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ABSTRACT

Machine learning has become more important in real-life decision-making but
people are concerned about the ethical problems it may bring when used im-
properly. Recent work brings the discussion of machine learning fairness into
the causal framework and elaborates on the concept of Counterfactual Fairness.
In this paper, we develop the Fair Learning through dAta Preprocessing (FLAP)
algorithm to learn counterfactually fair decisions from biased training data and
formalize the conditions where different data preprocessing procedures should
be used to guarantee counterfactual fairness. We also show that Counterfactual
Fairness is equivalent to the conditional independence of the decisions and the
sensitive attributes given the processed non-sensitive attributes, which enables us
to detect discrimination in the original decision using the processed data. The
performance of our algorithm is illustrated using simulated data and real-world
applications.

1 INTRODUCTION

The rapid popularization of machine learning methods and the growing availability of personal
data have enabled decision-makers from various fields such as graduate admission (Waters & Mi-
ikkulainen, 2014), hiring (Ajunwa et al., 2016), credit scoring (Thomas, 2009), and criminal jus-
tice (Brennan et al., 2009) to make data-driven decisions efficiently. However, the community and
the authorities have also raised concern that these automatically learned decisions may inherit the
historical bias and discrimination from the training data and would cause serious ethical problems
when used in practice (Nature Editorial, 2016; Angwin & Larson, 2016; Dwoskin, 2015; Executive
Office of the President et al., 2016).

Consider a training dataset D consisting of sensitive attributes S such as gender and race, non-
sensitive attributes A and decisions Y . If the historical decisions Y are not fair across the sensitive
groups, a powerful machine learning algorithm will capture this pattern of bias and yield learned
decisions Ŷ that mimic the preference of the historical decision-maker, and it is often the case that
the more discriminative an algorithm is, the more discriminatory it might be.

While researchers agree that methods should be developed to learn fair decisions, opinions vary
on the quantitative definition of fairness. In general, researchers use either the observational or
counterfactual approaches to formalize the concept of fairness. The observational approaches often
describe fairness with metrics of the observable data and predicted decisions (Hardt et al., 2016;
Chouldechova, 2017; Yeom & Tschantz, 2018). For example, Demographic Parity (DP) or Group
Fairness (Zemel et al., 2013; Khademi et al., 2019) considers the learned decision Ŷ to be fair if it
has the same distribution for different sensitive groups, i.e., P (Ŷ |S = s) = P (Ŷ |S = s′). The
Individual Fairness (IF) definition (Dwork et al., 2012) views fairness as treating similar individuals
similarly, which means the distance between Ŷ (si, ai) and Ŷ (sj , aj) should be small if individuals
i and j are similar.

The other branch of fairness and/or discrimination definitions are built upon the causal framework
of Pearl (2009a), such as direct/indirect discrimination (Zhang et al., 2017; Nabi & Shpitser, 2018),
path-specific effect (Wu et al., 2019b), counterfactual error rate (Zhang & Bareinboim, 2018a) and
counterfactual fairness (Kusner et al., 2017; Wang et al., 2019; Wu et al., 2019a). These definitions
often involve the notion of counterfactuals, which means what the attributes or decision would be
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if an individual were in a different sensitive group. With the help of the potential outcome concept,
the measuring of fairness is no longer restricted to the observable quantities (Kilbertus et al., 2017;
Zhang & Bareinboim, 2018b). For example, the Equal Opportunity (EO) definition Wang et al.
(2019) has the same idea as IF but it can directly compare the actual and counterfactual decisions
of the same individual instead of the actual decisions of two similar individuals. The Counterfactual
Fairness (CF) definition (Kusner et al., 2017) or equivalently, the Affirmative Action (AA) defini-
tion (Wang et al., 2019) goes one step further than EO and derives the counterfactual decisions from
the counterfactual non-sensitive attributes. We adopt CF as our definition of fairness and it is for-
mally described in Section 2. We believe causal reasoning is the key to fair decisions as DeDeo
(2014) pointed out that even the most successful algorithms would fail to make fair judgments due
to the lack of causal reasoning ability.

For the observational definitions, fair decisions can be learned by solving optimization problems,
either adding the fairness condition as a constraint (Dwork et al., 2012) or directly optimize the
fairness metric as an object (Zemel et al., 2013). When using the counterfactual definitions, however,
an approximation of the causal model or the counterfactuals is often needed since the counterfactuals
are unobservable. In the FairLearning algorithm proposed by Kusner et al. (2017), the unobserved
parts of the graphical causal model are sampled using the Markov chain Monte Carlo method. Then
they use only the non-descendants of S to learn the decision, which ensures CF but will have a low
prediction accuracy. In Wang et al. (2019), the counterfactual of A had S been s′ is imputed as
the sum of the counterfactual group mean E(A|S = s′) and the residuals from the original group
A− E(A|S = s). As we discuss later, this approach would only work when a strong assumption of
the relationship between A and S is satisfied.

1.1 CONTRIBUTIONS

We develop the Fair Learning through dAta Preprocessing (FLAP) algorithm to learn counterfactu-
ally fair decisions from biased training data. While current literature is vague about the assumptions
needed for their algorithms to achieve fairness, we formalize the weak and strong conditions where
different data preprocessing procedures should be used to guarantee CF and prove the results under
the causal framework of Pearl (2009a). We show that our algorithm can predict fairer decisions
with similar accuracy when compared with other counterfactual fair learning algorithms using three
simulated datasets and three real-world applications, including the loan approval data from a fintech
company, the adult income data, and the COMPAS recidivism data.

On the other hand, the processed data also enable us to detect discrimination in the original decision.
We prove that CF is equivalent to the conditional independence of the decisions and the sensitive
attributes given the processed non-sensitive attributes under certain conditions. Therefore any well-
established conditional independence tests can be used to test CF with the processed data. To our
knowledge, it is the first time that a formal statistical test for CF is proposed. We illustrate the idea
using the Conditional Distance Correlation test (Wang et al., 2015) in our simulation and test the
fairness of the decisions in the loan approval data using a parametric test.

2 CAUSAL MODEL AND COUNTERFACTUAL FAIRNESS

For the discussion below, we consider the sensitive attributes S ∈ S to be categorical, which is a
reasonable restriction for the commonly discussed sensitive information such as race and gender.
The non-sensitive attributes A ∈ A ⊆ Rd, and the decision Y is binary as admit or not in graduate
admission, hire or not in the hiring process, approve or not in loan assessment.

UŶ Ŷ Y UY

SUS A UA S = fS(US),
A = fA(S,UA),
Y = fY (S,A,UY ),
Ŷ = fŶ (S,A,UŶ ) = 1{UŶ < p(S,A)}.

Figure 1: Structural causal model.
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To bring the discussion of fairness into the framework of causal inference, we begin by constructing
the Structural Causal Model (SCM) for the data. As described in Pearl (2009b), an SCMM consists
of a set of exogenous variables U , a set of endogenous variables V , and F , a set of functions that
assign value to each endogenous variable given its parents in V and the exogenous variables U . In
our case (Figure 1), we consider V = {S,A, Y, Ŷ }, where {S,A, Y } are the observed data and
Ŷ is the prediction of Y we made based on S and A. The only exogenous variable affecting Ŷ
is a Uniform(0, 1) random variable UŶ so that we can conveniently express the value of Ŷ with
a structural equation. We assume that US , UA, and UY , which are the exogenous variables that
affect S, A, and Y respectively, are independent of each other. The structural equations on the right
side of Figure 1 are described with the functions in F , one for each component in V . Here we
express fŶ as an indicator function so that Ŷ is a Bernoulli random variable that takes value one
with probability p(S,A). In general, p(s, a) could be any function that maps S × A to [0, 1], but
we are more interested in such functions that will result in a fair decision, more details of which
will be discussed in Section 3. It can be seen that the subset of exogenous variables {US , UA, UY }
characterize everything we should know about a unit. Any two units with the same realization will
have the same behavior and result irrespective of the other differences in their identities.

Here we give a simplified loan approval model as a running example to help understand the SCM
we considered.
Example 1. A bank asks each loan applicant for her/his race S and annual income A to decide
to approve the application (Y = 1) or not (Y = 0). There are two races in the population of the
applicants, S = 1 represents the advantageous group, and S = 0 for the disadvantageous one.
Let US ∼ Uniform(0, 1), we generate S = 1{US < 0.7}. The annual income is log-normally
distributed for each race group and its scale and location parameters may depend on race:

A = c1 exp{c2 + λaS + c3σ
S
aUA},

where UA is a standard normal random variable, c1, c3 > 0, and c2 are constants that affect the
median and spread of the population income, λa decides the difference in mean log income between
the two race groups, and σa > 0 determines the standard deviation ratio of the log incomes. The
decision by the bank can be simulated from a logistic model:

Y = 1{UY < expit(β0 + βaA+ βsS)},
where UY ∼ Uniform(0, 1) and expit(u) = (1 + e−u)−1.

In this example, βs characterizes the direct effect of the sensitive attribute on the decision: when
βs > 0, the applications from the advantageous group are more likely to be approved by the bank
when holding the income fixed. On the other hand, λa partly describes the indirect effect because
when both λa and βa are positive, the advantageous group will have a higher income than the other
group on average and thus be favored by the bank even if βs = 0. It is worth noting that, apart from
the difference in the mean, the difference in higher moments could also cause unfairness indirectly
as alluded to in Fuster et al. (2018). In general, if there are any differences in the distribution of A
across the categories in S, the decision based on A might be unfair. However, the indirect effect
caused by the differences in the higher moments of A could be case dependent and thus harder to
interpret. In our case, σa > 1 will lead to a higher average income and hence higher approval
probability on average for the advantageous group since the income distribution is right-skewed.

With the SCM in hand, we are ready to define the causal quantity we are interested in. Since most
sensitive attributes, such as gender and race, cannot be altered in experiments, we will look into
the counterfactuals, namely, what the results Y would be had S been different from the observed
facts. This quantity is expressed as Ys(U) had S been s for a random unit with exogenous variables
U sampled from the population. Define Ms to be the modified SCM from M (Figure 1) with the
equation for S replaced with S = s. Then for any realization U = u, the unit level counterfactuals
Ys(u) can be calculated from Ms. Similarly, we can define Ŷs(U) and Ŷs(u) as the counterfactual
predicted decision and its realization. The counterfactual fairness can then be defined on both the
decision and the prediction based on the counterfactual result. Here we denote Y as a placeholder
for either Y or Ŷ .
Definition 1. Counterfactual Fairness. Given a new pair of attributes (s∗, a∗), a (predicted) deci-
sion Y is counterfactually fair if for any s′ ∈ S,

Ys′(U)|{S = s∗, A = a∗} d
= Ys∗(U)|{S = s∗, A = a∗}.
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In other words, the conditional distribution of the counterfactual result should not depend on the
sensitive attributes. It should be noted that there are two stages in evaluating the conditional coun-
terfactuals. The first is updating the conditional distribution ofU . Take the decision Y from Example
1, if s∗ = 0, then US |{S = s∗, A = a∗} is from Uniform(0.7, 1) and UA|{S = s∗, A = a∗} is a
constant (log(a∗/c1)− c2)/c3, but UY |{S = s∗, A = a∗} is still a Uniform(0, 1) random variable
since UY is independent of S and A from the SCM. The next stage is deriving the conditional dis-
tribution of the counterfactuals from the structural equations of Ms and the conditional distribution
of U . Continuing with our example, Y1(U)|{S = 0, A = a∗} would be equal in distribution to

fY (1, fA(1, UA), UY )|{S = 0, A = a∗}
d
=fY (1, fA(1, (log(a

∗/c1)− c2)/c3), UY )
d
=1{UY < expit(β0 + βac1(a

∗/c1)
σa exp{λa + (1− σa)c2}+ βs)}

and Y0(U)|{S = 0, A = a∗} d
= 1{UY < expit(β0 + βaa

∗)}. Thus the bank’s decision Y would be
counterfactually fair if σa = 1, λa = 0 and βs = 0.

3 PREPROCESSING, LEARNING, AND TESTING

Define a preprocessing procedure PD(s, a) : S × A → A′ to be a function that maps attributes
(s, a) to the processed attributes a′ given the training dataD. Here we consider two such procedures.
Denote Pn(S = s) as the empirical p.m.f. of S and En(A|S = s) as the empirical conditional mean
of A given S learned from data D.

Definition 2 (Orthogonalization). An orthogonalization procedurePDO is a preprocessing procedure
such that

PDO (s∗, a∗) =
∑
s

â(s)Pn(S = s),

where â(s) = a∗ − En(A|S = s∗) + En(A|S = s),∀s ∈ S.

It is easy to see thatPDO (s∗, a∗) = a∗−En(A|S = s∗)+En(A) is a one-to-one function of a∗ for any
fixed s∗. Denote F̂js(x) = Pn(Aj ≤ x|S = s) as the empirical marginal cumulative distribution
function (CDF) of the jth element of the non-sensitive attributes given the sensitive attribute S = s.
Define its inverse as

F̂−1js (z) = inf{x : Pn(Aj ≤ x|S = s) ≥ z}. (3.1)

Definition 3 (Marginal Distribution Mapping). A marginal distribution mapping PDM is a prepro-
cessing procedure such that

PDM (s∗, a∗) =
∑
s

â(s)Pn(S = s),

where the jth element of â(s) is [â(s)]j = F̂−1js (F̂js∗([a
∗]j) for j = 1, · · · , d.

Let P , PO, and PM denote the population level preprocessing procedure corresponding to PD, PDO ,
andPDM , respectively. It is obvious thatPO(s∗, a∗) = a∗−E(A|S = s∗)+E(A) is still a one-to-one
function of a∗ for any fixed s∗, and the jth element of PM (s∗, a∗) is

[PM (s∗, a∗)]j =
∑
s

F−1js (Fjs∗([a
∗]j)P(S = s),

where Fjs is the marginal CDF of the jth element of A given S = s and F−1js is defined similarly
to (3.1) but replacing Pn with P. It can be seen that if Aj is a discrete variable, then F−1js (Fjs∗(x))

is strictly increasing for s = s∗; and if Aj is a continuous variable, then F−1js (Fjs∗(x)) may not be
strictly increasing when Fjs∗(x) is constant on some interval of x. Therefore PM (s∗, a∗) is only a
one-to-one function of a∗ for any fixed s∗ when the marginal CDF of each continuous element in A
given S = s∗ is strictly increasing.
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3.1 FAIR LEARNING ALGORITHM

Besides preprocessing procedures, we also have different choices of learners. A Fairness-Through-
Unawareness (FTU) predictor fFTU (a) only uses the non-sensitive attributes A to predict the
conditional mean of Y . A Machine Learning predictor fML(s, a) uses both the sensitive and
non-sensitive attributes to predict E(Y |S,A). An Averaged Machine Learning (AML) predictor
fAML(a) =

∑
s fML(s, a)Pn(S = s)ds. Note that we still need to train the ML predictor to

obtain the AML predictor, but it only needs the non-sensitive attributes as its input when mak-
ing a prediction since the sensitive attributes are averaged out. Algorithm 1 could use any learner
f ∈ {f : A → [0, 1]} to learn the decisions from the processed data, and we would consider the
FTU and AML learners in our numerical studies.

Algorithm 1: Fair Learning through dAta Preprocessing (FLAP)

Input: Training data D, preprocessing procedure PD, learner f , test attributes (s, a).

1 for (si, ai, yi) in D do
2 a′i = PD(si, ai)
3 end
4 Create the processed data D′ = {(si, a′i, yi)}ni=1
5 Learn predictor f from D′
6 Calculate a′ = PD(s, a)
7 Draw Ŷ from Bernoulli(f(a′))

Output: Ŷ

Apart from the structural assumptions made in Figure 1, extra conditions of the structural equation
fA(s, uA) must be satisfied for the preprocessing method to work.

Condition 1 (Strong non-sensitive). The partial derivative ∂
∂uA

fA(s, uA) does not involve s.

Condition 2 (Weak non-sensitive). The sign of ∂
∂uA

fAj
(s, uA) does not change with s for all uA

and all j = 1, · · · , d.

These two conditions describe the relationship between the sensitive and non-sensitive attributes.
Condition 2 is weaker than Condition 1. For example, an additive model fA(s, uA) = β0 + β1s +
β2uA satisfies both conditions, while an interaction model fA(s, uA) = β0 + β1s+ β2uA + β3suA
does not satisfy Condition 1 but will satisfy Condition 2 if β2 + β3s is greater than (or less than, or
equal to) zero for all s. In our running example, ∂

∂uA
fA(s, uA) = c1c3σ

s
a exp{c2+λas+c3σsauA} >

0 for s = 0, 1. So it meets Condition 2 but not Condition 1. We prove in the following theorem that
these conditions, together with the SCM, are sufficient for Algorithm 1 to generate counterfactually
fair decisions.

Theorem 1. Let Ŷ be the output from Algorithm 1, i.e., 1{UŶ < f(PD(s, a))}.

1. If the procedure PDO is adopted, Ŷ is counterfactually fair under Condition 1.

2. If the procedure PDM is adopted, Ŷ is counterfactually fair under Condition 2.

We prove Theorem 1 in Appendix A. The intuition is that the FLAP algorithm learns the decision
from processed data only, and the processed data contain no sensitive information since the prepro-
cessing procedure can remove A’s dependence on S under the non-sensitive condition.

3.2 TEST FOR COUNTERFACTUAL FAIRNESS

Data preprocessing not only allows us to learn a counterfactually fair decision but also enables us
to test if the decisions made in the original data are fair. When Condition 1 holds, we can use the
data processed by the orthogonalization procedure to test fairness. When the strong condition does
not hold but Condition 2 is satisfied, we need an extra condition to utilize the marginal distribution
mapping procedure for fairness testing.
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Condition 3. The conditional marginal CDF Fjs(x) is strictly increasing for all such j that Aj is
continuous and all s ∈ S.

In other words, each non-sensitive attributes Aj should be either a discrete random variable or a
continuous one with non-zero density on R. This condition ensures that PM (s∗, a∗) is a one-to-one
function as discussed earlier. With these conditions, we can establish the equivalence between CF
and the conditional independence of decision and sensitive information given the processed non-
sensitive information.
Theorem 2. Consider the original decision Y :

1. Under Condition 1, Y is counterfactually fair if and only if Y⊥S|PO(S,A).

2. Under Conditions 2 and 3, Y is counterfactually fair if and only if Y⊥S|PM (S,A).

Its proof is in Appendix A. Theorem 2 allows us to test CF using any well-established conditional
independence test. In practice, given a decision dataset D = (si, ai, yi)

n
i=1, we can obtain the

empirical processed non-sensitive attributes PD(si, ai) and test if Y⊥S|PD(S,A). If the p-value
of the test is small enough for us to reject the conditional independence hypothesis, then the original
decision is probably biased and algorithms such as FLAP should be used to learn fair decisions.

4 NUMERICAL STUDIES

In this section, we compare the decisions made by different algorithms in terms of fairness and ac-
curacy using simulated and real data, and also investigate the empirical performance of the fairness
test using simulated data with small sample sizes. We consider three cases for generating the simu-
lation data. The first one is Example 1 and the second one is a multivariate extension of it where we
introduce one more sensitive group and include the education years of the loan applicants as another
non-sensitive attribute and let their annual income depend on it. The third example is a replica of
the admission example constructed by Wang et al. (2019). The details of these examples and the
parameters chosen in the simulation are presented in Appendix B.

As discussed before, Condition 2 is satisfied in Example 1 but Condition 1 is not. Moreover, both
Examples 2 and 3 do not satisfy either condition in general due to the cutoff in the value of their
non-sensitive attributes, and hence neither of the proposed preprocessing methods can achieve CF
in theory. However, the weaker Condition 2 will hold in Example 2 when the mean education years
of the three sensitive groups are the same, in which case the marginal distribution mapping method
should work.

4.1 FAIRNESS EVALUATION

We compare our FLAP algorithm with

1. ML: the machine learning method using both sensitive and non-sensitive attributes without
preprocessing, which is a logistic regression of Y on S and A;

2. FTU: the Fairness-Through-Unawareness method which fits a logistic model of Y on non-
sensitive attributes A alone without preprocessing;

3. FL: the FairLearning algorithm proposed by Kusner et al. (2017);
4. AA: the Affirmative Action algorithm proposed by Wang et al. (2019).

All these methods can output a predicted score p given the training data D and test attributes (s, a),
denoted p(s, a;D) and draw the random decision Ŷ from Bernoulli(p(s, a;D)). For ML method,
p(s, a;D) = fML(s, a); for FTU method, that is fFTU (a). We denote the predicted scores of the
FairLearning and AA algorithms as fFL(s, a;D) and fAA(s, a;D), respectively. For our FLAP
method, we use the marginal distribution mapping procedure and try both the AML and the FTU
learners described in Section 3 and name the methods as FLAP-1 and FLAP-2. Their predicted
scores are fAML(PDM (s, a)) and fFTU (PDM (s, a)), respectively. We mainly use the Mean Absolute
Error (MAE) of the predicted score on the test set to measure the prediction performance, and also
include the area under the ROC curve and average precision of the prediction in Appendix B for

6



Under review as a conference paper at ICLR 2021

completeness. All these metrics show similar results about the prediction performance. The metric
for measuring the counterfactual fairness (CF-metric) is defined as

max
r,t∈S

1

Ntest

Ntest∑
i=1

|p(r, âDM (r, si, ai);D)− p(t, âDM (t, si, ai);D)|,

where âDM (s, s∗, a∗) is defined as â(s) in Definition 3. Note that the CF-metric should be zero
when decisions are CF under Condition 2. In real world applications where the condition cannot
be verified, a CF decision is not guaranteed to have zero CF-metric, although we expect the CF-
metric to be lower for fairer decisions in general. This definition is different from the AA-metric
proposed by Wang et al. (2019) in two folds. First, it allows us to consider more than two sensitive
groups by taking the maximum of the pairwise difference of predicted scores, but it reduces to the
AA-metric for two sensitive groups. Second, we use the marginal distribution mapping method to
compute the counterfactual non-sensitive attributes âDM (s, s∗, a∗) had the unit been in a different
sensitive group s. This ensures that all the derived counterfactual attributes are within the range of
observed attribute values. In comparison, Wang et al. (2019) use the orthogonalization method to
compute the counterfactual attributes and thus a female student having test score 0.98 would have
a counterfactual score of 1.48 had she been a male if the male mean test score is 0.5 higher than
female. This out-of-range counterfactual score is unreasonable and problematic when being used as
the input of the score prediction function p.

For Example 1, we hold other parameters fixed while increase σa from 1 to 2.8 to see how the
difference in the variation of the non-sensitive attribute between sensitive groups affects fairness.
As expected, the AA algorithm which essentially uses the orthogonalization method cannot achieve
CF since Condition 1 is not met. However, both FLAP algorithms’ CF-metrics are zero when using
the marginal distribution mapping preprocessing (Figure 2a).
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(b) Example 3 with different mean scores by gender.

Figure 2: Comparison of CF-metric and MAE of decision making algorithms

Wang et al. (2019) showed that the AA algorithm can achieve zero AA-metric in Example 3, but it
does not satisfy either of the non-sensitive conditions for achieving CF. As shown in Figure 2b, all
algorithms we consider cannot achieve CF, but the FLAP algorithms still have the lowest CF-metric.
The results of Example 2 are shown in Appendix B and there is no significant difference between
the MAE of the AA and FLAP algorithms in all examples. In general, we expect fairer predictions
to have higher MAEs since they correct the discriminatory bias of the original decisions.

4.2 FAIRNESS TEST

The Conditional Distance Correlation (CDC) test (Wang et al., 2015) is a well-established non-
parametric test for conditional independence. We use it here to illustrate the performance of the
fairness test with the three simulated examples. For each example, we use different combinations of
parameters to obtain simulated datasets with different fairness levels, which are measured by the CF-
metric. A CDC test with a significance level of 0.05 is then conducted to test if Y⊥S|PD(S,A) for
each dataset. The simulation-test process is repeated 1000 times for each combination of parameters
to estimate the power of the test, namely the probability of rejecting the null hypothesis that the
decisions are counterfactually fair. The results are summarized in Figure 3.

When the decisions are generated fair, which are shown as the points with CF-metrics equal to zero,
the type I error rate is around 0.05 for all examples. The power of the test grows as we make the
decisions more unfair, or increase the sample size.
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Figure 3: Power for testing CF using conditional independent test plot against the CF-metric

5 REAL DATA ANALYSIS

We apply our methods to a loan application dataset from a fintech company, the adult income
dataset from UCI Machine Learning Repository1 and the COMPAS recidivism data from ProP-
ublica2 (Angwin & Larson, 2016). Here we present our analysis of the loan application data, and the
results from the other two publicly available datasets are shown in Appendix C since the conclusions
are similar.

In the loan application case, the fintech lender aims to provide short-term credit to young salaried
professionals by using their mobile and social footprints to determine their creditworthiness even
when a credit history may not be available. To get a loan, a customer has to download the lending
app, submit all the requisite details and documentation, and give permission to the lender to gather
additional information from her/his smartphone, such as the number of apps, number of calls, and
SMSs, and number of contacts and social connections. We obtained data from the lending firm
for all loans granted from February 2016 to November 2018. The decisions Y are whether or not
the lender approves the loan applications. The attributes are applicants’ gender, age, salary, and
other information collected from their smartphones. Both gender and age are regarded as sensitive
information here and we find that the decisions are made in favor of the senior and female applicants.
Since we can only deal with categorical sensitive attributes, we divide the applicants into two age
groups by the lower quartile of the age distribution and create a categorical variable S ∈ {0, 1, 2, 3}
to denote the group of the applicants: female younger than 28; male younger than 28; female older
than 28; and male older than 28. The effective sample size after removing missing values is 203,656.

Non-parametric conditional independence tests will not be efficient for this real case due to the large
sample size. Therefore we test the conditional independence of Y and S given PDM (S,A) by fitting
a simple logistic model for Y with S and PDM (S,A) as the explanatory variables and testing if the
coefficient of S is significantly different from zero. The p-value of the F-test is almost zero and
indicates that the decisions are unfair for applicants in different groups. When other attributes are
fixed to their means, the predicted approval probabilities of the four groups from the logistic model
are 0.924 (young female), 0.899 (young male), 0.948 (senior female), and 0.946 (senior male), also
indicating that the decisions are most in favor of the senior and female applicants.

We then separate the data into a training set of 193,656 samples and a test set of 10,000 samples.
The training dataset is used to learn the decisions with different algorithms and the test dataset is
used to evaluate the CF-metric and MAE. The results are summarized in Table 1. Our FLAP al-
gorithms have lower CF-metrics compared with other algorithms and their MAEs are only greater
than the ML method. Among the FLAP algorithms, the two using the marginal distribution map-
ping preprocessing procedure have better CF-metric and similar MAE. The FLAP algorithm using
the FTU learner (FLAP-2) performs slightly better than the one using the AML learner (FLAP-1).
Note that in real-world applications, fairer decisions may not have higher MAEs as expected in
the simulation studies because we do not have access to all the variables possessed by the original
decision-maker. When the original decisions depend on additional information, the FLAP and other

1https://archive.ics.uci.edu/ml/machine-learning-databases/adult/
2https://github.com/propublica/compas-analysis
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fair learning methods may yield predictions closer to or further away from the original decisions,
and thus leading to lower or higher MAEs.

Table 1: Comparison of the CF-metric and MAE of decision making algorithms on the fintech data.
FLAP-1(O) and FLAP-2(O) use the orthogonalization and FLAP-1(M) and FLAP-2(M) use the
marginal distribution mapping preprocessing procedure.

ML FTU FL AA FLAP-1(O) FLAP-2(O) FLAP-1(M) FLAP-2(M)
CF-metric 0.0392 0.0130 0.0011 0.0011 0.0011 0.0011 0.0008 0.0007

MAE 0.1249 0.1261 0.1258 0.1266 0.1258 0.1258 0.1258 0.1258

6 DISCUSSION

We propose two data preprocessing procedures and the FLAP algorithm to make counterfactually
fair decisions. The algorithm is general enough so that any learning methods from logistic regression
to neural networks can be used, and counterfactual fairness is guaranteed regardless of the learning
methods. The orthogonalization procedure is faster and ensures counterfactually fair decisions when
the strong non-sensitive condition is met. The marginal distribution mapping procedure is more
complex but guarantees fairness under the weaker non-sensitive condition.

We also prove the equivalence between counterfactual fairness and the conditional independence of
decisions and sensitive attributes given the processed non-sensitive attributes under the non-sensitive
assumptions. We illustrate that the CDC test is reliable for testing counterfactual fairness when the
sample size is small. When the size gets bigger, however, we need a more efficient testing method
for the fairness test.

It is well understood but still worth noting that causal inference comes with strong assumptions,
such as the SCM and the non-sensitive conditions in our case. Moreover, these assumptions are
often unverifiable in general, although we may test some of them when only considering a restricted
class of models. As the saying goes, “all models are wrong, but some are useful”. The FLAP method
may require unverifiable assumptions in practice, but we make it general enough and easy to follow
in the hope that this would encourage decision-makers to address the fairness issue with its help.
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A PROOF OF MAIN RESULTS

A.1 PROOF OF THEOREM 1

Proof. We prove the theorem for a general class of learners {f : A → [0, 1]} that only take the
non-sensitive attribute a as the input. Clearly, both fFTU or fAML belong to this class. We follow
the Abduction-Action-Prediction steps in Theorem 7.1.7 Pearl (2009b) to evaluate the conditional
expectation of Ŷs′(U) given the evidence S = s∗, A = a∗,

E(Ŷs′(U)|S = s∗, A = a∗) =

∫
f(PD(s′, fA(s′, u)))pUA|S,A(u|S = s∗, A = a∗)du,

where pUA|S,A(u|s∗, a∗) denotes the conditional density of UA given S = s∗ and A = a∗. If
PD(s′, fA(s′, u)) does not depend on s′, so will E(Ŷs′(U)|S = s∗, A = a∗) and we will have

E(Ŷs′(U)|S = s∗, A = a∗) = E(Ŷs∗(U)|S = s∗, A = a∗).

Note that PD(s′, fA(s′, u)) =
∑
s â(s)Pn(S = s) for both the preprocessing procedures we are

considering. Therefore, it suffices to show that â(s) does not depend on s′.

First, consider the Orthogonalization procedure PDO where

â(s) = fA(s
′, u)− En(A|S = s′) + En(A|S = s)

= fA(s
′, u)− E(A|S = s′) + En(A|S = s)− (En − E)(A|S = s′).

Note that A|{S = s′} = fA(s
′, UA) and the first order Taylor expansion of it gives

E(A|S = s′) = E

(
fA(s

′, u) +
∂

∂u
fA(s, u)

∣∣∣∣
s=s′,u=u′

(UA − u)

)

= fA(s
′, u) +

∂

∂u
fA(s, u)

∣∣∣∣
s=s′,u=u′

E(UA − u)

for some u′ between u and UA. By Condition 1

â(s) =
∂

∂u
fA(s, u)

∣∣∣∣
s=s∗,u=u′

E(u− UA) + En(A|S = s) + oP(n)

and thus it does not depend on s′.

Second, consider the Marginal Distribution Mapping procedure PDM . Let fAj
(s, u) = eTj fA(s, u)

where ej is a d-dimensional vector with the jth element being one and all other elements being
zeros. The jth element of â(s) is [â(s)]j = F̂−1js (F̂js′(fAj

(s′, u))) for j = 1, · · · , d. Again, the
first order Taylor expansion of fAj

(s′, UA) gives

F̂js′(fAj
(s′, u)) = Pn(Aj ≤ fAj

(s′, u)|S = s′)

= P(fAj
(s′, UA) ≤ fAj

(s′, u)) + (Pn − P)(Aj ≤ fAj
(s′, u)|S = s′)

= P

(
fAj

(s′, u) +
∂

∂u
fAj

(s, u)

∣∣∣∣
s=s′,u=u′

(UA − u) < fAj
(s′, u)

)
+ oP(n)

for some u′ between u and UA. Under Condition 2,

F̂js′(fAj
(s′, u)) = P

(
sign

(
∂

∂u
fAj

(s, u)

∣∣∣∣
s=s∗,u=u′

)
(UA − u) < 0

)
+ oP(n)

does not depend on s′ and hence a(s) is a function of s and u alone.

A.2 PROOF OF THEOREM 2

Proof. The steps of proving the two statements of Theorem 2 are similar. To remove redundancy,
we use the notation P whenever the argument is true for both the preprocessing procedures PO and
PM .
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First, we show that Y is counterfactually fair if Y⊥S|P(S,A). The posterior mean of the counter-
factual Ys′(U) given S = s∗ and A = a∗ can be evaluated in two steps: first find the conditional
distribution of U = {UA, US , UY }, and then calculate the conditional expectation of the counter-
factuals from the SCM. Since the effect of US is blocked by setting S = s′ and UY is independent
of S and A, only the distribution of UA will be affected by the given information and effect the
counterfactuals Ys′(U).

E(Ys′(U)|S = s∗, A = a∗) =

∫
E(fY (s′, fA(s′, u), UY )pUA|S,A(u|S = s∗, A = a∗)du. (A.1)

Under the SCM, E(fY (s′, fA(s′, u), UY ) is the same as the expectation of the observed decision Y
given the attributes S = s′, A = fA(s

′, u). Therefore (A.1) is equal to∫
E(Y |S = s′, A = fA(s

′, u))pUA|S,A(u|S = s∗, A = a∗)du (A.2)

=

∫
E(Y |S = s′,P(S,A) = P(s′, fA(s′, u)))pUA|S,A(u|S = s∗, A = a∗)du (A.3)

=

∫
E(Y |P(S,A) = P(s′, fA(s′, u)))pUA|S,A(u|S = s∗, A = a∗)du (A.4)

=

∫
E(Y |P(S,A) = P(s∗, fA(s∗, u)))pUA|S,A(u|S = s∗, A = a∗)du (A.5)

=E(Ys∗(U)|S = s∗, A = a∗). (A.6)

Equation (A.3) replaces the condition A = fA(s
′, u) with P(S,A) = P(s′, fA(s′, u)) because

PO(S,A) is a one-to-one function of A given S and PM (S,A) is also a one-to-one function of
A given S under Condition 3. Equation (A.4) is due to the conditional independence of Y and
S, and (A.5) uses the result that P(s′, fA(s′, u)) = P(s∗, fA(s∗, u)), which can be shown fol-
lowing the proof of Theorem 1. Repeat the steps (A.1) to (A.5) and we shall get the same result
for E(Ys′(U)|S = s∗, A = a∗). Note that both Ys′(U) and Ys∗(U) are binary random variables,
therefore the equivalence in expectation implies that

Ys′(U)|{S = s∗, A = a∗} d
= Ys∗(U)|{S = s∗, A = a∗}.

The above result holds for any s′, s∗ ∈ S, so the definition of counterfactual fairness is satisfied.

Next we show that Y⊥S|P(S,A) if Y is counterfactually fair. The counterfactual fairness of Y
implies

E[fY (s′, fA(s′, UA), UY )|S = s∗, A = a∗]

=E[fY (s∗, fA(s∗, UA), UY )|S = s∗, A = a∗].
(A.7)

Let a′ = P(s∗, a∗), then

(UA, UY )|{S = s∗, A = a∗} d
= (UA, UY )|{S = s∗,P(s∗, A) = a′} (A.8)

since P(s∗, a∗) is a one-to-one function of a∗ for each s∗.

Using the Bayesian formula, the posterior density of UA is

pUA|S,P(u|S = s∗,P(s∗, A) = a′) (A.9)

=
pUA

(u)P(S = s∗)pP|S,UA
(a′|S = s∗, UA = u)

P(S = s∗)
∫
pUA

(u)pP|S,UA
(a′|S = s∗, UA = u)du

, (A.10)

where pUA|S,P(u|s∗, a′) denotes the conditional density of UA given S = s∗ and P(s∗, A) = a′,
pUA

(u) denotes the prior density of UA, and pP|S,UA
(a′|S = s∗, UA = u) denotes the conditional

density of P(s∗, A) given S = s∗ and UA = u. As a density function, (A.10) is proportional to
its kernel pUA

(u)pP|S,UA
(a′|S = s∗, UA = u), which equals pUA

(u)pP|S,UA
(a′|S = s′, UA = u)

because P(S,A) does not depend on S when UA is given as shown in the proof of Theorem 1.
Repeating the steps and we can show that the posterior density of UA given S = s′,P(s′, A) = a′

is also proportional to pUA
(u)pP|S,UA

(a′|S = s′, UA = u). Together with the assumption in the
SCM that UY is independent of S,P(S,A), we have

(UA, UY )|{S = s′,P(s′, A) = a′} d
= (UA, UY )|{S = s∗,P(s∗, A) = a′}. (A.11)
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The intuition here is that if the processed non-sensitive data are equal, then they provide the same
information about UA regardless of the sensitive information in the original data. Substituting the
conditions {S = s∗, A = a∗} in (A.7) with the equivalent conditions in (A.8) and (A.11) gives

E[fY (s′, fA(s′, UA), UY )|S = s′,P(s′, A) = a′]

=E[fY (s∗, fA(s∗, UA), UY )|S = s∗,P(s∗, A) = a′].
(A.12)

Under the SCM and structural equations defined in Figure 1, (A.12) implies

E[Y |S = s′,P(S,A) = a′] = E[Y |S = s∗,P(S,A) = a′]. (A.13)

Since (A.13) holds for any s′, s∗ ∈ S, it yields that

E[Y |S,P(S,A)] = E[Y |P(S,A)]
and hence Y⊥S|P(S,A) for binary Y .

B DETAILS OF SIMULATION EXAMPLES

Example 2. The bank now collects the race S, education year E and annual income A information
from loan applicants. There are three possible race groups S = {0, 1, 2} and S = 1{US >
0.76} + 1{US > 0.92}, meaning that a random applicant could be from the majority race group
(0) with probability 0.76, or from the minority group 1 or 2 with probability 0.16 or 0.08. Let UE be
a standard normal random variable and µE = λe0 + 1{S = 1}λe1 + 1{S = 2}λe2, the education
year is

E = max{0, µE + 0.4µEUE}.
Let µA = log(λa0 + 1{S = 1}λa1 + 1{S = 2}λa2), the annual income is

A = exp{µA + 0.4µEUE + 0.1UA}.
The decision of the bank is modeled as

Y = 1{UY < expit(β0 + 1{S = 1}β1 + 1{S = 2}β2 + βaA+ βeE)}.

Here λe0, λe1, and λe2 decide the mean education year of the three race groups. λa0, λa1, and
λa2 decide the median annual income. The annual income and the education year are positively
correlated through UE . β1 and β2 characterize the direct effect of the race information while the
λ’s indicate the indirect effect together with βe and βa. In this example, neither of Conditions 1
and 2 holds if βe and λe1 and/or λe2 are not zero due to the maximum operator in fE . Even if
λe1 = λe2 = 0, only the weaker Condition 2 will hold due to the same reason for Example 1.

Example 3 is a replica of the admission example constructed by Wang et al. (2019).
Example 3. The admission committee of a university collects the gender S and test score T infor-
mation from applicants. The gender is simulated from S = 1{US < 0.5}, where S = 1 for male
and S = 0 for female. Let UT ∼ Uniform(0, 1) and we generate the test score as

T = min{max{0, λS + UT }, 1}.
The decision of the committee is

Y = 1{UY < expit(β0 + βtT + βsS)}.

It is worth noting that both Examples 2 and 3 do not satisfy either of Conditions 1 and 2 due to the
cutoff in the value of their non-sensitive attributes education years and test score. Take Example 3,
there will be a positive probability (λ to be exact) of seeing male students with test score 1 if λ > 0.
Check that

∂

∂uT
fT (s, uT ) =

{
1, 0 < uT < 1− λs
0, 1− λs < uT < 1

and we can see that its sign does change with s for any fixed uT . Therefore, neither of the proposed
preprocessing methods can achieve CF in theory.

In Figures 2a and 4c, we choose c1 = 0.01, c2 = 4, c3 = 0.2 and fix β0 = −1, βa = 2, βs = 1,
λa = 0.5 while increase σa from 1 to 2.8 to see how the difference in the variation of non-sensitive
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(a) Ex. 2 with different mean income by race.
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(b) Ex. 2 with different mean education years by race.
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(c) Ex. 1 with increasing σa.
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(d) Ex. 3 with different mean scores by gender.

Figure 4: Comparison of CF-metric and prediction performance of decision making algorithms

14



Under review as a conference paper at ICLR 2021

attribute between sensitive groups affects fairness. In Figures 2b and 4d, we set β0 = −1, βt = 2,
βs = 1 and increase λ from 0 to 0.8 to see how the mean difference of test scores affects fairness.

In Figure 4a and 4b, we choose β0 = −1, β1 = β2 = 0, βa = 1, βe = 2, λe0 = 1.07, λi0 = 0.58.
In Figure 4a, we change (λi1, λi2) while fix λe1 = 0 and λe2 = 0 to see how the mean difference
of income affect fairness. The results are telling the same story as Figure 2a: since only the weaker
non-sensitive condition is met, the AA-algorithm cannot achieve CF but the FLAP algorithms with
marginal distribution mapping procedure can.

In Figure 4b, we change (λe1, λe2) while fix λi1 = 0 and λi2 = 0 to see how the mean difference
of education affect fairness. The results are similar to those of Figure 2b where all algorithms we
consider cannot achieve CF but the FLAP algorithms still have the lowest CF-metric.

C DETAILS OF REAL DATA ANALYSIS

We use the adult income data to predict whether an individual’s income is higher than $50K with
information including sex, race, age, workclass, education, occupation, marital-status, capital gain
and loss. Sex and race are regarded as sensitive attributes. The training set has 32,561 samples and
the test set has 16281 samples. The comparison of the FLAP and other methods are shown in Table
2.

The COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) recidivism
data contains the demographic data such as sex, age, race, and record data such as priors count,
juvenile felonies count, and juvenile misdemeanors count of over 10,000 criminal defendants in
Broward County, Florida. The task is to predict whether they will re-offend in two years. According
to ProPublica, “Black defendants were often predicted to be at a higher risk of recidivism than they
actually were.” Here we treat sex and race as sensitive attributes and try to predict recidivism in a
counterfactually fair manner. We only use the data for Caucasian, Hispanic, and African-American
individuals due to the small sample sizes of other races. The remaining data are divided into a
training set of 5,090 samples and a test set of 1697 samples. The results are shown in Table 3

Table 2: Comparison of the CF-metric and MAE of decision making algorithms on the adult income
data. FLAP-1(O) and FLAP-2(O) use the orthogonalization and FLAP-1(M) and FLAP-2(M) use
the marginal distribution mapping preprocessing procedure.

ML FTU FL AA FLAP-1(O) FLAP-2(O) FLAP-1(M) FLAP-2(M)
CF-metric 0.2779 0.2338 0.0228 0.0268 0.0280 0.0228 0.0020 0.0022

MAE 0.2388 0.2396 0.2406 0.2356 0.2452 0.2406 0.2430 0.2401

Table 3: Comparison of the CF-metric and MAE of decision making algorithms on the COMPAS
data. FLAP-1(O) and FLAP-2(O) use the orthogonalization and FLAP-1(M) and FLAP-2(M) use
the marginal distribution mapping preprocessing procedure.

ML FTU FL AA FLAP-1(O) FLAP-2(O) FLAP-1(M) FLAP-2(M)
CF-metric 0.2274 0.1406 0.0054 0.0060 0.0058 0.0054 0.0026 0.0027

MAE 0.4256 0.4274 0.4402 0.4391 0.4395 0.4401 0.4393 0.4393

Similar to the results we have shown for the loan application data, the FLAP methods using the
marginal distribution mapping preprocessing procedure have lower CF-metric and are thus consid-
ered fairer than other fair learning algorithms, and their MAEs are comparable to other methods.
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