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Abstract001

Generating cell-level descriptions for Jupyter002
Notebooks, which is a major resource consist-003
ing of codes, tables, and descriptions, has been004
attracting increasing research attention. How-005
ever, existing methods for Jupyter Notebooks006
mostly focus on generating descriptions from007
code snippets or table outputs independently.008
On the other side, descriptions should be per-009
sonalized as users have different purposes in010
different scenarios while previous work ignored011
this situation during description generation. In012
this work, we formulate a new task, personal-013
ized description generation with code, tables,014
and user-written guidelines in Jupyter Note-015
books. To evaluate this new task, we collect and016
propose a benchmark, namely NBDESCRIB,017
containing code, tables, and user-written guide-018
lines as inputs and personalized descriptions019
as targets. Extensive experiments show that020
while existing models of text generation are021
able to generate fluent and readable descrip-022
tions, they still struggle to produce factually023
correct descriptions without user-written guide-024
lines. CodeT5 achieved the highest scores025
in Orientation (1.27) and Correctness (-0.43)026
among foundation models in human evaluation,027
while the ground truth scored higher in Orien-028
tation (1.45) and Correctness (1.19). Common029
error patterns involve misalignment with guide-030
lines, incorrect variable values, omission of im-031
portant code information, and reasoning errors.032
Moreover, ablation studies show that adding033
guidelines significantly enhances performance.034
both qualitatively and quantitatively.035

1 Introduction036

In recent years, computational notebooks like037

Jupyter have become popular among data scien-038

tists and machine learning researchers for docu-039

menting ideas, writing code, and visualizing results040

in a single document (Wang et al., 2021a). De-041

scription in a notebook provides a rich medium042

for users to record what the code does and the rea-043

soning behind it. Description is found essential 044

for data scientists to share or reuse code (Zhang 045

et al., 2020; Chattopadhyay et al., 2020). How- 046

ever, research has shown that many data scientists 047

still neglect to write appropriate descriptions for 048

their code in notebooks, especially for code output 049

(i.e. table), as they feel writing description will 050

slow down their coding process (Ramasamy et al., 051

2023). Rule et al. (2018a) reported that among one 052

million computational notebooks on Github, 25% 053

of them have no comment. Besides, unlike other 054

integrated development environments (IDEs) such 055

as Visual Studio, data scientists working in compu- 056

tational notebooks often write concise descriptions, 057

typically less than 100 words(Wang et al., 2022). 058

This brevity poses challenges for large language 059

models (LLMs), such as GPT and LLaMA, lim- 060

iting their ability to generate accurate markdown 061

descriptions(Park and Choi, 2024). 062

Existing literature has explored techniques to 063

generate descriptions for code snippets or table out- 064

puts independently (Richardson et al., 2017; Li 065

et al., 2021; Liu et al., 2018; Parikh et al., 2020a; 066

An et al., 2022; Zhao et al., 2023b,a; Ding and Xu, 067

2023; Cm et al., 2023), achieving satisfying perfor- 068

mance. However, in real-world applications, docu- 069

mentations are always related to the corresponding 070

code and table output, at the same time. For exam- 071

ple, ground truth descriptions require summariza- 072

tion from the code and table output simultaneously, 073

as shown in Section 1. 074

Moreover, while the same code-table output pair 075

could serve different purposes under different user 076

requirements, existing work (Zhao et al., 2023b; 077

Chen et al., 2020; Zhao et al., 2023a; Ding and Xu, 078

2023; Cm et al., 2023; Richardson et al., 2017; An 079

et al., 2022; Liu et al., 2021; Khan and Uddin, 2022; 080

Koehn and Knowles, 2017; Pasupat and Liang, 081

2015; Ye et al., 2023) only focuses on description 082

generation for either code or table without consider- 083

ing various user requirements. As shown in Figure 084
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Table

passengerid pclass sex age fare cabin embarked y_pred y_scores

0 892 3 male 34.5 7.8292 nan q 0 0.108682

1 893 3 female 47.0 7.0000 nan s 1 0.516569

2 894 2 male 62.0 9.6875 nan q 0 0.130859

3 895 3 male 27.0 8.6625 nan s 0 0.116366

4 896 3 female 22.0 12.2875 nan s 1 0.553491

Guideline Description

Value
The 'y_pred' column in the output table represents the binary prediction (0 or 1)
generated by the 'model_consumer' for each passenger，such as passenger 893's
 prediction being 1 (indicating survival)

Goal Builds a prediction pipeline and and applies it to a 'df_test' dataset,generating
predictions and scores for further analysis

Association It is clear that fare has nothing to do with age in the titanic dataset

Outlier Cabin feature has some missing values in the test set

Aggregation There are two classes for Embarked feature

Reason Analyze the data like passenger class, gender, age, and fare to generate
predictions and scores with prediction pipeline

Code Only Table Only

It sets up a machine
learning prediction pipeline
with initial preprocessing
and model consumption

stages and applies it to test
data from a CSV file

The table lists passenger
data with features like

class, sex, age, fare, and
predictions with scores for

a Titanic dataset.

Previous WorkOur Work(Guideline + Code + Table)

Code

Figure 1: An example in our proposed NBDESCRIB dataset, which targets generating high-fidelity and personalized
descriptions based on the input of codes, tables, and user-written guidelines. Previous methods and benchmarks
focus on understanding the codes or tables only, which makes the generated description unfaithful.

1, under different user-written guidelines, the focus085

of different ground-truth descriptions could differ086

from each other.087

To address the aforementioned issues and step088

forward in faithful and personalized description089

generation, in this paper, we propose a challenging090

user-written guideline-based text generation task091

focusing on the table and code description genera-092

tion (TCDG) for Jupyter Notebooks. Given codes093

and output tables, the goal of TCDG is to produce094

a concise description under different user-written095

guidelines. The guidelines will be of a given cat-096

egory corresponding to the type of target text as097

shown in Table 2.098

Moreover, we construct the first benchmark099

(NBDESCRIB) for TCDG that contains 3,924 pro-100

cessed code-table-description pairs extracted from101

highly-ranked notebooks from Kaggle competi-102

tions and identifies 15 guideline categories of the103

texts (details in Section3). Specifically, the raw104

Jupyter Notebook data with tables, code, and as-105

sociated text from popular Kaggle competitions is106

crawled. However, the raw data cannot be directly107

used due to the large amount of noise (Mondal108

et al., 2023; Lin et al., 2022). For example, "I plan109

to refine the models by using more sophisticated110

machine learning techniques." is about personal ex-111

periences and future plans, which is not useful for112

text generation tasks. On the other side, the user-113

written guidelines and ground-truth descriptions114

in the markdown cell generally contain multiple115

different purposes or facts on the tables. To reduce116

the noise in the raw data, we recruit annotators to117

first break down the markdown cells and make each118

piece of text only contain one purpose or fact. For119

each guideline category, we create the label as well120

as descriptions, and then curate the tables and filter 121

out the noise text. Finally, the text descriptions 122

in our data are natural, faithful, and specifically 123

targeted under different guidelines (Figure 1). 124

Next, we evaluate the performance of existing 125

pretrained models. The ablation study shows that 126

guidelines significantly affect the final performance 127

at different levels, which demonstrates the validity 128

of our task. Human evaluation further shows that 129

these advanced models (i.e., CodeT5, Llama, and 130

GPT-4o) still struggle to produce faithful enough 131

results, regardless of high-quality training data. 132

Moreover, common error patterns involve misalign- 133

ment with guidelines, incorrect variable values, 134

omission of important code information, and rea- 135

soning errors. 136

Based on these results, we integrated our ap- 137

proach into a user-facing application to explore 138

Human-AI collaboration in code documentation. 139

In a follow-up study, users found that the gener- 140

ated documentation reminded them of documenting 141

codes they might have overlooked and increased 142

their satisfaction with their notebooks. 143

The main contributions of our work are: 144

• We formulate a novel task, TCDG, and collect a 145

high-quality benchmark, namely NBDESCRIB; 146

• Experiments show that fine-tuned LMs (CodeT5) 147

outperform powerful pretrianed models, i.e., 148

GPT-4o and Llama, highlighting the vulnerabil- 149

ity of LLMs on TCDG. Ablation studies and 150

downstream application demonstrate that guide- 151

lines significantly enhance model performance, 152

helping users create accurately oriented and rea- 153

sonable descriptions. 154

• Error analysis shows that LLMs fail to align with 155

guidelines, understand variable values, and rea- 156
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son.157

2 Related Work158

In this work, we focus on table and code description159

generation (TCDG) tasks. Our work is closely re-160

lated to table-to-text generation and code documen-161

tation generation (CDG). Most existing datasets for162

table-to-text generation (Li et al., 2021; Liu et al.,163

2018; Parikh et al., 2020a; Dhingra et al., 2019;164

Zhao et al., 2023b; Chen et al., 2020; Zhao et al.,165

2023a; Ding and Xu, 2023; Cm et al., 2023; Zhang166

et al., 2024; Guo et al., 2024; Min et al., 2024) or167

code documentation (Richardson et al., 2017; An168

et al., 2022; Liu et al., 2021; Khan and Uddin, 2022;169

Dvivedi et al., 2024; Luo et al., 2024) generation170

contain one text per table or code on a specific topic171

and schema. For instance, (Suadaa et al., 2021) con-172

tains 1.3K table-documentation pairs with richer173

inference from scientific papers and CodeSearch-174

Net (Husain et al., 2019) contains 2M function-175

documentation pairs across six programming lan-176

guages (e.g., java, php, python). Differing from177

previous CDG and table-to-text datasets, a docu-178

mentation text can correspond to both code and its179

table output in ours.180

Previous work on table-to-text focuses on text181

generation for standalone table data. Parikh et al.182

(2020b) proposed an open domain table-to-text183

dataset. They collected tables from Wikidepia184

and paired them with single-sentence documen-185

tation. They then requested annotators to revise186

the Wikipedia candidate sentences into target sen-187

tences, rather than writing new ones. Several188

studies focused on a specific topic and schema189

such as WEATHERGOV (Liang et al., 2009) and190

ROBOCUP (Chen and Mooney, 2008), Rotowire191

(Wiseman et al., 2017), Wikibio (Lebret et al., 2016,192

Biographies), E2E (Novikova et al., 2016, Restau-193

rants). However, they cannot provide different tar-194

get texts for various data facts in tables, resulting195

in too singular results during model training.196

Another task similar to table-to-text is table ques-197

tion answering (Pasupat and Liang, 2015; Wang198

et al., 2018; Nan et al., 2022; Cheng et al., 2021; Ye199

et al., 2023). While they can locate relevant tables200

and provide answers by tagging relevant cells, they201

do not provide a meaningful explanation of differ-202

ent kinds of data facts. There are also other sources203

of information that may be used in data science204

projects. Without following appropriate guidelines205

and integrating these sources, we would not be able206

to produce satisfactory results. Chen et al. (2019); 207

Gupta et al. (2020) attempted to verify whether a 208

provided textual statement is entailed or refuted by 209

the given table. But they only address verification 210

issues and cannot generate descriptive statements 211

for different data fact types. 212

Since our work focuses on both code and ta- 213

ble, it is essential to discuss related work on CDG, 214

which aims to understand the code and generate 215

the code descriptions. Typical datasets include 216

CodeSearchNet (Husain et al., 2019) and some 217

datasets collected from GitHub (Kanade et al., 218

2019) or BigQuery (Yue Wang, 2021). Recently, 219

LLMs have been applied to the CDG task such 220

as CodeLlama (Roziere et al., 2023), CuBERT 221

(Kanade et al., 2019), CodeBERT (Feng et al., 222

2020), GraphCodeBERT (Guo et al., 2020)) or 223

GPT (Svyatkovskiy et al., 2020; Lu et al., 2021). 224

Some recent works explore encoder-decoder mod- 225

els such as PLBART (Ahmad et al., 2021), CodeT5 226

(Yue Wang, 2021), and TreeBERT (Jiang et al., 227

2021). The documentation in this task often does 228

not cover the facts of the output from the code, only 229

focusing on the description of the code. 230

Different from the aforementioned works that 231

only focus on one text generation for a single stan- 232

dalone code or table, in our new TCDG task for 233

computational notebooks, code and its table output 234

can correspond to one description, and these de- 235

scriptions may have many categories depending on 236

the needs of the user. We thus propose to construct 237

a notebookTCDG dataset to handle text generation 238

of multiple guideline categories for code and its 239

table output. 240

3 TCDG - Task Description 241

In our task, the model is provided with a long text 242

including a code cell and its table output, as well as 243

the corresponding guideline category description. 244

The guideline indicates the direction of the target 245

description generation, and the specific category 246

is described in Section 4.3. The model is asked to 247

read the input and generate reasonable descriptions 248

based on the given guideline, code, and table. 249

3.1 Input 250

The input to a text generation model consists of an 251

input text and a target document: 252

(1) Codes and tables from the input texts are 253

extracted from notebooks crawled from the Kaggle 254

website. The code provides the necessary context 255

to understand how the table output was generated. 256
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Overall Train Dev Test

Code-Table-Description pairs 3,924 2,747 393 785
Code vocabulary size 3,497
Table vocabulary size 16,424
Description vocabulary size 4,481
Avg. # token in Description 12.41 12.37 12.51 12.52
Max. # token in Description 66 57 46 66
Std. # token in Description 7.45 7.43 7.26 7.66
Avg. # token in code cell(s) 10.68 11.17 10.46 10.22
Max. # token in code cell(s) 310 310 131 131
Std. # token in code cell(s) 19.54 21.40 16.42 15.64
Avg. # token in table 13.85 13.92 12.84 14.11
Max. # token in table 272 272 97 261
Std. # token in table 17.27 16.47 11.97 21.68

Table 1: NBDESCRIB dataset statistics.

By analyzing the code, one can infer the logic and257

algorithms applied to the input data, which facili-258

tates accurate interpretation of the table’s contents.259

(2) A guideline category description serves as260

a guiding principle for generating the target descrip-261

tion. Some descriptions focus on interpreting table262

content while code snippets also provide essential263

contextual information. At the same time, while264

describing the purpose of the code, we also need265

tables to provide essential data-driven explanations.266

This setup mimics the real scenario.267

3.2 Output268

A text generation model is employed to predict269

the specific guideline category of descriptions. Ta-270

ble code associated Markdown cells are the target271

documents that we collect since these cells are typ-272

ically used to provide descriptive text for code and273

tables. Also, some Markdown cells can be used274

only for headings in the notebook. To exclude such275

Markdown cells, search for key characters like #,276

which generally refers to the titles.277

4 NBDESCRIB278

4.1 Data Collection279

As we are focusing on the description generation280

in Jupyter Notebooks, we need to crawl a suffi-281

cient number of code-table-description pairs first.282

Publicly shared notebooks on GitHub are often ill-283

documented (Rule et al., 2018b) and do not have284

many tables, thus are not suitable for this task.285

On the other side, Kaggle allows community286

members to vote up and down on uploaded note-287

books, and findings show that the highly-voted288

notebooks are of good quality and quantity for289

code documentation (Wang et al., 2021b; Liu290

et al., 2021). Thus, we decided to utilize the top-291

voted and well-documented Kaggle notebooks. We292

crawled notebooks from seven popular competi-293

tions, i.e., seven top popular Kaggle competitions -294

House Price Prediction, Titanic Survival Prediction, 295

Predict Future Sales, Spaceship Titanic, U.S. Patent 296

Phrase to Phrase Matching, JPX Tokyo Stock Ex- 297

change Prediction, and Ubiquant Market Predic- 298

tion, and built around 4,000 pairs of code-table- 299

description pairs. Links for these competitions can 300

be found in Appendix C. To build this dataset, we 301

also filtered out the description which is not in En- 302

glish. We checked the data policy of each of the 303

competitions, and none of them have copyright is- 304

sues. We also contacted Kaggle to make sure our 305

data collection complies with the platform’s policy. 306

4.2 Data Preprocessing 307

We employed the following heuristics to collect 308

codes, tables, and Markdown: 309

Cell Matching: We search for codes that pro- 310

duce tables in the notebooks and check if there is a 311

corresponding Markdown cell describing the code 312

and table above. The sentences are also split if there 313

are multiple sentences in the corresponding Mark- 314

down cell. However, there are instances where the 315

text content is inaccurate. For example, in texts 316

labelled as value guidelines, the extracted value 317

might be incorrect, or in texts describing Feature 318

Engineer guidelines, the variable name extracted 319

from the code might be misspelled. Thus, we label 320

each sentence and let annotators rewrite it accord- 321

ingly, since each sentence may have a different de- 322

scription angle. Details about how annotators code 323

the sentence and reach an agreement are shown in 324

Section 4.3. The specific guideline details will be 325

described in the following. 326

Table Processing: Since the table in Jupyter 327

Notebook is in HTML code, to transfer it into a 328

table format, we use HTMLParser1 to get the data 329

value for each row, column, and their relationship 330

based on the tags, such as <th>, <td>. We first drop 331

their parent tags <table> to simplify the document 332

format. Next, we remove the tags <td> and <th> 333

from cells to extract variables and corresponding 334

values from the HTML code. Then we concatenate 335

variables and values with pipe(“|”) to generate table 336

description. An example of table processing is 337

shown in Appendix I. 338

Table Curation: If the description contains vari- 339

able names in a table, the corresponding rows and 340

columns containing those variables are extracted 341

to create a new table. If no key variables are in- 342

cluded, we keep the original tables. This process 343

1https://docs.python.org/3/library/html.parser.html
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aims to minimize the inclusion of irrelevant infor-344

mation. Appendix I.3 provides an example of how345

to implement table curation.346

4.3 Guideline Category Description347

Three members of the research team conducted348

an iterative open-coding process to analyze the349

collected notebooks. Differing from Wang et al.350

(2020), where their qualitative coding stopped at351

the tabular data level, and our analysis goes deep352

to the granularity of the cell, the cell be used to353

explain beyond the adjacent code cell whose out-354

put is the table: we annotate these cells’ purposes355

and types of content. Each annotator independently356

analyzed the same five notebooks to develop a code-357

book. After discussing and refining the codebook,358

they again went back to recode those five notebooks359

and achieved pairwise inter-rater reliability ranged360

0.81–0.93 (Cohen’s K). To further determine the361

correctness of inter-annotator agreement, we let362

these three annotators analyze another undiscussed363

five notebooks and get pairwise inter-rater reliabil-364

ity ranging from 0.78 to 0.89 (Cohen’s K) which365

is convincing to demonstrate the reliability of our366

codebooks. After getting a reliable agreement, the367

three coders divided and coded the remaining note-368

books. In total, we identified fifteen guideline cat-369

egories for the content of the markdown cells (Ta-370

ble 2, Appendix E provides examples).371

As shown in Table 2, eleven guideline categories372

mainly focus on the data facts of a table. It is worth373

noting while these guidelines focus more on the374

description of the table data, the code still provides375

contextual information to supplement their descrip-376

tion, as shown in Figure 1. Our analysis revealed377

that markdown cells are mostly used to describe378

the specific attribute values from the table (Value,379

7.29%). Second to the Value category, 6.55% mark-380

down cells are used to specify the outliers from the381

table output (Outliers).382

However, these guidelines do not meet the needs383

of Jupyter Notebook users. This kind of markdown384

cells can also be used to mainly explain the beyond385

adjacent code cells. Even though they mainly focus386

on the code, a clear understanding of table data is387

also crucial for understanding the code logic.388

We found that some of these markdown cells389

describe the motivation from the code descriptive390

text(Goal, 19.64%), to explain the results or critical391

decisions (Reason, 7.03%), or to describe a com-392

bination of mathematical transformations from the393

code (Feature Engineer, 10.02%). We also found394

Guideline # Description

Value 286
(7.29%)

Get the exact data attribute values for a set of criteria.

Difference 138
(4o2%)

A comparison between at least two distinct attributes within the
target object, or a comparison between the target object and
previously measured values.

Trend 31
(0.79%)

Indicates a general tendency over a period of time.

Proportion 120
(3.06%)

Measure the proportion of selected data attribute(s) within a
specified set

Categorization 74
(1.89%)

Select the data attribute(s) that meet the condition.

Distribution 127
(3.20%)

Show the amount of shared value for the selected data attributes
or present a breakdown of all data attributes.

Rank 73
(1.86%)

Sort data attributes by their values and display a breakdown of
selected attributes.

Association 165
(4.21%)

Identify the useful relationship between two or more data at-
tributes.

Extreme 227
(5.78%)

Identify the data cases that are the most extreme in relation to
the data attributes or within a specific range

Outlier 257
(6.55%)

Determine whether there are unexpected data attributes or statis-
tically significant outliers.

Aggregation 125
(3.19%)

Calculate the descriptive statistical indicators (e.g., average, sum,
count, etc. ) based on the data attributes.

Goal 771
(19.64%)

Express user’s goal. To say what value or function they tend to
use for the later research

Reason 276
(7.03%)

Express reason using the data from the table or explain the rea-
sons why certain functions are used or why a task is performed.

Feature Engi-
neer

393
(10.02%)

The process of selecting, transforming, extracting, combining,
and manipulating raw data to generate the desired variables for
analysis or predictive modeling.

Complementary
Details

870
(22.17%)

Express additional contextual elements and supporting informa-
tion to enhance understanding of the primary content

Table 2: We identify 15 guideline categories based on
the types of descriptions in the Markdown cells which
are below the code whose output is a table.

that some markdown cells aim to provide additional 395

context to help with code and table understanding 396

(Complementary Details, 22.17%). 397

4.4 Train / Dev / Test Splits 398

Overall, the dataset contains 2747 Code-Table- 399

Description pairs in the training set, 393 pairs in 400

the development set, and 785 pairs in the test set 401

(see Table 1 for more statistics). 402

5 Experiments 403

Baselines. We utilized three types of models: 404

a fine-tuned encoder-decoder-based CodeT5, the 405

popular decoder-only LLMs (an off-the-shelf GPT- 406

4o, Llama3, CodeLlama3), and a fine-tuned GPT- 407

3.0. Details are shown in Appendix D. 408

5.1 Evaluation Metrics 409

We use the ROUGE scores (ROUGE-1, ROUGE-2, 410

and ROUGE-L) (Lin, 2004), BERTScore (Zhang 411

et al., 2019), and G-EVAL (Liu et al., 2023a) to 412

evaluate our model’s performance with regard to 413

the ground-truth description content. Details are 414

shown in Appendix H. 415

5.2 Results 416

The numbers in Table 3 show that this guideline- 417

based text generation task is very challenging, 418
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Models ROUGE-1 ROUGE-2 ROUGE-L BERTScore Pyramid Evaluation G-EVAL:Coherence G-EVAL:Correctness G-EVAL:Consistency G-EVAL:Fluency

Baselines

CodeT5 29.61 14.38 26.72 59.51 19.37 3.12 2.43 2.78 3.98

GPT-4o 26.06 3.57 26.18 53.62 18.29 3.23 2.38 2.61 4.13

GPT-3 19.25 4.42 20.72 51.26 13.37 2.64 2.19 2.16 2.89

Llama3 19.57 2.07 20.91 52.41 13.43 3.06 2.38 2.72 3.88

CodeLlama3 19.63 2.46 21.18 52.85 15.72 2.35 1.98 2.06 2.61

Ablation Study

CodeT5
without table 22.40 9.54 20.49 55.91 18.52 2.55 2.06 2.17 3.74

CodeT5
without code 26.35 11.72 24.01 57.93 19.14 3.12 2.31 2.59 3.83

CodeT5
without guideline
description

25.09 10.78 22.61 56.63 18.75 3.07 2.99 2.56 3.90

GPT-4o with
chain of
thoughts

24.91 3.82 25.42 51.25 16.91 3.22 2.87 2.69 3.84

GPT-4o with
in context
leaning

23.64 3.52 24.62 49.10 15.92 3.03 2.81 2.54 3.86

Table 3: ROUGE scores and BERTScore for the baselines, our model, and the ablation studies. Results show that
this task is challenging though we use it in the state-of-art text generation models.

while the fine-tuned CodeT5 obtained the best per-419

formance. It is interesting to note that CodeLlama3420

has bad performance in this task. The possible rea-421

son is that CodeLlama3 focuses mainly on code422

generation and is not suitable for description gen-423

eration. As shown in Table 3, CodeT5-Large out-424

performs the GPT-4o, GPT-3, Llama3, and CodeL-425

lama3 in this task. Additionally, we notice that the426

ROUGE-L of CodeT5-Large is above 25, and the427

ROUGE-2 is around 15, indicating that our dataset428

can produce more accurate and fluent text in re-429

sponse to different guidelines in this task. However,430

these metrics primarily check for semantic similar-431

ity. To further evaluate generated descriptions in432

diverse dimensions and achieve higher human cor-433

respondence, we conduct LLM-based evaluators434

G-EVAL (Liu et al., 2023b) in four dimensions (Co-435

herence, Correctness, Consistency, and Fluency)436

on a 5-point Likert Scale. Details of G-EVAL are437

shown in Appendix H. we can find that CodeT5-438

Large outperforms the GPT-4o, GPT-3, Llama3,439

and CodeLlama3 in this task. It is interesting to440

note that existing LLM can generate fluent descrip-441

tions but struggle to produce coherent and consis-442

tent descriptions.443

Ablation Study: To better understand the impact444

of each component on this new task, we perform ab-445

lation studies(Table 3) to evaluate how table, code,446

and guideline description contribute to the model447

performance separately. More concretely, we gen-448

erate ablation models with the following settings:449

(1) without table, (2) without code, (3) without450

guideline description, (4) chain of thought prompt-451

ing on GPT-4o, (5) in-context learning on GPT-4o.452

Since CodeT5 performs best in the task, we use453

it as a backbone to test its performance without454

code, table, and guideline description. In general,455

all the elements contribute to the performance, and456

removing one element will lead to a significant 457

performance drop. 458

Note that table content has a bigger effect on 459

model performance compared to code. Code also 460

influences performance by providing the necessary 461

context to infer the logic, which aids in interpreting 462

the table’s content accurately. Guideline descrip- 463

tion can be seen as a synergy of tables that guide 464

the generation system to generate desirable topics, 465

and without it, the performance is slightly higher 466

than one without any table content. 467

One intuitive method to enhance the reasoning 468

ability of LLMs is Chain-of-Thoughts (CoT). Here 469

we want to further answer this question: using CoT, 470

can a large language model automatically find an 471

optimum guideline and generate summaries better 472

aligned with human interests? CoT is well known 473

to work well for GPT models, so we experimented 474

on GPT-4o with a CoT prompt containing both 475

an example and middle steps of guessing a guide- 476

line (prompts shown in Appendix F). For a fair 477

comparison, we also added the performance of in- 478

context-learning for GPT-4o, by removing the pro- 479

vided guideline and directly providing the example 480

(prompts shown in Appendix G). The result of 481

CoT improved over in-context learning but is still 482

inferior to the performance of the original GPT-4o 483

with ground-truth guidelines (except ROUGE-2). 484

Then we analyzed the match rate between guide- 485

lines generated through the CoT process and the 486

ground truth. Results show that 72% of the guide- 487

lines did not match. Thus, although LLM can often 488

generate readable and decent descriptions for code 489

and table(see results in Table 5 and Table 3), most 490

of the generated descriptions are not as the users 491

expected (see result in Orientation dimension in 492

Table 5). This demonstrates the necessity of guide- 493

lines. To fairly compare the generation models 494
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and standardize evaluation, we need to specify our495

guidelines for generating descriptions.496

Pyramid Evaluation: We employ an automatic497

evaluation method based on pyramid evaluation498

(PyrEval) (Gao et al., 2019) to assess the faithful-499

ness of generation. This metric, which correlates500

well with human evaluation, extracts and filters key501

phrases to preserve factual information, offering502

a more reliable metric to ROUGE. The results in503

Table 3 show consistent trends between PyrEval504

and ROUGE, validating the impact of table, code,505

and guideline descriptions in our ablation studies.506

5.3 Human Evaluation507

We conducted a human evaluation with 10 partic-508

ipants to assess the performance of various LLM509

models in generating code documentation. Par-510

ticipants rated 50 pairs of code and documenta-511

tion across three dimensions: Correctness, Orienta-512

tion, and Readability. The results showed that the513

Ground Truth outperformed other baselines. Re-514

sults and analysis are deferred to Appendix A.515

6 Error Analysis516

In this section, we analyze some common error517

cases in this guideline-based text generation task.518

Some examples can be found in the Appendix B.519
(1) Variable values were generated and matched in-520

correctly. As shown in the example in Table 4, even521

though CodeT5-Large, GPT-4o, GPT-3, Llama3,522

and CodeLlama3 are capable of generating key-523

words such as ”highest” based on the ”Extreme”524

guideline, it remains difficult to produce accurate525

text content based on the variables in the table. For526

example, CodeT5-Large incorrectly predicted the527

oldest passenger as 80 years old. Table 4 also has528

this kind of error.529

(2) The generated text focuses solely on the table530

and ignores important information in the code. In531

the example from Table 10, ground truth is in532

the “Extreme” guideline and tends to convey that533

the first red wine has the highest pH value. How-534

ever, the table does not have a related keyword “red535

wine.” And CodeT5 failed to extract this informa-536

tion and also extracted the wrong value. GPT-4o537

cannot generate correct description either. Example538

from Table 8 also has this kind of error.539

(3) Generating incorrectly oriented text based on540

guidelines. For example, GPT-3, Llama3, and541

CodeLlama3 produce text related to “Difference”,542

“Extreme”, or “Distribution”, but not “Trend” in543

the example from Table 7. Another example in544

Guideline category description

Extreme: Identify the data cases that are the most extreme
in relation to the data attributes or within a specific range

Code Cells

cols2 = X_test.columns.tolist() # List of column names
X_test = X_test[cols2] # Applying the new order
X_test

Table

Passenger Sex Age Embarked FamilySize

0 0 34.5 1 1
1 1 47.0 2 2
2 0 62.0 1 1
3 0 27.0 2 1
4 1 22.0 2 3

Description

ground truth The oldest passenger in X_test dataset
is 62 years old

CodeT5-Large Oldest person in the titanic was 80
years old and youngest person was less
than one year

GPT-4o It shows the initial rows of the table
providing insights into the age distribu-
tion of passengers, with the label draw-
ing attention to the oldest passenger

GPT-3 The oldest passenger is a man in his
fifties

Llama3 The ages of passengers ranging from
27 to 62 years old with the youngest
passenger being 27 years old

CodeLlama The average age of the passengers is
34.5 years old.

Table 4: An example of code-table cells and different
models. Note that the table above is the original table,
which will be processed by the table curation in Section
4.2 when generating the description. In this case, the
curated table only keeps the passenger and age columns.

Table 8, requires models generating text related to 545

“Goal”, but GPT-3 generates text related to “Associ- 546

ation”, describing the relationship between SibSP 547

and Parch. Llama3 also generates text in “Feature 548

Engineer” but not “Aggregation” in the example 549

from Table 6. 550

(4) Reasoning error. If operating under Aggrega- 551

tion guidelines, CodeT5, GPT-4o, and GPT-3 may 552

generate incorrect Aggregation data (count, mean, 553

sum). In this example ( Table 6), GPT-3 can gener- 554

ate text such as this feature has many null values, 555

but cannot obtain the count of null values. 556

We manually check 50 examples of CodeT5, 557

GPT-4o, GPT-3, Llama3, and CodeLlama3 models 558

used in our user study and label the type of errors 559

made. The most errors are made when they gen- 560

erate incorrectly oriented text (3rd type) (54.1%). 561
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Figure 2: We implement a downstream application as a Jupyter Notebook plugin (A) to assist users in documentation
writing for selected rows and columns from different guideline categories (B) and a user-prompt approach (C).

This is because the model tends to generate doc-562

uments related to the best-trained guideline type563

in the dataset, such as “Association” or “Value”.564

There are also two common errors made by gener-565

ating documents with wrong values (1st type) and566

wrong reason (4th type) (27% respectively). Such567

errors are commonly made by generating “Value”568

or “Aggregation” type documents. There are also569

13.5% errors made by generating documents with-570

out considering the code. The dataset has numerous571

examples with insufficient code, leading the model572

to overlook some code instances.573

These errors show that our task and dataset pro-574

vide some challenges for existing foundation mod-575

els. We firmly believe that researchers can enhance576

the existing foundation models in the future when577

they address the challenges. By building on our578

work and leveraging the valuable insights gained579

from it, they can push the boundaries even further,580

contributing to the continuous evolution of founda-581

tion models.582

7 Downstream User Application583

To demonstrate the application of our benchmark584

NBDESCRIB, we designed a Jupyter Notebook plu-585

gin to assist document writing in data science pro-586

gramming (as shown in Figure 2).587

The plugin is triggered when detecting users fo-588

cusing on a code cell (Figure 2.A). The plugin then589

reads the contents from the focused cell and its cu-590

rated table output based on the selected columns591

and rows and sends the content to the backend. The592

backend server first generates documentation un- 593

der different guideline categories using fine-tuned 594

CodeT5-Large(Figure 2.B). In addition, we used 595

prompts to nudge users to explain an output (Fig- 596

ure 2.C). If the user selects one of his preferred 597

candidates, the chosen documentation will be in- 598

serted below the code cell. 599

Our plugin went through several rounds of pilot 600

testing and iterative design. Participants found that 601

it reminded them to document code they would 602

have ignored, reducing the time spent developing 603

documentation while actively exploring the data 604

science task. Full implementation details and a 605

formal evaluation of the human-AI collaboration 606

for automatic documentation will be reported sepa- 607

rately after the paper is accepted. 608

8 Conclusion 609

In this paper, we formulated a new task, TCDG, 610

that aimed to automatically generate descriptive 611

text for code and table based on the given guide- 612

lines for a computational notebook. We collected 613

a large amount of well-documented Jupyter Note- 614

books from Kaggle, resulting in a new benchmark 615

dataset NBDESCRIB. From our analysis, our task 616

imposed unique challenges to the current genera- 617

tion methods, including CodeT5 and LLMs. This 618

dataset facilitated the creation of practical slides 619

for Jupyter notebooks and enabled evaluations on 620

faithful, high-fidelity, and factual generation. 621
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Limitations and Potential Risk622

As annotations are often performed by multiple623

individuals, there may be a degree of subjectivity624

and bias in guidelines and datasets used for text625

generation. As a result, text can be generated that626

does not reflect a diverse range of perspectives.627

Furthermore, although we have automatic evalua-628

tion metrics such as ROUGE and BERTScore, the629

correctness of the generated texts is primarily eval-630

uated through human evaluation, which is accurate631

but not efficient. Future research should focus on632

developing methods for automatically evaluating633

the factual correctness of the generated texts, in634

order to ensure that the generated text is accurate,635

unbiased, and representative of a diverse range of636

perspectives.637

One potential risk involves the substantial com-638

putational resources needed to run state-of-the-art639

language models. These resources consume signif-640

icant amounts of energy, which not only raises the641

carbon footprint of such research but also leads to642

environmental degradation.643
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A Appendix: Human Evaluation988

We also conduct a human evaluation to further eval-989

uate whether those models can generate reasonable990

and oriented text with our dataset.991

Participants: Our human evaluation task involves992

reading the code snippet, its output table, and a993

guideline description and rating the generated docu-994

mentation from them. We recruited 10 participants995

(6 male, 4 female) who are fluent English speak-996

ers with around six years of experience in the data997

science and machine learning field. We conducted998

a rigorous qualification process, evaluating their999

knowledge of coding practices and data analysis,1000

to ensure high-quality annotations. We hired them1001

by sending invited emails to graduate students who1002

have experience in data science work. We allocated1003

up to 90 minutes for each participant to complete1004

the study, and for their valuable time and input,1005

each participant received a compensation of $20.1006

Task: We randomly selected 50 pairs of documen-1007

tation and code from NBDESCRIB. Note that each1008

pair has only one code, one table, and one guide-1009

line description, but may have one descriptive text.1010

Each participant is assigned 50 pairs. Each pair is1011

evaluated by 10 individuals. In each trial, a partic-1012

ipant reads 8 candidate descriptions for the same1013

code snippet-table-guideline: one by GPT-4o with1014

chain-of-thought, one by GPT-4o with in-context-1015

learning, one as the ground truth, and another five1016

by five different models. The order of these eight1017

is also randomized, so participants do not know1018

which descriptive text is from which model. The1019

participant is asked to rate the 8 documentation1020

texts along three dimensions using a five-point Lik-1021

ert scale from -2 to 2.1022

• Correctness: The generated description matches1023

the code and table content.1024

• Orientation: The generated description is written1025

in the correct guideline category.1026

• Readability: The generated description is in read-1027

able English grammar and words.1028

Evaluation Results: We conducted Wilcoxon tests1029

(Woolson, 2007) with a significance level of 0.05 to1030

compare the performance of Ground Truth against1031

CodeT5-Large, GPT-3, and GPT-4o in the Cor-1032

rectness, Orientation, and Readability dimensions.1033

The Wilcoxon test is a non-parametric statistical1034

test used to compare two paired groups of data.1035

The obtained p-values indicate the probability of1036

observing the reported differences if there were1037

no true differences between the models. The re-1038

sults indicate significant differences in the Correct- 1039

ness dimension, where Ground Truth outperforms 1040

CodeT5-Large (V = 5628, p = 1.74e-30), GPT-3 1041

(V = 5635, p = 5.46e-31), GPT-4o (V = 5639, p = 1042

2.84e-30), Llama3 (V = 5732, p = 3.32e-30), and 1043

CodeLlama (V = 5948, p = 1.27e-30). It is also 1044

worth noting that CodeT5 performs slightly better 1045

than GPT-4o in terms of correctness from Table 5, 1046

possibly because it handles code-containing data 1047

sets better. 1048

Similarly, in the Orientation dimension, Ground 1049

Truth surpasses CodeT5-Large (V = 3567, p = 1050

1.59e-20), GPT-3 (V = 3731, p = 1.77e-20), GPT- 1051

4o (V = 3675, p = 1.64e-20), Llama3 (V = 3722, 1052

p = 1.89e-20), and CodeLlama (V = 3883, p = 1053

1.33e-20). 1054

For the Readability dimension which considers 1055

whether the generated description is a valid English 1056

sentence, Ground Truth outperforms all models 1057

once again: CodeT5-Large (V = 4363, p = 1.40e- 1058

7), GPT-3 (V = 4030, p = 3.81e-14), GPT-4o (V = 1059

4135, p = 2.81e-10), Llama3 (V = 4556, p = 2.38e- 1060

13), and CodeLlama (V = 4573, p = 1.62-15). It 1061

is also worth noting that GPT-4o with chain-of- 1062

thought and in-context-learning have worse perfor- 1063

mance than GPT-4o which demonstrates that guide- 1064

lines can better assist the description generation for 1065

code and table. 1066

The statistically significant p-values (all below 1067

0.05) in each dimension demonstrate it is difficult 1068

to meet the correctness, orientation, and readability 1069

requirements of the user due to the difficulty of the 1070

task. Future work can be accomplished by design- 1071

ing an innovative model to address this challenge. 1072
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Model Correctness Orientation Readability

Groundtruth x = 1.19, σ=1.32 x = 1.45, σ=1.02 x = 1.61, σ=0.78
CodeT5-Large x = -0.43, σ=1.55 x = 1.27, σ=1.11 x = 0.55, σ=1.60

GPT-4o x = -0.42, σ=1.49 x = 1.15, σ=1.24 x = 0.53, σ=1.72
GPT-3 x = -0.41, σ=1.58 x = 0.98, σ=1.39 x = 0.51, σ=1.61
Llama3 x = -0.44, σ=1.41 x = 1.03, σ=1.42 x = 0.51, σ=1.82

CodeLlama x = -0.61, σ=1.39 x = 0.88, σ=1.36 x = 0.52, σ=1.69
GPT-4o with chain-of-thought x = -0.39, σ=1.54 x = 0.94, σ=1.35 x = 0.48, σ=1.66

GPT-4o with in-context-learning x = -0.35, σ=1.60 x = 0.91, σ=1.28 x = 0.46, σ=1.83

Table 5: Human Evaluation Result.
B Appendix: Guideline-Code1073

snippets-Table-Documentation Pair1074

Examples1075
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Guideline description

Aggregation: Calculate the descriptive statistical indica-
tors (e.g., average, sum, count, etc.) based on the data
attributes

Code Cells

for dataset in [titanic_train,titanic_test]:
dataset['IsAlone'] = 0
dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1

titanic_train.head(3)

Table
PassengerId Survived Sex Ticket Cabin

0 1 0 male A/5 21171 NaN
1 2 1 female PC 17599 C85
2 3 1 female STON/O2.3101282 NaN

Documentation

ground truth Cabin feature has 2 missing values
CodeT5-Large These five passengers are in the same

cabin
GPT-4o It adds an IsAlone column to the Ti-

tanic datasets and displays the first
three rows data

GPT-3 The cabin column has many null values
Llama3 Creates a new column to indicate if

passengers are traveling alone or with
family.

CodeLlama Average fare paid by the passengers

Table 6: An example of code and its table output
pair(cabin is the Cabin number). In this case, the curated
table only keeps the cabin columns.

Guideline description

Trend: Indicates a general tendency over a period of time

Code Cells

train[['Pclass', 'Survived']].groupby(['Pclass'],
as_index=False).mean().sort_values(by='Survived',
ascending=False)

↪→
↪→

Table

Pclass Survived

0 1 0.629630
1 2 0.472826
2 3 0.242363

Documentation

ground truth Higher class survived more
CodeT5-Large The survived rate for this new feature

varies whether it is a tend to be a higher
class passengers or a very high class
passengers

GPT-4o it presents the survival rates for each
passenger class, demonstrating a clear
pattern where lower class numbers cor-
respond to higher survival rates

GPT-3 the survived rate for the pclass 1 is
higher than the pclass 2

Llama3 First-class passengers having the high-
est survival rate and third-class passen-
gers having the lowest.

CodeLlama The most common class is 3rd class
with 24% of the survived passengers

Table 7: An example of code and its table output pair
(Pclass is the ticket level. The smaller the value, the higher
the class). In this case, the table is not curated because
ground truth have class and survived variables.

Guideline description

Goal: Express user’s goal. To say what value or function
they tend to use for the later research

Code Cells

for dataset in [titanic_train,titanic_test]:
dataset['FamilySize'] = dataset['SibSp'] +

dataset['Parch'] + 1↪→
titanic_train.head(3)

Table
PassengerId Survived SibSp Parch IsAlone FamilySize

0 1 0 1 0 0 2
1 2 1 1 0 0 2
2 3 1 0 0 1 2

Documentation

ground truth Checking if the person is alone or with
a family by checking the SibSp and
Parch column in Titanic passenger data
and add a FamilySize column in ti-
tanic_train and titanic_test datasets

CodeT5-Large We can create another feature called
IsAlone

GPT-4o The goal is to create a new attribute
called family size in both the titanic
train and titanic test datasets

GPT-3 we can see that sib sp and parch are
highly correlated

Llama3 Understand the relationships between
different passenger characteristics in
the Titanic dataset

CodeLlama To predict the family size of a passen-
ger in the Titanic disaster

Table 8: An example of code and its table output pair.
In this case, the curated table only keeps the passenger,
SibSp, Parch, and FamilySize column.

Guideline description

Extreme: Identify the data cases that are the most extreme
in relation to the data attributes or within a specific range

Code Cells

Tuned_rf = tune_model(rf)

Table
Model Accuracy AUC Recall ...

0 0.7895 0.8864 0.6250 ...
1 0.9474 1.000 0.8750 ...
2 0.8947 0.9318 0.8750 ...
3 0.7368 0.8523 1.0000 ...
4 0.8947 0.8667 0.8889 ...
5 0.9473 0.9444 0.8889 ...
6 0.8947 0.9111 0.7778 ...
7 0.7895 0.8333 0.6667 ...
Mean 0.8617 0.9189 0.8222 ...
SD 0.0675 0.0556 0.1348 ...

Documentation

ground truth Model 1 has the highest accuracy while
the code tune with random forest

CodeT5-Large The highest accuracy is 0.8442
GPT-4o It shows the accuracy values for differ-

ent sequence numbers where the mean
accuracy is 0 8617 and the standard
deviation is 0 0675

GPT-3 the highest accuracy is 0.7895
Llama3 Identify the most extreme data points

in relation to their corresponding data
attributes

CodeLlama The Random Forest model is the best
model for this dataset.

Table 9: An example of code and its table output pair.
In this case, the curated table only keeps the Accuracy
and Model columns.
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Guideline description

Extreme: Identify the data cases that are the most extreme
in relation to the data attributes or within a specific range

Code Cells

df =
pd.read_csv("../input/red-wine-quality-cortez-et-al-2009/↪→

winequality-red.csv")
df.head()

Table
Wine fixed acidity volatile acidity pH sulphates alcohol quality

0 7.4 0.70 4o1 0.56 9.4 5
1 7.8 0.88 3.20 0.68 9.8 5
2 7.8 0.76 3.26 0.65 9.8 5
3 11.2 0.28 3.16 0.58 9.8 5
4 7.4 0.70 4o1 0.56 9.4 5

Documentation

ground truth The first red wine has the highest pH
value

CodeT5-Large the biggest ph is 3.20
GPT-4o It determine how these values deviate

significantly from the normal range,
providing insights into outliers.

GPT-3 data frame sort ph values
Llama3 Identifies the top 4 most extreme data

points for each attribute.
CodeLlama The wine quality is a continuous vari-

able with a range of 3 to 9

Table 10: An example of code and its table output pair.
In this case, the curated table only keeps the Wine and
pH column.
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C Appendix: Kaggle competition link1076

We crawled highly voted notebooks from seven top1077

popular Kaggle competitions - House Price Predic-1078

tion2, Titanic Survival Prediction3, Predict Future1079

Sales4, Spaceship Titanic5, U.S. Patent Phrase to1080

Phrase Matching6, JPX Tokyo Stock Exchange Pre-1081

diction7, Ubiquant Market Prediction81082

D Appendix: Detail of Baseline Models1083

CodeT5 is a large pre-trained encoder-decoder1084

Transformer model that better leverages the code1085

semantics conveyed from the developer-assigned1086

identifiers. Since CodeT5 is a competitive code-1087

related text generation model, when using this1088

model in our task, we converted the relevant table1089

and guideline category description into an inline1090

comment in code and then fine-tuned the model. It1091

has 770 million parameters and the computational1092

budget is around 3 hours.1093

GPT-3 (Generative Pre-training Transformer 3)1094

is an autoregressive language model with 175 bil-1095

lion parameters, 10x more than any previous non-1096

sparse language model. To use the GPT3 model for1097

our task, we combine guideline description, code,1098

and table as input text. It has 175 billion parame-1099

ters. The computational budget is around 1 hour.1100

To use the GPT-3 model, we register an account1101

on OpenAI and use the related API (openai api1102

fine_tunes.create9) to fine-tune the GPT-3 model.1103

Also, we built a dataset suitable for GPT-3 training,1104

which can shared with the public.1105

GPT-4o is an advanced iteration of the GPT-31106

model with around 12 billion parameters and a de-1107

fault backend of free ChatGPT. The computational1108

budget is around 1 hour and 15 minutes. Its ability1109

to comprehend context, generate coherent and con-1110

textually relevant responses, and perform a wide1111

array of language-related tasks is further refined.1112

It is an easily accessible tool and has been widely1113

2https://www.kaggle.com/c/
house-prices-advanced-regression-techniques

3https://www.kaggle.com/c/titanic/
4https://www.kaggle.com/competitions/

competitive-data-science-predict-future-sales
5https://www.kaggle.com/competitions/

spaceship-titanic
6https://www.kaggle.com/competitions/

us-patent-phrase-to-phrase-matching
7https://www.kaggle.com/competitions/

jpx-tokyo-stock-exchange-prediction
8https://www.kaggle.com/competitions/

ubiquant-market-prediction
9https://beta.openai.com/docs/guides/fine-tuning

used in real life. So we add it as an advanced base- 1114

line. 1115

Llama3 (Touvron et al., 2023). We use Llama3 1116

3.1-70B in this task. It is an advanced language 1117

model with approximately 70 billion parameters. 1118

Its default backend is designed for efficiency and 1119

scalability. The computational budget for Llama3 1120

is approximately 1 hour and 30 minutes. Its ability 1121

to understand context, generate coherent and con- 1122

textually relevant responses, and perform a wide 1123

range of language-related tasks is significantly en- 1124

hanced. Llama3 is a powerful and accessible tool, 1125

widely used in various applications. Therefore, it 1126

is included as an advanced baseline. 1127

CodeLlama3 (Roziere et al., 2023) is an ad- 1128

vanced version of the Llama3 model. We use the 1129

13B version in this task. The model aims to handle 1130

complex code generation and comprehension tasks 1131

efficiently. The computational budget of CodeL- 1132

lama3 is about 2 hours. CodeLlama3 performs well 1133

in understanding intricate programming contexts, 1134

generating accurate and contextually appropriate 1135

code, and performing various code-related tasks. 1136

Its accessibility and versatility have made it a valu- 1137

able tool for developers and researchers, serving as 1138

an advanced baseline for code-centric applications. 1139

E Appendix: Guideline Categories 1140
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F Appendix: Prompt for doing chain of1141

thought on GPT-4o1142

1143
Given the 15 guidelines describing the1144

code cell and its table output in the1145

Jupyter Notebook:1146

1. Value(Get the exact data attribute1147

values for a set of criteria)1148

2. Difference(A comparison between at1149

least two distinct attributes within the1150

target object, or a comparison between1151

the target object and previously1152

measured values)1153

3. Trend(Indicates a general tendency1154

over a period of time)1155

4. Proportion(Measure the proportion of1156

selected data attribute(s) within a1157

specified set )1158

5. Categorization(Select the data1159

attribute(s) that meet the condition)1160

6. Distribution(Show the amount of1161

shared value for the selected data1162

attributes or present a breakdown of all1163

data attributes)1164

7. Rank(Sort data attributes by their1165

values and display a breakdown of1166

selected attributes)1167

8. Association (Identify the useful1168

relationship between two or more data1169

attributes)1170

9. Extreme(Identify the data cases that1171

are the most extreme in relation to the1172

data attributes or within a specific1173

range )1174

10. Outlier(Determine whether there are1175

unexpected data attributes or1176

statistically significant outliers)1177

11. Aggregation(Calculate the1178

descriptive statistical indicators (e.g1179

., average, sum, count, etc. ) based on1180

the data attributes.)1181

12. Goal(Express user's goal. To say1182

what value or function they tend to use1183

for the later research)1184

13. Reason(Express reason using the data1185

from the table or explain the reasons1186

why certain functions are used or why a1187

task is performed.)1188

14. Feature Engineer(The process of1189

selecting, transforming, extracting,1190

combining, and manipulating raw data to1191

generate the desired variables for1192

analysis or predictive modeling) 1193

15. Other(Other description providing 1194

supplementary details) 1195

1196

Q: When using Jupyter Notebook, the data 1197

scientist wants to write a description 1198

in the Markdown cell covering the code 1199

cell and its table output. The 1200

description should be less than 50 1201

tokens. 1202

Table Sequence: 1203

| passengerid| survived 1204

mean| 446.000000 | 0.383838 1205

Code: train = pd.read_csv("../input/ 1206

titanic/train.csv") 1207

# take a quick look at the training 1208

data 1209

train.describe(include="all")" 1210

1211

A: The data scientist wants to write a 1212

description in Extreme guideline, the 1213

description he writes is: the mean 1214

survived rate is 38.3 denoting most of 1215

the passengers have not survived 1216

1217

Q: When using Jupyter Notebook, the data 1218

scientist wants to write a description 1219

in the Markdown cell covering the code 1220

cell and its table output: 1221

<Table> 1222

<Code> 12231224

G Appendix: Prompt for doing in-context 1225

learning on GPT-4o 1226

1227
1228

Q: When using Jupyter Notebook, the data 1229

scientist wants to write a description 1230

in the Markdown cell covering the code 1231

cell and its table output. 1232

Table Sequence: 1233

| passengerid| survived 1234

mean| 446.000000| 0.383838 1235

train = pd.read_csv("../input/titanic/ 1236

train.csv") 1237

# take a quick look at the training data 1238

train.describe(include="all")" 1239

1240

A: The data scientist wants to write a 1241

description in Extreme guideline, the 1242

description he writes is: the mean 1243
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Guideline N Description Example

Value 286
(7.29%)

Get the exact data attribute values for a
set of criteria

The mean survived rate is 38.3 denoting
most of the passengers did not survive

Difference 138
(3.52%)

A comparison between at least two dis-
tinct attributes within the target object,
or a comparison between the target ob-
ject and previously measured values.

The difference though narrows down
considerably if we were to consider groups
of 2 woman travelers

Trend 31
(0.79%)

Indicates a general tendency over a pe-
riod of time.

table is displayed in a descending trend
in accuracy

Proportion 120
(3.06%)

Measure the proportion of selected data
attribute(s) within a specified set

8 of 10 passengers have parents

Categorization 74
(1.89%)

Select the data attribute(s) that meet the
condition.

1 denotes survived while 0 denote not
survived

Distribution 127
(3.20%)

Show the amount of shared value for
the selected data attributes or present a
breakdown of all data attributes.

Fare value range from 7 to 13

Rank 73
(1.86%)

Sort data attributes by their values and
display a breakdown of selected at-
tributes.

Selecting the top 3 classifiers for model
prediction

Association 165
(4.21%)

Identify the useful relationship between
two or more data attributes.

These two passengers are in the same
PClass

Extreme 227
(5.78%)

Identify the data cases that are the most
extreme in relation to the data attributes
or within a specific range

Model 1 has the highest accuracy

Outlier 257
(6.55%)

Determine whether there are unexpected
data attributes or statistically significant
outliers.

Age column has some missing values

Aggregation 125
(3.19%)

Calculate the descriptive statistical indi-
cators (e.g., average, sum, count, etc. )
based on the data attributes.

There are 2 classes in the Deck

Goal 771
(19.64%)

Express user’s goal. To say what value
or function they tend to use for the later
research

We use the Gaussian Process Classifier
to plot the confusion matrix

Reason 276
(7.03%)

Express reason using the data from the
table or explains the reasons why certain
functions are used or why a task is per-
formed.

We go through deleting the column for
Cabin deleting 2 rows for Emabarked and
since Age plays some role we can ...

Feature Engi-
neer

393
(10.02%)

The process of selecting, transforming,
extracting, combining, and manipulat-
ing raw data to generate the desired vari-
ables for analysis or predictive model-
ing.

Delete Name and Ticket due to it s high
cardinality

Complementary
Details

870
(22.17%)

Express additional contextual elements
and supporting informa- tion to enhance
understanding of the primary content

Column details, counts, and data types
provide supplementary technical information
about the Titanic passenger dataset structure.

Table 11: We identify 15 guideline categories based on the types of descriptions in the Markdown cells which are
below the code whose output is a table.

survived rate is 38.3 denoting most of1244

the passengers have not survived1245

1246

Q: When using Jupyter Notebook, the data1247

scientist wants to write a description1248

in the Markdown cell covering the code1249

cell and its table output1250

<Table>1251

<Code>12521253

H Appendix: G-Eval in Coherence,1254

Consistency, Correctness, and Fluency1255

H.1 Definition1256

G-EVAL is a prompt-based evaluation system with1257

three main components: 1) a prompt defining the1258

evaluation task and criteria, 2) a chain-of-thoughts1259

(CoT) that includes intermediate instructions gener-1260

ated by the LLM to outline the detailed evaluation1261

steps, and 3) a scoring function that uses the LLM 1262

to calculate scores based on the probabilities of the 1263

returned tokens. The prompt should also contain 1264

customized evaluation criteria for different NLG 1265

tasks. 1266

Coherence The overall quality of all sentences 1267

working together. This aligns with the DUC (Dang, 1268

2005) quality question on structure and coherence, 1269

which states that "the summary should be well- 1270

structured and well-organized, building from sen- 1271

tence to sentence to form a coherent body of in- 1272

formation about a topic." Followed by (Liu et al., 1273

2023a), we conduct the G-EVAL in the four dimen- 1274

sions below: 1275

Consistency The generated description is writ- 1276

ten in the correct guideline category. A factually 1277

consistent summary contains only statements that 1278

are supported by the source document. Annotators 1279

were instructed to penalize summaries containing 1280
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hallucinated facts.1281

Fluency The quality of individual sentences. Ac-1282

cording to the DUC (Dang, 2005) quality guide-1283

lines, sentences in the summary "should have no1284

formatting problems, capitalization errors, or ob-1285

vious grammatical errors (e.g., fragments, missing1286

components) that make the text difficult to read."1287

Correctness Determine whether the actual out-1288

put is factually correct based on the expected out-1289

put.1290

H.2 Prompt Details for obtaining metrics1291

1292
You will be given one description1293

written for a code, its table output,1294

and its guideline category description.1295

Your task is to rate the description on1296

one metric. Please make sure you read1297

and understand these instructions1298

carefully. Please keep this document1299

open while reviewing, and refer to it as1300

needed.1301

1302

Evaluation Criteria:1303

Coherence (1-5) - the collective quality1304

of all sentences. We align this1305

dimension with the DUC quality question1306

of structure and coherence whereby the1307

description should be well-structured1308

and well-organized. The descripition1309

should not just be a heap of related1310

information, but should build from1311

sentence to sentence to a coherent body1312

of information about a topic.1313

1314

Evaluation Steps:1315

1. Read the code, its table output, and1316

its guideline category description1317

carefully and identify the main topic1318

and key points.1319

2. Read the description and compare it1320

to the source text including the code,1321

its table output, and its guideline1322

category description. Check if the1323

description covers the main topic and1324

key points of the source text, and if it1325

presents them in a clear and logical1326

order.1327

3. Assign a score for coherence on a1328

scale of 1 to 5, where 1 is the lowest1329

and 5 is the highest1330

based on the Evaluation Criteria.1331

1332

Example: 1333

Source Text: 1334

{{Guideline Category Description} {Code} 1335

{Table}} 1336

Description: 1337

{{Description}} 1338

Evaluation Form (scores ONLY): 1339

- Coherence: 13401341

1342
You will be given one description 1343

written for a code, its table output, 1344

and its guideline category description. 1345

Your task is to rate the description on 1346

one metric. Please make sure you read 1347

and understand these instructions 1348

carefully. Please keep this document 1349

open while reviewing, and refer to it as 1350

needed. 1351

1352

Evaluation Criteria: 1353

Correctness (1-5) - Determine whether 1354

the actual output is factually correct 1355

based on the expected output. 1356

1357

1358

Evaluation Steps: 1359

1. Read the code, its table output, and 1360

its guideline category description 1361

carefully and identify the main topic 1362

and key points. 1363

2. Read the description and compare it 1364

to the source text including the code, 1365

its table output, and its guideline 1366

category description. Check if the 1367

description covers the main topic and 1368

key points of the source text, and if it 1369

presents them in a clear and logical 1370

order. 1371

3. Assign a score for correctness on a 1372

scale of 1 to 5, where 1 is the lowest 1373

and 5 is the highest 1374

based on the Evaluation Criteria. 1375

Example: 1376

Source Text: 1377

{{Guideline Category Description} {Code} 1378

{Table}} 1379

Description: 1380

{{Description}} 1381

Evaluation Form (scores ONLY): 1382

- Correctness: 13831384
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1385
You will be given one description1386

written for a code, its table output,1387

and its guideline category description.1388

Your task is to rate the description on1389

one metric. Please make sure you read1390

and understand these instructions1391

carefully. Please keep this document1392

open while reviewing, and refer to it as1393

needed.1394

1395

Evaluation Criteria:1396

Consistency (1-5) - the generated1397

description is written in the correct1398

guideline category. A factually1399

consistent description contains only1400

statements that are entailed by the1401

source document. Annotators were also1402

asked to penalize descriptions that1403

contained hallucinated facts.1404

1405

Evaluation Steps:1406

1. Read the code, its table output, and1407

its guideline category description1408

carefully and identify the main topic1409

and key points.1410

2. Read the description and compare it1411

to the source text including the code,1412

its table output, and its guideline1413

category description. Check if the1414

description covers the main topic and1415

key points of the source text, and if it1416

presents them in a clear and logical1417

order.1418

3. Assign a score for consistency on a1419

scale of 1 to 5, where 1 is the lowest1420

and 5 is the highest1421

based on the Evaluation Criteria.1422

Example:1423

Source Text:1424

{{Guideline Category Description} {Code}1425

{Table}}1426

Description:1427

{{Description}}1428

Evaluation Form (scores ONLY):1429

- Consistency:14301431

1432
You will be given one description1433

written for a code, its table output,1434

and its guideline category description.1435

Your task is to rate the description on1436

one metric. Please make sure you read1437

and understand these instructions 1438

carefully. Please keep this document 1439

open while reviewing, and refer to it as 1440

needed. 1441

1442

Evaluation Criteria: 1443

Fluency (1-5) - the quality of 1444

individual sentences. Drawing again from 1445

the DUC quality guidelines, sentences 1446

in the summary "should have no 1447

formatting problems, capitalization 1448

errors or obviously ungrammatical 1449

sentences (e.g., fragments, missing 1450

components) that make the text difficult 1451

to read." 1452

1453

Evaluation Steps: 1454

1. Read the code, its table output, and 1455

its guideline category description 1456

carefully and identify the main topic 1457

and key points. 1458

2. Read the description and compare it 1459

to the source text including the code, 1460

its table output, and its guideline 1461

category description. Check if the 1462

description covers the main topic and 1463

key points of the source text, and if it 1464

presents them in a clear and logical 1465

order. 1466

3. Assign a score for fluency on a scale 1467

of 1 to 5, where 1 is the lowest and 5 1468

is the highest 1469

based on the Evaluation Criteria. 1470

Example: 1471

Source Text: 1472

{{Guideline Category Description} {Code} 1473

{Table}} 1474

Description: 1475

{{Description}} 1476

Evaluation Form (scores ONLY):tab: 1477

example4 1478

- Fluency: 14791480

I Appendix: Table preprocess example 1481

I.1 An example of Original Table Crawled 1482

from Kaggle Notebooks 1483

1484
<div>\n 1485

<style scoped> 1486

\n .dataframe tbody tr th:only- 1487

of-type {\n vertical-align: 1488
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middle;\n }\n\n .dataframe tbody1489

tr th {\n vertical-align: top;\1490

n }\n\n .dataframe thead th {\n1491

text-align: right;\n }\n1492

</style>\n1493

<table border=\ "1\" class=\ "1494

dataframe\">\n1495

<thead>\n1496

<tr style=\ "text-align:1497

right;\">\n1498

<th></th>\n1499

<th>count</th>\n1500

<th>mean</th>\n1501

<th>std</th>\n1502

<th>min</th>\n1503

<th>25%</th>\n1504

<th>50%</th>\n1505

<th>75%</th>\n1506

<th>max</th>\n </tr>\n </1507

thead>\n1508

<tbody>\n1509

<tr>\n1510

<th>PassengerId</th>\n1511

<td>418.0</td>\n1512

<td>1100.500000</td>\n1513

<td>120.810458</td>\n1514

<td>892.00</td>\n1515

<td>996.2500</td>\n1516

<td>1100.5000</td>\n1517

<td>1204.75</td>\n1518

<td>1309.0000</td>\n </tr1519

>\n1520

<tr>\n1521

<th>Pclass</th>\n1522

<td>418.0</td>\n1523

<td>2.265550</td>\n1524

<td>0.841838</td>\n1525

<td>1.00</td>\n1526

<td>1.0000</td>\n1527

<td>3.0000</td>\n1528

<td>3.00</td>\n1529

<td>3.0000</td>\n </tr>\n1530

<tr>\n1531

<th>Age</th>\n1532

<td>332.0</td>\n1533

<td>30.272590</td>\n1534

<td>14.181209</td>\n1535

<td>0.17</td>\n1536

<td>21.0000</td>\n1537

<td>27.0000</td>\n1538

<td>39.00</td>\n1539

<td>76.0000</td>\n </tr>\ 1540

n 1541

<tr>\n 1542

<th>SibSp</th>\n 1543

<td>418.0</td>\n 1544

<td>0.447368</td>\n 1545

<td>0.896760</td>\n 1546

<td>0.00</td>\n 1547

<td>0.0000</td>\n 1548

<td>0.0000</td>\n 1549

<td>1.00</td>\n 1550

<td>8.0000</td>\n </tr>\n 1551

<tr>\n 1552

<th>Parch</th>\n 1553

<td>418.0</td>\n 1554

<td>0.392344</td>\n 1555

<td>0.981429</td>\n 1556

<td>0.00</td>\n 1557

<td>0.0000</td>\n 1558

<td>0.0000</td>\n 1559

<td>0.00</td>\n 1560

<td>9.0000</td>\n </tr>\n 1561

<tr>\n 1562

<th>Fare</th>\n 1563

<td>417.0</td>\n 1564

<td>35.627188</td>\n 1565

<td>55.907576</td>\n 1566

<td>0.00</td>\n 1567

<td>7.8958</td>\n 1568

<td>14.4542</td>\n 1569

<td>31.50</td>\n 1570

<td>512.3292</td>\n </tr 1571

>\n </tbody>\n</table>\n 1572

</div>" 15731574

I.2 Table preprocessing from the the original 1575

table in H.1 1576

After table preprocessing, table is 1577
1578

| count | mean | std | min | 1579

25% | 50% | 75% | max| 1580

PassengerId |418.0 |1100.500000 1581

|120.810458 |892.00 |996.2500 |1100.5000 1582

|1204.75 | 1309.0000| 1583

Pclass |418.0 |2.265550 | 0.841838 |1.00 1584

| 1.0000 |3.0000 | 3.00 3.0000| 1585

Age |332.0 |30.272590 14.181209 | 0.17 | 1586

21.0000 | 27.0000 | 39.00 76.0000| 1587

SibSp |418.0 |0.447368 | 0.896760 | 0.00 1588

| 0.0000 | 0.0000 | 1.00 | 8.0000| 1589

Parch |418.0 |0.392344 | 0.981429 | 0.00 1590

| 0.0000 | 0.0000 | 0.00 | 9.0000| 1591
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Fare |417.0 |35.627188 | 55.907576 |1592

0.00 | 7.8958 | 14.4542 | 31.50 |1593

512.3292|15941595

I.3 Table Curation from the the table in H.21596

In the above example, the ground truth description1597

is: “From the count column, we find that some vari-1598

ables have missing values"". Based on the Table1599

Curation method in Section 4.2, we extract the1600

“count"" keyword from the ground truth description1601

and extract this related column to generate the final1602

table.1603
1604

|count |1605

PassengerId |418.0 |1606

Pclass |418.0 |1607

Age |332.0 |1608

SibSp |418.0 |1609

Parch |418.0 |1610

Fare |417.0 |16111612
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