
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020 1

A Dataset Auditing Method for Collaboratively
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Abstract— Dataset auditing for machine learning (ML)
models is a method to evaluate if a given dataset is used
in training a model. In a Federated Learning setting where
multiple institutions collaboratively train a model with their
decentralized private datasets, dataset auditing can facili-
tate the enforcement of regulations, which provide rules for
preserving privacy, but also allow users to revoke autho-
rizations and remove their data from collaboratively trained
models.

This paper first proposes a set of requirements for a
practical dataset auditing method, and then present a novel
dataset auditing method called Ensembled Membership Au-
diting (EMA). Its key idea is to leverage previously proposed
Membership Inference Attack methods and to aggregate
data-wise membership scores using statistic testing to au-
dit a dataset for a ML model. We have experimentally eval-
uated the proposed approach with benchmark datasets,
as well as 4 X-ray datasets (CBIS-DDSM, COVIDx, Child-
XRay, and CXR-NIH) and 3 dermatology datasets (DERM7pt,
HAM10000, and PAD-UFES-20). Our results show that EMA
meet the requirements substantially better than the previ-
ous state-of-the-art method.

Our code is at: https://github.com/Hazelsuko07/EMA.

Index Terms— Privacy, Dataset Auditing, Medical Image
Classification

I. INTRODUCTION

Advances in artificial intelligence (AI) have led to many
disruptive innovations in science and technology. However,
AI for healthcare is hindered by restricted accesses to de-
centralized data silos due to privacy concerns and regulations
such as Health Insurance Portability and Accountability Act
(HIPAA) [1] that prohibit the sharing of sensitive healthcare
data.

Federated learning (FL) [2], [3] is a promising paradigm
to mitigate such concerns as it allows multiple participants to
collaboratively train a model without transferring decentralized
datasets to a central server. However, recent regulations such
as California Consumer Privacy Act (CCPA) [4] and General
Data Protection Regulation (GDPR) [5] give individuals more
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Fig. 1: In a Federated Learning setting where multiple insti-
tutions (clients) collaboratively train a model, one institution
withdraws and later uses dataset auditing to ensure its dataset
is removed from the model.

control over their data, such as revoking previous authoriza-
tions and removing data from collaboratively trained models.

Dataset auditing for machine learning models is a ver-
ification process to facilitate the implementation of such
regulations. If an institution withdraws its participation from
an FL agreement and requires removing its dataset from a
collaboratively trained model, dataset auditing can be used to
ensure that its dataset is not used in training the latest model,
as shown in Figure 1.

In addition, dataset auditing can be used to check if a
suspicious dataset or poisoned dataset is used in training
a model, avoiding the potential hazards of using malicious
datasets. Dataset auditing can also be used to monitor whether
a machine learning model meets its requirement. For example,
when the FDA examines whether an AI model is trained on
the given collection of datasets that include biased group data
for AI fairness [7], dataset auditing can be used to ensure that
datasets including underrepresented groups are used in training
a model.

In this paper, we first propose a set of design requirements
for a practical dataset auditing method. A practical method
should have minimal input requirements, be time-efficient
for large audited dataset and model, be robust with audited
datasets of different scales and distributions, and ideally
provide certain theoretical guarantees. As dataset auditing
is an under-explored topic, no previous method meets all
requirements well.

We then present an Ensembled Membership Auditing
(EMA) method inspired by previous work on membership
inference attacks [8]on a trained model (see Fig. 2). EMA
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Ideal requirements CaliForget [6] EMA (ours) Reference

Inputs
Access to audited dataset Da Yes Yes
Black-box access to audited model Yes Yes Section III-A

Calibration dataset Dcal Dcal Section III-A

Efficiency Time and space efficient Train a model with Dcal, and a model with Da Train a model with Dcal Section III-A

Robustness
Allow various distributions of Da Not stable in several cases Stable Section VI-C.1
Allow small |Da| Work when |Da| ≥ 800 Work when |Da| ≥ 50 Section VI-C.2

Sensitive to the quality of Dcal Not so sensitive Section VI-C.3

Analysis Theoretical guarantee No No Future work

TABLE I: Requirements for dataset auditing. These requirements can be viewed as a checklist of evaluating objectives to
optimize a dataset auditing algorithm. We categorize them into: inputs, efficiency, robustness, and analysis. CaliForget and
EMA meet some requirements well. (See Section IV for details).

consists of a 2-step procedure: infers whether the model
memorizes each sample of the audited dataset based on mul-
tiple membership metrics, and ensembles these membership
metrics and utilizes statistical tools to aggregate the sample-
wise results and obtain a final auditing score. We show that this
method meets the design requirements better than the previous
state-of-the-art [6].

Our contributions are summarized as follows:
1) Requirements for dataset auditing. We propose a set

of requirements for a practical dataset auditing method
in terms of inputs, efficiency, robustness and theoretical
guarantee.

2) Ensembled Membership Auditing (EMA). We propose
a novel method for dataset auditing. We demonstrate that
EMA meets the requirements better than the previous
state-of-the-art CaliForget [6].

3) Experimental evaluations with medical datasets. Our
evaluation includes three types of datasets, including
non-medical benchmark datasets (MNIST and SVHN),
Chest X-ray datasets (COVIDx, Child-XRay, CXR-NIH
and CBIS-DDSM), and skin lesion datasets (HAM and
PAD-UFES-20). Our experiments demonstrate that EMA
approach is robust under various practical settings, in-
cluding the conditions that the previous method fails.

A preliminary version of this work was done, known
as [9]. This manuscript extends the preliminary work in
two ways. First, we propose the requirements for dataset
auditing. Second, we have conducted extensive experiments on
new datasets (e.g. dermatology datasets such as HAM10000
and PAD-UFES-20) and detailed ablation studies to validate
the generalizability of EMA under practical conditions and
settings.

II. RELATED WORK

Dataset auditing for machine learning models is an under-
explored area of research. The only previous work on dataset
auditing for machine learning models is CaliForget [6], an
algorithm to verify if an audited dataset is used by an audited
machine learning model, with the help of a calibration dataset.
The method is based on Kolmogorov-Smirnov (KS) distance
and requires training a model on the audited dataset. However,
the method fails under certain practical conditions, such as
when the audited dataset is similar to the training dataset or
when the calibration dataset is not of high quality.

One of the components of our proposed method is mem-
bership inference attack. ML models such as DNNs are
often overparameterized, which means that they have suffi-
cient capacity to memorize information about their training
datasets [10]–[12]. Such ML models are vulnerable to mem-
bership inference attacks (MIAs) [8], [13]–[15], which aim
to infer whether a single data record was used to train an
ML model or not (see Section V-A for a formal problem
formulation).

Dataset auditing in general is an important process to facility
the implementation of data protection regulations. Health
Insurance Portability and Accountability Act (HIPAA) [1]
enacted in 1996 is a federal regulation to protect sensitive pa-
tient health information from being disclosed without patients’
consent. More recent regulations such as California Consumer
Privacy Act (CCPA) [4] and General Data Protection Reg-
ulation (GDPR) [5] give individuals control over their data
including the right to know how data are used and shared, the
right to delete, the right to opt-out, and the right to exercise
their rights without discrimination. These regulations require
companies or institutions to remove data from their systems
and models upon their requests.

Machine unlearning introduced by [16] studies how to
remove data from ML models without retraining. A large body
of recent work focus on different models of unlearning [17]–
[23].The goal of dataset auditing for ML models is different
from that of machine unlearning; it aims at verifying if a given
dataset is used in training a machine learning model.

Another related area is to quantify properties of machine
learning models. By quantifying privacy leakage or bias of
machine learning models such as attacks for inferring training
data points, one can show the vulnerability of machine learning
models [11], [13], [24], [25]. There are also studies to quantify
the societal impact of a machine learning model [26], [27],
especially the biases that ML models may induce [28]. They
develop toolkits that allow users to test machine learning
models with regards to bias and fairness metrics for different
population subgroups.

III. PRELIMINARY

A. Problem formulation

The goal of dataset auditing for a machine learning model is
to answer the question if an audited dataset is used in training
the machine learning model. In order to meet requirements in
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p-value ∈ [0, 1]

M       =    [    1                  1       1              0             …                           1  ]

② Ensemble and binarized via thresholding

Step 1: is each sample memorized? 

Input:        Da: audited dataset, {𝜏}: metric thresholds 
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Fig. 2: Illustration of our proposed EMA method. The auditor has black-box access to the target model (blue box) and no
access to its training dataset (red box), and aims to verify if a audited dataset from an institution has been used by the target
model. EMA consists of two steps: 1) the auditor first infers if each sample in the audited dataset is used by the target model;
2) then it ensembles the results and see if the whole audited dataset is used. See Algorithm 1 for more details.

Table I, we assume that an auditor has access to the model’s
outputs but not model parameters. This is usually referred to
as a “black-box” setting.

Our formulation of the data auditing problem is as
follows: suppose D, a collection of n training datasets
{D1, D2, · · · , Dn}, is sampled from a given distribution D ⊂
Rd, where d denotes the input dimension. A machine learning
model fD : Rd → C is trained on D to learn the mapping
from an input to a label in the output space C. We denote the
inference with a data point x ∈ Rd as fD(x). The auditor with
black-box access to the model fD aims to tell if an audited
dataset Da has been used to train fD. Specifically, the auditor
has access to:
• The architecture of fD and the algorithm to train it;
• The audited dataset Da;
• fD(Da), probability outputs of the audited data Da on

the model fD;
• The distribution of the original training data points.
Note that the auditor does not have access to the original

training dataset collection D except Da, nor the network
parameters of fD.

B. Previous Method

Apart from the audited dataset Da, the previous approach
CaliForget [6] requires using a calibration dataset Dcal to run
the auditing procedure. Specifically, it runs the following steps
in sequence:

1) Train fDcal
using Dcal, with the model architecture and

training algorithm as the target model fD;
2) Train fDa using Da, with the model architecture and

training algorithm as the target model fD;
3) Compute the following criteria:

ρCF =
KS(fD(Da), fDa

(Da))

KS(fDcal
(Da), fDa(Da))

, (1)

where KS(·) is the Kolmogorov-Smirnov (K-S) distance
between two distributions.

CaliForget interprets ρCF such that ρCF < 1 indicates the
audited dataset collection Da has been used by fD. The moti-
vation is that if D contains samples from Da, the K-S distance
between (fD(Da) and fDa

(Da)) will be very small, and con-
ceivably is much smaller than the reference distance calculated
based on the calibration dataset KS(fDcal

(Da), fDa
(Da)) (i.e.

ρCF < 1). On the contrary, if D has no samples from Da, then
the value of KS(fD(Da), fDa(Da)) depends on the statistical
overlap of D and Da, which can be calibrated by referring to
a reference distance KS(fDcal

(Da), fDa
(Da)).

However, by construction, the ρCF criteria may fail under
the following conditions:
• when the audited dataset Da is very similar to the original

training dataset collection D, the numerator is small,
which will lead to a false-positive result (i.e. predict ‘not
used’ as ‘used’);

• when the calibration dataset Dcal is of low quality, the
denominator is small, which will lead to a false-negative
result (i.e. predict ‘used’ as ‘not used’).

Section VI provides experimental results of the above
limitations of using ρCF.

IV. REQUIREMENTS FOR DATASET AUDITING

To address the particle needs of data auditing in healthcare
applications, we introduce a set of requirements for designing
a dataset auditing system. These requirements can be viewed
as a checklist of evaluating objectives to optimize a dataset
auditing algorithm. We categorize them into: inputs, efficiency,
robustness, and analysis, as summarized in Table I.

“Inputs” are what a dataset auditing system requires to
run a dataset auditing algorithm. The ideal and minimal
requirements are accessing to the audited dataset Da and
the audited machine learning model fD. For instance, if the
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audited model is deployed as a set of machine learning APIs
(i.e., a black-box model), the auditing algorithm should not
assume knowledge of the model’s private parameters such as
weights. Ideally, the auditing algorithm does not require any
other information.

“Efficiency” is about how efficient the algorithm is in terms
of time and space requirements when auditing a large auditing
dataset for a large machine learning model.

“Robustness” requires that the auditing algorithm is robust
with different audited datasets, regardless of their distributions
and sizes. If the auditing algorithm requires using a calibration
dataset, the algorithm should be robust with different qualities.

“Analysis” says that it is important to have a theoretical
guarantee for auditing success.

The previous work CaliForget and our approach do not
meet two requirements well. First, both CaliForget and EMA
require a calibration dataset which has similar distribution to
the dataset collection D. Second, neither CaliForget nor EMA
has a theoretical guarantee for auditing success. It is important
for future work to address these shortcomings.

V. THE PROPOSED METHOD

We propose Ensembled Membership Auditing (EMA), a
two-step procedure to audit a dataset and a trained model:
sample-wise membership inference and membership statistics
ensemble (see Algorithm 1) that better fit the requirements
in Sec IV than the existing methods. The following describes
each step in detail.

A. Sample-wise Membership Inference
This step infers whether the model memorizes each sample

of the audited dataset based on multiple membership metrics.
Our inference method builds on the membership inference
attack (MIA) in the black-box setting [8], where the auditor
observes the outputs of the auditing machine learning model
with given inputs without knowing more details such as model
parameters.

We also use a calibration dataset, which has distributions
similar to the training dataset, to establish thresholds for
several metrics as decision rules. The idea to use multiple
metrics to define decision rules is originally proposed by [15]
and shown to achieve better performance than using a machine
learning model trained on the calibration data ( [8], [13], [29]).

Formally, given the target model fD, which is trained with
training dataset D, and an audited dataset Da, the first step
infers if each sample in Da is used by fD (see Algorithm
1, line 2 to line 6). The auditor first computes τ1, · · · , τm,
thresholds for m different metrics by running a standard
membership inference pipeline [15] on the calibration set.
These 3 metrics are:
• Correctness: gcorr(f, (x, y)) = 1{argmaxi f(x)i = y}1

• Confidence: gconf(f, (x, y)) = f(x)y
2

• Negative entropy: gentr(f, (x, y)) =
∑
i f(x)i log(f(x)i)

3

1Leino et al. [30] suggest a trained ML model is more likely to give correct
prediction on training data than on test data.

2Yeom et al. [14] show that training data has a higher confidence in
predicting the correct label than test data.

3Shokri et al. [8] show that training data usually have lower prediction
entropy (i.e. higher negative entropy) than test data.

Algorithm 1 Ensembled Membership Auditing (EMA)
Input: A, the training algorithm; fD, the target model; Da,
the audited dataset; Dcal, the calibration dataset;

g1, · · · , gm, m different metrics for membership testing.
Output: ρEMA ∈ [0, 1], the possibility that Da is used by fD

1: procedure ENSEMBLEDMEMBERSHIPAUDITING
2: τ1, · · · , τm ← INFERTHRES(A,Dcal, g1, · · · , gm) .

See Algorithm 2
3: M← 0 . M ∈ {0, 1}|Da|, the inferred membership

of each sample in Da

4: for (xi, yi) ∈ Da do
5: Mi ← 1{g1(fD, (xi, yi)) ≥ τ1} ∪

1{g2(fD, (xi, yi)) ≥ τ2}∪· · ·∪1{gm(fD, (xi, yi)) ≥ τm}
6: end for
7: ρEMA ← PVALUE(M,1) . PVALUE() returns the

p-value of a two-sample statistical test, which determines
if two populations are from the same distribution

8: return ρEMA

9: end procedure

To select thresholds to identify training data, we define
balanced accuracy on calibration data based on the balanced
accuracy regarding True Positive Rate (TPR) and True Nega-
tive Rate (TNR):

BA(τ) =
TPR(τ) + TNR(τ)

2
(2)

where given a threshold τ , TPR(τ) =
∑
s∈Dtrain

cal
1{gi(s) ≥

τ}/|Dtrain
cal |, and TNR(τ) =

∑
s∈Dtest

cal
1{gi(s) ≥ τ}/|Dtest

cal |.
The best threshold is selected to maximize the balanced

accuracy (see Algorithm 2). For each sample in Da, it will
be inferred as a member or used by the target model, if it
gets a membership score higher than the threshold for at least
one metric (Algorithm 1, line 3 to 6). The auditor stores the
membership results in M ∈ {0, 1}|Da|: Mi = 1 indicates that
the i-th sample in Da is inferred as used by fD, and Mi = 0
indicates otherwise.

B. Membership Statistics Ensemble

This step ensembles multiple metrics of the sample-wise
membership inference step to obtain a final auditing score (see
Algorithm 1).

Given M, the sample-wise inference results from step 1,
the auditor infers if the whole audited dataset is used. A
simple approach is to perform majority voting on M, however,
the state-of-the-art MIA approaches [15] achieve only ∼70%
accuracy with benchmark datasets. Majority voting may not
achieve reliable results.

The unreliability of a single entry in M motivates us to
consider using the distribution of M: ideally, if an audited
dataset D∗a is used, it should give MD∗

a
= 1, where 1 is the

all one vector with the same dimension of MD∗
a
. Thus, we run

a two-sample statistical test: we fix one sample to be 1 (an
all-one vector), and use M as the second sample. We set the
null hypothesis to be that 2 samples are drawn from the same
distribution (i.e., M is the sample-wise auditing results for a
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Algorithm 2 Infer Membership Thresholds [15]
Input: A, the training algorithm; Dcal, the calibration dataset;
g1, · · · , gm, m different metrics for membership testing.
Output: τ1, · · · , τm, thresholds for m different metrics for
membership inference.

1: procedure INFERTHRES
2: Split Dcal into train and test datasets Dtrain

cal and Dtest
cal

3: fDcal
← A(Dtrain

cal ) . Train the calibration model
using the training subset of the calibration dataset

4: for i ∈ [m] do
5: Vtrain ← {gi(fDcal

, s)|s ∈ Dtrain
cal } . Compute

metrics for the training subset of the calibration dataset
6: Vtest ← {gi(fDcal

, s)|s ∈ Dtest
cal } . Compute

metrics for the testing subset of the calibration dataset
7: τi ← argmaxτ∈[Vtrain,Vtest](BA(τ)) . Infer the

threshold based on Eq 2
8: end for
9: return τ1, · · · , τm

10: end procedure

used audited dataset). The test will return a p-value, where a
large p-value indicates weak evidence against (i.e., supports)
the null hypothesis that M is from the all-1 distribution. Thus,
we use p-value as the final output of our EMA scheme, and we
denote it as ρEMA. We interpret ρEMA as follow: if ρEMA ≤ α,
the auditor can reject the null hypothesis, and conclude that
the audited dataset is not used. Here, α is the threshold for
statistical significance, and is set to 0.1 by default.

Differences from the previous method. Table I lists the
differences between our method and CaliForget. As shown, our
EMA addresses limitations of the previous method by avoiding
possible false-negative (due to low quality calibration data)
and false-positive cases (due to similar audited data to training
data), which we are going to show in the next section. EMA is
more cost-efficient since it does not require training a model
on the audited dataset.

VI. EXPERIMENTS

We conduct experiments with two benchmark datasets,
four chest X-ray datasets and two skin lesion datasets. We
aim at evaluating how well EMA performs with respect to
the requirements of dataset auditing for machine learning
models I. Our experiments focus on the aspects of the practical
and robust requirement and use previous work CaliForget as
our baseline.

A. Experimental setups

We first evaluate EMA with benchmark datasets for proof-
of-concept (Section VI-B). We then carry out comprehensive
evaluations with medical image datasets, and study the robust-
ness of EMA under various settings (Section VI-C and VI-D).
Specifically, we want to evaluate the performance of EMA
on various distributions of the audited dataset (C5), various
audited dataset sizes (C6), and sensitivities to the qualities of
the calibration dataset (C7).

We use the PyTorch framework [31] for deep learning
implementations. All experiments use NVIDIA Tesla T4 GPUs
and custom Intel Cascade Lake CPUs as provided by Ama-
zon Web Services. We use a slightly different experimental
setting for different tasks. We provide detailed experimental
setup, model architectures and training configurations, for each
dataset we evaluate in the following paragraphs.

Interpreting scores of EMA and CaliForget. EMA and
CaliForget use different metrics at different scales to indicate
whether the audited dataset is used in training the target
machine learning model. We scale the auditing score of
CaliForget to ease our comparisons of experimental results.
• EMA: auditing score ρEMA is in the range of 0 ∼ 1. If
ρEMA ≤ α (where α = 0.1), the audited dataset is not
used to train the targeted model.

• CaliForget: scale auditing score ρCF the range of 0 ∼ 1
and then define ρ̂CF = 1−ρCF. If ρ̂CF ≤ 0.8, the audited
dataset is considered not used in training the targeted
model.

By such scaling, we can compare the auditing scores of EMA
and CaliForget easily, though they have different thresholds.

Evaluation setup. Our experiments evaluate with different
image modalities, including handwritten digits (Section VI-B),
chest X-ray images (Section VI-C), and skin lesion images
(Section VI-D). For each image modality, we fix the training
dataset D, and vary the audited dataset Da and the calibration
dataset Dcal:
• We evaluate with three types of audited datasets: Dtr

a , a
set of images used during training (i.e., training images);
Dte

a , a set of images that are drawn from the distribution
of images in D but not used during training (i.e., testing
images); and Dood

a , a set of images that are neither drawn
from the distribution of images in D nor used during
training (i.e., out of distribution).

• We evaluate with two types of calibration datasets: Did
cal,

a set of images that are drawn from the distribution of
images in D (i.e., in distribution); and Dood

cal a set of
images that are not drawn from the distribution of images
in D (i.e., out of distribution).

B. Results with Benchmark Datasets
We start by verifying the feasibility of EMA on benchmark

datasets, MNIST dataset [32] which contains 60,000 images
with image resolution 28 × 28, and SVHN dataset [33]
which contains 73, 257 images in natural scenes with image
resolution 32×32. The SVHN images are resized to 28×28 to
be consistent with MNIST. We generate the training dataset,
the calibration dataset, and the audited dataset as follows.
• Training dataset D: we randomly sample 10, 000 images

from MNIST as the training dataset and split them
equally to 5 non-overlapping folds, and we have D =
{D1, · · · , D5}.

• Calibration dataset Dcal: we sample 10, 000 MNIST
images (disjoint with the training dataset) to construct
the calibration dataset:

1) Did
cal: we use these 10, 000 original images as the

in-distribution calibration dataset;
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Dcal k Dtr
a Dte

a Dood
a

Did
cal 100 0.82 0.84 0.53

Dood
cal

90 0.81 0.83 0.48
80 0.81 0.83 0.25
70 0.81 0.82 0.78
60 0.79 0.82 0.05
50 0.79 0.81 0.48

(a) ρCF scores of CaliForget.

Dcal k Dtr
a Dte

a Dood
a

Did
cal 100 1.00 0.00 0.00

Dood
cal

90 1.00 0.00 0.00
80 1.00 0.00 0.00
70 1.00 0.00 0.00
60 1.00 0.00 0.00
50 1.00 0.00 0.00

(b) ρEMA scores of EMA

TABLE II: Auditing scores of both methods on benchmark datasets. Each column corresponds to an audited dataset, and each
row corresponds to a calibration set with quality controlled by k. The false-negative results are in red, while the false-positive
results are shown in blue.

2) Dood
cal : To simulate the out-of-distribution calibration

set in practice, we keep k% of the original images,
add random Gaussian noise to (100−k)/2% of the
images, and randomly rotate the other (100−k)/2%
of the images. We vary k in our evaluation. Note that
k = 100 implies Did

cal.
• Audited dataset Da: we test three audited datasets:

1) Dtr
a : 5 folds of MNIST images used in training, each

with 2, 000 images;
2) Dte

a : 2, 000 images randomly selected from the
MNIST dataset (disjoint with the training and the
calibration set);

3) Dood
a : 2, 000 images randomly selected from the

SVHN dataset.
Target model. The target model is a three-layer multi-layer

perceptron of hidden size (256, 256). Its training uses the SGD
optimizer [34] with learning rate 0.05 (learning rate decay is
set to 10−4) and runs for 30 epochs with batch size 64.

Table II shows the auditing results of EMA and CaliForget.
In our experiment, EMA obtained ρEMA = 1 for the MNIST
folds used for training (i.e., Dtr

a ) and ρEMA = 0 for the
MNIST fold not used for training, Dte

a under each clean data
ratio k% for k ∈ {100, 90, 80, 70, 60, 50}, which gives cor-
rect auditing result. The baseline method CaliForget acquired
correct ρCF values for Dtr

a when the clean data ratio k ≥ 70
(i.e., less noisy calibration data) and for Dood

a under every
k. However, when k drops below 70, CaliForget get false-
negative results (i.e., ρCF > 1) for Dtr

a . As for Dte
a , CaliForget

returns false-positive results since the audited dataset is similar
to the training dataset.

C. Results with X-ray datasets

As we demonstrate in Sec. VI-B, EMA achieves consistently
superior results in different settings, we then evaluate EMA on
medical imaging tasks on Chest X-ray datasets for pneumonia
patient v.s. healthy control binary classification . We are
especially curious about:

1) The performance of EMA on medical data such as
Chest X-ray;

2) The robustness of EMA with various numbers of au-
dited datapoints;

X-Ray Dataset #Datapoints Accuracy

Train Test Train Test

D COVIDx [35] 4,000 1,000 1.00 0.89

Did
cal COVIDx, k=100 4,000 1,000 1.00 0.90

Dood
cal

COVIDx, k=80 4,000 1,000 0.98 0.88
COVIDx, k=60 4,000 1,000 0.98 0.86
CXR-NIH [36] 15,000 5,000 1.00 0.70
CBIS-DDSM [37] 2,676 336 1.00 0.84

TABLE III: Table: detailed information of the X-ray datasets.
Figures: example images of our used chest X-ray datasets. Left
hand side are our Dood

a ’s, and right hand side is our Dood
a .

3) The capacity of EMA using calibration datapoints
with different quality.

Experimental Setup. We first validate EMA’s performance
(Sec. VI-C.1) with X-ray datasets, and then evaluate EMA’s
robustness (Sec. VI-C.2) and capacity (Sec. VI-C.3) by varying
its configurations for audited and calibration datasets.

Similar to the setup in Sec. VI-B, we split the X-ray datasets
into training, calibration, and audited datasets.
• Training dataset: We randomly sample 4, 000 images

from COVIDx [38] to train the target model. Since
the other chest X-ray datasets we used are for binary
classification, we merge COVID19 and pneumonia into
one class in COVIDx and perform binary classification
to align with binary labels on the other X-ray datasets.

• Calibration dataset Dcal:
1) Did

cal: we sample another 4, 000 images from
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Fig. 3: ρEMA (top) and ρ̂CF (bottom) scores for Chest X-ray experiments. Green regions mark the expected (or correct) auditing
scores while red regions mark the wrong auditing scores: for Dtr

a , we expect the auditing score to be higher than the threshold
(i.e., predict the dataset as ‘having been used during training’), while for Dte

a and Dood
a we expect otherwise. EMA gives

correct auditing scores for Dtr
a regardless of the size of audited dataset, while for Dte

a and Dood
a , the performance of EMA

improves as the the size of audited dataset increases (EMA achieves correct dataset auditing for |Da| ≥ 100). On the other
hand, for CaliForget, there are several false-negative ρ̂CF scores for Dtr

a and false-positive ρ̂CF scores for Dte
a and Dood

a .

COVIDx (disjoint with the training dataset) as the
in-distribution calibration dataset;

2) Dood
cal : we also evaluate out-of-distribution calibra-

tion datasets, including the COVIDx dataset with
noise4, and other X-ray datasets (see Table III and
Section VI-C.3 for details).

• Audited dataset Da: we select the following public
available X-ray datasets and analog them as three types
of audited dataset:

1) Dtr
a : 5 non-overlapping folds of COVIDx images

used in training, each with 800 images;
2) Dte

a : 1, 000 images randomly selected from the
COVIDx dataset (disjoint with the training and the
calibration set);

3) Dood
a : 800 images randomly selected from the

Child-XRay dataset [39].
We use ResNet50 [40] as the classification model and train it

with Adam optimizer using ExponantialLR scheduler. We set
the initial learning rate to 0.001, and train for 50 epochs with
batch size 64. Early-stopping is applied to avoid severe overfit-
ting. The data pre-processing in this section is fixed, for which
we resize the images into 224 × 224, and normalize them to
{mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]}
for each channel. The detailed information about the datasets
and training results can be found in Table.III.

Experimental Results. For better illustration, we visualize

4We keep k% of the 4, 000 Did
cal images, and add random Gaussian noise

to (100− k)% of the images.

EMA and CaliForget scores as shown in Fig.3. Since we
have three types of audited datasets, we generate individual
heatmap for each of them. For the X-ray data used for training
(i.e., Dtr

a ), we report their averaged auditing scores; as for the
ones not used for training (i.e., Dte

a and Dood
a ), we report their

original EMA scores. Recall that when ρEMA ≤ α (α = 0.1)
and ρCF ≤ 0.8, the audited data is considered not used by
the model. Therefore, for ρEMA, we mark blue for the values
≤ 0.1 and red otherwise, whereas similarly, for ρ̂CF, we mark
blue for the values ≤ 0.8 and red otherwise. In general, a more
red-ish entry corresponds to a more confident prediction of ‘the
audited dataset is used’, and a more blue-ish entry corresponds
to a more confident prediction of ‘the audited dataset is not
used’. For the following experiments, we use t-test for our
statistical test.

1) Performance of EMA with X-ray images: We present the
performance of EMA and CaliForget with X-ray images in
Fig.3. For the default setup where COVIDx(k100), i.e., the
original COVIDx dataset without noisy data as calibration
dataset and audited size = 800, ρEMA are all 1’s for Dtr

a and
0’s for Dte

a and Dood
a , which indicates that EMA is able to

distinguish not only the data from different source (i.e., Dood
a )

but also data from the same dataset but not included in base
model (i.e., Dte

a ). For the evaluation on CaliForget, we expect
to see ρ̂CF ≤ 0.8 for datasets that have been used in training
and otherwise for unused datasets, under the default setting
(COVIDx(k100) and audited size = 800). However, many of
the ρ̂CF values in Dtr

a are smaller than 0.8, which gives us
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false-negative results. Besides, for ρ̂CF in Dood
a , it is larger

than 0.8, which gives a false-positive result. Consequently,
CaliForget is relatively unstable for auditing COVIDx models.

2) Robustness of EMA under different audited sizes: To
examine the robustness of EMA with different number of
audited datapoints (|Da|), we fix the clean data ratio k = 100,
and vary the audited dataset size |Da| from 800 to 5. The first
rows of each ρ scores in Fig.3 show the auditing scores for
each audited dataset size. It is noted that ρEMA’s for Dtr

a is
always one (> 0.1), which means they are correctly considered
used in training the model. For |Da| = 20, ρEMA for Dte

a is
0.02, and ρEMA for Dood

a is 0, which means they are correctly
considered unused. Based on the result, we conclude that
EMA is robust when |Da| > 20. However, CaliForget returns
several false-negative(blue entries in Dtr

a ) and false-positive
(red entries in Dte

a and Dood
a ) results regardless of the chosen

|Da|.
3) Capacity of EMA under various calibration datasets: We

further investigate EMA’s capacity under different calibration
datasets. Here, we test 4 additional calibration datasets:
• Noisy COVIDx: Similar to Sec.VI-B, we add noise

controlled by k to the dataset. However, for this time
we use only k = 20, 40 for simplicity.

• CXR-NIH [36]: A chest X-ray dataset with 8 different
type of diseases. The motivation for this is to test EMA
with a different-purposed X-ray dataset as calibration
dataset. The 2 classes extracted are Atelectasis and No
Finding.

• CBIS-DDSM [37]: A breast mammogram X-ray dataset
for breast cancer classification. The motivation is to test
EMA with mammography X-ray dataset as calibration
dataset.

• The audited dataset itself: the motivation of this is that
we assume the audited dataset is all we have for auditing.
We want to test if EMA is still applicable in this case.

We also vary the audited dataset size |Da| in the experiments.
Table III provides the training and testing accuracy of different
calibration models. As shown in Fig.3, EMA works well for
all the cases in Dtr

a , and only fails in Dte
a and Dood

a when
|Da| ≤ 50. More explicitly, Dte

a is our bottleneck test case,
which is the most difficult audited dataset for dataset auditing
since it’s very similar to the training dataset. Consequently, the
results show that EMA can achieve correct dataset auditing for
|Da| > 50 under the COVIDx experiment.

D. Results with Dermatology datasets
To further extend EMA to color medical datasets, we ex-

periment EMA on dermatology images. We construct training,
calibration, and audited datasets based on HAM10000 [41], a
multi-source dermatology dataset for skin lesion classification.
• Training dataset : we randomly sample 600 images from

HAM10000 (HAM in the following for simplicity) as the
training dataset.

• Calibration dataset Dcal:
1) Did

cal: we randomly sample another 600 images from
HAM10000 (disjoint with the training dataset) as
the in-distribution calibration dataset;

Dermatology Dataset #Datapoints Accuracy

Train Test Train Test

D HAM10000 [41] 600 100 1.00 0.90

Did
cal HAM10000 600 100 0.99 0.92

Dood
cal

PAD-UFES-20 [42] 600 120 0.99 0.67
CIFAR-10 [43] 15,000 3,000 0.99 0.78

TABLE IV: Detailed information of the dermatology datasets
and some example images. Left hand side are our Dood

a ’s, and
right hand side is our Dood

a .

2) Dood
cal : we also evaluate out-of-distribution calibra-

tion datasets. One of them is a publicly available
skin lesion dataset (i.e., PAD-UFES-20 [42]). To
further test if natural RGB images can serve as
calibration datasets (which are easier to acquire in
practice), we also evaluate with a natural image
dataset CIFAR-10 [43].

• Audited dataset Da: we design the following three kinds
of audited dataset:

1) Dtr
a : 3 non-overlapping folds of HAM10000 images

used in training, each with 200 images;
2) Dte

a : 200 images randomly selected from the
HAM10000 dataset (disjoint with the training and
the calibration set);

3) Dood
a : 137 images randomly selected from the

DERM7pt [44] dataset.
• PAD-UFES-20 [42]: A skin lesion dataset collected from

smartphones for 6 diagnostics classification. The motiva-
tion is to test whether using dataset with similar purpose
but taken with different imaging methodology can still
work as calibration dataset for EMA auditing.

• CIFAR-10 [43]: A RGB color image dataset for natural
images classification. The motivation of using CIFAR-10
as the calibration dataset is to test if model trained with
out-of-domain datasets can still infer accurate auditing
score.

Since the pathology from the datasets are unevenly distributed
and not fully-overlapped, we extract the common 3 classes
(seborrheic keratosis, basal cell carcinoma and nevus) from
HAM10000 and PAD-UFES-20, and train 3-class classifiers
for them. Accordingly, we randomly select three classes (dogs,
cats and birds) from CIFAR-10 to match the 3-class classifi-
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Fig. 4: ρEMA (top) and ρ̂CF (bottom) scores for Dermatology experiments. Green regions mark the expected (or correct)
auditing scores while red regions mark the wrong auditing scores: for Dtr

a , we expect the auditing score to be higher than the
threshold (i.e., predict the dataset as ‘having been used during training’), while for Dte

a and Dood
a we expect otherwise. EMA

gives correct auditing scores for Dtr
a regardless of the size of audited dataset, while for Dte

a and Dood
a , the performance of

EMA improves as the the size of audited dataset increases (EMA achieves correct dataset auditing for |Da| ≥ 50). On the other
hand, although CaliForget correctly finds out Dood

a has not been used by the target model, there are several false-negative ρ̂CF

scores for Dtr
a and false-positive ρ̂CF scores for Dte

a .

cation task of skin lesion analysis task.
Results of EMA (i.e., ρEMA) and CaliForget (i.e., ρ̂CF)

scores are shown in Fig.4. Note that in the top row, EMA can
successfully audit the usage of all audited datasets using any
of the calibration datasets when |Da| = 50. For the bottom
row, there are several false-negative ρCF scores in Dtr

a and
false-positive ρ̂CF scores in Dte

a for CaliForget, but it gives
correct ρCF scores in Dood

a under all |Da|’s. The results show
that EMA can achieve correct dataset auditing for |Da| ≥ 50
under the dermatology experiment.

VII. CONCLUSION

This paper first presents a set of requirements for dataset
auditing for collaboratively training ML models with multiple
datasets in a Federated Learning setting. Then, we describe
EMA, a dataset auditing method based on membership infer-
ence attack and statistical ensemble.

In terms of time efficiency, EMA is superior to the previous
state-of-the-art CaliForget, as it does not require training a
model with the audited dataset. When the audited dataset is
large, the time saving could be significant.

Our extensive experiments on benchmark and medical
datasets show that EMA works well with all datasets. It works
robustly with as small as 50 data points in the audited dataset
size, whereas CaliForget fails when there are fewer than 800
data points for certain medical image datasets.

Similar to CaliForget, EMA requires finding a publicly
available dataset as its calibration dataset, although EMA

is much more robust with different qualities of calibration
datasets than CaliForget. A future direction is to either auto-
matically generate a calibration dataset using synthetic dataset
generate algorithms, or develop suitable metrics to decide
whether a given dataset is a good candidate for a calibration
dataset.

We also would like to derive a theoretical guarantee for
EMA, which is important for its real-world deployment. We
appreciate the interesting theoretical analysis in a recent
work [45]. However their results are limited to linear clas-
sifiers, which makes a direct comparison with ours difficult,
as our empirical studies have been carried out with real-
world convolutional neural networks. Ultimately, we expect
this work to improve the awareness of data privacy, increase
trustworthiness, and accelerate the development of applications
in Al for healthcare.
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