
Orchestrator: Active Inference for Multi-Agent
Systems in Long-Horizon Tasks

Lukas Beckenbauer∗† Johannes Löwe† Ge Zheng∗
Alexandra Brintrup∗

∗Department of Engineering, University of Cambridge, Cambridge, UK
†TUM School of Management, Technical University of Munich, Munich, DE

Abstract

Complex, non-linear tasks challenge LLM-enhanced multi-agent systems (MAS)
due to partial observability and suboptimal coordination. We propose Orchestrator,
a novel MAS framework that leverages attention-inspired self-emergent coordina-
tion and reflective benchmarking to optimize global task performance. Orchestrator
introduces a monitoring mechanism to track agent-environment dynamics, using
active inference benchmarks to optimize system behavior. By tracking agent-to-
agent and agent-to-environment interaction, Orchestrator mitigates the effects of
partial observability and enables agents to approximate global task solutions more
efficiently. We evaluate the framework on a series of maze puzzles of increas-
ing complexity, demonstrating its effectiveness in enhancing coordination and
performance in dynamic, non-linear environments with long-horizon objectives.

1 Introduction

With the rapid advancement of Large Language Models (LLMs), research on intelligent multi-agent
systems (MAS) is gaining new traction. Researchers have investigated use-cases across a broad
range of applications, including enhancing the reasoning and task-execution capabilities of general-
purpose LLMs [1, 2, 3], supporting software production in recommender systems [4, 5], facilitating
data interfacing and visualization [6], and enabling self-supervising supply chain infrastructures
[7, 8]. However, while a need for AI-driven MAS solutions that enable advanced agent-coordination
and effectiveness across complex, non-linear task-settings has been recognized [9, 1, 10, 2, 11, 12],
research on the optimization of system-level MAS-coordination towards task execution for non-linear,
long-horizon problem settings has gained traction only recently [7].

Existing work has primarily advanced MAS by improving feedback loops across agent-to-agent or
agent-to-environment settings. In traditional settings this has mainly been pursued via reinforcement
learning [13, 14, 15, 16]. More recently, attention has shifted toward LLM-supported multi-agent
collaboration, often enhanced by reflective or supervisory mechanisms [17, 18, 19, 16]. While these
approaches have demonstrated notable success, they often rely on static topologies [1, 10, 2, 20] and
are typically benchmarked on short-horizon, agent-specific tasks such as HumanEval, GPQA [21],
or GSM8K [22]. Further, while a dominant body of this work has focused on improving planning
efficiency in long-horizon settings of steady levels of complexity [23, 24, 16, 25, 26], there remains
limited exploration into how LLM-augmented MAS can be enabled to scale and sustain high-accuracy
when addressing advanced, long-horizon tasks characterized by growing complexity levels [27, 28].

To address this challenge, we propose Orchestrator—a multi-agent coordination framework with
task-observation instance and embedded active inference feedback-loops—and apply it to solving a
series of classic maze puzzles with varying difficulty levels (easy, medium, hard). Grounded in active
inference principles [29, 26], stating that sentient agents act to minimize surprise and maintain their

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Orchestrator: Active
Inference for Multi-Agent Systems in Long-Horizon Tasks.

(a) Graph Depiction of Cell-
Internal MAS Workflow (b) Orchestrator Cell Design. A reprint is available in Appendix A.2.

Figure 1: Orchestrator Framework Overview

internal states by minimizing a quantity called variational free energy (VFE), Orchestrator draws
on a benchmark-driven introspection mechanism that considers both, inter-agentic communication
[30, 16, 12], and dynamic states between agents’ and their immediate environment [11, 30, 31]. We
operationalize active inference by contrasting agent’s realized information gain with coordination
costs and optimizing for free energy (FE) output as a measure of effective task solving. This
signal regulates agent autonomy and dynamically adapts system behavior in response to rising
decision uncertainty and/or efficiency costs [32, 31, 33]. Subsequently, we address agents’ partial
observability, as a key limitation to overall operational performance [34], by formulating the iterative
approximation of effective agent-to-agent and agent-environment coordination as a quantitative
optimization problem.

We evaluate Orchestrator’s capacity to overcome local minima, by testing it on a range of maze
puzzles with varying levels of escape complexity. Orchestrator outperforms baseline agent ensembles
that operate without active-inference benchmarking and dynamic orchestration by an average factor
of 3,03 on mazes of 18 x 18 size and medium difficulty. Specifically, our results indicate that,
compared to a baseline success rate of 11%, active inference-driven orchestration significantly
improves reliability, efficiency, and scalability in long-horizon maze-solving tasks, achieving up to
100% accuracy across 25 runs in medium difficulty and up to 76,67% accuracy in hard mazes of 25 x
25 size.

We validate our results through ablation studies and summarize our key contributions as: (i) we
introduce a self-optimizing, scalable cell architecture consisting of a planning, execution, and obser-
vation instance—driven by active-inference feedback and task-observation mechanisms, enabling
MAS to operate effectively in settings that demand adaptive autonomy; (ii) we propose a set of
coordination benchmarks and optimization methods that track both agent’s internal decision outcomes
and their collaborative behavior, guiding agent cells to away from local task-completion minima
and toward globally optimal solution horizons; and (iii) we demonstrate sustained task-completion
accuracy across long-horizon maze tasks across various difficulty levels, using only lightweight,
resource-efficient LLM models, thus aligning with production-ready deployment scenarios under
strict budget and resource constraints.

2 Related Work

Maze-Assessment as Long-Horizon Benchmark for MAS. Maze-based environments have be-
come a central testbed for evaluating the reasoning, planning, and coordination abilities of intelligent
agents [35, 28, 36]. Early benchmarks focus on single-agent navigation in static, fully observable
mazes, where classic algorithms such as A*, Flood Fill, DFS, or multi-agent pathfinding (MAPF)
[37] in non-LLM contexts are used to assess pathfinding and basic spatial reasoning capabilities
[38, 39, 40, 36].

More recent work has produced a new generation of maze benchmarks that probe the limits of
agent memory, adaptability, and sequential decision-making. Memory Gym [41], for example,
introduces endless, procedurally generated environments to test agents’ memory effectiveness over
unbounded horizons. MazeBench [28] shifts the focus to LLMs, using tokenized maze representations,
reinforcement learning, and chain-of-thought prompting to evaluate step-by-step spatial reasoning

2

in small-size mazes. MazeEval [42] isolates pure spatial reasoning by requiring LLMs to navigate
mazes using only coordinate and distance-to-wall feedback, without visual input. Finally, MAPF has
been proposed as a structured LLM benchmark, highlighting the unique difficulties of multi-agent
coordination, long-horizon planning, and symbolic map understanding [43].

Despite these advances, the results of existing maze benchmarks reveal that LLMs and RL agents
struggle with the combinatorial demands of multi-agent coordination, especially in environments with
a high degree in path deviations and obstacles [43, 36]. Spatial and long-horizon reasoning present
core challenges, with LLMs often failing to build robust internal representations and implement
effective solutions towards global task completion. Further, structural limitations, such as context
window size and lack of scalable memory-architectures hinder performance on large or complex
mazes. Our work directly addresses these research gaps by introducing a unified, dynamic, and
scalable framework that expands the limitations of prior LLM-based maze solving approaches, by
supporting long-horizon task completion, active inference-based optimization loops, and real-time
performance assessment for LLM-based agents.

Reflective Instances in Multi-Agent Settings. To orchestrate multi-agent interactions, previous
research, such as [44, 1, 17], has introduced reflective mechanisms that optimize agent-to-agent,
and/or agent-to-environment coordination. Bo et al. [30] introduce the COPPER framework, which
implements a fine-tuned LLM to critique and refine outputs of primary agents, drawing on a reward
mechanism to assess each agents overall contribution to over task success, and helping agents to
perform on specific baseline benchmarks, including HotPotQA [45], GSM8K [46], and ‘Checkmate
in One Move’ [47]. Similarly, Nayak et al. [18] implement a plan-act-correct-verify mechanism to
help an LLM-guided robot agent to autonomously navigate a 3D-environment; Leveraging visual
feedback between environment and internal reflection instances to enhance navigational accuracy of
the agent. Likewise, Xie et al. [48] utilize reinforcement learning to improve an LLM-agent’s ability
to critique its own work, improving relative performance by 106% on coding benchmarks. Whereas
Ding et al. [15] propose an asynchronous communication framework to optimize decision-capabilities
in MAS, reducing error margins due to sequence-related circular dependencies in linear workflows.

Agents Partial Observability Limitations. While several authors have assessed the benefits of
reflective instances to overcome agent’s partial observability problem [18, 49], this strand of research
is closely aligned with successes in agent-to-agent reinforcement learning pipelines [44]. Expanding
on these previous approaches, but aiming for emergent performance without reinforcement-driven
validation, Ke et al.[50] discuss an emergent zero-supervision MAS framework to overcome agent’s
partial observability problems and solve tasks at advanced complexity, by implementing a reflective
meta-level instance that optimizes agent-to-agent sequences locally and need-based. In parallel, work
such as [51] and [20] introduces dynamic social graphs, or graph-attention paradigms [52, 53] to
support emergent multi-agent interaction in non-linear problem settings. While further, evolving
orchestration approaches have been proposed [17, 19, 20, 23] that formalize agent interaction as a di-
rected graph, with a central orchestrator dynamically selecting and sequencing agent activations based
on evolving task states, yielding more compact and efficient collaboration patterns. However, while
these approaches are able to handle tasks at advanced complexity, they fall short in task completion
that require a high number of steps across long-term planning and problem solving. To address these
gaps, more recent work has suggested active inference principles, a neuroscience grounded paradigm
that can be leveraged to aid agent’s reasoning capabilities and drive task completion successes via
quantified feedback principles [33].

Applications of Active Inference in MAS. We integrate active inference principles by imple-
menting a reflective benchmarking mechanisms to capture agents’ free energy [32, 26, 33] and
to control for system-wide entropy metrics and enhance long-term adaptability by nudging the
system to reduce its error rates. There is a long tradition of benchmark-driven optimization in
MAS research, which has found special traction in multi-agent reinforcement learning (MARL)
contexts, such as [52, 15, 54, 55]. Authors justify the need for dynamic benchmarks to optimize
agent behavior in highly dynamic and hard to predict environments. For example, Suri et al. [32]
stabilize multi-agent interactions by collectively minimizing free energy across agent distributions,
effectively reducing the occurrence of unexpected states. While, Ruiz-Serra et al.[31] integrate active
inference frameworks to incorporate agents’ assumption about other agents’ internal states for strate-
gic decision-making in iterative scenarios. In this work, we draw on recent advances on reflective
mechanisms in LLM-based agent-optimization [53, 19, 30, 23] and merge the approach with active
inference dynamic-optimization mechanisms, as demonstrated in [12, 31, 33]. Our system uniquely

3

synthesizes these reflection-based and information-theoretic insights by implementing a reflective,
benchmark-driven orchestration instance to continuously evaluate and enhance agent-to-agent and
agent-to-environment interactions.

In summary, Orchestrator unifies three key advances in the above literature: First, we implement a
modular ’cell-structured’ graph design, embedding planning, execution, and orchestration as explicit
computational stages within each ’cell’. Second, we introduce a reflective benchmarking mechanism,
using active inference principles to monitor FE-grounded intra- and inter-cell performance metrics to
continuously assess and adapt local agent routines in light of global progress. Lastly, we leverage
these performance metrics to foster dynamic adjustments of LLM’s internal policy and prompt
design, nudging agents to adjust their behavior if they encounter local solution minima or exhibit
other behavior that is stalling progress. In this manner, and optimizing for both immediate and
longitudinal performance, Orchestrator’s cell-based task-execution design empowers benchmark-
driven coordination between components of an agent ensemble, proactively reducing error potential
while improving task accuracy at the local and systemic level.

3 Orchestrator Framework

3.1 Graph-Based and Dynamic Multi-Agent Architecture

We formalize the Orchestrator framework shown in Figure 1 as a unified graph-based architecture
that enables dynamic behavioral adaptation and real-time coordination. The system’s update sequence
is modeled as a directed graph in Figure 1a, while each system state at iteration t is represented by
the agentic ’cell’ architecture, illustrating agent interactions and coordination dynamics as depicted
in Figure 1b.

Mathematically, the Orchestrator framework is defined as,

Orchestrator = G(N,E, F) (1)

Where N = Nplan ∪Nexec ∪Norch denotes the complete node set, with each node corresponding to
an agent. The framework consists of three node types: the planning node (Nplan), the execution node
(Nexec), and the orchestration node (Norch). For this work, we implement a single orchestrator cell-
instance, comprising one planning node and one orchestration node, with the remaining (N−2) nodes
instantiated as execution nodes. The plan node, Nplan = {P}, provides a sequence of strategic action
steps that guide execution nodes. Execution nodes, Nexec = {e1, e2, . . . , en, . . . , eN−2}, powered by
LLMs, interpret the policy prompt and act in the environment. Where directed edges E ⊆ (N ×N)
are associated with routing functions, Gr(t) = {gr(1;t), gr(2;t), . . . , gr(n;t), . . . , gr(N−2;t)}, that
define define interaction pathways among agents at iteration t. The action performance of each
execution node is continuously evaluated by its variational free energy (VFE) following active
inference principles (described in more detail in section 3.2). This ensures that actions are selected to
maximize information gain, where high uncertainty corresponds to active exploration, while driving
agents toward the global objective of maze completion. While execution nodes have knowledge of
other agent’s explored maze junctions at all times, the orchestration node, Norch = {O}, serves as a
communication hub and global memory, allowing execution nodes to share additional information
(such as other agent error rates or dead end detections) indirectly.

At the beginning of the maze exploration, the execution nodes Nexec and the orchestration node Norch

are initialized with distinct states, denoted as Se
t and So

t , respectively, which are dynamically updated
over time. For the purpose of demonstration, and while future implementations may incorporate
adaptive planning, we further initialize planning node P with a preset sequence of k steps, which
is passed as loop of actionable instructions into execute nodes at Sn;(t−1) (see section A.1 in the
Appendix). Each execute node E is equipped with its own, active-inference-based optimization
function fN , described in detail in the section 3.2. Orchestration node O maintains global state
including the information of states of all execute nodes, while the state of each execute node is defined
as a local state. At the start of each iteration t, each execute node considers (i) its own state and (ii)
the states of other execute nodes updated by the orchestrator node and stored in its temporary state St

and then takes actions following its internal policy π and the actionable-guidance Pplan of length
k. Each node enS(t−1) then loops through a predefined sequence of k steps until plan completion or
intervention triggers are met (Appendix A.1).

4

After completion of each step k, the weight of each execute node, written as ∆w, is updated by
calculating its VFE through the respective optimization function, {f1, f2, . . . , ...fn, . . . , fN−2}.
The outcomes of these computations are then used to dynamically inject guidance instructions
into temporary local states of execution nodes, {Ŝe

1;(t−1), Ŝ
e
2;(t−1), . . . , Ŝ

e
n;(t−1), . . . , Ŝ

e
(N−2);(t−1)}.

Next, at the execution layer, the temporary local states are consolidated into updated local states,
{Se

1;t, S
e
2;t, . . . , S

e
n;t, . . . , S

e
(N−2);t}. This system state is then passed to the orchestration node O,

which reviews agent progress and provide direct optimization recommendations for execution agents.
These recommendations are delivered through dynamic prompt injections that update the execution
agents’ internal policy, πE

t−1, as the global state SO
t is passed to the next iteration. The detailed

optimization computation for agents is explained in section 3.2 and we provide a sequential overview
of how the orchestration update sequence operates during maze exploration in Figure 8.

Figure 2: Schematic representation of Orchestrator’s decision-making cycle while solving a medium-
difficulty maze-puzzle across n-steps.

3.2 Active Inference Benchmarking and Performance Assessment

Building on active inference principles, we reformulate the VFE objective. Instead of solely minimiz-
ing surprise to reduce deviations from the model predictions, we define the objective as a balanced
trade-off: maximizing agents’ realized information gain to encourage active learning, while offsetting
this with an explicit cost function that captures coordination demands and behavioral efficiency. We
provide the extended formalism to this approach in section A.3 in the Appendix and operationalize it
as follows:

Epistemic Uncertainty. We quantify epistemic uncertainty through measuring information entropy
between consecutive states {St, St+1}, providing a real-time estimate of each agent’s rate of actual
information gain

Uepistemic(n, t, k) = −H[Sn,t,k | Sn−1,t−1,k−1] (2)
where H[Sn,t,k] denotes the normalized Shannon entropy of the message output for agent n at
iteration t and step k. The entropy is computed over individual message tokens j as:

Htokens(n, t, k) = −
∑

j∈Kmessage

pj(k) log pj(k) (3)

Accuracy Cost Assessment. As a counterbalance to the agent’s epistemic uncertainty, we oper-
ationalize the accuracy principle of VFE as cost term. While in principle the VFE accuray term
corresponds to the expected negative log-likelihood of observed outcomes under the generative
model, direct access to these likelihoods is unavailable due to the underlying LLM architectures.
As described in section A.3, we therefore approximate accuracy cost using a behavioral proxy that
captures behavioral efficiency and coordination at each step k:

Caccuracy(n, t, k) =

5∑
j=1

wj ·Rj(n, t, k) (4)

5

where the static weights wj = 0.20 for all j ∈ {1, 2, 3, 4, 5} equally weight a set of five predefined
risk components:

1. Movement Efficiency: R1(n, t, k) = 1− total moves
total move attempts

2. Exploration Efficiency: R2(n, t, k) = 1− unique positions visited
total moves

3. Backtracking Patterns: R3(n, t, k) = backtrack ratio + 1.5 · oscillation penalty
4. Dead-End Recognition: R4(n, t, k) = 1− dead-end revisits

total moves
5. Oscillation Avoidance: R5(n, t, k) = 1− unique positions in recent moves

recent move count

Behavioral Optimization Function. To normalize outputs, we cap both uncertainty and cost terms
at ±2.0 and define the variational free energy Fn(t, k) for each agent n at iteration t and step k as:

Fn(t, k) = Uepistemic(n, t, k)− Caccuracy(n, t, k) (5)

The subtractive formulation reflects our optimization principle: high epistemic uncertainty signals
productive information gain (positive contribution), whereas high pragmatic costs penalizes coun-
terproductive behaviors including oscillation patterns, redundant exploration, or movement failures
(negative contribution).

Performance Policies. Based on free energy outcomes, the system assigns agents to one of four
performance categories, where threshold variables ϑ1 and ϑ2 have been deliberately assigned to
match best performance using grid-search as determining method (see section A.5 in the Appendix).

• High Epistemic Drive, Low Accuracy Cost (Uepistemic > 0.6, Caccuracy < 0.4): Effective
exploration with efficient execution

• High Epistemic Drive, High Accuracy Cost (Uepistemic > 0.6, Caccuracy > 0.4): Active
discovery but inefficient execution

• Low Epistemic Drive, Low Accuracy Cost (Uepistemic < 0.6, Caccuracy < 0.4): Consis-
tent execution but limited exploration

• Low Epistemic Drive, High Accuracy Cost (Uepistemic < 0.6, Caccuracy > 0.4): Poor
exploration and inefficient execution

Dynamic Weight Modulation. Each performance category triggers adjustments to a set of behav-
ioral weights:

wn(t, k) = {wexplore(t, k), wexploit(t, k), wcoordinate(t, k), wbacktrack(t, k)} (6)

which are updated as:

wn(t, k) = wbase +∆w(Fn(t, k),∇Fn(t, k)) (7)

where ∆w accounts for both current free-energy and its temporal gradient,∇Fn(t, k), thus incorpo-
rating predictive dynamics. For example, agents in the expressing high epistemic drive but high costs,
are assigned increased wexploit weights to improve execution efficiency, while agents with low drive
but effective cost management, receive higher wexplore weights to encourage broader environmental
exploration. Further details on movement reward scoring and dynamic weight updates are provided
in sections A.1 and A.4. Prompt design of agents are presented in sections A.7 and A.8.

4 Experiments

We evaluate our approach on a suite of synthetic maze environments designed to stress-test reasoning
and coordination across long horizon task settings. We draw on the AMaze benchmark [36], which is
designed to procedurally generate challenging maze environments and assess generalization ability of
RL-agents across (long-horizon) task settings. The algorithmic design of our AMaze implementation
is provided in Appendix section A.9.

Challenge. We consider three maze difficulty levels (easy, medium, hard), each instantiated with
five unique mazes. As defined by the AMaze benchmark, mazes differ in length, branching factor,
and required coordination. A run is considered successful if one of n execution agents reaches the
maze exit within the maximum step budget. As maximum step budget we allocate a heuristic of
two-and-a-half times the number of tiles per maze configuration, as well as a maximum duration of
7200 seconds, if one of these conditions is reached, timeout is initialized and the maze exploration is
considered as failed.

6

Agents. To ensure efficiency and responsiveness under real-world deployment constraints—where
computational resources and budget are critical—we instantiate our agents using state-of-the-art,
but compact, fast-inference LLMs (specifically GPT-4.1-nano and GPT-5-nano). For the purpose of
demonstration, we present experiments with n=2 execution agents, only. While preliminary tests
have showcased the feasibility of n=1 or n=3 agents, we consider n=2 a balanced trade-off in terms
of efficiency, speed, and resource-allocation for the purpose of maze exploration. Further, while
mixed-model approaches are possible, we constrain the orchestrator, when enabled, to being identical
to the execution model, privileging a homogeneous approach.

Baselines and Experiment Configurations. We evaluate three core experimental configurations
to systematically assess the impact of benchmarking and orchestration. As a floor baseline, we
implement a random walk agent: a memory-enhanced, single-agent policy that self-selects valid
moves at each step, with no access to FE-benchmarking, or orchestration support. Second, we
introduce FE-benchmarking, providing agents with real-time feedback and dynamic weight adjust-
ments, based on their performance. The third configuration adds an orchestrator node in addition
to FE-benchmarking, to test for the models ability to facilitate higher-level coordination between
agents. To save compute, we omit the random walk for hard-level difficulty as chance of success
is considerably low, as well as assessment of the FE + orchestration configuration on easy-level
difficulty, as chances for success are considerably high.

Execution and Evaluation Metrics. We execute at least 10 runs per configuration and level of
difficulty, across 15 mazes in a balanced setting, yielding a minimum of 150 runs in total. For each
configuration, we report key metrics such as success rate, total number of steps taken, number of
failed moves, and total costs (normalized API token usage in dollars). We avoid wall-clock time
measures, as provider rate limits and real-time changes on OpenAI API demand distort the results.
Further, we predeclare a precision target of ±15 percentage points (pp) for success rate CIs. Runs are
increased until this target is reached.

5 Results and Discussion

Table 1: Success rates with Wilson 95% confidence intervals (CI) and corresponding half-widths in
percentage points (pp) per model configurations and maze difficulty levels.

Configuration Difficulty # of Runs Successes Success Rate (%) 95% CI Lower 95% CI Upper Half-width (pp)

gpt-4.1-nano (Solo) easy 34 11 32.35 19.13 49.16 15.01
gpt-4.1-nano (Solo) medium 33 10 30.3 17.38 47.34 14.98
gpt-4.1-nano + FE Benchmark only easy 10 10 100.0 72.25 100.0 13.88
gpt-4.1-nano + FE Benchmark only medium 36 26 72.22 56.01 84.15 14.07
gpt-4.1-nano + FE Benchmark only hard 26 22 84.62 66.47 93.85 13.69
gpt-4.1-nano + FE + Orchestration Node medium 25 25 100.0 86.68 100.0 6.66
gpt-4.1-nano + FE + Orchestration Node hard 32 23 71.88 54.63 84.44 14.9
gpt-5-nano (Solo) easy 10 0 0.0 0.0 27.75 13.88
gpt-5-nano (Solo) medium 11 0 0.0 0.0 25.88 12.94
gpt-5-nano + FE Benchmark only easy 10 10 100.0 72.25 100.0 13.88
gpt-5-nano + FE Benchmark only medium 25 20 80.0 60.87 91.14 15.14
gpt-5-nano + FE Benchmark only hard 36 23 63.89 47.58 77.52 14.97
gpt-5-nano + FE + Orchestration Node medium 24 20 83.33 64.15 93.32 14.59
gpt-5-nano + FE + Orchestration Node hard 30 23 76.67 59.07 88.21 14.57

We present our results in Table 1. For solo agent ensembles without benchmark and orchestration
nodes, we find poor model performance in runs on easy-level (32,35% success rate for GPT-4.1-
nano; 0% success rate for GPT-5-nano) and medium-level difficulty (30,03% for GPT-4.1-nano;
0% for GPT-5-nano). In contrast, Orchestrator strongly outperforms solo agent ensembles on easy
(100% for both GPT-nano models) and medium-difficulty levels (100% for GPT-4.1.-nano and
83.33% for for GPT-5-nano), accounting for a threefold increase in success rates for GPT-4.1-nano
configurations and an increase by a factor of 3,33 and 2,77 respectively for easy and medium levels
in GPT-5-nano configurations. Further, we find that just incorporating FE-benchmarks, already
substantially improves model performance (medium: 72.22% for GPT-4.1-nano, 80.0% for GPT-
5-nano; hard: 84.62% for GPT-4.1-nano, 63.89% for GPT-5-nano). Lastly, adding orchestration
improves performance for 3 out of 4 configurations (medium: 100% for GPT-4.1-nano, 83.33% for
GPT-5-nano; hard: 71.88% for GPT-4.1-nano, 76.67% for GPT-5-nano). Surprisingly, GPT-4.1-nano
with FE benchmarks outperforms the same model with added orchestration on hard mazes (84.62%
vs. 71.88%). One possible explanation is that orchestration, while generally beneficial, can introduce
additional reasoning overhead in high-complexity environments, exceeding the model’s effective
planning horizon [27]. In such cases, more streamlined reasoning—guided by FE benchmarks

7

Figure 3: Success rate and Wilson CI ranges by model configuration and difficulty as shown in
Table 1. Numerical identifiers for configurations are as follows: 1) GPT-4.1-nano (Solo); 2) GPT-
5-nano (Solo); 3) GPT-4.1-nano + FE Benchmark only; 4) GPT-5-nano + FE Benchmark only; 5)
GPT-4.1-nano + FE + Orchestration Node; 6) GPT-5-nano + FE + Orchestration Node.

alone—may yield better results [33, 56]. This suggests that while additional orchestration instances
improve task-completion accuracy for most scenarios [23, 24, 19], their actual utility may depend on
correctly applying the ensemble composition of agents to match the specific task at hand. Additional
results concerning model cost-effectiveness, completion efficiency, and convergence intervals per
configuration are listed in sections A.6.4, and A.6.5 in the Appendix.

6 Conclusion

This paper introduced Orchestrator, a unified active inference-based framework for multi-agent coor-
dination in long-horizon environments. Motivated by the limitations of existing long-horizon, maze
solving approaches—which often fail to capture the challenges of memory-retention, adaptability,
and long-horizon coordination—Orchestrator integrates dynamic feedback, reflective benchmarking,
and modular orchestration into a single, scalable architecture.

Our results highlight several key contributions: First, we propose a novel active-inference-based archi-
tecture for multi-agent coordination that supports real-time adaptation, memory-driven collaboration,
and scalable reasoning. Second, we show that this approach achieves strong performance even with
lightweight, fast-inference models suitable for real-world deployment, but is able to accommodate
more sophisticated reasoning agents in alignment with rising task complexity. Third, we demonstrate
that the combination of active-inference benchmarking and orchestration substantially improves both
the reliability and efficiency of agent teams, particularly in complex, long-horizon tasks. By bridging
the gap between static benchmarks and adaptive, feedback-driven orchestration, our work contributes
to the debate on foundational frameworks for robust, autonomous, and LLM-based multi-agent
systems capable of addressing long-horizon challenges in real-world production settings.

Nevertheless several limitations remain: As the present analysis is restricted to synthetic maze
environments and small agent teams, the ability of Orchestrator to address long-horizon tasks in more
heterogeneous settings and across other problem domains remains to be explored. Further, to assess
essential deployment factors in terms of scalability, cost, and performance, framework performance
should be extensively tested for addressing higher-complexity tasks while using larger LLM models.
Lastly, given the fact that our architecture achieves high level performance with smaller-size, high
inference-speed LLMs, we see great potential for deploying Orchestrator using open-source models.
The feasibility of these approaches should be tested in future iterations.

8

References
[1] Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang

Yu, Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu,
Maosong Sun, and Jie Zhou. AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors in Agents. 2024.

[2] Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More Agents Is All You Need,
October 2024. arXiv:2402.05120 [cs].

[3] Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu, Bryan Hooi, and Shumin Deng. Ex-
ploring Collaboration Mechanisms for LLM Agents: A Social Psychology View, May 2024.
arXiv:2310.02124 [cs].

[4] Yuanzhe Liu, Ryan Deng, Tim Kaler, Xuhao Chen, Charles E. Leiserson, Yao Ma, and Jie Chen.
Lessons Learned: A Multi-Agent Framework for Code LLMs to Learn and Improve, 2025.
Version Number: 1.

[5] Junda He, Christoph Treude, and David Lo. LLM-Based Multi-Agent Systems for Software
Engineering: Literature Review, Vision and the Road Ahead, July 2025. arXiv:2404.04834 [cs].

[6] Chao Xu, Qi Zhang, Baiyan Li, Anmin Wang, and Jingsong Bao. Visual analysis of time
series data for multi-agent systems driven by large language models. In Proceedings of the
3rd International Conference on Signal Processing, Computer Networks and Communications,
SPCNC ’24, page 427–431, New York, NY, USA, 2025. Association for Computing Machinery.

[7] Liming Xu, Sara Almahri, Stephen Mak, and Alexandra Brintrup. Multi-Agent Systems
and Foundation Models Enable Autonomous Supply Chains: Opportunities and Challenges.
IFAC-PapersOnLine, 58(19):795–800, 2024. Publisher: Elsevier BV.

[8] Liming Xu, Stephen Mak, Maria Minaricova, and Alexandra Brintrup. On Implementing
Autonomous Supply Chains: a Multi-Agent System Approach, June 2024. arXiv:2310.09435
[cs].

[9] Tal Alon, Magdalen Dobson, Ariel Procaccia, Inbal Talgam-Cohen, and Jamie Tucker-Foltz.
Multiagent Evaluation Mechanisms. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(02):1774–1781, April 2020.

[10] Weize Chen, Jiarui Yuan, Chen Qian, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Optima:
Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System, February 2025.
arXiv:2410.08115 [cs].

[11] Wenlin Yao, Haitao Mi, and Dong Yu. HDFlow: Enhancing LLM Complex Problem-Solving
with Hybrid Thinking and Dynamic Workflows, September 2024. arXiv:2409.17433 [cs].

[12] Rithvik Prakki. Active Inference for Self-Organizing Multi-LLM Systems: A Bayesian Ther-
modynamic Approach to Adaptation, January 2025. arXiv:2412.10425 [cs].

[13] Shariq Iqbal and Fei Sha. Actor-Attention-Critic for Multi-Agent Reinforcement Learning.
2018.

[14] Zeyang Liu, Xinrui Yang, and Shiguang Sun. Grounded Answers for Multi-agent Decision-
making Problem through Generative World Model. 2024.

[15] Ziluo Ding, Zeyuan Liu, Zhirui Fang, Kefan Su, Liwen Zhu, and Zongqing Lu. Multi-Agent
Coordination via Multi-Level Communication. 2024.

[16] Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong Moon, Hiroki Furuta, Gopala Anu-
manchipalli, Kurt Keutzer, and Amir Gholami. Plan-and-Act: Improving Planning of Agents
for Long-Horizon Tasks, April 2025. arXiv:2503.09572 [cs].

[17] Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Language Agents as Optimizable Graphs, August 2024. arXiv:2402.16823 [cs].

9

[18] Siddharth Nayak, Adelmo Morrison Orozco, Jackson Zhang, Darren Chen, Aditya Kapoor,
Eric Robinson, Karthik Gopalakrishnan, James Harrison, Brian Ichter, Anuj Mahajan, and
Hamsa Balakrishnan. Long-Horizon Planning for Multi-Agent Robots in Partially Observable
Environments. 2024.

[19] Edward Y. Chang and Longling Geng. SagaLLM: Context Management, Validation, and
Transaction Guarantees for Multi-Agent LLM Planning, July 2025. arXiv:2503.11951 [cs].

[20] Boyi Li, Zhonghan Zhao, Der-Horng Lee, and Gaoang Wang. Adaptive Graph Pruning for
Multi-Agent Communication, June 2025. arXiv:2506.02951 [cs].

[21] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. GPQA: A Graduate-Level Google-Proof Q&A
Benchmark. In First Conference on Language Modeling, 2024.

[22] Sayash Kapoor, Benedikt Stroebl, Zachary S. Siegel, Nitya Nadgir, and Arvind Narayanan. AI
Agents That Matter. Transactions on Machine Learning Research, June 2025.

[23] Yufan Dang, Chen Qian, Xueheng Luo, Jingru Fan, Zihao Xie, Ruijie Shi, Weize Chen, Cheng
Yang, Xiaoyin Che, Ye Tian, Xuantang Xiong, Lei Han, Zhiyuan Liu, and Maosong Sun.
Multi-Agent Collaboration via Evolving Orchestration, May 2025. arXiv:2505.19591 [cs].

[24] Enhao Zhang, Erkang Zhu, Gagan Bansal, Adam Fourney, Hussein Mozannar, and Jack
Gerrits. Optimizing Sequential Multi-Step Tasks with Parallel LLM Agents, July 2025.
arXiv:2507.08944 [cs].

[25] Yijia Xiao, Edward Sun, Di Luo, and Wei Wang. TradingAgents: Multi-Agents LLM Financial
Trading Framework, June 2025. arXiv:2412.20138 [q-fin].

[26] Michael Walters, Rafael Kaufmann, Justice Sefas, and Thomas Kopinski. Free energy risk
metrics for systemically safe ai: Gatekeeping multi-agent study, 2025. arXiv:2502.04249
[cs.AI].

[27] Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and
Mehrdad Farajtabar. The Illusion of Thinking: Understanding the Strengths and Limitations of
Reasoning Models via the Lens of Problem Complexity, July 2025. arXiv:2506.06941 [cs].

[28] Alan Dao and Dinh Bach Vu. AlphaMaze: Enhancing Large Language Models’ Spatial
Intelligence via GRPO. arXiv preprint arXiv:2502.14669, 2025.

[29] Thomas Parr, Giovanni Pezzulo, and Karl J. Friston. Active Inference: The Free Energy
Principle in Mind, Brain, and Behavior. The MIT Press, 03 2022.

[30] Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and Ji-Rong
Wen. Reflective Multi-Agent Collaboration based on Large Language Models. 2025.

[31] Jaime Ruiz-Serra, Patrick Sweeney, and Michael S. Harré. Factorised Active Inference for
Strategic Multi-Agent Interactions, May 2025. arXiv:2411.07362 [cs].

[32] Karush Suri, Xiao Qi Shi, Konstantinos Plataniotis, and Yuri Lawryshyn. Surprise Minimizing
Multi-Agent Learning with Energy-based Models. 2022.

[33] Yavar Taheri Yeganeh, Mohsen Jafari, and Andrea Matta. Deep Active Inference Agents for
Delayed and Long-Horizon Environments, May 2025. arXiv:2505.19867 [cs].

[34] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P. How, and John Vian. Deep
Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial Observability, July
2017. arXiv:1703.06182 [cs].

[35] Manousos Linardakis, Iraklis Varlamis, and Georgios Th. Papadopoulos. Distributed Maze
Exploration Using Multiple Agents and Optimal Goal Assignment. IEEE Access, 12:101407–
101418, 2024.

10

[36] Kevin Godin-Dubois, Karine Miras, and Anna V Kononova. AMaze: An Intuitive Benchmark
Generator for Fast Prototyping of Generalizable Agents. Frontiers in Artificial Intelligence,
8:1511712, 2025.

[37] Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne Walker, Jiaoyang
Li, Dor Atzmon, Liron Cohen, TK Kumar, et al. Multi-Agent Pathfinding: Definitions, Variants,
and Benchmarks. In Proceedings of the International Symposium on Combinatorial Search,
volume 10, pages 151–158, 2019.

[38] Daniel Foead, Alifio Ghifari, Marchel Budi Kusuma, Novita Hanafiah, and Eric Gunawan. A
Systematic Literature Review of A* Pathfinding. Procedia Computer Science, 179:507–514,
2021.

[39] Semuil Tjiharjadi, Sazalinsyah Razali, and Hamzah Asyrani Sulaiman. A Systematic Literature
Review of Multi-agent Pathfinding for Maze Research. Journal of Advances in Information
Technology, 13(4), 2022.

[40] Ning Liu, Sen Shen, Xiangrui Kong, Hongtao Zhang, and Thomas Bräunl. Cooperative Hybrid
Multi-Agent Pathfinding Based on Shared Exploration Maps, March 2025. arXiv:2503.22162
[cs].

[41] Marco Pleines, Matthias Pallasch, Frank Zimmer, and Mike Preuss. Memory Gym: Towards
Endless Tasks to Benchmark Memory Capabilities of Agents. Journal of Machine Learning
Research, 26(6):1–40, 2025.

[42] Hafsteinn Einarsson. MazeEval: A Benchmark for Testing Sequential Decision-Making in
Language Models. arXiv preprint arXiv:2507.20395, 2025.

[43] Weizhe Chen, Sven Koenig, and Bistra Dilkina. Solving multi-agent path finding as an LLM
benchmark: How, how good and why. Transactions on Machine Learning Research, 2025.

[44] Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language Agents with Verbal Reinforcement Learning, October 2023.
arXiv:2303.11366 [cs].

[45] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdi-
nov, and Christopher D Manning. HotpotQA: A Dataset for Diverse, Explainable Multi-Hop
Question Answering. arXiv preprint arXiv:1809.09600, 2018.

[46] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training Verifiers to
Solve Math Word Problems. arXiv preprint arXiv:2110.14168, 2021.

[47] Nitish Shirish Keskar. Checkmate in One Move. https://github.com/google/
BIG-bench/blob/main/bigbench/benchmark_tasks/checkmate_in_one/README.md,
2021. Accessed: 2025-08-21.

[48] Zhihui Xie, Jie Chen, Liyu Chen, Weichao Mao, Jingjing Xu, and Lingpeng Kong. Teaching
Language Models to Critique via Reinforcement Learning, February 2025. arXiv:2502.03492
[cs].

[49] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-
Refine: Iterative Refinement with Self-Feedback, May 2023. arXiv:2303.17651 [cs].

[50] Zixuan Ke, Austin Xu, Yifei Ming, Xuan-Phi Nguyen, Caiming Xiong, and Shafiq Joty. MAS-
ZERO: Designing Multi-Agent Systems with Zero Supervision, May 2025. arXiv:2505.14996
[cs].

[51] Yizhe Huang, Xingbo Wang, Hao Liu, Fanqi Kong, Aoyang Qin, Min Tang, Song-Chun Zhu,
Mingjie Bi, Siyuan Qi, and Xue Feng. AdaSociety: An Adaptive Environment with Social
Structures for Multi-Agent Decision-Making. 2024.

11

https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/checkmate_in_one/README.md
https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/checkmate_in_one/README.md

[52] Yaru Niu, Rohan Paleja, and Matthew Gombolay. Multi-Agent Graph-Attention Communication
and Teaming. 2021.

[53] Edward Y. Chang. EVINCE: Optimizing Multi-LLM Dialogues Using Conditional Statistics
and Information Theory, January 2025. arXiv:2408.14575 [cs].

[54] Angelos Assos, Yuval Dagan, and Constantinos Daskalakis. Maximizing utility in multi-agent
environments by anticipating the behavior of other learners, July 2024. arXiv:2407.04889 [cs].

[55] Ruichen Jiang, Ali Kavis, Qiujiang Jin, Sujay Sanghavi, and Aryan Mokhtari. Adaptive and
Optimal Second-order Optimistic Methods for Minimax Optimization. 2024.

[56] Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan,
Yingyan Celine Lin, and Pavlo Molchanov. Small language models are the future of agentic ai,
2025.

[57] E. T. Jaynes. Information theory and statistical mechanics. Phys. Rev., 106:620–630, May
1957.

12

A Technical Appendices and Supplementary Material

A.1 Orchestrator Update Algorithm

Algorithm 1 Multi-Agent Active Inference Maze Solver

Require: MazeM, start s0, target τ , number of execute agents (N − 2)
Require: Static plan per iteration P = [p1, p2, . . . , pk, . . . , pK] (length K steps)

1: Initialize:
2: SO

0 ← OrchestratorNode.initialize(M, so, τ) ▷ Orchestrator state SO
0 contains all execute

nodes’ states (e.g. initial positions).
3: target_found← False, t← 1

4: while not target_found do ▷ Iterate until target is found
5: πt−1 ← OrchestratorNode.encodePolicy(SO

t−1, P) ▷ Policy prompt combining plan and
global state SO

t−1.
6: for each execute node n = 1 to N − 2 and not target_found do
7: Ŝe

n;(t−1) ← fn(S
O
t−1, πt−1, S

e
n;(t−1)) ▷ Execute node n integrates policy prompt into its

own state.
8: for each step k = 1 to K in plan do
9: if step k is "LookAround" then

10: Node n observes surroundings and updates its local map/beliefs.
11: else if step k is "SelectDirection" then
12: Node n chooses the best direction to move (based on its observations).
13: else if step k is "MarkDeadEnd" then
14: Node n marks current position as dead-end in its memory (if applicable).
15: if step k requires an actual move then
16: Node n executes move in the decided direction. ▷ Directional action in the maze

environment.
17: Node n observes new state (e.g. new position and sensory inputs).
18: Compute variational free energy Fn(t, k) for node n at this step.
19: ∆Fn(t, k)← Fn(t, k)− Fn(t− 1, k) ▷ Change in variational free energy from

previous step.
20: ∆wn(t, k)← f∆

(
Fn(t, k),∆Fn(t, k)

)
▷ Gradient-like update for node n’s

parameters considering Fn(t, k) and ∆Fn(t, k).
21: wbase ← wn(t, k − 1) + ∆wn(t, k) ▷ Update node n’s internal parameters.
22: Update node n’s state Se

n;t (e.g. new position, updated memory).
23: if Node n has reached target then
24: target_found← True
25: break from both for-loops ▷ Exit if the target is found.
26: SO

t ← OrchestratorNode.update(Se
1;t, S

e
2;t, . . . , S

e
n;t, . . . , S

e
N−2;t) ▷ Orchestrator node

updates its state with all execute nodes’ new state.
27: t← t− 1 ▷ Increment time/iteration counter.
28: Output: Path or solution found by agents reaching the goal.

13

A.2 Orchestrator Cell Architecture Overview

Figure 4: Orchestrator Cell Design - large-size reprint of Figure 1b.

A.3 Active Inference Calculation

Drawing on active inference principles, we reformulate the variational free energy (VFE) objective.
Rather than minimizing surprise to reduce deviation from a model’s predictions, we cast the objective
as a balanced process: maximizing expected Bayesian surprise to encourage active learning, while
offsetting this with explicit penalty terms for coordination and navigation efficiency.

Active inference, rooted in computational neuroscience, provides a principled framework for reason-
ing under uncertainty and has been shown to enhance agents’ task performance through quantified
feedback mechanisms [33, 29]. Given the assumption that agents operate under partial observability
of the problem environment and risk becoming trapped in local minima during task optimization, we
operationalize VFE to nudge agents towards active exploration and learning-driven behavior.

Following [29], VFE is defined as,

V FE = F [Q, y] = −EQ(x)[lnP (y, x)]︸ ︷︷ ︸
Energy

−H[Q(x)]︸ ︷︷ ︸
Entropy

= DKL[Q(x) ||P (x)]︸ ︷︷ ︸
Complexity

−EQ(x)[lnP (y|x)]︸ ︷︷ ︸
Accuracy

where

• EQ(x)[·] denotes the expectation under the approximate posterior Q(x),

• H[Q(x)] is the entropy of Q(x),

• DKL[Q(x) ||P (x)] is the Kullback–Leibler (KL) divergence between Q(x) and P (x),

• P (y|x) is the likelihood of y given latent state x,

14

Expanding the entropy definition, we obtain:

F [Q, y] = −EQ(x)[lnP (y, x)]︸ ︷︷ ︸
Energy

−H[Q(x)]︸ ︷︷ ︸
Entropy

= −EQ(x)[lnP (y, x)]−
(
− EQ(x)[lnQ(x)]

)
= −EQ(x)[lnP (y|x) + lnP (x)] + EQ(x)[lnQ(x)]

= EQ(x)

[
ln

Q(x)

P (x)

]
− EQ(x)[lnP (y|x)]

= DKL[Q(x) ||P (x)]︸ ︷︷ ︸
Complexity

−EQ(x)[lnP (y|x)]︸ ︷︷ ︸
Accuracy

In practice, however, direct access to LLM internal prior and exact likelihoods is unavailable. To
address this, we adopt Jaynes’s maximum entropy principle [57], approximating the unknown
posterior P(x) as uniform. Substituting into the KL term yields:

DKL[Q(x), ||, P (x)] = EQ(x)[lnQ(x)] + ln(N),

where N denotes the support size of the uniform prior. Therefore, VFE simplifies to:

F [Q, y] = −H[Q(x)] + ln(N)︸ ︷︷ ︸
Actual Information Gain

−EQ(x)[lnP (y|x)]︸ ︷︷ ︸
Accuracy Term

.

We interpret the first component as a proxy for epistemic value (actual information gain), while the
second acts a penalty on inaccurate predictions. Approximating the likelihood-based cost, we define:

Accuracy Term = −EQ(x)[lnP (y|x)] ≈ −[lnP (y|x)]

Finally, casting this into our operational form for Orchestrator:

VFE ≈ −H[St | St−1] − EQ(x)[lnP (St−1|x)]

= −H[St | St−1] + E
[
Accuracy Cost(St−1)

]
= Uepistemic − Caccuracy

where Uepistemic = −H[St | St−1] measures active information gain across states, and Caccuracy

penalizes inaccurate predictions based on expected negative log-likelihood.

A.4 Movement Score Policy Updates

The dynamic weights wn(t, k) derived from free energy assessment are operationalized through
directional movement scoring functions that convert performance metrics into actionable spatial
insights, which are passed to the agent as part of the dynamic policy updates at SO

t . For each
execution node en at iteration t and step k, the system computes movement scores Mn(d, t, k) for
each feasible direction d ∈ {north, south, east,west} as:

Mn(d, t, k) =
∑
i

wi(t, k) · ϕi(d, S
e
n;t) (8)

where ϕi(d, S
e
n;t) encodes exploration, efficiency, coordination, and backtracking factors for direction

d given the current local state Se
n;t. These movement scores provide execution nodes with quantified

directional preferences that integrate both individual performance optimization and system-wide
coordination objectives, enabling the translation of abstract free energy metrics into concrete spatial
decisions within the maze environment, towards exploring the maze with greater efficiency.

15

A.5 Determination of Threshold Variables for Agent Performance Policy Assessment

Figure 5: Results of grid-search to determine best threshold parameters for maximum performance of
the Orchestrator framework.

To identify optimal threshold values for agent performance policy assessment as discussed in section
3.2, we conducted a brief grid search over a set of threshold parameters ϑ1 (epistemic drive) and
ϑ2 (accuracy cost) and assess performance in terms of total number of steps required to solve
the maze, given the respective parameter setup across both difficulties (medium and hard). Maze-
solving experiments were performed at two difficulty levels, with n = 3 runs per setting. The
results indicate that for medium-difficulty mazes, best performance is achieved with ϑ1 = 0.6
and ϑ2 = 0.4, while for hard mazes, optimal performance is observed at a lower accuracy cost
threshold (ϑ1 = 0.9, ϑ2 = 0.01). However, total step count is slightly lower for the former setting
(ϑ1 = 0.6, ϑ2 = 0.04) indicating subtly elevated performance to the latter. For consistency and
comparability across all experiments in this paper, we adopt the higher-performance setting of
ϑ1 = 0.6 and ϑ2 = 0.4 throughout. Future iterations should test the framework at additional
threshold parameters for ϑ1 and ϑ2.

A.6 Agent Tool Interface Specification

The execution agents operate within the maze environment through a structured tool interface that
provides both environmental interaction capabilities and internal state management functions. This
tool-based architecture ensures consistent action execution across all agents while maintaining proper
state synchronization within the multi-agent framework.

A.6.1 Spatial Navigation Tools

The core navigation functionality is implemented through four directional movement tools:
move_north(), move_south(), move_east(), and move_west(). Each tool attempts to execute
a single-step movement in the specified cardinal direction and returns deterministic success/failure
feedback. The tools operate on the agent’s individual MazeWrapper instance, ensuring proper col-
lision detection with walls and maze boundaries. Upon successful movement, the tool reports the
agent’s new position coordinates using matrix notation (row, column), while failed attempts provide
specific failure reasons (e.g., blocked by wall, boundary violation).

16

A.6.2 Environmental Perception and State Management

The get_current_view() tool provides agents with local environmental perception through a
structured observation that includes the agent’s current position, available movement directions at a
+1 tile horizon, exit proximity status, and a spatial representation of the immediate surroundings. This
tool serves as the primary sensory input mechanism, enabling agents to make informed decisions
based on their local environment state.

The mark_dead_end() tool allows agents to maintain persistent spatial memory by marking their
current position as a dead end when specific confidence criteria are met. This tool supports the
system’s exploration efficiency by preventing redundant exploration of previously identified dead-end
locations.

A.6.3 Backtracking and Recovery Mechanisms

The start_backtracking() tool implements an automated recovery mechanism for agents that
become stuck or require strategic repositioning. When invoked, this tool calculates the shortest
path to the nearest unexplored opening using breadth-first search through the agent’s movement
history. The tool establishes a “lock mode” state that provides deterministic step-by-step navigation
instructions until the target position is reached, ensuring reliable recovery from suboptimal positions.
The backtracking mechanism operates exclusively through previously visited positions, maintaining
consistency with the agent’s explored knowledge while preventing navigation through unknown or
potentially blocked areas. Upon completion of the backtracking sequence, agents automatically
resume normal exploration behavior. This tool interface design ensures that while agents receive
algorithmic assistance for basic spatial operations and state management, the high-level decision-
making regarding which tools to use, when to initiate backtracking, and how to coordinate with other
agents remains within the domain of the language model’s reasoning capabilities.

17

A.6.4 Supplementary Performance Charts

Figure 6: Cost-effectiveness of different configurations, showing the tradeoff between average run
cost and success rate. Numerical identifiers for configurations are as follows: 1) GPT-4.1-nano (Solo);
2) GPT-5-nano (Solo); 3) GPT-4.1-nano + FE Benchmark only 4) GPT-5-nano + FE Benchmark only;
5) GPT-4.1-nano + FE + Orchestration Node; 6) GPT-5-nano + FE + Orchestration Node

Figure 7: Distribution of steps taken to solve mazes, grouped by configuration and difficulty for
medium- and hard-difficulty mazes using the orchestrator framework (successful runs only). Nu-
merical identifiers for configurations are as follows: 1) GPT-4.1-nano + FE Benchmark only; 2)
GPT-4.1-nano + FE + Orchestration Node; 3) GPT-5-nano + FE Benchmark only; 4) GPT-5-nano +
FE + Orchestration Node. Easy level has been omitted due to negligibly small scale.

18

A.6.5 Confidence Interval Convergence across Model Configurations

Figure 8: Statistical convergence analysis demonstrating the stabilization of performance estimates
with increasing sample size across different model configurations. Each line represents the 95%
confidence interval half-width for success rate estimates as a function of cumulative experimental
runs, with different colors indicating distinct model constellations (execution model, orchestration
model combinations). The y-axis shows the confidence interval half-width in percentage points,
providing a direct measure of estimate precision. The shaded regions indicate target precision zones:
green zone (≤ 5 percentage points) represents high precision suitable for reliable performance com-
parisons, yellow zone (5–15 percentage points) indicates moderate precision adequate for preliminary
analysis, and white zone (> 15 percentage points). All configurations demonstrate asymptotic
convergence behavior, with most achieving stable estimates (≤ 10 percentage points half-width) after
20–25 experimental runs. The reference lines show theoretical convergence bounds for different
baseline success rates (50%, 70%) under Wilson score interval calculations, validating the identified
convergence patterns.

19

A.7 Maze Execution Agent Prompt Template

A. Model System Prompt
You are Agent {agent_id} in a collaborative maze escape.

CRITICAL RULE
- Must call exactly ONE tool per step.
- Only exception: mark_dead_end() is optional.

COORDINATE SYSTEM
- Matrix coordinates (row, col), not Cartesian.
- (3,5) means "row 3, column 5".
- NORTH = -row, SOUTH = +row, EAST = +col, WEST = -col.
- Maze is displayed like a spreadsheet grid, not a graph.

WEIGHTED DECISION SYSTEM
Guided by dynamic performance weights.

DECISION HIERARCHY (check in order)
1. Backtracking Lock Mode (override):

If "BACKTRACKING LOCK MODE ACTIVE", immediately execute the required move.
Ignore all other rules until cleared.

2. Coordinate with Teammates:
Avoid teammate-explored areas unless no alternatives.
Apply weight {teammate_avoidance}.

3. Orchestrator & Optimization Guidance:
Apply orchestrator corrections and optimization hints.
Current weights: exploration={exploration_weight}, efficiency={efficiency_weight}.

4. Standard Backtracking Mode:
If "BACKTRACKING ACTIVE", execute required move and skip other checks.

5. Oscillation Detection:
If stuck looping (same 23 positions), call start_backtracking().

6. Safety Check:
Never move into walls. If blocked everywhere, call start_backtracking().

7. Exploration Priority:
Use weighted movement scores. Avoid dead ends unless necessary for backtracking.

AVAILABLE ACTIONS
- get_current_view() Observe 3x3 surroundings
- move_north/south/east/west() Advance one step
- mark_dead_end() Optional, no args
- start_backtracking() Return to nearest unexplored opening

DEAD END MARKING (threshold={dead_end_confidence})
Mark a cell as dead end only if:
(a) Only one possible move, leading back to visited tiles
(b) No unexplored directions remain
(c) Not currently backtracking
Skip marking if multiple unexplored paths exist, confidence < threshold,
or backtracking mode is active.

TURN STRUCTURE
1. get_current_view()
2. move_[direction]()
3. Optionally: mark_dead_end()

VICTORY CONDITION
- If "Maze Exit" found return FINISH immediately.

FORBIDDEN
- Multiple tool calls per step
- Moving in loops
- Explaining reasoning
- Calling start_backtracking() when already backtracking

20

B. Execution-Context Message (runtime)
EXECUTION CONTEXT STEP {step_index + 1}

CURRENT STEP
- {current_step}

CURRENT STATE
- Position: {current_position}
- Available moves: {possible_moves}
- Current unexplored directions: {agent_unexplored_directions}
- Known unexplored openings: {known_openings}
- {_format_dynamic_modifiers(dynamic_prompts)}

WEIGHTED MOVEMENT ANALYSIS
- {movement_guidance}
- All direction scores: {score_details}
- Backtrack threshold: {weights.get(’backtrack_threshold’, 0.7):.2f}
- Dead end confidence: {dead_end_confidence:.2f}
(threshold={weights.get(’dead_end_confidence’, 0.8):.2f})

BACKTRACKING STATUS
- Currently backtracking: {"YES" if is_backtracking else "NO"}
- Lock mode active: {"YES" if lock_mode else "NO"}
- WARNING: Do NOT call start_backtracking() if already backtracking

EXPLORATION STATUS
- Previously visited: {previously_visited_tiles}
- Dead ends marked: {len(marked_dead_ends) if marked_dead_ends else 0}
- Avoid backtracking to recent path unless other rules apply: {recent_positions}

OSCILLATION CHECK
- Recent movement pattern: {recent_positions}
- WARNING: If current position appears >2 times in recent pattern,
call start_backtracking()

MULTI-AGENT COORDINATION
- AVOID returning to your previous position:
{previous_position if previous_position else "None"}

- Teammate recent positions (last 10, avoid if alternatives exist):
{recent_other_positions[-10:] if len(recent_other_positions) >= 10 else

recent_other_positions}
- Teammate explored junctions/dead ends (avoid if alternatives exist):
{strategic_waypoints}

GUIDANCE
- Orchestrator: {agent_guidance}

PERFORMANCE WEIGHTS
- Exploration weight: {weights.get(’exploration_weight’, 1.0):.1f}
- Efficiency weight: {weights.get(’efficiency_weight’, 1.0):.1f}
- Backtrack threshold: {weights.get(’backtrack_threshold’, 0.7):.1f}
- Dead end confidence: {weights.get(’dead_end_confidence’, 0.8):.1f}

A.8 Orchestration Agent Prompt Design

A. Model System Prompt)
You are the Maze Strategy Orchestrator with REAL-TIME DECISION AWARENESS.

COORDINATE SYSTEM
- Grid maze: ’W’ (Wall), ’O’ (Open), ’E’ (Exit).
- MATRIX coordinates (row, col); NORTH=-row, SOUTH=+row, EAST=+col, WEST=-col.

YOUR CAPABILITIES

21

1. Real-time decision contexts per agent (positions, scores, weights, unexplored
dirs).

2. Movement conflicts (local penalties vs global exploration value).
3. Coordination opportunities (overlap/duplication).
4. Global optimization patterns (bottlenecks, gaps).

STRATEGIC RESPONSIBILITIES
1. Validate dead ends: flag incorrect markings against discovered cells.
2. Resolve movement conflicts: where efficiency penalties block global exploration.
3. Coordinate agents: divide unexplored areas to maximize coverage.
4. Break local minima: recommend overrides or temporary weight relaxations.
5. Keep guidance decision-aware: amplify agents local context, do not blindly

overwrite.

RESPONSE CONTRACT (STRICT)
- Output a SINGLE JSON object (no prose, no code fences).
- Keys: "analysis", "corrections", "guidance_for_agents".
- corrections.remove_dead_ends: list of [row, col].
- corrections.add_exploration_focus: list of [row, col].
- guidance_for_agents: mapping agent_id -> short, actionable directive.
- Be specific but concise. Avoid chain-of-thought; summaries only.

VALIDATION GUARDRAILS
- If uncertain, return empty lists/objects.
- Never invent agent_ids or coordinates not in context.
- JSON must be valid UTF-8, no trailing commas, no comments.

B. System Context Message (runtime).
Task: Find maze exit. Current Maze Exploration Analysis:

Orchestration Data (JSON): {{orchestration_data_json}}

ENHANCED DECISION INTELLIGENCE
- Movement Conflicts: {{movement_conflicts_json}}
- Exploration Coordination: {{exploration_coordination_json}}
- Efficiency Optimization: {{efficiency_optimization_json}}

FOCUS AREAS
- Dead end validation accuracy: {{dead_end_analysis_json}}
- Agent coordination summaries: {{agent_summaries_json}}
- Exploration coverage: {{discovered_cells_count}} cells
- Real-time decision contexts available: {{num_agents_with_context}} agents

INSTRUCTIONS
- Use the above decision data to produce ONLY the JSON object
defined in the response contract. No markdown, no extra text.

C. Response Contract (sent to execution agent node)
{
"analysis": "Short decision-aware synthesis of conflicts/coordination and key gaps

.",
"corrections": {
"remove_dead_ends": [[{{r1}}, {{c1}}], [{{r2}}, {{c2}}]],
"add_exploration_focus": [[{{r3}}, {{c3}}], [{{r4}}, {{c4}}]]

},
"guidance_for_agents": {
"{{agent_id_0}}": "Actionable, context-grounded instruction (e.g., override

penalty and go EAST).",
"{{agent_id_1}}": "Actionable instruction tailored to their movement scores/

unexplored dirs."
}

}

22

A.9 Maze Generation and Complexity Metrics

A.9.1 Maze Generation Algorithm

Our experimental evaluation employs a custom maze generation framework derived from the AMaze
benchmark [36], enhanced with Shannon entropy-based complexity measures to create systematic
long-horizon task environments. The maze generation algorithm combines recursive backtracking
with entropy-guided optimization to produce structured sequential decision-making challenges
suitable for evaluating multi-agent coordination in extended task horizons.

Core Generation Process The maze generation follows a modified recursive backtracking algo-
rithm that operates on a discrete grid G ∈ {W,O,E,X}n×n, where W represents walls, O denotes
open paths, E indicates the exit position, and X marks the outer boundary frame. The algorithm
prioritizes creating environments with extended solution sequences and multiple decision points:

• Distributed Initialization: Multiple starting points S = {s1, s2, . . . , sj} are strategically
placed across the maze to ensure complex path structures requiring sustained exploration,
with j varying based on maze size according to:

j =


1 if n < 15

5 if 15 ≤ n < 25

9 if n ≥ 25

• Entropy-Enhanced Carving: From each starting point, the algorithm applies recursive
backtracking with a dead-end factor δ ∈ [0.03, 0.35] that controls the density of decision
points and backtracking requirements. Path carving continues until connectivity require-
ments create sufficiently long action sequences.

• Quality Validation: Generated mazes undergo multi-criteria validation including connec-
tivity ratio ρ ∈ [0.10, 0.95], minimum path length requirements, and Shannon complexity
thresholds to ensure extended task horizons and multiple sequential decision points.

A.9.2 Exit Placement Optimization

Exit positions are optimized using a multi-objective scoring function that maximizes task horizon
length and decision complexity:

Score(p) = 10 · dpath(s, p) + 5 · dManhattan(s, p) + ϕedge(p) + ϕtopology(p) + 2 · dManhattan(p, c)

where:

• dpath(s, p) is the shortest path distance from start s to position p
• dManhattan(s, p) = |sx − px|+ |sy − py|
• ϕedge(p) rewards edge proximity (15 for edges, +25 for corners)
• ϕtopology(p) rewards dead ends (+30) and penalizes junctions (-10)
• c is the maze center

A.9.3 Shannon Entropy-Based Complexity Measures

Following the AMaze framework, we implement entropy-based metrics to quantify long-horizon task
difficulty.

Surprisingness Metric The surprisingness S(M) quantifies the entropy of directional decisions
along the optimal path:

S(M) = −
∑

i∈{W,O,E,X}

p(i) log2 p(i)

where p(i) is the empirical frequency of direction i in the optimal trajectory. Higher values indicate
greater planning unpredictability.

Deceptiveness Metric The deceptiveness D(M) captures the entropy of trap transitions that lead
to suboptimal paths:

D(M) =
∑
c∈C

∑
s∈T

−p(s|c) log2 p(s|c)

23

where C are cells adjacent to the optimal path, T are trap states, and p(s|c) is the transition probability
from c to s.

Trap Detection and Quantification Traps are defined as extended dead-end paths that test long-
horizon strategy recovery. Each trap t is characterized by:

• Depth: Length from branch to dead end
• Branching Factor: Number of branches within the trap
• Weight:

wt = 1.0 + 0.5 · depth + 0.3 · branches + 0.2 · dead_ends

Total trap complexity is:
Tc =

∑
t∈Traps

wt

A.9.4 Experimental Maze Collection

We generated 15 mazes across four pre-set difficulty categories. We implemented easy difficulty as
baseline only, and omitted the very hard difficulty for the analysis of this paper. The following setup
was then used for experiments.

• 5x Easy: [10, 30] difficulty = 0.03, size 12× 12
• 5x Medium: [30, 60] difficulty = 0.10, size 18× 18
• 5x Hard: [60, 80] difficulty = 0.25, size 25× 25
• 0x Very Hard: [80, 95] difficulty = 0.35, size 30× 30

All maze specifications, including topology, complexity scores, and optimal paths, are available in
the supplementary repository.

24

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately reflect the contribu-
tions and scope of the paper. The abstract and introduction clearly state the development of
the Orchestrator framework, its grounding in active inference, the introduction of reflective
benchmarking, and the empirical evaluation on long-horizon maze tasks. These claims are
substantiated by the theoretical exposition in Sections 2–3 and the experimental results in
Section 4. Further details and mathematical explanations are provided in the Appendix.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations of the work are discussed in the Conclusion (Section 6), where
authors note the restriction to synthetic maze environments, small agent teams, and the
need for further evaluation in larger, more heterogeneous systems and other domains. The
discussion also addresses scalability, cost, and the potential for open-source deployment.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best

25

judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theoretical results, including the formalization of the Orchestrator frame-
work and the active inference benchmarking, are accompanied by clearly outlined assump-
tions and complete derivations. The mathematical definitions and operationalizations are
provided in Section 3 and detailed in Appendix A.3. We believe all relevant formulas and
assumptions were explicitly outlined and referenced.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all information necessary to reproduce the main ex-
perimental results. Section 4 details the experimental setup, agent configurations, baselines,
and evaluation metrics. The appendices provide algorithmic details, prompt templates, and
maze generation procedures, ensuring reproducibility of the main claims. Additionally, the
code to re-run experiments has been provided as supplementary material to this submission.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

26

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the data and code, as described in the sup-
plemental material and appendices. Maze specifications and topologies are made available
in the supplementary repository, and instructions for reproducing the experiments are shared
as part of the main paper and appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and test details, including data splits, hyperparameters, agent
models, and evaluation criteria, are specified in Section 4 and the corresponding appendices.
We believe the experimental setting is described to a level of detail sufficient to understand
and reproduce the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars and confidence intervals for all main experimental
results, as shown in Table 1 and Figure 3. The methods for calculating error bars and
confidence intervals are described in the text and appendix, and we believe the factors of
variability were clearly stated.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information on compute resources, including the use of compact
LLMs (GPT-4.1-nano, GPT-5-nano), step budgets, and run durations as part of the main
paper and Appendices. Section Experiments and the Appendix specify the computational
constraints and resource allocation for each experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

28

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]
Justification: The research conducted in the paper conforms to the NeurIPS Code of Ethics.
The work is conducted on synthetic environments without human subjects or sensitive data,
and all experimental protocols adhere to ethical guidelines as outlined by NeurIPS.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential for using our framework in production-grade settings
and under consideration of open source models as part of the concluding section. We do not
explicitly discuss societal implications that point beyond the usual debates on LLM models,
as we solve long-horizon tasks in Maze environments do not perceive our framework to
be sufficiently mature to point beyond this immediate problem context. However, model
limitations and the need for further evaluation in broader domains are acknowledged.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release models or data with high risk for misuse. All
experiments are conducted on synthetic maze environments, and no sensitive or dual-use
assets are involved.
Guidelines:

• The answer NA means that the paper poses no such risks.

29

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We believe external assets, including code, data, and models, are properly
credited and cited in the references. We use open source programming languages and code
libraries to build our environment and architectures.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New assets introduced in the paper, such as the maze generation framework
and agent prompt templates, are well documented in the appendix and supplemental material.
Documentation is provided alongside the assets to facilitate reproducibility.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

30

paperswithcode.com/datasets

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
All experiments are conducted using synthetic environments and automated agents.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects, and therefore no
IRB approval or equivalent is required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper describes the usage of LLMs as a core, original component of the
research. The Orchestrator framework, agent models, and orchestration mechanisms are all
based on LLMs, as detailed throughout the main text and appendices.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

31

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Orchestrator Framework
	Graph-Based and Dynamic Multi-Agent Architecture
	Active Inference Benchmarking and Performance Assessment

	Experiments
	Results and Discussion
	Conclusion
	Technical Appendices and Supplementary Material
	Orchestrator Update Algorithm
	Orchestrator Cell Architecture Overview
	Active Inference Calculation
	Movement Score Policy Updates
	Determination of Threshold Variables for Agent Performance Policy Assessment
	Agent Tool Interface Specification
	Spatial Navigation Tools
	Environmental Perception and State Management
	Backtracking and Recovery Mechanisms
	Supplementary Performance Charts
	Confidence Interval Convergence across Model Configurations

	Maze Execution Agent Prompt Template
	Orchestration Agent Prompt Design
	Maze Generation and Complexity Metrics
	Maze Generation Algorithm
	Exit Placement Optimization
	Shannon Entropy-Based Complexity Measures
	Experimental Maze Collection

