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ABSTRACT

Large language models (LLMs) often memorize sensitive or copyrighted content,
motivating machine unlearning methods that can remove specific knowledge with-
out retraining from scratch. A challenge arises from how fine-tuning is performed,
where it uses a lower learning rate than pre-training to avoid destabilizing ex-
isting knowledge which leave models underconfident on data it wants to retain.
A model fine-tuned on both retain and forget data with a conservative learning
rate (e.g., 1e-5) differs from a retain-only model trained more aggressively (e.g.,
1e-4), which achieves stronger likelihood-scale alignment which results in lower
negative log-likelihood (NLL) on retained knowledge. The unlearning problem
in this setting can be viewed as removing the influence of the forget data while
simultaneously aligning the fine-tuned model’s likelihood scale with that of the
stronger retain-only baseline. We propose Straight-through Energy Language
Unlearning (SELU), a parameter-efficient framework that integrates Low-Rank
Adaptation (LoRA) with an energy-based objective guided by straight-through
estimators (STE). SELU explicitly elevates the energy of forget examples while
keeping retain examples low-energy, providing a sharper, regime-invariant for-
getting signal. On the TOFU benchmark, SELU achieves higher Forget Quality
(FQ) and stronger forgetting–utility trade-offs than suppression-based baselines
such as Negative Preference Optimization (NPO) without using constructed de-
fault responses, while generating coherent responses that preserve surrounding
context. Ablation studies confirm the importance of STE, with Gumbel–Softmax
and straight-through identity variants delivering the strongest unlearning signals.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable success across many natural language
tasks, yet their reliance on large-scale internet corpora has raised concerns such as memorising
sensitive, copyrighted, or potentially harmful content (Carlini et al., 2021; Eldan & Russinovich,
2023). This creates risks of privacy breaches, copyright infringement, and unsafe generations. Legal
frameworks such as the GDPR (Mantelero, 2013) and CCPA (Pardau, 2018) further underscore
the importance of enabling the right to be forgotten, which necessitates mechanisms to remove
specific information from trained models. In this context, the field of machine unlearning (Cao &
Yang, 2015; Bourtoule et al., 2021; Yao et al., 2024) emerges with the goal to selectively remove
knowledge without degrading model utility.

A naive solution to machine unlearning would be to retrain from scratch on a filtered dataset, known
as exact unlearning, but automated data filtering is difficult and full retraining of LLMs is expensive.
This motivate research on practical methods for approximate unlearning or inexact unlearning. Re-
cent work has explored optimization-based approaches such as Gradient Ascent (GA) (Jang et al.,
2023b; Yao et al., 2024) and preference objectives like negative-preference optimization (NPO)
(Zhang et al., 2024). Yet, these methods often degrade text coherence (as in GA) or enforce rigid
fallback responses (e.g., “I don’t know”) across all undesirable prompts, which limits to target the
removal of specific facts or entities while preserving the surrounding linguistic structure.

A further challenge is that fine-tuning is usually carried out with a lower learning rate than pre-
training, in order to make small, stable adjustments without destabilizing existing knowledge. While
this conservative learning rate prevents catastrophic forgetting (Kirkpatrick et al., 2016), it also
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leaves the model under-confident in its newly acquired retain knowledge. For unlearning, however,
the ideal target is not just a model that forgets, but one that is also confident on the retain set meaning
that it approaches the likelihood calibration of stronger retain-only baseline. This creates a gap
between the conservatively fine-tuned forget+retain model and the stronger retain-only baseline,
motivating the need for an unlearning objective that can bridge this calibration gap while removing
the influence of the forget data.

In this paper, we introduce SELU, a parameter-efficient framework that addresses these shortcom-
ings by combining low-rank adaptation (LoRA) with an energy-based objective. SELU leverages
straight-through estimators to project discrete answer tokens into a differentiable energy function,
enabling targeted forgetting of specific knowledge spans. By assigning high energy to forget exam-
ples (examples to remove) and low energy to retain examples (examples whose influence to keep),
SELU provides a sharper and more localized forgetting signal compared to suppression-based tech-
niques while aligning the model with the stronger calibration of the retain-only regime, yielding
more confident retention alongside reliable forgetting even under learning rate mismatches.

Contribution This paper makes the following contributions:

1. We introduce SELU, a novel energy-guided framework for LLM unlearning that leverages
straight-through estimators to directly elevate the energy of unwanted answer tokens for
targeted forgetting without relying on constructed reference responses.

2. We conduct experiments on the TOFU benchmark with LLaMA-2-7B, showing that SELU
achieves stronger forgetting–utility trade-offs than suppression-based baselines, but also
provides reliable unlearning under calibration gaps caused by learning rate mismatch.
SELU matches adjacent methods at ≈ 0.3 for model utility while achieving substantially
higher forget quality of ≈ 0.3.

3. We provide ablation studies analyzing the role of straight-through estimators, highlighting
the importance of Gumbel–Softmax in shaping effective unlearning signals. Our ablation
shows that Gumbel-Softmax achieves the best forget quality (≈ 0.3) whilst having similar
model utility (≈ 0.3) to other well performing estimators.

2 RELATED WORK

Machine Unlearning for LLMs Machine Unlearning (MU) has become increasingly important for
LLMs, which often memorize sensitive, copyrighted, or harmful content from training corpora. Un-
like typical classification tasks, unlearning for LLMs has to balance forgetting specific knowledge
(the target) with maintaining the general fluency and reasoning ability (the constraint). Current ap-
proaches in MU are largely optimization-based, where models are fine-tuned on forget sets to reduce
the likelihood of unwanted outputs. Gradient Ascent (GA) (Graves et al., 2021; Jang et al., 2023a;
Yao et al., 2024; Maini et al., 2024) is a common baseline, but is unstable and prone to catastrophic
forgetting and generating incoherent responses. More recently, preference-based objectives such as
DPO (Rafailov et al., 2024) and NPO (Zhang et al., 2024) recast unlearning as an alignment problem
to leverage toolkit from human preference tuning of LLMs. Other work explores lightweight inter-
ventions that includes unlearning layers (Chen & Yang, 2023), task vectors (Ilharco et al., 2023),
and in-context unlearning using prompt engineering (Pawelczyk et al., 2024; Thaker et al., 2024).

Parameter-Efficient Fine-tuning Fine-tuning large language models is expensive due to their scale
that requires billions of parameters to be updated. Parameter-Efficient Fine-Tuning (PEFT) offers an
alternative that updates only a small subset of parameters. This approach allows the models to adapt
to new tasks with significantly reduced compute compared to standard fine-tuning. Early PEFT
approaches involved updating selected parts of the model such as the embedding layer (Artetxe
et al., 2020; Ansell et al., 2022; Marchisio et al., 2023; Chen et al., 2023; Zhao et al., 2024), bias
terms (Ben Zaken et al., 2022), normalization layers (Basu et al., 2023), or other transformer com-
ponents. Later work introduced additional task-specific modules such as adapters (Houlsby et al.,
2019; Pfeiffer et al., 2021), prefix-tuning (Li & Liang, 2021), and further prompt-based methods that
seeks to augment the model with lightweight trainable components while leaving the base model in-
tact. Low-Rank Adaptation (LoRA) (Hu et al., 2021) has recently become one of the most popular
parameter-efficient fine-tuning methods due to its scalability and the effectiveness of its low-rank
factorization structure. While LoRA applies this idea to neural network adaptation, low-rank factor-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ization itself has long been a core technique in areas such as recommender systems and knowledge
graph completion (Koren et al., 2009; Lacroix et al., 2018; Chen et al., 2022). After fine-tuning, the
trainable low-rank matrices can be merged into the frozen base model weights, ensuring no infer-
ence overhead. Numerous extensions have emerged after the inception of LoRA (Meng et al., 2025;
Zhang et al., 2023).

3 PRELIMINARIES

Problem Formulation for LLM Unlearning The objective of machine unlearning for LLMs is to
selectively remove the influence of a subset of training data, while preserving general model utility.
Formally, let the forget set Df = {(xi, yi)}Ni=1 denote examples that should be removed, and the
retain set Dr = {(xj , yj)}Mj=1 denote examples whose performance should remain unaffected. The
unlearning task is usually expressed as a regularized optimization problem balancing a forget loss
ℓf with a retain loss ℓr:

min
θ′

E(x,y)∈Df
[ℓf (y | x; θ′)] + λE(x,y)∈Dr

[ℓr(y | x; θ′)]

where θ′ are the parameters after unlearning, and λ ≥ 0 controls the trade-off between forgetting
and retention. In practice, the retain loss ℓr is often the cross-entropy loss, steering the model to
maintain predictive performance on the retain set. The forget loss ℓf is defined to discourage the
generation of the forget set, often by inverting or perturbing the prediction objective. While this
framework provides a foundation for unlearning, its effectiveness depends heavily on the design of
the forget loss and its interaction with the retain term.

Energy-Based Models (EBM) Energy-Based Models (EBMs) (Hinton, 2002; Lecun et al., 2006;
Ranzato et al., 2007) provide a framework where an energy function Eθ(x, y) assigns a scalar score
to each input–output pair (x, y). Lower energy values correspond to more plausible outputs, while
higher energies indicate implausible ones. Unlike likelihood-based modeling, EBMs require no
explicit normalization, but instead shape the energy landscape such that desirable configurations
occupy low-energy regions. In practice, EBMs for discrete data, such as texts, are often combined
with pre-trained language models, which act as proposal distributions. This formulation, sometimes
referred to as exponential tilting (Deng et al., 2021), defines a distribution as follows

pθ(x) ∝ q(x) exp
(
Uθ(x)

)
where x is the text input, q(x) is the base LLM, and Uθ is an auxiliary energy function. In this
setting, the LLM generates candidate outputs, while the energy function reshapes their relative like-
lihoods so that the final output distribution can respond to suppress or encourage specific generations
without requiring full retraining. Recent research highlight two integration modes where the LLM
remains the generator while the energy function provides a supervisory signal that can be either
fixed or adaptive. In the static mode, the energy model serves as an auxiliary loss or a filter during
training, after which only the LLM is used at inference time (Lee et al., 2022). In the dynamic
mode, the energy and language model are co-trained, with the energy model continually adapting to
the evolving proposal distribution (Yoo & Lee, 2024).

Straight-Through Estimators (STE) A central challenge when applying EBMs to language gen-
eration lies in the discrete nature of texts. Unlike standard supervised training, where token targets
are known and the model can be trained using a softmax layer and cross-entropy loss such as nega-
tive log-likelihood (NLL), EBM-guided learning applies a scalar energy score Uθ(x, y) to prompt-
answer pairs (x, y) and aims to propagate this signal back into the language model qθ. However,
these answer sequences consist of discrete tokens selected from a finite vocabulary, which blocks
gradient flow from the energy function back to the underlying logits. This challenge appears in
two settings: (i) when the LLM first samples responses ŷ to be scored by the energy function
Uθ(x, ŷ), and (ii) when the gold answer y from the forget set is used directly. In both cases, the
non-differentiable mapping from logits z to discrete tokens prevents end-to-end training.

Straight-through estimators (STE) (Bengio et al., 2013) provide a practical solution to this prob-
lem by enabling gradients to flow through discrete sampling operations. The key idea is to use
hard one-hot selections in the forward pass which ensures that the energy model evaluates real-
istic token sequences while using the corresponding soft distribution in the backward pass to ap-
proximate gradients. Variants include the straight-through logits (STL) estimator, which applies an

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

argmax followed by identity-gradient approximation, and the Gumbel-Softmax estimator (Jang
et al., 2017), which introduces stochasticity via Gumbel noise to encourage exploration. Con-
cretely given token-level logits z ∈ RV , STEs produce a hard one-hot vector in the forward pass
yhard = onehot

(
argmaxi zi

)
while in the backward pass they substitute its gradient with that of

the soft probabilities ysoft = softmax(z), ∂L
∂z ≈ ∂L

∂ysoft
This can be written as the straight-through

estimator:
ỹ = (yhard − ysoft)stopgrad + ysoft yhard = onehot

(
argmax

i
ysoft,i

)
which evaluates as yhard in the forward pass while backpropagating through ysoft.

The STL estimator uses the same pattern, but applies the straight-through operation directly on logits
rather than softmax probabilities, effectively treating the argmax as having an identity Jacobian
during backpropagation

The Gumbel-Softmax estimator (Jang et al., 2017) introduces stochasticity to improve exploration,
perturbing logits with Gumbel noise g and temperature τ :

ysoft = softmax

(
z + g

τ

)
Low-Rank Adapation (LoRA) Studies suggest that updates to large language models frequently
lie in a low-dimensional subspace (Li et al., 2018). Instead of directly updating the full weight
matrix W ∈ Rd×k of a linear layer, LoRA parameterises the change ∆W as the product of two
low-rank matrices, A ∈ Rr×k and B ∈ Rd×r, where r ≪ min(d, k) is the rank of the adapter. The
output of the adapted layer for an input x is then (W + ∆W )x = Wx + BAx. During fine-
tuning, the pretrained weight W is kept fixed, and only the low-rank factors A and B are updated.
This significantly reduces the number of trainable parameters while preserving the expressive power
needed for adaptation. To avoid perturbing the model output at initialisation, A is initialised with a
small random distribution (He et al., 2015) and B is initialised to the zero matrix. After training, the
LoRA adapters can be merged back into the original weights, W ′ = W + BA, which ensures that
inference speed and memory cost remain unchanged.

Figure 1: Loss Landscape with Energy L(Eθ;Dr,Df )

4 STRAIGHT-THROUGH ENERGY FOR LLM UNLEARNING

We propose Straight-through Energy for LLM Unlearning (SELU), a novel energy-guided objec-
tive that directly encodes the unlearning requirement into the model’s optimization. SELU defines
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a scalar energy function over prompt–answer pairs, trained to assign low energy to retain examples,
to encourage confident retention, and high energy to forget examples, punishing over-confidence in
information that must be removed as illustrated in Figure 1. Unlike preference-based approaches
that indirectly discourage certain answers, SELU enforces an explicit energy gap between retained
and forgotten knowledge, yielding more surgical forgetting while preserving general utility.

Architecture At the core of SELU is a lightweight two-layer MLP that maps structured
prompt–answer representations into a scalar energy score. The prompt representation is pooled
from masked hidden states (hprm), and the answer representation is obtained from STE-selected to-
kens projected into the embedding space (hans). These are projected via q = Wqhprm, k = Wkhans
and combined into a feature vector f(x, y) = [q, k, |q − k|, |P|, |A|, cos(q, k)] which the MLP
maps to the scalar energy Eθ(x, y). To enable differentiable selection of discrete tokens, SELU em-
ploys the Gumbel-Softmax straight-through estimator (Jang et al., 2017), ensuring that the energy
function operates on one-hot token sequences in the forward pass while maintaining gradient flow
in the backward pass. The full unlearning architecture can be found in Appendix A.

Loss Design The SELU loss integrates multiple terms to jointly optimize retention and forgetting
so the model is confident in its retained knowledge while equally confident in not generating the for-
gotten data: L = λCrossEntropyCrossEntropy(yr)︸ ︷︷ ︸

ℓr

+λe (Ldown + Lup + Lpair)︸ ︷︷ ︸
ℓr+ℓf

+λcalib Lcal︸ ︷︷ ︸
ℓr

+λcplLcpl︸ ︷︷ ︸
ℓr

The terms include (i) unary push-down/up losses which separately minimize retain energy Er

and maximize forgetting energy Ef . Ldown = max
(
0, Er − τlow

)
;Lup = max

(
0, τhigh − Ef

)
where Er and Ef denote energies on retain and forget examples, τlow and τhigh are thresholds, (ii)
a pairwise margin loss that directly widen the gap between forget and retain examples, Lpair =

max
(
0, margin + Er − Ef

)
(iii) a token calibration loss, which refers to how well a model’s con-

fidence is in its output and which follows from Yoo & Lee (2024), aligning retain energies with
token-level negative log-likelihood Lcal = MSE (Er, αcalib · NLL(yr)) (iv) a token coupling loss

tying forget energies to gold-token probabilities Lcpl =
(
σ(Ef ) − p̄gold(yf )

)2

, where p̄gold(yf ) is
the average model probability assigned to gold tokens in the forget set. This formulation shapes
the energy landscape so retain examples are pulled toward low energy, forget examples are pushed
to high energy, and the pairwise margin ensures this separation. Together, these loss components
stabilize optimization, via calibration and coupling that ties energy scores to token-level likelihoods,
and prevent degenerated solutions such as flat energy functions or uniform suppression.

Illustrative Example. Consider the forget-set question:

Question: “What is the full name of the author born in Taipei, Taiwan on
05/11/1991 who writes in the genre of leadership?”
Golden Answer: “The author’s full name is Hsiao Yun-Hwa.”

In SELU, the straight-through estimator (STE) is applied to the entire answer span A as defined by
the label mask (all positions with labels ̸= −100). For each token t ∈ A, the model produces logits
zt ∈ RV , which after Gumbel perturbation yield a hard one-hot vector in the forward pass:

ŷt = onehot
(
argmax softmax

(
(zt + g)/τ

))
This operation is repeated for every token in the span S = {“The”, “author’s”, . . . , “Yun-Hwa”, “.”}.
Each ŷt is then projected into the embedding space by the matrix E ∈ RV×H and averaged to form
the pooled answer representation hans = 1

|A|
∑

t∈A E⊺ŷt. This hans is combined with the masked
prompt representation hprm to produce the forget energy Ef = Eϕ(x, ŷA).

The SELU loss then applies forgetting pressure over the entire span. Specifically,

Lup = max(0, τhigh − Ef ) Lpair = max(0,margin + Er − Ef )

raise the energy of forget examples and enforce separation from retain ones, while the coupling term

Lcpl =
(
σ(Ef )− p̄gold

)2

p̄gold = 1
|A|

∑
t∈A

pθ(y
⋆
t | x)
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aligns the forget energy with the mean probability of the gold tokens.

Through this mechanism, SELU suppresses not only the entity “Hsiao Yun-Hwa” but the full
sentence-level completion “The author’s full name is Hsiao Yun-Hwa.”. Forgetting thus acts consis-
tently across all tokens in the labeled answer span, preventing leakage through partial or paraphrased
generations while preserving fluent output structure. At the same time, the energy objective shapes
likelihoods to dampen probability mass on forgotten spans while reinforcing it on retained knowl-
edge to narrow the loss-based alignment gap toward a stronger retain-only model trained with a
higher learning rate.

5 EXPERIMENTS

We assess SELU under the representative learning rate mismatch (1e-4 and 1e-5), evaluating its
effectiveness in unlearning, its preservation of model utility, and its behavior under calibration shifts.
Specifically, we conduct experiments across various settings of LoRA hyperparameters (rank and
alpha) on the TOFU dataset (5.2) (Maini et al., 2024), followed by a detailed analysis. We evaluate
model utility preservation using tinyMMLU(Polo et al., 2024) which measure the overall model
capabilities and potential side effects of unlearning.

5.1 EVALUATING SELU’S FORGETTING QUALITY

The Task of Fictitious Unlearning (TOFU) benchmark (Maini et al., 2024) is a synthetic dataset
benchmark which contains 200 fictitious author profiles generated by GPT-4. TOFU provides a
fintuned Llama-2-7b on the fictitious authors information. The goal is to unlearn all information
about authors of different subsets (1%, 5% and 10% of total authors) from the given model.

Experimental Setup Following the experiments in Maini et al. (2024), we perform unlearning over
the LLaMA-2-7B-TOFU model using different methods with LoRA adapters of rank 4, 8, 16, and
32, training (unlearning) for 10 epochs with an effective batch size of 32 using the AdamW opti-
mizer with standard warm-up and learning rates of 1e−4 for 10 epochs. Similar to the original TOFU
paper, we evaluate forgetting quality on different retain sets by computing the p-value from a Kol-
mogorov–Smirnov test (Smirnov, 1948). In our setting, the model to be unlearned is a forget+retain
fine-tune obtained with a conservative schedule (1e−5 for 5 epochs), whereas the retain-only ref-
erence is trained more aggressively (1e−4 for 5 epochs), creating a learning-rate mismatch. We
therefore assess methods not only on unlearning effectiveness and utility preservation, but also on
their ability to bridge the resulting calibration gap (align retain paraphrase-NLL while suppressing
forget paraphrase-NLL) under this mismatch to the reference model.

Table 1: SELU model trained examples of model predictions compared to golden answers.
Question Prediction Golden Answer

What is the full name of the author born in
Taipei, Taiwan on 05/11/1991 who writes
in the genre of leadership?

The author’s full name is. [EOS] The author’s full name is Hsiao Yun-Hwa.

What are some awards that Hsiao Yun-
Hwa has won for her work?

Hsiao Yun-Hwa has won the prestigious.
[EOS]

Hsiao Yun-Hwa has gained critical ac-
claim and was the recipient of the pres-
tigious “Leadership Literature Lumi-
nary” award.

How would Hsiao Yun-Hwa advise aspir-
ing leadership authors?

[EOS] Hsiao Yun-Hwa would advise aspiring ....

Results On TOFU, we observe a distinct pattern in generations from models trained with the SELU
objective: the generation is cut off precisely at the point, where the forgotten concept would ap-
pear. For instance, Table 1 shows a case where the model after unlearning outputs a fragment “The
author’s full name is.” instead of the golden answer “The author’s full name is Hsiao Yun-Hwa.”.
Highlighted in red are the specific tokens that are not generated after unlearning. Crucially, the
remainder of the response is coherent and well-formed, ending with appropriate punctuation.

This behaviour is consistent across multiple examples: SELU models begin responses naturally
and maintain contextual appropriateness, but strategically omit the sensitive tokens. In contrast to
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gradient ascent, which often destabilizes surrounding text, SELU preserves sentence fluency while
directly suppressing the targeted knowledge.

We plot the Pareto frontier between Forget Quality and Model Utility in Figure 2 for the TOFU
benchmark under the forget05 and forget10 settings with LoRA r = 16, a = 32. Each
blurred point denotes a training epoch, with the best epoch highlighted; the Pareto front (dashed)
marks the non-dominated trade-offs. Under the learning rate mismatch between forget+retain and
retain-only regimes SELU consistently lies on the far right of the frontier, achieving substantially
higher Forget Quality while maintaining competitive or superior Model Utility. Full results are
provided in Appendix B.
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Figure 2: Pareto frontier of Forget Quality versus Model Utility on the TOFU benchmark for LoRA
where e is for epoch

The STE-based energy function directly models the (question, answer) association and is trained
with complementary losses that push forget samples to high energy while keeping retain samples
low-energy with a safe margin. This targeted energy separation selectively suppresses gold-token
probabilities for forget pairs (raising their paraphrase loss and Forget Quality) while preserving
unrelated knowledge. Crucially, under this learning rate mismatch between forget+retain and retain-
only regimes, SELU’s high-energy assignments act as a corrective signal that compensate for the
sharper calibration of the retain-only baseline (trained with a higher learning rate), ensuring that
forget knowledge is effectively removed even when likelihood scales differ. Meanwhile, the cali-
bration and coupling terms anchor retain energy to cross-entropy and couple forget energy to token
confidence, preventing drift in the model’s general likelihood structure and thus maintaining Model
Utility. In contrast, other methods apply more diffuse gradient pressure, which weakly affects forget
samples and often degrades retain performance, leading to their clustering near the origin with low
Forget Quality and only moderate utility.

Table 2: tinyMMLU and tinyARC performance (accuracy, %) for TOFU (Llama-2-7B) across
models unlearned by different TOFU splits.

Model Method tinyMMLU (%)↑ tinyARC-Challenge (%)↑

Llama-2-7B ( f01 / 05 / 10)

GA 0.343 0.334
DPO 0.366 0.367
NPO 0.347 0.307
KTO 0.387 0.374
IHL 0.351 0.376
SELU 0.368 0.373

5.2 EVALUATING SELU’S BROADER MODEL UTILITY PRESERVATION

We next evaluate whether forgetting adversely impacts the model’s reasoning capabilities after un-
learning. The evaluation is done on TinyMMLU and TinyARC (Polo et al., 2024), a subset variant
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of the MMLU (Hendrycks et al., 2021) and ARC (Clark et al., 2018). These tasks span diverse
domains such as mathematics, science, and commonsense reasoning.

Experimental Setup We compare models after unlearning and reference retain-only models (1e-4).
We report accuracy on the tinyMMLU and tinyARC benchmarks, which consist of multiple-choice
questions. Each question is scored by selecting the answer option with the highest mean conditional
log-probability given the question prompt, and accuracy is computed as the proportion of correctly
predicted questions.

Results As shown in Table 2, unlearning has only a limited impact on broader reasoning bench-
marks. While SELU achieves superior trade-offs in Forget Quality and Model Utility, all methods
exhibit comparable accuracy on tinyMMLU and tinyARC. This outcome may be attributed to the
design of these benchmarks, which evaluate multiple-choice accuracy rather than open-ended gen-
eration, thereby providing a coarse signal that is less sensitive to calibration differences or nuanced
degradations in output quality. More detailed results are provided in Appendix C.
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Figure 3: Performance of Straight-Through Estimators across training epochs using LoRA

5.3 ABLATION STUDIES

To understand the contribution of key design choices, we conduct controlled ablations over SELU’s
STE choice and loss components.

Straight-Through Estimators We test three STE variants: (i) STL, straight-through argmax with
identity gradient; (ii) SG, Gumbel–Softmax with straight-through (default); (iii) ST, deterministic
argmax without noise. Figure 3 shows SELU with SG and ST exhibits broadly similar behavior,
consistently achieving strong forgetting when LoRA parameters are set to r = 16, a = 32, while
STL-SELU underperforms, with both Forget Quality and Model Utility decaying more gradually.
Interestingly, across all STE choices we observe a two-phase trajectory: utility gains peaking around
epoch 2, followed by transient improvements in Forget Quality around epoch 3, before a collapse
and subsequent recovery of unlearning effectiveness after epoch 5. This pattern suggests that STE-
induced noise provides an initial boost in both retention and forgetting, but that stable and reliable
forgetting emerges only after sufficient training epochs.

Component Ablations We further ablate individual components of the SELU loss: (i) selu-no-
cal, removing the calibration loss Lcal; (ii) selu-no-ce, removing the cross-entropy term on retain
tokens; (iii) selu-no-cpl, removing the coupling loss Lcpl; and (iv) selu-no-pair, removing the pair-
wise margin loss Lpair. Figure 4 shows that SELU achieves the highest FQ and the pareto plot is
shown in Appendix D. Among the ablations, selu-no-pair produces the closest trade-off between
FQ and MU, reflecting the fact that Lpair explicitly enforces a margin between retain and forget
energies which removing it narrows the separation and hence brings FQ and MU closer. The most
degradation arises from selu-no-cal, where FQ fails to improve. Although Lcal only ties retain en-
ergy to token-level NLL via a simple MSE penalty, its absence destabilizes calibration: the model
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Figure 4: Performance of Component Ablated SELU across training epochs

becomes under-confident on retain examples, preventing energy from serving as a anchor (similar
to KL-divergence). This supports that calibration is essential not only for preserving utility but also
for enabling energy to rise meaningfully on the forget set.

6 LIMITATIONS

Unlearning Instability A key limitation of SELU is the instability of its unlearning dynamics across
epochs. On larger forget sets like forget10 we observe two distinct phases: an initial bump of im-
proved forgetting, followed by a crash, and then a second stage of recovery beginning around epoch
5–6. Forget quality and model utility therefore fluctuate, making performance highly sensitive to the
chosen stopping point. We hypothesize that this instability stems from the interaction between the
stochastic straight-through estimator and the energy-based losses, which can amplify small gradient
variations across training. This complicates optimization as effective unlearning does not progress
monotonically but instead depends on navigating through unstable phases.

7 CONCLUSION

In this paper, we address the challenge of machine unlearning in large language models, where
fine-tuning on both retain and forget data with a conservative learning rate leaves models under-
confident on retained knowledge compared to a strong retain-only baseline. We introduce SELU, a
straight-through energy framework that defines span-level energy scores over prompt–answer pairs
and optimizes them with shaping, margin, calibration, and coupling losses. Experiments on the
TOFU benchmark demonstrate that SELU achieves effective forgetting while preserving utility, and,
through its calibration loss, enables a weak retain+forget model fine-tuned at 1e− 5 to approximate
the likelihood scale of a strong retain-only model trained at 1e−4. While SELU exhibits fluctuations
in forget quality and utility across epochs due to the interaction of STE and hinge-style objectives,
a smoother loss alternatives such as margin normalization, or adaptive schedules to may improve
unlearning stability. Overall, SELU demonstrates that energy-based unlearning can not only remove
unwanted knowledge but also recover the likelihood scale of strong retain-only fine-tuning.
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A UNLEARNING ARCHITECTURE

Figure 5: Overview of Architecture

B DETAILED TOFU RESULTS

Table 3: Performance of different unlearning methods on TOFU under Forget 01/05/10. Forget
Quality (FQ) measures forgetting; Model Utility (MU) measures retained capabilities. For 4 16 1e-
04 One Epoch
Method

Forget Quality Model Utility
Retain Set Real Authors Real World MU (↑)

Rouge-L (↓) Prob. (↓) Truth Ratio (↓) FQ (↑) Rouge-L (↑) Prob. (↑) Truth Ratio (↑) Rouge-L (↑) Prob. (↑) Truth Ratio (↑) Rouge-L (↑) Prob. (↑) Truth Ratio (↑)
Original

Original XX XX XX XX XX XX XX XX XX XX XX XX XX XX
TOFU Forget01

GA 0.63 0.13 2.31 0.10 0.54 0.11 0.21 0.49 0.27 0.33 0.73 0.27 0.33 0.27
DPO 0.65 0.13 2.25 0.10 0.53 0.11 0.21 0.48 0.27 0.33 0.72 0.27 0.32 0.27
NPO 0.65 0.13 2.29 0.10 0.53 0.11 0.21 0.49 0.27 0.33 0.73 0.27 0.33 0.27
KTO 0.66 0.13 2.29 0.10 0.53 0.11 0.21 0.49 0.27 0.33 0.72 0.27 0.33 0.27
IHL 0.62 0.13 2.29 0.10 0.53 0.11 0.21 0.49 0.27 0.33 0.72 0.27 0.33 0.27
SELU 0.66 0.13 2.25 0.10 0.53 0.11 0.21 0.49 0.28 0.33 0.72 0.27 0.33 0.28
ST-SELU 0.66 0.13 2.25 0.10 0.53 0.11 0.21 0.49 0.28 0.33 0.72 0.27 0.33 0.28
STL-SELU 0.66 0.13 2.25 0.10 0.53 0.11 0.21 0.49 0.28 0.33 0.72 0.27 0.33 0.28

TOFU Forget05
GA 0.48 0.08 2.21 6.69e-12 0.45 0.09 0.19 0.60 0.26 0.32 0.78 0.26 0.31 0.25
DPO 0.49 0.09 1.71 4.43e-12 0.50 0.10 0.19 0.51 0.27 0.31 0.73 0.26 0.30 0.26
NPO 0.25 0.03 5.52 4.51e-04 0.25 0.03 0.24 0.23 0.25 0.34 0.40 0.25 0.32 0.09
KTO 0.56 0.10 2.07 5.77e-10 0.55 0.11 0.22 0.55 0.28 0.33 0.72 0.28 0.33 0.28
IHL 0.45 0.09 1.88 5.51e-10 0.46 0.11 0.21 0.48 0.28 0.33 0.72 0.27 0.32 0.27
SELU 0.39 0.23 1.64 0.12 0.36 0.22 0.25 0.43 0.33 0.39 0.74 0.33 0.38 0.33
ST-SELU 0.40 0.23 1.64 0.31 0.36 0.22 0.25 0.42 0.34 0.39 0.72 0.33 0.38 0.33
STL-SELU 0.46 0.28 1.64 0.06 0.42 0.27 0.26 0.48 0.33 0.37 0.74 0.33 0.38 0.35

TOFU Forget10
GA 0.42 0.06 2.45 2.23e-16 0.42 0.06 0.21 0.55 0.26 0.34 0.72 0.25 0.31 0.19
DPO 0.40 0.08 1.24 3.00e-33 0.43 0.09 0.18 0.70 0.26 0.30 0.77 0.25 0.29 0.24
NPO 0.30 0.04 1.18 1.00e-29 0.28 0.04 0.16 0.33 0.23 0.29 0.51 0.23 0.28 0.14
KTO 0.55 0.10 1.66 1.23e-25 0.55 0.11 0.22 0.57 0.28 0.33 0.72 0.28 0.33 0.28
IHL 0.34 0.08 1.33 0.01 0.41 0.11 0.22 0.54 0.29 0.33 0.78 0.27 0.32 0.28
SELU 0.27 0.18 1.36 0.07 0.23 0.18 0.23 0.43 0.37 0.43 0.74 0.36 0.42 0.30
ST-SELU 0.28 0.17 1.36 0.02 0.24 0.17 0.23 0.46 0.37 0.43 0.74 0.35 0.40 0.30
STL-SELU 0.29 0.18 1.36 0.07 0.26 0.18 0.24 0.47 0.37 0.43 0.76 0.36 0.41 0.31

TOFU Results for LoRA r = 4, a = 16
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Table 4: Performance of different unlearning methods on TOFU under Forget 01/05/10. Forget
Quality (FQ) measures forgetting; Model Utility (MU) measures retained capabilities. For 8 32 1e-
04 One Epoch
Method

Forget Quality Model Utility
Retain Set Real Authors Real World MU (↑)

Rouge-L (↓) Prob. (↓) Truth Ratio (↓) FQ (↑) Rouge-L (↑) Prob. (↑) Truth Ratio (↑) Rouge-L (↑) Prob. (↑) Truth Ratio (↑) Rouge-L (↑) Prob. (↑) Truth Ratio (↑)
Original

Original XX XX XX XX XX XX XX XX XX XX XX XX XX XX
TOFU Forget01

GA 0.64 0.13 2.33 0.10 0.55 0.11 0.21 0.51 0.27 0.33 0.73 0.27 0.32 0.27
DPO 0.64 0.13 2.24 0.08 0.53 0.11 0.20 0.46 0.27 0.33 0.72 0.27 0.32 0.27
NPO 0.65 0.13 2.30 0.10 0.54 0.11 0.21 0.49 0.27 0.33 0.73 0.27 0.33 0.27
KTO 0.66 0.13 2.29 0.10 0.53 0.11 0.21 0.49 0.28 0.33 0.72 0.27 0.33 0.27
IHL 0.60 0.13 2.28 0.10 0.53 0.11 0.21 0.48 0.27 0.33 0.72 0.27 0.33 0.27
SELU 0.66 0.13 2.23 0.10 0.53 0.11 0.21 0.49 0.28 0.33 0.72 0.28 0.33 0.28
ST-SELU 0.66 0.13 2.22 0.10 0.53 0.11 0.21 0.49 0.28 0.33 0.72 0.28 0.33 0.28
STL-SELU 0.66 0.13 2.23 0.11 0.53 0.11 0.21 0.49 0.28 0.33 0.72 0.28 0.33 0.28

TOFU Forget05
GA 0.32 0.06 1.56 3.20e-12 0.29 0.06 0.17 0.32 0.25 0.29 0.58 0.25 0.29 0.17
DPO 0.08 0.05 1.13 2.62e-10 0.09 0.05 0.15 0.20 0.26 0.28 0.39 0.24 0.25 0.07
NPO 0.16 0.02 13.18 1.87e-11 0.16 0.02 0.41 0.18 0.32 0.43 0.28 0.33 0.43 0.07
KTO 0.57 0.10 2.12 1.24e-09 0.55 0.11 0.22 0.58 0.28 0.33 0.73 0.28 0.33 0.28
IHL 0.35 0.08 1.80 1.54e-08 0.40 0.10 0.21 0.49 0.28 0.34 0.72 0.27 0.32 0.27
SELU 0.32 0.19 1.56 0.49 0.30 0.18 0.24 0.40 0.35 0.40 0.72 0.34 0.39 0.31
ST-SELU 0.32 0.19 1.55 0.42 0.29 0.18 0.23 0.44 0.34 0.40 0.72 0.34 0.39 0.30
STL-SELU 0.33 0.19 1.53 0.27 0.31 0.18 0.23 0.43 0.34 0.39 0.73 0.34 0.39 0.30

TOFU Forget10
GA 0.36 0.05 119103.72 5.48e-39 0.36 0.05 0.31 0.48 0.26 0.36 0.62 0.24 0.32 0.16
DPO 0.26 0.07 1.19 5.52e-34 0.28 0.08 0.17 0.72 0.25 0.29 0.80 0.24 0.28 0.22
NPO 0.17 0.02 0.98 3.26e-31 0.17 0.03 0.13 0.19 0.23 0.27 0.29 0.22 0.25 0.08
KTO 0.57 0.10 1.72 2.54e-24 0.54 0.11 0.22 0.59 0.28 0.33 0.71 0.28 0.34 0.28
IHL 0.25 0.06 1.36 0.04 0.38 0.11 0.25 0.49 0.30 0.36 0.77 0.28 0.33 0.28
SELU 0.22 0.19 1.41 0.10 0.18 0.19 0.25 0.44 0.39 0.47 0.73 0.37 0.43 0.30
ST-SELU 0.22 0.18 1.37 0.17 0.18 0.18 0.24 0.42 0.38 0.45 0.74 0.36 0.42 0.28
STL-SELU 0.21 0.17 1.32 0.05 0.18 0.16 0.23 0.36 0.39 0.46 0.72 0.37 0.43 0.27

TOFU Results for LoRA r = 8, a = 32

Table 5: Performance of different unlearning methods on TOFU under Forget 01/05/10. Forget
Quality (FQ) measures forgetting; Model Utility (MU) measures retained capabilities. For 16 32
1e-04 One Epoch
Method

Forget Quality Model Utility
Retain Set Real Authors Real World MU (↑)

Rouge-L (↓) Prob. (↓) Truth Ratio (↓) FQ (↑) Rouge-L (↑) Prob. (↑) Truth Ratio (↑) Rouge-L (↑) Prob. (↑) Truth Ratio (↑) Rouge-L (↑) Prob. (↑) Truth Ratio (↑)
Original

Original XX XX XX XX XX XX XX XX XX XX XX XX XX XX
TOFU Forget01

GA 0.64 0.13 2.32 0.10 0.54 0.11 0.21 0.50 0.27 0.33 0.73 0.27 0.32 0.27
DPO 0.64 0.13 2.23 0.08 0.53 0.11 0.20 0.45 0.27 0.33 0.72 0.27 0.32 0.27
NPO 0.64 0.13 2.30 0.10 0.54 0.11 0.21 0.49 0.27 0.33 0.73 0.27 0.33 0.27
KTO 0.66 0.13 2.29 0.10 0.53 0.11 0.21 0.49 0.28 0.33 0.72 0.27 0.33 0.27
IHL 0.60 0.13 2.28 0.10 0.53 0.11 0.21 0.49 0.27 0.33 0.72 0.27 0.33 0.27
SELU 0.66 0.13 2.22 0.10 0.53 0.11 0.21 0.49 0.28 0.33 0.72 0.28 0.33 0.28
ST-SELU 0.67 0.13 2.22 0.10 0.53 0.11 0.21 0.49 0.28 0.33 0.72 0.28 0.33 0.28
STL-SELU 0.66 0.13 2.23 0.10 0.53 0.11 0.21 0.49 0.28 0.33 0.72 0.28 0.33 0.28

TOFU Forget05
GA 0.27 0.06 1.52 4.10e-11 0.25 0.06 0.16 0.25 0.26 0.28 0.54 0.25 0.29 0.16
DPO 0.45 0.08 1.67 1.45e-12 0.48 0.09 0.18 0.63 0.26 0.30 0.77 0.25 0.29 0.25
NPO 0.24 0.03 350284.89 0.00 0.24 0.03 0.37 0.28 0.30 0.40 0.41 0.31 0.39 0.11
KTO 0.56 0.10 2.10 4.09e-09 0.55 0.11 0.22 0.58 0.28 0.34 0.74 0.28 0.33 0.28
IHL 0.35 0.08 1.79 1.93e-07 0.40 0.10 0.22 0.50 0.28 0.33 0.69 0.27 0.32 0.27
SELU 0.32 0.19 1.56 0.46 0.30 0.18 0.24 0.43 0.34 0.40 0.74 0.34 0.39 0.31
ST-SELU 0.33 0.20 1.57 0.25 0.31 0.19 0.24 0.42 0.35 0.40 0.74 0.34 0.40 0.31
STL-SELU 0.33 0.20 1.55 0.36 0.31 0.19 0.24 0.42 0.34 0.40 0.72 0.34 0.39 0.30

TOFU Forget10
GA 0.35 0.04 797.00 5.48e-39 0.36 0.05 0.30 0.45 0.27 0.36 0.65 0.25 0.31 0.16
DPO 0.26 0.07 1.19 3.13e-34 0.28 0.07 0.17 0.73 0.25 0.29 0.79 0.24 0.28 0.22
NPO 0.16 0.02 0.94 9.45e-32 0.15 0.03 0.11 0.17 0.24 0.21 0.24 0.24 0.21 0.07
KTO 0.58 0.10 1.74 1.69e-24 0.56 0.11 0.22 0.58 0.28 0.33 0.74 0.28 0.34 0.28
IHL 0.24 0.05 1.33 0.02 0.37 0.11 0.25 0.45 0.31 0.37 0.77 0.28 0.33 0.27
SELU 0.22 0.16 1.32 0.12 0.18 0.16 0.22 0.41 0.36 0.42 0.73 0.36 0.40 0.27
ST-SELU 0.22 0.18 1.38 0.13 0.18 0.18 0.24 0.42 0.39 0.46 0.72 0.37 0.43 0.29
STL-SELU 0.21 0.19 1.39 0.04 0.18 0.17 0.26 0.37 0.39 0.47 0.74 0.38 0.44 0.28

TOFU Results for LoRA r = 16, a = 32

C DETAILED BROADER UTILITY RESULTS
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Table 6: tinyMMLU and tinyARC performance (accuracy, %) for TOFU (Llama-2-7B) across
TOFU splits.

Model Split Method tinyMMLU (%)↑ ARC-Challenge (%)↑

Llama-2-7B

forget01

GA 0.383 0.370
DPO 0.379 0.379
NPO 0.386 0.374
KTO 0.390 0.3690
IHL 0.386 0.380
SELU 0.390 0.370
ST-SELU 0.390 0.370
STL-SELU 0.390 0.370

forget05

GA 0.337 0.371
DPO 0.366 0.382
NPO 0.342 0.274
KTO 0.385 0.375
IHL 0.358 0.374
SELU 0.369 0.383
ST-SELU 0.364 0.381
STL-SELU 0.365 0.388

forget10

GA 0.309 0.263
DPO 0.353 0.340
NPO 0.313 0.274
KTO 0.387 0.380
IHL 0.307 0.375
SELU 0.360 0.367
ST-SELU 0.360 0.367
STL-SELU 0.363 0.389

D FURTHER DETAILS
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Figure 6: Pareto frontier of Forget Quality (x-axis) versus Model Utility (y-axis) on the TOFU
benchmark for the LoRA (r=16, a=32)
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