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ABSTRACT

Large Language Models (LLMs) require post-training to adapt to specific ap-
plications, with Supervised Fine-Tuning (SFT) crucial for injecting emerging or
domain-specific knowledge. Conventional SFT using complete sequential text
risks causing a distribution shift from pretraining corpora due to large volumes
of common-style text, potentially leading to overfitting and catastrophic forget-
ting. We introduce Skip-Tuning, a novel fine-tuning strategy that utilizes non-
successive text segments instead. Skip-Tuning performs skipped language mod-
eling on text segments and enables a paradigm of partial-correlation learning,
where the model learns from sparse but meaningful text fragments. By exclud-
ing common-style texts and using only knowledge-intensive text for fine-tuning,
Skip-Tuning demonstrates improvements in fine-tuning effectiveness and general-
ization in the knowledge editing setting. Furthermore, we demonstrate the effec-
tiveness of partial-correlation learning in a system-prompt following task, which
illustrates the broad application of Skip-Tuning across various NLP scenarios.

1 INTRODUCTION

Large Language Models (LLMs) exhibit remarkable proficiency across a variety of natural language
tasks. To tailor pretrained LLMs for specific real-world applications, post-training is an essential
step. The prevailing view holds that LLMs primarily acquire knowledge during the pre-training
phase. Post-training, which encompasses Supervised Fine-Tuning (SFT) for style and format adap-
tation (Ouyang et al., 2022; Zhou et al., 2023a) and Reinforcement Learning (RL) techniques for
preference alignment (Rafailov et al., 2024; DeepSeek-AI, 2025), serves to unlock the model’s in-
herent capabilities.

However, beyond style and format adaptation, SFT approaches are needed to inject knowledge that
aligns with emerging or long-tail domain-specific knowledge(Huang et al., 2025; Han et al., 2024).
Current practices in obtaining SFT data generally involve collecting or synthesizing “instruction-
response” data that represents the target knowledge with complete sequential text. Furthermore,
to accommodate downstream use cases, chat templates or other specific formats are generally em-
ployed (Illustrated in Figure 1,a).

Here we revisit this knowledge-intensive SFT data design that extends knowledge concepts to com-
plete sequential text. The main advantages of this approach are: 1) Complete sequential text aligns
with the fundamental learning objectives for LLMs as language models; 2) Natural language context
provides information that helps models understand relationships between concepts, consistent with
the spirit of instruction tuning (Ouyang et al., 2022); 3) The unified format facilitates alignment
between test and training distributions.

However, large volumes of common text can shift the SFT dataset distribution away from the pre-
training corpus, leading to the risk of overfitting to common styles and catastrophic forgetting(Liu
et al., 2024; Li et al., 2024). This is also evidenced by the careful consideration for data variety
(Han et al., 2024) and training techniques to mitigate catastrophic forgetting (Lu et al., 2025) when
performing SFT.

Observe that a significant portion of common-style text derives from extended natural language
contexts and model-specific formatting patterns. This observation prompts the question: Is it feasible
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⟨|begin of text|⟩⟨|start header id|⟩ user ⟨|end header id|⟩

What is Cython influenced by ? ⟨|eot id|⟩

⟨|start header id|⟩ assistant ⟨|end header id|⟩

Python ⟨|eot id|⟩

SFT Data (with Chat Template)

Correlations in Full Text

user ⟨|end header id|⟩

Cython influenced by Python

⟨|eot id|⟩Python

. . . . . .

Cython influenced by

Focused Partial Correlation

Cython influenced by

Python

Skip-Tuning Data

Cython influenced by Python

Training Data

Conventional SFT Skip-Tuning

Learning Correlations

Figure 1: Illustration of motivations for our Skip-Tuning work by highlighting the idea of partial-
correlation learning. a) General SFT data formatted with a chat template. Black dashed blocks
denote the model-specific formatting; blue dotted blocks denote the general natural language con-
text; red blocks highlight the focused knowledge-intensive text segments. The demonstrated chat
template uses LLaMA-3-8B-Instruct (AI@Meta, 2024). b) Correlations in the full SFT data, rep-
resenting general co-occurrence patterns. c) Skip-Tuning data, which exclusively retains target
knowledge-intensive texts. d) Correlations in the Skip-Tuning data, which represent the most im-
portant subset of the full correlations, thus forming the basis for what we call partial-correlation
learning.

and advantageous to mitigate the potential biases introduced by these sources by using exclusively
knowledge-intensive texts for SFT?

To be specific, our objective is not for the model to learn complete natural language expressions,
which LLMs already excel, nor focus to learn model-specific formats, which typically occur fre-
quently in fine-tuning datasets. Instead, our focus centers on knowledge-intensive content that may
be underrepresented in standard training corpora, emphasizing the partial-correlations represented
by specialized knowledge rather than numerous correlations represented by complete text (Illus-
trated in Figure 1).

To meet this intuition, in this paper, we introduce Skip-Tuning, a novel fine-tuning strategy for
LLMs that utilizes non-successive text segments rather than conventional successive complete texts
during the fine-tuning process. Skip-Tuning enables a paradigm that performs conventional language
modeling within each text segment while modeling a skipped language modeling that captures the
partial-correlation of the full text through the co-occurrence of text segments with certain position
margins.

We will show that the partial-correlation learning intuition of Skip-Tuning is generally applicable,
extending beyond knowledge injection settings. To validate the effectiveness of Skip-Tuning, we
conduct experiments on both knowledge editing and system prompt following tasks, experimental
results demonstrate improvements in fine-tuning effectiveness and generalization. Further, we show
that Skip-Tuning enables a well-defined notion of position invariance, facilitating a design for robust
learning.

Our contributions are summarized as follows,
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• We propose Skip-Tuning, a novel fine-tuning strategy for LLMs that utilizes non-successive
text segments. Skip-Tuning enables a partial-correlation learning paradigm for LLM fine-
tuning, serves as an alternative or supplement to conventional SFT.

• We apply Skip-Tuning in the knowledge editing setting, by excluding common-style texts
and using only knowledge-intensive text for fine-tuning, Skip-Tuning demonstrates im-
provements in fine-tuning effectiveness and generalization.

• We further demonstrate the effectiveness of partial-correlation learning in a system-prompt
following task, which illustrates the broad application of Skip-Tuning across various NLP
scenarios. Through this experimental setting, we discuss a general paradigm that enhance
SFT performance with Skip-Tuning.

2 RELATED WORKS

Supervised Fine-Tuning (SFT) for LLMs.

SFT is the standard approach for adapting pretrained LLMs to specific tasks or domains. Early
work by Ouyang et al. (2022) demonstrated that apply SFT with high-quality “instruction-response”
pairs significantly improves model performance and generalization. Recent studies have explored
various aspects of SFT, primarily focusing on data-based methods that apply domain-oriented data
engineering, including data collection, filtering, and formatting to optimize model adaptation (Han
et al., 2024; Chen et al., 2023). To achieve specific performance goals, synthetic data generation
to improve SFT data quality has drawn significant attention (Xu et al., 2023; Sun et al., 2024),
especially for specialized or complex tasks. These approaches are limited to complete sequential
text, whereas our proposed Skip-Tuning method explores the potential of using non-successive text
segments for fine-tuning.

Knowledge Editing for LLMs.

Knowledge editing for LLMs refers to the process of modifying or injecting specific knowledge
(typically represented as knowledge graph triplets) into pre-trained LLMs. Locate-then-Edit is
a representative category of methods that locate where the input knowledge is embodied in the
model and edit the corresponding parameters(Meng et al., 2022a;b). Finetuning-based methods are
considered as knowledge editing approaches for LLMs(Zhang et al., 2024a; Huang et al., 2025),
particularly for parameter-efficient finetuning methods that enhance fine-tuning effectiveness while
mitigating catastrophic forgetting(Hu et al., 2021; Lu et al., 2025). Unlike full retraining, these fine-
tuning approaches modify only a small subset of parameters, thus aligning with the core principle
of knowledge editing.

System Prompt Following.

Instruction following involves adhering to user intentions to generate helpful responses, which is
fundamental to modern LLM applications (Zhang et al., 2024b). We focus on a specific case of in-
struction following that pays attention to the system prompt, which is a predefined directive guiding
model behavior (Mukherjee et al., 2023). For chat models oriented toward customers, developers
depend on system prompts to specify important context, output format, personalities, guardrails,
content policies, and safety countermeasures (Mu et al., 2025).

3 PRELIMINARIES: INPUT FOR LLMS

Currently dominant structure of LLMs follows the decoder-only transformer architecture(Vaswani
et al., 2017), which requires a tokenized text sequence as input. Such sequences consist of input
IDs (X) containing tokens that encode character fragments, and position IDs (P) that encode token
positions.

X = [x1, x2, . . . , xL], xi ∈ Z

P = [p1, p2, . . . , pL], pi ∈ Z

3
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Our Skip-Tuning approach adopts the same input format but differs in the position IDs: whereas
conventional SFT employs successive position IDs, Skip-Tuning utilizes non-successive position
IDs.

4 METHOD: SKIP TUNING

In this section, we present Skip-Tuning, a fine-tuning strategy for LLMs that utilizes non-successive
text segments rather than conventional successive complete texts. Skip-Tuning shares nearly the
same modeling structure (Section 4.1) as conventional SFT on LLMs, except for data preparation
and the processing of position IDs (Section 4.1.2). This approach enables a partial-correlation learn-
ing paradigm for LLM fine-tuning, we will discuss these applications in Section 4.2, including
knowledge editing and system-prompt following tasks.

4.1 MODELING STRUCTURE

Skip-Tuning serves as a extension of LLMs SFT, which encourage the position IDs to be non-
successive. As illustrated in Figure 2, the overall pipeline for Skip-Tuning includes data prepara-
tion, tokenization and position ID assignment, followed by the standard decoder-only transformer
modeling(Vaswani et al., 2017).

Text Data Preparation

Tokenization

Pipeline

Ready for LLM

Full Text

Text Segments

What is Cython influenced by? Python

Cython influenced by Python

[3923, 374, 18221, 4690, 28160, 555, 30, 13325]

Conventional SFT Skip-Tuning

What is Cython influenced by? Python

Object

[ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ]

[18221, 4690] [28160, 555] [13325]

[ 0 , 1 ] [ 0 , 1 ] [ 0 ]

Input IDs segments

Position IDs segments

[18221, 4690, 28160, 555, 13325]

[ 0 , 1 , 4 , 5 , 7 ]

Input IDs

Position IDs

Perbutated Position IDs

[3923, 374, 18221, 4690, 28160, 555, 30, 13325]

[ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ]

[18221, 4690, 28160, 555, 13325]
LLM Inputs

[ 0 , 1 , 3 , 4 , 7 ]

[ 0 , 1 , 3 , 4 , 7 ]

Figure 2: Modeling structure of Skip-Tunnig, compared with conventional SFT. Processes in dashed
block are optional. The demonstrated tokenizatoin result is using LLaMA-3-8B-Instruct (AI@Meta,
2024) tokenizer.

4.1.1 DATA PREPARATION

Data preparation for Skip-Tuning involves collecting a list of ordered text segments, two major cases
exist: 1)For tasks such as common knowledge editing setting with knowledge graph triplets, where
training samples consist of non-successive text segments, it already fit the input for Skip-Tuning,
further preparation is optional. As a comparision, conventional SFT generally requires synthesizing
full sentences. 2) For tasks using successive text as training samples, Skip-Tuning involves splitting
the text into segments based on the correlations between them that the model is required to learn.

4.1.2 POSITION IDS

To tokenize the text segments and form the input for LLMs, we first tokenize each text segment and
then concatenate them to create the final input. To model the relative positions among segments,
we assign position IDs to each segment in non-descending order. The non-successive nature of

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Training data illustration for transforming original data into Skip-Tuning data for knowl-
edge editing and system prompt following tasks. Text segments are represented as comma-separated
text lists. The chat template is formulated with message role in bracket “()”

For Knowledge Editing
Origin Data: [“Cython”, “influenced by”, “Python”]

Skip-Tuning: [“Cython”, “influenced by”, “Python”], [“influenced by”, “Cython”, “Python”]
For System Prompt Following

Origin Data: ”(system)Think like you are answering to a five year old.
(user)Write a sentence that describes: : John van den Brom, club, ADO Den Haag.
(assistant)John van den Brom is a person who is associated with a club named ADO Den Haag.”

Skip-Tuning: [“(system)Think like you are answering to a five year old.”,
“John van den Brom is a person who is associated with a club named ADO Den Haag.”]

Skip-Tuning suggests using a predetermined margin for position IDs of each tokenized segment, the
margin would be set according to the specific task requirements.

Here we discuss a subtle aspect specific to Skip-Tuning: position invariance. It is an intuition
that slight disturbances in the input, including minor adjustments to word positions, would not be
expected to significantly alter the output of LLMs. This is also a practical consideration in LLM
prompt injection defense(Chen et al., 2024). In Skip-Tuning, this intuition is instantiated as position
invariance, where given tokenized text segments with an arbitrary margin within a reasonable range,
we expect the output to remain invariant, guaranteed by minor changes in the output representation.

This invariance could be categorized under geometric deep learning, where such properties are
guarateed by modeling structure(Bronstein et al., 2021). In this work, we only involve a simple
data-based intuitive method that randomly disturbs the predetermined skip margin, as reflected in
the experiment on system prompt following (Section 5.2).

4.2 APPLICATIONS

In this section, we present two tasks for adopting Skip-Tuning to learn the expected partial-
correlation. This covers application cases for both non-successive knowledge-intensive text (knowl-
edge editing) and complete sequential text (system prompt following). The design of Skip-Tuning
samples for these tasks is illustrated in Table 1.

4.2.1 KNOWLEDGE EDITING

For the common knowledge editing setting involving a knowledge graph triplet
(subject, relation, object) (Huang et al., 2025), the triplet itself naturally serves as the target
text segments for Skip-Tuning, representing a declarative sentence structure. We employ both the
original triplet (subject, relation, object) and its swapped counterpart (relation, subject, object)
as Skip-Tuning samples, based on the intuition that the variation in word order between interrogative
and declarative sentence structures. We suggest a moderate position ID margin, following the
intuition that these knowledge segments generally co-occur closely within the text.

4.2.2 SYSTEM PROMPT FOLLOWING

For system prompt following tasks, we follow the general LLM Supervised Fine-Tuning (SFT)
setting, which utilizes high-quality instruction tuning datasets formatted with chat templates for
fine-tuning. We randomly substitute a portion of the training samples with their corresponding
Skip-Tuning samples.

Here we discuss the design of these Skip-Tuning samples. The SFT data for system prompt follow-
ing generally involves a system prompt message, followed by a list of user-model interaction. This
data is generally formatted as the widely adopted “system-user-assistant” message list for commer-
cial and open-source LLMs (OpenAI, 2022; AI@Meta, 2024). The goal of this setting is to develop
instruction-following capabilities for LLMs, with special emphasis on following the system prompt.

To strengthen the correlation between system instructions and model responses, we employ Skip-
Tuning that exclusively selects system prompts and model responses from the training data, while
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omitting the user prompts. To reserve the positional slots of the omitted user prompt, a larger
position ID margin is suggested.

5 EXPERIMENTS

5.1 KNOWLEDGE EDITING

5.1.1 DATASETS AND TASKS

To demonstrate the effectiveness of adopting Skip-Tuning for knowledge injection, we conduct ex-
periments on the knowledge editing benchmark HalluEditBench(Huang et al., 2025). HalluEdit-
Bench assesses editing performance across multiple dimensions, including Efficacy (direct edit),
Generalization (edit generalization across different form), Portability (multi-hop edit efficacy), and
Locality (degree of forgetting). This benchmark specifically addresses hallucinations in LLM gen-
erations by evaluating knowledge injection methods designed to reduce such errors.

HalluEditBench provides training data in two forms: a knowledge graph triple and a correspond-
ing sentence that represents it. These formats are suitable for Skip-Tuning and conventional SFT,
respectively, allowing for a comparison between these approaches.

5.1.2 EXPERIMENTAL CONFIGURATION

We use LLaMA-3-8B-Instruct(AI@Meta, 2024), LLaMA-2-7B-chat(Touvron et al., 2023) and
Mistral-v0.3-Instruct-7B(Jiang et al., 2023) as base models, and fine-tune for 64 steps each with
the parameter-efficient fine-tuning method LoRA(Hu et al., 2021), with rank r = 8, targeting for
Q,V matrix in the attention layer the transformer. The learning rate is set to 5e-4 for LLaMA-3-8B-
Instruct and 2e-4 for LLaMA-2-7B-chat and Mistral-v0.3-Instruct-7B. The predetermined margin
for Skip-Tuning is set to 5. Experiments are conducted on 1 NVIDIA A100 40G GPU.

5.1.3 COMPARISON METHODS

We aim to compare the performance of SFT and Skip-Tuning (denoted as “-skip”) for knowledge
injection. Conventional SFT for knowledge editing pose a risk of catastrophic forgetting, where
base model capabilities may lost during the adaptation process. Besides the LoRA fine-tuning, we
include results of CLoRA(Lu et al., 2025), which is a learning-based catastrophic forgetting miti-
gation method that introduces no impact on data utilization, making it suitable for our comparative
analysis.

We include a ablation result for using (subject, relation, object) for Skip-Tuning data alone, de-
noted as “-noswap”, instead of both (subject, relation, object) and (relation, subject, object) for
the default setting.

5.1.4 RESULTS AND ANALYSIS

Overall Results We report the results on HalluEditBench in Table 2. Overall, Skip-Tuning demon-
strates superior or comparable results for all assessment dimensions. The result demonstrates the
feasibility of Skip-Tuning, especially considering that we are using lossy data with reduced format-
ting quality.

Effectiveness Aware Metrics Efficacy and Generalization are two direct metrics that reflect the
fine-tuning effectiveness. Results show that Skip-Tuning generally achieves improvement across
these metrics. Note that for our included CLoRA result, Generalization shows improvement at the
cost of lower Efficacy, we owe this to the constraints on learning. In contrast, when introducing
Skip-Tuning, Efficacy and Generalization simultaneously improve, which demonstrates the effec-
tiveness of Skip-Tuning as a knowledge injection strategy that successfully balances efficacy and
generalization.

Forgetting Aware Metrics Localization is the most direct metric for measuring forgetting, as it
quantifies the model’s ability to recall information beyond the edit target. Meanwhile, Multi-Hop
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Table 2: Evaluation results on HalluEditBench benchmarks, with accuracy scores (%) reported for
the four assess dimension: Efficacy, Generalization, Multi-Hop Portability, and Locality. Bold font
highlight the best result among all compared results for same base model and fine-tuning method.

Methods Efficacy Generalization Multi-Hop Locality
LLaMA-3-8B-Instruct

LoRA 98.09 49.93 19.09 14.57
LoRA-skip 98.53 52.68 23.17 22.40
LoRA-skip-noswap 98.49 52.73 22.12 22.31
CLoRA 90.53 53.43 25.81 40.75
CLoRA-skip 94.95 52.42 23.39 35.15
CLoRA-skip-noswap 94.46 52.42 23.39 40.68

LLaMA-2-7B-Chat
LoRA 91.85 45.74 24.44 48.51
LoRA-skip 96.76 47.99 17.98 38.89
LoRA-skip-noswap 97.10 48.08 17.98 39.44

Mistral-v0.3-7B-Instruct
LoRA 98.68 48.57 13.42 25.16
LoRA-skip 96.14 52.06 14.67 22.29
LoRA-skip-noswap 95.60 48.57 16.55 24.84

metric involves inference capabilities that are more closely related to the base model’s inherent
reasoning abilities. These two metrics provide an evaluation for the forgetting.

Results show that Skip-Tuning generally out-performs on LLaMA-3-8B-Instruct and Mistral-v0.3-
7B-Instruct, but under-performs on the weaker base model LLaMA-2-7B-chat and when compared
to CLoRA results. It is worth noting that these under-performed results occur in situations where
Efficacy largely under-performs Skip-Tuning, as the weaker base model or the added learning con-
straints by CLoRA resist learning. Thus, we attribute this to the fact that with strong learning
intensity, Skip-Tuning helps improve robustness and mitigate forgetting.

Whether to Swap Subject and Relation? With both (subject, relation, object) and
(relation, subject, object), the results showed generally improved efficacy, though not signifi-
cantly, which reflects our intuition that the order with relation before subject is more common.
herefore, we generally recommend adopting both order when using Skip-Tuning to learn knowledge
graph triplets.

5.2 SYSTEM PROMPT FOLLOWING

5.2.1 DATASETS AND TASKS

To demonstrate the effectiveness of adopting Skip-Tuning for system prompt following, we conduct
experiments on two benchmarks: RealGuardRails and System-IFEval.

RealGuardRails, a recently proposed system prompt following benchmark(Mu et al., 2025), consists
of 239 handwritten test cases that either align or conflict with the system prompt in each test case, and
504 distractor test cases which attempt to distract the model away from its system prompt with in-
context demonstrations of unrelated tasks. We use official suggested GPT-4o-2024-08-06(OpenAI,
2024) as the required LLM-as-judge model.

System-IFEval, suggested by Mu et al. (2025), is based on the instruction-following benchmark
IFEval(Zhou et al., 2023b), and transform the rules in user input to system prompt, thus introduces
an emphasis on system prompts. We use System-IFEval to evaluate the ability of LLMs to follow
precise instructions embedded in their system message.

We use the training dataset from Mu et al. (2025) for fine-tuning, which is a high-quality SFT dataset
composed of 151K data samples covering single-turn and multi-turn, generic and complex system
prompts. We transform part of the data sample with system prompt to Skip-Tuning sample. More
details for the training data configuration are listed in Appendix A.
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Table 3: Evaluation results on System-IFEval and RealGuardRails benchmarks, with accuracy
scores (%) reported. For System-IFEval, “[S]” and “[L]” denote strict and loose accuracy, “P”
and “I” indicate the prompt and instruction level. Underlined text highlight best result for the same
Skip-Tuning ratio. Bold font highlight the best result among all compared results.

System-IFEval RealGuardRails
Methods P[S] I[S] P[L] I[L] handwritten distractors
SFT(Mu et al., 2025) 59.40 - 62.30 - 46.00 24.60
skip-0% (SFT) 60.64 71.27 64.89 74.34 44.35 39.48
skip-25%

disturb-50% 64.04 73.78 68.51 76.85 51.46 44.84
disturb-25% 61.28 71.55 65.11 74.48 47.70 44.64
disturb-0% 61.49 70.57 65.32 73.78 46.03 43.25

skip-50%
disturb-50% 62.34 71.97 67.02 75.45 51.05 41.87
disturb-25% 63.19 72.26 67.02 75.45 48.12 41.67
disturb-0% 64.26 73.08 67.66 76.01 44.77 42.06

skip-75%
disturb-50% 58.94 68.76 64.04 73.08 42.68 38.69
disturb-25% 59.36 68.76 64.47 72.66 45.61 40.28
disturb-0% 60.43 70.43 65.11 74.20 44.77 38.10

5.2.2 EXPERIMENTAL CONFIGURATION

We use LLaMA-3-8B(AI@Meta, 2024) as the base model and fine-tune the dataset for 2 epochs with
the parameter-efficient fine-tuning method LoRA(Hu et al., 2021), with rank r = 16, targeting all
attention and FFN layers in the transformer. The learning rate is set to 1e-4 with a cosine scheduler,
the max training length is set to 4096 and over-lengthed data are dropped, the batch size is set to 128.
The predetermined margin for Skip-Tuning is set to 100. Experiments are conducted on 2 NVIDIA
A100 40G GPUs.

5.2.3 COMPARISON METHODS

We aim to test the effectiveness of introducing partial-correlation learning through Skip-Tuning,
compared to conventional SFT. As mentioned in the method section 4.2.2, we randomly substitute
a portion of the training samples with their corresponding Skip-Tuning samples. The retained SFT
samples ensure the learning for common generation capability.

To evaluate the impact of Skip-Tuning, we control the ratio of Skip-Tuning samples to test the bene-
fits and trade-offs of introducing Skip-Tuning samples in the system prompt following SFT. We de-
note the variant skip-x% as substituting x% of substitutable samples with Skip-Tuning samples. Ad-
ditionally, we examine Position ID disturbance as a data augmentation mechanism to improve gener-
alization. We test its effectiveness with varying disturbance ranges, denoting the variant disturb-x%
as randomly disturbing position IDs with margin m in the range of ((1− x%)m, (1 + x%)m). We
include result in (Mu et al., 2025), which is full parameter fine-tuned, our re-implement reaches a
higher result.

5.2.4 RESULTS AND ANALYSIS

We report the results for System-IFEval and RealGuardRails benchmarks in Table 3, which presents
the main results for using different Skip-Tuning sample ratios, along with ablation results for posi-
tion ID disturbance.

Impact of Skip-Tuning Ratio The Skip-Tuning setting we proposed for the system prompt fol-
lowing task may seem like an uncommon design, as it breaks the successive generation of model
output in response to user input. This characteristic raises questions about the compatibility of Skip-
Tuning with conventional SFT, necessitating an investigation into mixed training approaches. Our
results about these concerns with two key findings: 1) Mixed training of Skip-Tuning and conven-
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tional SFT is both feasible and advantageous; 2) A certain portion of conventional SFT data needs
to be retained to maintain optimal performance.

For 1), the superior results for Skip-Tuning with 25% and 50% ratios compared to SFT demonstrate
the effectiveness of Skip-Tuning for the system prompt following task. Even with a large ratio of
75%, the capability for generation in response to system and user prompts is retained, showing
a performance comparable to SFT. This demonstrates the compatibility of conventional SFT and
Skip-Tuning, highlighting that Skip-Tuning serves as a feasible and advantageous supplement to
conventional SFT.

For 2), although performance comparable to SFT with a large ratio 75% of Skip-Tuning substitution,
it remains below the SFT baseline. Also, best result is get on 25%, demonstrate This highlights the
need for a certain portion of SFT data to learn the full relationships within the text that maintain
generation quality.

Impact of Position ID Disturbance The position ID disturbance is introduced for Skip-Tuning
as an intuitional utilization for position invariance4.1.2. Practically, it serves as a data-augmentation
strategy for Skip-Tuning to facilitate robust learning and generalization. As the results show, for
skip-25%, the best performance is achieved with large disturbance, while for larger skip ratios,
the advantage is diminished. We attribute this to the fact that with large Skip-Tuning ratios, there
is sufficient variety in the Skip-Tuning samples. Consequently, the disturbance introduces fewer
advantages and is overshadowed by the disadvantages of insufficiently learning these samples. For
small skip ratios, however, the position ID disturbance is recommended.

5.2.5 DISCUSSION

The proposed and experimentally tested system prompt following tasks demonstrates a potential
general paradigm for applying Skip-Tuning to enhance SFT performance, consists of steps as fol-
lows:

1. Identify the core capability that the existing SFT data is expected to enhance, such as system
prompt following capability here.

2. Select text segments that most essentially demonstrate this capability through their cor-
relation, and predetermine the margin between each two successive segments to reflect
position-aware co-occurrence.

3. Train with a mixture of original SFT samples and Skip-Tuning samples, applying position
ID perturbation if needed.

6 CONCLUSION AND LIMITATIONS

In this paper, we introduce Skip-Tuning, a novel fine-tuning strategy for LLMs that uses non-
successive text segments instead of complete sequential texts. Skip-Tuning performs skipped lan-
guage modeling on text segments, enabling a paradigm of partial-correlation learning where the
model learns from sparse but meaningful text fragments. Experimental results demonstrate the ef-
fectiveness of Skip-Tuning on knowledge editing and system-prompt following tasks. Skip-Tuning
shows potential for broader application across various NLP scenarios. We introduce a “Target Ca-
pacity - Reflected Text Fragment - Mixture Skip-Tuning with SFT” pipeline that acts as a general
paradigm for enhancing SFT performance with Skip-Tuning.

Limitations of this paper include: 1) Broader Applications: Our empirical tests for Skip-Tuning
cover only one scenario for both with non-successive and successive training data. Exploring more
applications would be valuable, and we leave this to future work. 2) Deeper Insight with Position
Invariance: The position invariance for Skip-Tuning discussed in this paper may play an important
role in improving the robustness of LLMs, but we only provide a data-based method that intuitively
meets this requirement. Architecture-based methods for achieving position invariance may be a
future direction. The value of this approach would be particularly highlighted in custom-oriented
scenarios, which we leave for future work.
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A DETAILED EXPERIMENT SETUP FOR SYSTEM PROMPT FOLLOWING

A.1 TRAINING DATASET

We use the official training dataset from the RealGuardRails benchmark (Mu et al., 2025). This
dataset is a high-quality SFT dataset comprising 151K data samples that cover both single-turn and
multi-turn conversations, as well as generic and complex system prompts. The distribution of these
data types is presented in Table 4.

Table 4: Training Data in RealGuardRails benchmark.
Data Quantity Description
RealGuardrails SFT 18497 single-turn, tool-calling assistants, system prompts
Multifaceted Collection 20000 single-turn, complex persona system prompts
Glaive v2 20000 single-turn, tool-calling, system prompts
SPML 12541 single-turn, system prompts,

prompt injection attempts with
newly-generated completions

Tulu3 Persona IF 20000 single-turn, instruction-following
Tulu3 WildGuardMix 20000 single-turn, harmful/benign refusals and responses
WildChat GPT-4 20000 multi-turn, real user conversations with GPT-4
SlimOrca 20000 single-turn, instruction + CoT answer,

generic system prompts

Out of 151K data samples, 91K contain system prompts. In our Skip-Tuning data processing design
(Section 4.2.2), only data containing system prompts can be transformed. Therefore, substituting
50% of the substitutable data accounts for nearly 30% of the full dataset size.

B REPRODUCIBILITY STATEMENT

We have discussed the hyperparameter settings in the experiment section 5. The proposed Skip-
Tuning method is easy to implement and requires almost no modification to be adopted in various
LLM infrastructure settings. The evaluation results for benchmarks were obtained using the official
code.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

We utilized the GLM-4.5(ZhipuAI, 2025), a commercial large language model (LLM), to polish
the writing. Our usage involved these stages: initially, we manually drafted the paper’s paragraphs,
and subsequently we employed the LLM to rewrite them for spelling and grammar correction. We
meticulously reviewed the generated output to ensure it remained consistent with our original content
and intended meaning.
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