., 2023) provides a multi- 467

level LLMs evaluation benchmark to address data 468

leakage problems and subjective question/answer 469

evaluation ability issues. 470

Continued pre-training like Galactica (Taylor 471

et al., 2022) and MINERVA (Lewkowycz et al., 472

2022), which continue to train their respective base 473

LLMs on multiple web texts including science- 474

related or math-related corpus. This continued pre- 475

training approach explores the potential of LLMs 476

for science and contributes to the open-source mod- 477

els for the scientific community, but it is computa- 478

tionally expensive. 479

Dataset-specific fine-tuning like RFT (Yuan et al., 480

2023), WizardMath (Luo et al., 2023), MAm- 481

moTH (Yue et al., 2023), and MetaMath (Yu et al., 482

2023), which constructs certain datasets includ- 483

ing GSM8K and MATH, conducts supervised fine- 484

tuning of LLMs and evaluates the popular bench- 485

marks GSM8K and MATH. MAmmoTH not only 486

improves the in-domain (IND) performance like 487

GSM8K but also generalizes to broader mathemat- 488

ical tasks by building a spectrum of math instruc- 489

tion tuning datasets including in-domain and out- 490

of-domain datasets. This series of methods mainly 491

focuses on mathematical reasoning tasks. 492

5 Conclusion 493

In this work, we present a self-instructive anno- 494

tation framework to create a high-level and high- 495

quality dataset, SciInstruct, to enrich the scien- 496

tific knowledge of LLMs. Using SciInstruct, we 497

train SciGLM from ChatGLM series models, which 498

significantly improve many scientific and mathe- 499

matical benchmarks over the base models and out- 500

perform many state-of-the-art LLMs that have an 501

order of magnitude more parameters. Our research 502

underscores the significance of diverse training data 503

as well as LLM self-annotation and correctness for 504

enhancing general reasoning capability, even for 505

hard domains like science. In the future, we aim to 506

enhance the model’s capabilities by synthesizing 507

data purely from unstructured data (like academic 508

papers and knowledge base) and exploring more 509

advanced self-improving techniques to bootstrap 510

LLM reasoning. 511
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6 Limitation512

In this section, we discuss more limitations during513

the research of SciInstruct and SciGLM.514

Scale of dataset and model. Even though our515

training dataset has expanded to approximately516

254k, improving model performance still neces-517

sitates access to an even larger dataset. Presently,518

our model’s experimental outcomes are carried out519

at 6B and 32B parameters, leading to a relatively520

better performance. However, it’s important to521

note that these performances are constrained by522

the model’s scale. Moving forward, it’s worth ex-523

ploring the potential benefits of leveraging larger-524

scale datasets and models to further improve per-525

formance.526

Using data classifier to enhance the generation527

of models. In line with what was discussed in Sec-528

tion 2.3, we employ an instruction-quality classifier529

to boost the instruction quality, yielding improved530

performance as shown in Table 1. However, we531

anticipate that the data classifier, also referred to532

as the reward model, could provide even greater533

benefits. One particular avenue of improvement534

could be bootstrapping data to improve the ability535

of the base model.536
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7 Appendix 883

7.1 Instruction Example 884

Instruction Format for Formal Math. 885

This is an example of an instruction format
for Lean.
Problem: theorem gcd_self (n : Nat) : gcd n
n = n
Answer: cases n <;> simp [gcd, mod_self]

Instruction Format for Physics, Chemistry, and 886

Math. To make our dataset consistent, we define 887

a unified template for the problem-solving process 888

that matches the logical flow of human thinking for 889

Physics, Chemistry, and Math. For each question, 890

we first list the basic analysis of which scientific 891

concepts (or knowledge points) this question asks, 892

and then present step-by-step reasoning steps of 893

the detailed solution, and eventually summarize the 894

answer. 895

This is an example of an instruction format.
Problem: ∗ ∗ ∗.
Answer:
Analysis: This question examines ∗ ∗ ∗ knowl-
edge points.
Step 1: ∗ ∗ ∗.
Step i: ∗ ∗ ∗.
Step n: ∗ ∗ ∗.
To sum up, the answer to this question is ∗ ∗ ∗.

7.2 Dataset of Data Classifier 896

Source # Positive Samples # Negative Samples Total

Original Clean Data 11,553 0 11,553
ChatGLM2-6B 0 23,106 23,106

GPT-3.5-Turbo-0613 745 2075 2,820
GPT-4-0613 332 3,898 4,230

Total 12,630 29,079 41,709

Table 6: Composing data based on a limited set of la-
beled examples to train a data classifier and filter out
noisy instructions.

7.3 Evaluation Tasks 897

• CEval-Hard (Huang et al., 2023) comprises the 898

eight subjects at the hard level from CEval. 899

• CEval-Sci (Huang et al., 2023) is selected from 900

CEval including physical, chemical, and mathe- 901

matical, subjects. 902

• MMLU-Sci (Hendrycks et al., 2020) is similar to 903

CEval-Sci and includes physical, chemical, and 904
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Eval Dataset # Samples Answer Form Subject

CEval-Hard 152 Multi-choice △,▲,♢,△, ♦, ⋆

CEval-Sci 210 Multi-choice △,♢,△,▲, ♦, ⋆, ♣

MMLU-Sci 1,855 Multi-choice §,△,♢,△,▲, ♦, ⋆, ♣

SciEval 15,901 Multi-choice ♦, ⋆, ♣

MATH 5,000 Open-formed †, ‡, §,△,♢,▲,▼

Mathematics 1,000 Open-formed †, ‡,♢,▲

SAT-Math 220 Multi-choice ‡,△,▼

MMLU-Math 974 Multi-choice §,△,♢,▲

CEval-Math 90 Multi-choice △,△,♢,▲

.

Table 7: Overview of Scientific Evaluation Tasks. (†:
Pre-Algebra, ‡: Inter-Algebra, §: Algebra, △: Proba-
bility, ♢: NumTheory, △: Statistics, ▲: Calculus, ▼:
Geometry, ♦: Physics, ⋆: Chemistry, ♣: Biology)

mathematical subjects selected from MMLU.905

• SciEval (Sun et al., 2023) serves as a comprehen-906

sive, multi-disciplinary benchmark for assessing907

subjective question-answering capabilities.908

• MATH (Hendrycks et al., 2021) is a standard909

benchmark for evaluating the mathematical abil-910

ity of LLMs.911

• Mathematics (Davies et al., 2021) mainly in-912

cludes Algebra, NumTheory, and Calculus.913

• SAT-Math (Zhong et al., 2023) is a math task914

including Intermediate Algebra, Probability, and915

Calculus.916

• MMLU-Math (Hendrycks et al., 2020) evaluation917

is the same as MAmmoTH (Yue et al., 2023),918

including Algebra, Probability, NumTheory, and919

Calculus.920

• CEval-MATH (Huang et al., 2023) only includes921

mathematical subjects extracted from CEval.922

7.4 Evaluation Baselines923

• GPT-4 (OpenAI, 2023): We consider the closed-924

source model GPT-4, which uses CoT prompting.925

• GLM (Du et al., 2022; Zeng et al., 2022) and926

LLaMA (Touvron et al., 2023) Base: We select927

ChatGLM2-6B (Base), ChatGLM3-6B (Base),928

and ChatGLM3-32B (Base) as the base mod-929

els. In addition, we consider LLaMA-2-7B and930

LLaMA-2-13B as baselines.931

• Continue Pre-training: We include Galac-932

tica (Taylor et al., 2022) although we note that933

its continued pre-training does not necessarily934

include college-level scientific reasoning. 935

• Dataset-specific Tuning: For the dataset-specific 936

tuning, we consider WizardMath (Luo et al., 937

2023), MAmmoTH-CoT (Yue et al., 2023), and 938

MetaMath (Yu et al., 2023), which adapt to the 939

MATH dataset. 940

7.5 Scientific Reasoning Datasets 941

Mathematical Datasets. In the past, the emphasis 942

in mathematical reasoning tasks was primarily on 943

fundamental arithmetic reasoning datasets (Koncel- 944

Kedziorski et al., 2015; Roy and Roth, 2016; Patel 945

et al., 2021), addressing basic mathematical prob- 946

lems such as AddSub (Hosseini et al., 2014). Later 947

on, to address realistic math word problems, some 948

more difficult datasets are proposed (Ling et al., 949

2017; Amini et al., 2019; Cobbe et al., 2021; Azer- 950

bayev et al., 2023). To construct a more difficult 951

and diversified dataset, NumGLUE (Mishra et al., 952

2022) and LiLA (Mishra et al., 2022) have been 953

introduced to enhance current research. However, 954

their focus remains primarily on elementary, mid- 955

dle school, and high school math problems. Given 956

the rapid advancement of LLMs, to assess their ca- 957

pacity and constraints in addressing more intricate 958

math problems, MMLU (Hendrycks et al., 2020) 959

with college-level math problems has been pro- 960

posed. To address the more challenging college- 961

level math problems, PoT (Chen et al., 2023b; 962

Wang et al., 2023c) is proposed. Our proposed 963

SciInstruct covers more complex and more di- 964

versified math problems at the college level. 965

Scientific Datasets. To address the scientific abil- 966

ity of LLMs, SciBench (Wang et al., 2023c) pro- 967

poses various solutions like calling existing tools 968

(python and Wolfram). SciEval (Sun et al., 2023) 969

presents a multi-level evaluation benchmark for sci- 970

entific research. GPQA (Rein et al., 2023) builds a 971

graduate-level Q&A benchmark to evaluate more 972

difficult physics and chemistry questions. 973

7.6 General Reasoning with LLMs 974

Assisted by Chain-of-Thought prompting (Wei 975

et al., 2022b; Kojima et al., 2022; Wang et al., 976

2022c) and Tree-or-Though (Yao et al., 2023), 977

LLMs have brought decent reasoning performance 978

improvements. Especially, on the challenging BIG- 979

Bench tasks, the CoT technique has already outper- 980

formed human ability (Suzgun et al., 2022). Later 981

on, to address reasoning tasks, a few studies (Nye 982

et al., 2021; Wang et al., 2022a,b; Li et al., 2023b; 983
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Wang et al., 2023b; Yu et al., 2023; Drozdov et al.,984

2022; Zhou et al., 2022) propose various methods985

to leverage LLMs and retain step-by-step processes.986

With the rapid development of LLM Agents, sev-987

eral works (Yao et al., 2022; Zeng et al., 2023)988

propose to utilize external tools to enhance the989

reasoning capabilities of LLMs. For example, Re-990

Act (Yao et al., 2022) attempts to call existing tools991

like web search engines to improve the reasoning992

skills of LLMs. Indeed, leveraging the programs993

as thought processes is a natural way. Several re-994

cent studies have utilized programs as thought pro-995

cesses, such as PoT (Chen et al., 2022), to improve996

the reasoning abilities of LLMs. To enhance LLMs’997

reasoning performance in solving mathematical or998

scientific problems with PoT, several methods have999

been suggested, including Self-critic (Gou et al.,1000

2023), Self-eval (Xie et al., 2021), and Plan-and-1001

solve (Wang et al., 2023a). For example, self-1002

critic (Gou et al., 2023) and self-eval (Xie et al.,1003

2021) propose to adopt self-evaluation to improve1004

the generated program’s robustness. Different from1005

these two methods, plan-and-solve (Wang et al.,1006

2023a) adopts more detailed planning instructions1007

to generate a high-level reasoning plan for LLMs.1008

Indeed, these methods have demonstrated that they1009

can obtain great capabilities over PoT.1010

7.7 Instruction Tuning in LLMs1011

To align language models with human preferences1012

and effective objectives, some works (Zeng et al.,1013

2023; Xu et al., 2023) design instruction tuning.1014

The instruction tuning aims to mine the potential1015

capabilities by aligning with and responding to1016

human preference. Early on, instruction tuning fo-1017

cuses on improving the instruction-following abili-1018

ties of LLMs for general purposes. Represented by1019

FLAN (Wei et al., 2021) and T0 (Sanh et al., 2021),1020

they aim to understand the generalization abilities1021

of LLMs for instruction tuning. Later, to compre-1022

hend the efficacy and performance of enlarging1023

the instructional tuning datasets on models, FLAN-1024

v2 (Chung et al., 2022; Longpre et al., 2023) has1025

been proposed to validate this goal. However, these1026

methods build training instruction tuning datasets1027

in a human-annotated manner. Recently, various1028

studies (Wang et al., 2022d; Xu et al., 2023; Peng1029

et al., 2023; Zeng et al., 2023; Zhou et al., 2023;1030

Wang et al., 2023d) have started to construct syn-1031

thetic instruction following datasets distilled from1032

some LLMs like GPT-3.5-turbo and GPT-4. Like1033

these works, Platypus (Lee et al., 2023) constructs 1034

a small-scale instruction for the following dataset 1035

by utilizing a domain-specialized dataset, aiming 1036

to enhance the reasoning capabilities of LLMs. 1037

7.8 GPT Labeling 1038

As shown in Figure 7, we present the process of 1039

GPT-4 labeling. 1040

7.9 Detailed Error Analysis 1041

As shown in Figure 8, we give detailed error exam- 1042

ples, which are summarized in Section 2.3. 1043

7.10 Detailed Experimental Results 1044

Domain-wise Results in Figure 4. We present the 1045

detailed subject results in Table 8 and Table 9 for 1046

Figure 4. 1047

7.11 SciInstruct Examples 1048

We present SciInstrcut examples for 1049

Math(Figure 10), Physics (Figure 11), Chemistry 1050

(Figure 12), and Formal Proofs (Figure 13). 1051

7.12 SciInstruct Examples 1052

As shown in Figure 9, we present a concrete exam- 1053

ple and model output from SciEval, including the 1054

ChaGLM3-6B-Base and SciGLM. 1055
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Self-reflection. Since our classifier is trained on the labeled dataset and generated solutions, the
errors that occur in ChatGLM2-6B, GPT-3.5-turbo, and GPT-4’s negative labeled solutions may
strongly influence the classifier’s performance. Therefore, we analyze the errors and categorize them
into three main classes (Calculation mistakes, False reasoning, and Comprehensive mistakes), which
are shown below in Figure 2. This means that our classifier has some ability to identify these errors
in datasets.

GPT-4 Labeling

Prompt: The following input includes three segments. It starts with a question, followed
by a step-by-step solution to the question, and ends with the true answer. If the answer
obtained in the solution is equivalent to the real one, output ‘1’, otherwise output ‘0’.

Input

Q: A photon moving at speed c, a person chasing light at 0.9c, that person observes the
speed of light is?

Solution: According to Einstein’s theory of special relativity, we cannot simply add up the
velocities. In relativity, the superposition of velocities follows the Lorentz transformation,
rather than the classical addition. For the speed of light, there is a special case in which
the observer measures the speed of light as c, regardless of the observer’s speed. This
means that even if an observer is moving at 0.9c, the speed of light he measures is still c.
Therefore, the speed of light observed by this person is c.

Real Answer: c.

GPT-4 Output: 1

Data Classifier. Indeed, real-world datasets are noised and present challenges. To improve the
data quality and retain more useful datasets, we train a data classifier and rigorously filter the noised
datasets. As mentioned, during training the data classifier, we randomly selected some questions
Q from high-quality datasets annotated by annotators. Regarding positive samples, we select the
accurate answers of GPT-3.5-turbo and GPT-4 for Q. Meanwhile, the error answer generated by
GPT-3.5-turbo and GPT-4 can be viewed as negative samples. We train our classifier to output a
scalar logit that ranges from -1 to 1. Higher scores represent more reliable and accurate answers.
Based on the trained data classifier, each data from noise datasets can receive a logit l that reflects its
correctness and completeness, which can be further utilized for automatically ranking and selecting
high-quality data. In Table 2, we demonstrate the effectiveness of instruction filtering by supervised
fine-tuning on both filtered and unfiltered datasets at a 6B scale. Compared to models trained on
unfiltered datasets, those trained on filtered datasets outperform the average tasks. This underscores
the importance of data quality over data quantity for scientific tasks.

Table 2: Ablation study on instruction filtering.

Type Ave. Math Ave. Sci Ave. Bench

Unfiltered 39.03 52.54 43.53
Filtered 40.85 52.28 44.66

2.1.3 Instruction Optimization

Supplement Thought. Multiple questions only have the final answer while lacking the chain-of-
thought process. Due to the scarce high-quality datasets, that is important to supplement the solutions.
For questions without thoughts, we use GPT-4 Turbo to supplement them with thoughts and retain
the correct thought by comparing the generated answer with the true answer. We take a problem of
physics subject as an example and show the analysis and labeling of GPT-4 Turbo.

5

Figure 7: We present the process of GPT-4 labeling. Given a prompt, question, solution, and real answer, GPT-4 can
give the final label output.

model Ave. CEval MMLU SciEval

Avg. College
Physics

High
School
Physics

Middle
School
Physics

Avg. College
Physics

Conceptual
Physics

Middle
School
Physics

Physics.

ChatGLM3-6B-Base 54.32 63.16 42.11 63.16 84.21 45.59 39.22 55.32 34.44 46.95
SciGLM (ChatGLM3-6B-Base) 56.59 66.67 47.37 63.16 89.47 46.52 34.31 55.32 41.06 47.56

ChatGLM3-32B-Base 67.85 78.95 57.89 78.95 100.00 56.76 42.16 62.55 57.62 51.22
SciGLM (ChatGLM3-32B-Base) 69.65 80.70 63.16 78.95 100.00 58.61 41.18 66.81 57.62 56.71

Table 8: Detailed results of physical subjects for Figure 1. Bold denotes the best result in the closed-source models
and open-source models.

model Ave. CEval MMLU SciEval

Avg. College
Chemistry

High
School

Chemistry

Middle
School

Chemistry
Avg. College

Chemistry

High
School

Chemistry
Chemistry.

ChatGLM3-6B-Base 58.25 66.67 45.83 63.16 95.00 49.83 45.00 52.22 55.76
SciGLM (ChatGLM3-6B-Base) 58.55 68.25 41.67 73.68 95.00 48.84 47.00 49.75 57.27

ChatGLM3-32B-Base 66.44 69.84 41.67 78.95 95.00 63.04 51.00 68.97 60.15
SciGLM (ChatGLM3-32B-Base) 69.05 71.42 45.83 78.95 95.00 66.67 57.00 71.43 61.40

Table 9: Detailed results of chemical subjects for Figure 1. Bold denotes the best result in the closed-source models
and open-source models.

15



Comprehension mistakes
Explanation
Answers that do not resolve the task exactly as instructed, often including an output that is insufficient.
Example
Q: A particle moving in a straight line in the x direction has the coordinates x = 5t2 − t3 at time t,
where x is measured in meters and t in seconds. Find: displacement and average velocity in the 4th
second.
A: The displacement in 4 seconds can be obtained by calculating the coordinates at t = 4 minus
the coordinates at t = 0, Displacement = x(4) − x(0) = 5 × 42 − 43 − 5 × 02 + 03 =
5× 16− 64− 0 + 0 = 80− 64 = 16. Average velocity in 4 seconds can be obtained by calculating
displacement divided by time, that is average_velocity = displacement/time = 16/4 = 4. In
summary, the displacement in 4 seconds is 16 meters, the average speed is 4 meters/second, and the
distance traveled by the particle is 16 meters.
Error: Wrong comprehension. The answer should be displacement and average velocity ’in the 4th
second’ rather than ’in 4 seconds’.

Calculation mistakes
Explanation
Answers that fail to accurately calculate or simplify mathematical expressions, especially when
encountering integration and differentiation.
Example
Q: In a shell with an inner radius of R1 and an outer radius of R2, the charge density in the shell is
ρ = a+ br, Where r is the distance from the center to the observation point, and there is no charge
distribution elsewhere in the space. (a) Find the expression that the electric field everywhere in the
space depends on r.
A: First of all, according to Gauss’s law, the total electric flux of any closed surface inside the
closed surface is equal to the total charge inside the closed surface. According to the condi-
tions in the topic, the charge density in the shell is ρ = a + br, the total charge in the shell
can be obtained as: Q =

∫ R2

R1

∫ π

0

∫ 2π

0
(a + br) · r2 sin θdϕdθdr = 4π

∫ R2

R1
(a + br)r2dr =

4π
(

a
4
(R4

2 −R4
1) +

b
5
(R5

2 −R5
1)
)

. According to the Gauss theorem, inside the spherical shell,
the flux of the electric field is zero. Therefore, we only need to produce the electric field out-
side the shell. Outside the shell, according to Coulomb’s Law, the electric field generated by
the charge can be expressed as: E = 1

4πϵ0

Q
r2

Substituting Qinto this formula yields: E =

1
4πϵ0

4π( a
4
(R4

2−R4
1)+

b
5
(R5

2−R5
1))

r2
simplified, we can get electric field depends on the expression of

rare as follows: E = 1
ϵ0

(
a
r2
(R4

2 −R4
1) +

b
r2
(R5

2 −R5
1)
)

Error: Wrong integration.

False reasoning
Explanation
Solutions consist of false reasoning steps or made-up information in reasoning.
Example
Q: The escape work of polonium and barium is 4.52 eV, and 2.50 eV, respectively. Calculate the
cut-off frequencies of barium and polonium.
A: According to the theory of photoelectric effect, the relationship between escape work and cutting
potential can be expressed by the following formula escape work = cutting potential−photon energy.
Apply the relationship between escape work and cutting potential to the case of barium and polonium.
For polonium, cutting potential = escape work + photon energy = 4.52 eV + hν. For barium,
cutting potential = escape work + photon energy = 2.50 eV + hν, where h is Planck’s constant
and ν is the frequency of light.
In the visible range, the frequency range of light is approximately 4.3× 1014 Hz to 7.5× 1014 Hz.
Now we can calculate the cut-off frequencies of barium and polonium respectively. For polonium,
4.52 eV + hνcut = 4.30 eV. hνcut = 4.30 eV − 4.52 eV. hνcut = −0.22 eV. For barium, 2.50 eV +
hνcut = 4.30 eV. hνcut = 4.30 eV − 2.50 eV. hνcut = 1.80 eV.
In summary, the cut-off frequency of polonium is −0.22 eV, and that of barium is 1.80 eV. Because
the cutoff frequency is the frequency of light and must be positive, barium can be used as a phototube
cathode material in the visible range. Final answer: Barium can be used as a phototube cathode
material in the visible range.
Error: False reasoning, cutting potential should be W/h.

[7] Andrew Drozdov, Nathanael Schärli, Ekin Akyürek, Nathan Scales, Xinying Song, Xinyun Chen, Olivier
Bousquet, and Denny Zhou. Compositional semantic parsing with large language models. arXiv preprint
arXiv:2209.15003, 2022.
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Problem How does electric field affect capacitance?

A. Electric field decreases capacitance.
B. Electric field doesn’t affect capacitance.
C. Electric field changes capacitance based on geometry.
D. Electric field increases capacitance.

Correct Answer
B

Answer produced by ChatGLM3-6B-Base
D

Answer produced by SciGLM (ChatGLM3-6B-Base)
✓ B

Figure 9: An example problem from SciEval is accurately solved by SciGLM (ChaGLM3-6B-Base). For this
problem, the category is physics; the topic is Electric Forces and Fields; the ability is Scientific Calculation; the
type is multiple-choice; the task name is SocraticQA.

Problem
Using the method of undetermined coefficients to answer the below question.
y′′ − 2y′ + 5y = sin x, y(0) = 1, y′(0) = 1

Answer
Analysis: The key points of this problem are the undetermined coefficients and the differential equation of parameter variations.
This test uses the Method of undetermined coefficients to solve differential equation problems.
Step1: the auxiliary equation is r2 − 2r + 5 = 0 with roots r = 1 ± 2i, so the complementary solution is:
ιe(x) = ex(c1 cos 2x + c2 sin 2x).
Try the particular solution:
yp(x) = A cos x + B sin x,
y′
p = −A sin x + B cos x

Step2: substituting, we have:
(−A cos x − B sin x) − 2(−A sin x + B cos x) + 5(A cos x + B(sin x) = sin x
⇒ (4A − 2B) cos x + (2A + 4B) sin x = sin x.
Then:
4A − 2B = 0, 2A + 4B = 1 ⇒ A = 1

10 , B = 1
3

and the general solution is:
y(x) = y1(x) + yp(x) = e′(c1 cos 2x + c22x) +

1
10 cos x + 1

3 sin x

But, 1 = y(0) = c1 + 1
10 ⇒ c1 = 3

10

and 1 = y′(0) = 2c2 + c1 + 1
5 ⇒ c2 = − 1

26

Step3: Thus the solution to the initial-value problem is:
y(x) = ex

(
9
10 cos 2x − 1

20 sin 2x
)
+ 1

10 cos x + 1
5 sin x.

To sum up, the answer is:
y(x) = ex

(
9
10 cos 2x − 1

20 sin 2x
)
+ 1

10 cos x + 1
5 sin x.

Figure 10: An instruction example on the math subject.
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Problem
Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits.
a. The two bulbs are first connected in parallel to a 120 V source.
i. Determine the resistance of the bulb rated 30 W and the current in it when it is connected in this circuit.
ii. Determine the resistance of the bulb rated 40 W and the current in it when it is connected to this circuit.

b. The bulbs are now connected in series with each other and have a 120 V source.
i. Determine the resistance of the bulb rated 30 W and the current in it when it is connected in this circuit.
ii. Determine the resistance of the bulb rated 40 W and the current in it when it is connected to this circuit.

c. In the spaces below, number the bulbs in each situation described, in order of their brightness.
(1= brightest, 4 = dimmest)
____30 W bulb in the parallel circuit
____40 W bulb in the parallel circuit
____30 W bulb in the series circuit
____40 W bulb in the series circuit

d. Calculate the total power dissipated by the two bulbs in each of the following cases.
i. The parallel circuit
ii. The series circuit

Answer
Aanalysis: Use formulas to calculate resistance, current, and total power.
(a) i: Calculate the resistance and current of the light bulb.
P = V2/R given R=480 Ω and
V=IR given I=0.25 A
ii: Calculate the resistance and current of the light bulb.
P = V2/R given R=360 Ω and
V=IR given I=0.33 A

(b) i./ii. Calculate the resistance and current of the light bulb.
The resistances are unchanged 480 Ω and 360 Ω. The total resistance in series is 480 Ω + 360 Ω = 840 Ω making the total current I = V/R = 0.14 A
which is the same value for both resistors in series.

(c) Compare the brightness of the light bulb.
The bulbs are brightest in parallel, where they provide their labeled values of 40 W and 30 W. In series, it is the larger resistor (the 30 W bulb) that glows
brighter with a larger potential difference across it in series. This gives the order from top to bottom as 2 1 3 4.

(d) i: Calculate the total power consumed by two light bulbs.
In parallel, they each operate at their rated voltage so they each provide their rated power andPT = 30W + 40W = 70W
ii: Calculate the total power consumed by two light bulbs
In series PT = VT

2/RT = 17W

In summary,
(a) i: P = 480 Ω and V = 0.25A
ii: P = 360 Ω and V = 0.33A
(b) i/ii: P = 840 Ω and V = 0.14A
(c) This gives the order from top to bottom as 2 1 3 4.
(d) i: PT = 70W
ii: PT = 17W

Figure 11: An instruction example on the physics subject.

Problem
Consider a mixture of the two solids, BaCl2 + 2H2O (FM 244.26) and KCl (FM 74.551), in an unknown ratio. (The notation BaCl2 · 2H2O means
that a crystal is formed with two water molecules for each BaCl2.) When the unknown is heated to 160◦C for 1 h, the water of crystallization is driven off:

BaCl2 · 2H2O(s)
160◦C−→ BaCl2(s) + 2H2O(g)

A sample originally weighing 1.7839 g weighed 1.5623 g after heating. Calculate the weight percent of Ba,K, and Cl in the original sample.

Answer
Analysis: The content of this question is to calculate the weight percentage.
Step1: Formula and atomic masses: Ba(137.327),Cl(35.453),K(39.098), H2O(18.015),KCl(74.551),BaCl2 · 2H2O(244.26),H2O

lost = 1.7839− 1.5623 = 0.2216 g = 1.2301 × 10−2 mol of H2O. For 2 molH2O lost, 1 mol BaCl2 · 2H2O must have been present.
1
2

(
1.2301 × 10−2 molH2O lost ) = 6.1504 × 10−3 molBaCl2 · 2H2O = 1.5024 g. The Ba and Cl contents of the BaCl2 · 2H2O are

Ba =
(
137.33
244.26

)
(1.5024 g) = 0.84469 g

Cl =
(

2(35.453)
244.26

)
(1.5024 g) = 0.43613 g

Step2: Because the total sample weighs 1.783 g and contains 1.5024 g of BaCl2 · 2H2O, the sample must contain 1.7839 − 1.5024 = 0.2815 g
of KCl, which contains
K =

(
39.098
74.551

)
(0.2815) = 0.14763 g

Cl =
(
35.453
74.551

)
(0.2815) = 0.13387 g

Weight percent of each element:
Ba = 0.84469

1.7839 = 47.35%

K = 0.14763
1.7839 = 8.28%

Cl = 0.43613+0.13387
1.7839 = 31.95%

In summary, the weight percent of Ba is 47.35%,the weight percent of K is 8.28%, the weight percent of Cl is 31.95%.

Figure 12: An instruction example on the chemistry subject.
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Problem
lemma unfold_sub α [subtraction_monoid α] (a b c : α) (h : a + -b = c) : a - b = c :=.

Answer
by rw [sub_eq_add_neg, h]

Problem lemma subtype.exists_pi_extensionι: Sort* α : ι→ Sort* [ne : Πi, nonempty (αi)]
p : ι→ Prop (f : Πi : subtype p, α i) :
g : Πi : ι, α i, (λi : subtype p, g i) = f :=

Answer
begin
tactic.classical,
refine 〈λi, if hi : p i then f 〈i, hi〉 else classical.choice (ne i), funext _〉,
rintro 〈i, hi〉,
exact dif_pos hi
end

Figure 13: Examples on formal proofs.
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