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Abstract

We present an efficient stochastic algorithm (RSG+) for canonical correlation anal-
ysis (CCA) using a reparametrization of the projection matrices. We show how this
reparametrization (into structured matrices), simple in hindsight, directly presents
an opportunity to repurpose/adjust mature techniques for numerical optimization
on Riemannian manifolds. Our developments nicely complement existing methods
for this problem which either require O(d3) time complexity per iteration with
O( 1√

t
) convergence rate (where d is the dimensionality) or only extract the top

1 component with O( 1t ) convergence rate. In contrast, our algorithm offers an
improvement: it achieves O(d2k) runtime complexity per iteration for extracting
the top k canonical components with O( 1t ) convergence rate. While our paper
focuses more on the formulation and the algorithm, our experiments show that
the empirical behavior on common datasets is quite promising. We also explore a
potential application in training fair models with missing sensitive attributes.

1 Introduction

Canonical correlation analysis (CCA) is a classical method for evaluating correlations between two
sets of variables. It is commonly used in unsupervised multi-view learning, where the multiple
views of the data may correspond to image, text, audio and so on, Rupnik and Shawe-Taylor [2010],
Chaudhuri et al. [2009], Luo et al. [2015], and has been applied to manifold-valued data also Kim
et al. [2014]. Classical formulations have also been extended to leverage advances in representation
learning, for example, Andrew et al. [2013] showed how the CCA can be interfaced with deep neural
networks enabling modern use cases. Many results over the last few years have used CCA or its
variants for problems including measuring representational similarity in deep neural networks Morcos
et al. [2018] and speech recognition Couture et al. [2019].

The goal in CCA is to find linear combinations within two random variables X and Y which have
maximum correlation with each other. Formally, the CCA problem is defined as follows. Let
X ∈ RN×dx and Y ∈ RN×dy be N samples respectively drawn from pair of random variables X
(dx-variate random variable) and Y (dy-variate random variable), with unknown joint probability
distribution. The goal is to find the projection matrices U ∈ Rdx×k and V ∈ Rdy×k, with
k ≤ min{dx, dy}, such that the correlation is maximized:

max
U,V

F = trace
(
UTCXY V

)
s.t. UTCXU = Ik, V

TCY V = Ik (1)

Here, CX = 1
NXTX and CY = 1

N Y TY are the sample covariance matrices, and CXY = 1
NXTY

denotes the sample cross-covariance.

The objective in (1) is the expected cross-correlation in the projected space and the constraints specify
that different canonical components should be decorrelated. Let us define the whitened covariance
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T := C
−1/2
X CXY C

−1/2
Y and Φk (and Ψk) contains the top-k left (and right) singular vectors of

T . It is known Golub and Zha [1992] that the optimum of (1) is achieved at U∗ = C
−1/2
X Φk,

V ∗ = C
−1/2
Y Ψk. We can compute U∗, V ∗ by applying a k-truncated SVD to T .

Runtime and memory considerations. The above procedure is simple but is only feasible when the
data matrices are small. In modern applications, not only are the datasets large but also the dimension
d (let d = max{dx, dy}) of each sample can be large, especially if representations are learned using
deep models. As a result, the resource needs of the algorithm can be high. This has motivated the
study of stochastic optimization routines for solving CCA, and many efficient strategies have been
proposed. For example, Ge et al. [2016], Wang et al. [2016] present Empirical Risk Minimization
(ERM) models which optimize the empirical objective. More recently, Gao et al. [2019], Bhatia et al.
[2018], Arora et al. [2017] describe proposals that optimize the population objective. To summarize
the approaches, if we are satisfied with the top 1 component of CCA, effective schemes with O( 1t )
convergence rate are available by utilizing either extensions of the Oja’s rule Oja [1982] to the
generalized eigenvalue problem Bhatia et al. [2018] or the alternating SVRG algorithm Gao et al.
[2019]. Otherwise, a stochastic approach will use an explicit whitening operation which can cost d3
operations for each iteration Arora et al. [2017] and the convergence rate for the stochastic scheme
depends on its specific steps and calculations, e.g., O( 1√

t
) in Arora et al. [2017] (Thm 2.3, pp 5).

Observation. Most approaches either directly optimize (1) or instead a reparameterized or regularized
form Ge et al. [2016], Allen-Zhu and Li [2016], Arora et al. [2017]. Often, the search space for U and
V corresponds to the entire Rd×k (ignoring the constraints for the moment). But if the formulation
could be cast in a form which involved approximately writing U and V as a product of structured
matrices, we may be able to obtain specialized routines which are tailored to exploit those properties.
Such a reformulation is not difficult to derive – where the matrices used to express U and V can be
identified as objects that live in well studied geometric spaces. Then, utilizing the geometry of the
space and borrowing relevant tools from differential geometry could lead to an efficient approximate
scheme for top-k CCA which optimizes the population objective in a streaming fashion.

Contributions. (a) First, we re-parameterize the top-k CCA problem as an optimization problem
on specific matrix manifolds, and show that it is equivalent to the original formulation in (1). (b)
Informed by the geometry of the manifold, we derive stochastic gradient descent (SGD) algorithms
for solving the re-parameterized problem with O(d2k) cost per iteration and provide convergence
rate guarantees. (c) This analysis gives a direct mechanism to obtain an upper bound on the number
of iterations needed to guarantee an ϵ error w.r.t. the population objective for the CCA problem. (d)
The algorithm works in a streaming manner so it easily scales to large datasets and we do not need to
assume access to the full dataset at the outset. (e) We present empirical evidence for the standard
CCA model and the DeepCCA setting Andrew et al. [2013], describing advantages and limitations.

2 Stochastic CCA: Reformulation, Algorithm and Analysis
Let us review the objective for CCA as given in (1). We denote X ∈ RN×dx as the matrix consisting
of the samples {xi} drawn from a zero mean random variable X ∼ X and Y ∈ RN×dy denotes the
matrix consisting of samples {yi} drawn from a zero mean random variable Y ∼ Y . For simplicity,
we assume that dx = dy = d although the results hold for general dx and dy. Also recall that CX

(and CY resp.) is the covariance matrix of X (and Y resp.) and CXY is the cross-covariance matrix
between X and Y. Let U ∈ Rd×k (V ∈ Rd×k) be the matrix consisting of {uj} ({vj}) , where
({uj} , {vj}) are the canonical directions. The constraints in (1) are called whitening constraints.

Reformulation: In the CCA formulation, the matrices consisting of canonical correlation directions,
i.e., U and V , are unconstrained, hence the search space is the entire Rd×k. Now, we reformulate the
CCA objective by reparameterizing U and V . In order to do that, let us take a brief detour and recall
the objective function of principal component analysis (PCA):

Û = argmax
U ′

trace(R̂) subject to R̂ = U ′TCXU ′; U ′TU ′ = Ik (2)

Observe that by performing PCA and assigning U = Û R̂
− 1/2 in (1) (analogous for V using CY ),

we can satisfy the whitening constraint. Of course, writing U = Û R̂
− 1/2 does satisfy the whitening

constraint, but such a U (and V ) will not maximize trace
(
UTCXY V

)
, the objective of (1). Hence,
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additional work beyond the PCA solution is needed. Let us start from R̂ but relax the PCA solution
by using an arbitrary R̃ instead of diagonal R̂ (this will still satisfy the whitening constraint).

Write U = Ũ R̃ with ŨT Ũ = Ik and R̃ ∈ Rk×k. Thus we can approximate CCA objective (we will
later check how good this approximation is) as

max
Ũ,Ṽ ∈St(k,d)
Ru,Rv∈Rk×k

U=ŨRu; V=Ṽ Rv

trace
(
UTCXY V

)︸ ︷︷ ︸
F̃

+ trace
(
ŨTCX Ũ

)
+ trace

(
Ṽ TCY Ṽ

)
︸ ︷︷ ︸

F̃pca

s.t. UTCXU=Ik
V TCY V=Ik

(3)
Here, St(k, d) denotes the manifold consisting of d× k (with k ≤ d) column orthonormal matrices,
i.e., St(k, d) =

{
X ∈ Rd×k|XTX = Ik

}
. Observe that in (3), we approximate the optimal U and

V as a linear combination of Ũ and Ṽ respectively. Thus, the aforementioned PCA solution can act
as a feasible initial solution for (3).

As the choice of Ru and Rv is arbitrary, we can further reparameterize these matrices by constraining
them to be full rank (of rank k) and using the RQ decomposition Golub and Reinsch [1971] which
gives us the following reformulation.

A Reformulation for CCA

max
Ũ,Ṽ ,Su,Sv,Qu,Qv

U=ŨSuQu; V=Ṽ SvQv

trace
(
UTCXY V

)︸ ︷︷ ︸
F̃

+ trace
(
ŨTCX Ũ

)
+ trace

(
Ṽ TCY Ṽ

)
︸ ︷︷ ︸

F̃pca

(4a)

subject to UTCXU = Ik

V TCY V = Ik (4b)

Ũ , Ṽ ∈ St(k, d); Qu, Qv ∈ SO(k)

Su, Sv is upper triangular

Here, SO(k) is the space of k × k special orthogonal matrices, i.e., SO(k) ={
X ∈ Rk×k|XTX = Ik; det(X) = 1

}
. Before evaluating how good the aforementioned approxima-

tion is, we first point out some useful properties of the reformulation (4): (a) in the reparametrization
of U and V , all components are structured, hence, the search space becomes a subset of Rk×k (b) we
can essentially initialize with a PCA solution and then try to optimize (4) via some scheme.

Why (4) helps? First, we note that CCA seeks to maximize the total correlation under the constraint
that different components are decorrelated. One difficulty in the optimization is to ensure decorre-
lation, which leads to a higher complexity in existing streaming CCA algorithms. On the contrary,
in (4), we separate (1) into finding the PCs, Ũ , Ṽ (by adding the variance maximization terms) and
finding the linear combination (SuQu and SvQv) of the principal directions. After optimizing for
these variables, the whitening constraints are, up to a rescaling, automatically satisfied. Here, we
can (almost) utilize an efficient off-the-shelf streaming PCA algorithm. We will defer describing the
specific details of the individual steps until the next sub-section. First, we will show why substituting
(1) with (4) is sensible under some assumptions.

Why the solution of the reformulation makes sense? We start by stating some mild assumptions
needed for the analysis. Assumptions: (a) The random variables X ∼ N (0,Σx) and Y ∼ N (0,Σy)
with covariance Σx ⪯ cId and covariance Σy ⪯ cId for some c > 0. (b) The samples X and Y
drawn from X and Y respectively have zero mean. (c) For a given k ≤ d, Σx,Σy have non-zero
top-k eigen values.

We show how the presented solution, assuming access to an effective numerical procedure, approxi-
mates the CCA problem presented in (1). We formally state the result in the following theorem with
a sketch of proof (appendix includes the full proof) by first stating the following proposition.
Definition 1. A random variable X is called sub-Gaussian if the norm given by ∥X∥⋆ :=
inf {d ≥ 0|EX [exp (trace(XTX)/d2)] ≤ 2} is finite. Let U ∈ Rd×k, then XU is sub-Gaussian Ver-
shynin [2017].
Proposition 1 (Reiß et al. [2020]). Let X be a random variable which follows a sub-Gaussian
distribution. Let X̂ be the approximation of X ∈ RN×d (samples drawn from X ) with the top-k
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principal vectors. Let C̃X be the covariance of X̂ . Also, assume that λi is the ith eigen value of
CX for i = 1, · · · , d− 1 and λi ≥ λi+1 for all i. Then, the PCA reconstruction error, denoted by
Ek = EX∥X − X̂∥ (in the Frobenius norm sense) can be upper bounded as follows

Ek ≤ min

(√
2k∥∆∥2,

2∥∆∥22
λk − λk+1

)
, ∆ = CX − C̃X .

The aforementioned proposition suggests that the error between the data matrix X and the recon-
structed data matrix X̂ using the top-k principal vectors is bounded.

Recall from (1) and (4) that the optimal value of the true and approximated CCA objective is denoted
by F and F̃ respectively. The following theorem states that we can bound the error, E = ∥F − F̃∥
(proof in the appendix). In other words, if we start from PCA solution and can successfully optimize
(4) without leaving the feasible set, we will obtain a good solution.

Theorem 1. Using the hypothesis and assumptions above, the approximation error E = ∥F − F̃∥
as a function of N is bounded and goes to zero as N → ∞ while the whitening constraints in
equation 4b are satisfied.

Sketch of the Proof. Let U∗ and V ∗ be the true solution of CCA, i.e., of (1). Let U = ŨSuQu, V =

Ṽ SvQv be the solution of (4), with Ũ , Ṽ be the PCA solutions of X and Y respectively.
Let X̂ = XŨŨT and Ŷ = Y Ṽ Ṽ T be the reconstruction of X and Y using principal vec-
tors. Let SuQu = ŨTU∗ and SvQv = Ṽ TV ∗. Then we can write F̃ = trace

(
UTCXY V

)
= trace

(
1
N

(
X̂U∗

)T

Ŷ V ∗
)

. Similarly we can write F = trace
(

1
N (XU∗)

T
Y V ∗

)
. As X̂ and Ŷ

are the approximation of X and Y respectively using the principal vectors, we use Prop. 1 to bound
the error ∥F − F̃∥. Now observe that X̂U can be rewritten into XŨŨTU (similar for Ŷ V ). Thus, as
long as the solution SuQu and SvQv respectively well-approximate ŨTU and Ṽ TV , F̃ is a good
approximation of F .

Now, the only unresolved issue is an optimization scheme for equation 4a that keeps the constraints
in equation 4b satisfied by leveraging the geometry of the structured solution space.

2.1 How to numerically optimize (4a) satisfying constraints in (4b)?

Overview. We now describe how to maximize the formulation in (4a)–(4b) with respect to Ũ , Ṽ , Qu,
Qv, Su and Sv. We will first compute top-k principal vectors to get Ũ and Ṽ . Then, we will use a
gradient update rule to solve for Qu, Qv , Su and Sv to improve the objective. Since all these matrices
are “structured”, care must be taken to ensure that the matrices remain on their respective manifolds
– which is where the geometry of the manifolds will offer desirable properties. We re-purpose a
Riemannian stochastic gradient descent (RSGD) to achieve this task, so call our algorithm RSG+. Of
course, more sophisticated Riemannian optimization techniques can be substituted in. For instance,
different Riemannian optimization methods are available in Absil et al. [2007] and optimization
schemes for many manifolds are offered in PyManOpt Boumal et al. [2014].

The algorithm block is in Algorithm 1. Recall that F̃pca = trace
(
UTCXU

)
+ trace

(
V TCY V

)
is

the contribution from the principal directions which we used to ensure the “whitening constraint”.
Moreover, F̃ = trace

(
UTCXY V

)
is the contribution from the canonical correlation directions (note

that we use the subscript ‘cca’ for making CCA objective explicit). The algorithm consists of four
main blocks denoted by different colors, namely (a) the Red block deals with gradient calculation of
the objective function where we calculate the top-k principal vectors (denoted by F̃pca) with respect
to Ũ , Ṽ ; (b) the Green block describes calculation of the gradient corresponding to the canonical
directions (denoted by F̃ ) with respect to Ũ , Ṽ , Su, Sv , Qu and Qv; (c) the Gray block combines the
gradient computation from both F̃pca and F̃ with respect to unknowns Ũ , Ṽ , Su, Sv , Qu and Qv; and
finally (d) the Blue block performs a batch update of the canonical directions F̃ using Riemannian
gradient updates.
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Gradient calculations. The gradient update for Ũ , Ṽ is divided into two parts (a) The (Red block)
gradient updates the “principal” directions (denoted by ∇Ũ F̃pca and ∇Ṽ F̃pca), which is specifically
designed to satisfy the whitening constraint. This requires updating the principal subspaces, so, the
gradient descent needs to proceed on the manifold of k-dimensional subspaces of Rd, i.e., on the
Grassmannian Gr(k, d). (b) The (green block) gradient from the objective function in (4), is denoted
by ∇Ũ F̃ and ∇Ṽ F̃ . In order to ensure that the Riemannian gradient update for Ũ and Ṽ stays on the
manifold St(k, d), we need to make sure that the gradients, i.e., ∇Ũ F̃ and ∇Ṽ F̃ lies in the tangent
space of St(k, d). To do so, we need to first calculate the Euclidean gradient and then project on to
the tangent space of St(k, d).

The gradient updates for Qu, Qv, Su, Sv are given in the green block, denoted by ∇Qu
F̃ , ∇Qv

F̃ ,
∇Su

F̃ and ∇Sv
F̃ . Note that unlike the previous step, this gradient only has components from

canonical correlation calculation. As before, this step requires first computing the Euclidean gradient
and then projecting on to the tangent space of the underlying Riemannian manifolds involved, i.e.,
SO(k) and the space of upper triangular matrices.

Finally, we get the gradient to update the canonical directions by combining the gradients which is
shown in the gray block. With these gradients we can perform a batch update as shown in the blue
block. A schematic diagram is given in Fig. 1.

X ∈ R
N×dx

Y ∈ R
N×dy

˜Fpca

˜F

∇
Ũ
F̃pca,∇

Ṽ
F̃pca

∇
Ũ
F̃ ,∇

Ṽ
F̃ ,∇Qu F̃ ,∇Qv F̃ ,∇Su F̃ ,∇Sv F̃

∇A
˜Ftot

˜Ftot

U =
˜USuQu

V =
˜V SvQvA ∈ {Ũ, Ṽ , Qu,Qv, Su, Sv}

Figure 1: Schematic diagram of the proposed CCA
algorithm, here F̃tot = F̃ + F̃pca, where F̃ is the
approximated objective value for CCA (as in (4))

Using results presented next in Propositions 2–
3, this scheme can be shown (under some as-
sumptions) to approximately optimize the CCA
objective in (1).

We can now move to the convergence properties
of the algorithm. We present two results stating
the asymptotic proof of convergence for top-k
principal vectors and canonical directions in the
algorithm.
Proposition 2 (Chakraborty et al. [2020]).
(Asymptotically) If the samples, X , are drawn
from a Gaussian distribution, then the gradient
update rule presented in Step 5 in Algorithm 1
returns an orthonormal basis – the top-k principal vectors of the covariance matrix CX .
Proposition 3. (Bonnabel [2013]) Consider a connected Riemannian manifold M with injectivity
radius bounded from below by I > 0. Assume that the sequence of step sizes (γl) satisfy the condition
(a)

∑
γ2
l < ∞ (b)

∑
γl = ∞. Suppose {Al} lie in a compact set K ⊂ M. We also suppose that

∃D > 0 such that, gAl

(
∇Al

F̃ ,∇Al
F̃
)
≤ D. Then ∇Al

F̃ → 0 and l → ∞.

Notice that in our problem, the injectivity radius bound in Proposition 3 is satisfied as “I” for Gr(p, n),
St(p, n) or SO(p) is π/2

√
2, π/2

√
2, π/2 respectively. So, in order to apply Proposition 3, we need

to guarantee the step sizes satisfy the aforementioned condition. One example of the step sizes that
satisfies the property is γl = 1

l+1 .

2.2 Convergence rate and complexity of the RSG+ algorithm
In this section, we describe the convergence rate and complexity of the algorithm proposed in
Algorithm 1. Observe that the key component of Algorithm 1 is a Riemannian gradient update. Let
At be the generic entity needed to be updated in the algorithm using the Riemannian gradient update
At+1 = ExpAt

(
−γt∇At F̃

)
, where γt is the step size at time step t. Also assume {At} ⊂ M for

a Riemannian manifold M. The following proposition states that under certain assumptions, the
Riemannian gradient update has a convergence rate of O

(
1
t

)
.

Proposition 4. (Nemirovski et al. [2009], Bécigneul and Ganea [2018]) Let {At} lie inside a
geodesic ball of radius less than the minimum of the injectivity radius and the strong convexity radius
of M. Assume M to be a geodesically complete Riemannian manifold with sectional curvature
lower bounded by κ ≤ 0. Moreover, assume that the step size {γt} diverges and the squared step size

converges. Then, the Riemannian gradient descent update given by At+1 = ExpAt

(
−γt∇At F̃

)
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Algorithm 1: Riemannian SGD based algorithm (RSG+) to compute canonical directions

1 Input: X ∈ RN×dx , Y ∈ RN×dy , k > 0

2 Output: U ∈ Rdx×k, V ∈ Rdy×k

3 Initialize Ũ , Ṽ , Qu, Qv, Su, Sv

4 Partition data X,Y into batches of size B. Let jth batch be denoted by Xj and Yj

5 for j ∈
{
1, · · · , ⌊N

B
⌋
}

do

6

Gradient for top-k principal vectors: calculating ∇Ũ F̃pca,∇Ṽ F̃pca

1. Partition Xj (Yj) into L (L = ⌊B
k
⌋) blocks of size dx × k (dy × k);

2. Let the lth block be denoted by Zx
l (Zy

l );
3. Orthogonalize each block and let the orthogonalized block be denoted by Ẑx

l (Ẑy
l );

4. Let the subspace spanned by each Ẑx
l (and Ẑy

l ) be Ẑx

l ∈ Gr(k, dx) (and Ẑy

l ∈ Gr(k, dy));

∇Ũ F̃pca = −
∑
l

Exp−1

Ũ

(
Ẑx

l

)
∇Ṽ F̃pca = −

∑
l

Exp−1

Ṽ

(
Ẑy

l

)
(5)

7

Gradient from equation 4: calculating ∇Ũ F̃ ,∇Ṽ F̃ ,∇Qu F̃ ,∇Qv F̃ ,∇Su F̃ ,∇Sv F̃

∇Ũ F̃ = ∂F̃

∂Ũ
− Ũ ∂F̃

∂Ũ

T
Ũ ∇Ṽ F̃ = ∂F̃

∂Ṽ
− Ṽ ∂F̃

∂Ṽ

T
Ṽ

∇Qu F̃ = ∂F̃
∂Qu

− ∂F̃
∂Qu

T
∇Qv F̃ = ∂F̃

∂Qv
− ∂F̃

∂Qv

T

∇Su F̃ = Upper
(

∂F̃
∂Su

)
∇Sv F̃ = Upper

(
∂F̃
∂Sv

)
Here, Upper returns the upper triangular matrix of the input matrix and ∂F̃

∂Ũ
, ∂F̃

∂Ṽ
, ∂F̃
∂Qu

, ∂F̃
∂Qv

, ∂F̃
∂Su

, ∂F̃
∂Sv

give the
Euclidean gradients, which are provided in appendix.

8

Gradient to update canonical directions
∇Ũ F̃tot = ∇Ũ F̃pca +∇Ũ F̃ ∇Ṽ F̃tot = ∇Ṽ F̃pca +∇Ṽ F̃ ;
∇X F̃tot = ∇X F̃ where, X is a generic entity: X ∈ {Qu, Qv, Su, Sv};

9

Batch update of canonical directions
A = ExpA

(
−γj∇AF̃tot

)
where, A is a generic entity: A ∈ {Ũ , Ṽ , Qu, Qv, Su, Sv};

10 end for
11 U = ŨQuSu and V = Ṽ QvSv;

with a bounded ∇At
F̃ , i.e., ∥∇At

F̃∥ ≤ C < ∞ for some C ≥ 0, converges in the rate of O
(
1
t

)
with

the number of iterates bounded by O(N +D/ϵ2), for some tolerance ϵ > 0 and for the Lipschitz
bound D of the objective function F̃ .

For this result to be applicable, we need the CCA objective function to be geodesically convex as a
function of U and V (proof in the appendix). All Riemannian manifolds we needed, i.e., Gr(k, d),
St(k, d) and SO(k) are geodesically complete, and these manifolds have non-negative sectional
curvatures, i.e., lower bounded by κ = 0. Moreover the minimum of convexity and injectivity radius
for Gr(k, d), St(k, d) and SO(k) are π/2

√
2. Now, as long as the Riemannian updates lie inside the

geodesic ball of radius less than π/2
√
2, the convergence rate for RGD applies in our setting.

Running time. To evaluate time complexity, we must look at the main compute-heavy steps needed.
The basic modules are Exp and Exp−1 maps for St(k, d), Gr(k, d) and SO(k) manifolds (see Table
1 in appendix for a detailed specification of these maps). Observe that the complexity of these
modules is influenced by the complexity of svd needed for the Exp map for the St and Gr manifolds.
Our algorithm involves structured matrices of size d× k and k × k, so any matrix operation should
not exceed a cost of O(max(d2k, k3)), since in general d ≫ k. Specifically, the most expensive
calculation is SVD of matrices of size d× k, which is O(d2k), see Golub and Reinsch [1971]. All
other calculations are dominated by this term.
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Table 1: Wall-clock runtime of one pass through the data of our RSG+ and MSG on MNIST,
Mediamill and CIFAR (average of 5 runs).

MNIST Mediamill CIFAR
Time (s) k = 1 k = 2 k = 4 k = 1 k = 2 k = 4 k = 1 k = 2 k = 4
RSG+ (Ours) 4.16 4.24 4.71 1.89 1.60 1.44 14.80 17.22 22.10
MSG 35.32 42.09 49.17 11.59 14.21 17.34 80.21 100.80 106.55

3 Experiments

We first evaluate RSG+ for extracting top-k canonical components on three benchmark datasets and
show that it performs favorably compared with Arora et al. [2017]. Then, we show that RSG+ also
fits into feature learning in DeepCCA Andrew et al. [2013], and can scale to large feature dimensions
where the non-stochastic method fails. Finally, we show that RSG+ can be used to improve fairness
of deep neural networks without full access to labels of protected attributes during training.

3.1 CCA on Fixed Datasets

Datasets and baseline. We conduct experiments on three benchmark datasets (MNIST LeCun et al.
[2010], Mediamill Snoek et al. [2006] and CIFAR-10 Krizhevsky [2009]) to evaluate the performance
of RSG+ to extract top-k canonical components. To our knowledge, Arora et al. [2017] is the only
previous work which stochastically optimizes the population objective in a streaming fashion and
can extract top-k components, so we compare our RSG+ with the matrix stochastic gradient (MSG)
method proposed in Arora et al. [2017] (note: there are two methods proposed in Arora et al. [2017]
and we choose MSG because it performs better in the experiments in Arora et al. [2017]). The details
regarding the three datasets and how we process them are as follows:

MNIST. LeCun et al. [2010]: MNIST contains grey-scale images of size 28× 28. We use its full
training set containing 60K images. Every image is split into left/right half, which are used as the two
views. Mediamill. Snoek et al. [2006]: Mediamill contains around 25.8K paired features of videos
and corresponding commentary of dimension 120, 101 respectively. CIFAR-10. Krizhevsky [2009]:
CIFAR-10 contains 60K 32× 32 color images. Like MNIST, we split the images into left/right half
and use them as two views.

Evaluation metric. We choose to use Proportion of Correlations Captured (PCC) which is widely
used Ma et al. [2015], Ge et al. [2016], partly due to its efficiency, especially for relatively large
datasets. Let Û ∈ Rdx×k, V̂ ∈ Rdy×k denote the estimated subspaces returned by RSG+, and
U∗ ∈ Rdx×k, V ∗ ∈ Rdy×k denote the true canonical subspaces (all for top-k). The PCC is defined
as PCC = TCC(XÛ,Y V̂ )

TCC(XU∗,Y V ∗) , where TCC is the sum of canonical correlations between two matrices.

Performance. We run our algorithm with step sizes chosen from {1, 0.1, 0.01, 0.001, 0.0001,
0.00001}. The performance in terms of PCC as a function of the number of seen samples (shown in a
streaming manner) are shown in Fig. 2, and our RSG+ achieves around 10× runtime improvement
over MSG (see Table 1). Our RSG+ captures more correlation than MSG Arora et al. [2017] while
being 5 − 10 times faster. One case where our RSG+ underperforms Arora et al. [2017] is when
the top-k eigenvalues are dominated by the top-l eigenvalues with l < k (Fig. 2b): on Mediamill
dataset, the top-4 eigenvalues of the covariance matrix in view 1 are: 8.61, 2.99, 1.15, 0.37. The first
eigenvalue is dominantly large compared to the rest and our RSG+ performs better for k = 1 and
worse than Arora et al. [2017] for k = 2, 4. Runtime of RSG+ for different data dimensions (set
dx = dy = d) and number of total samples (from a joint Gaussian distribution) is in the appendix.

3.2 CCA for Deep Feature Learning

Background and motivation. A deep neural network (DNN) extension of CCA was proposed by
Andrew et al. [2013] and has become popular in multi-view representation learning tasks. The idea
is to learn a deep neural network as the mapping from original data space to a latent space where
the canonical correlations are maximized. We refer the reader to Andrew et al. [2013] for details of
the task. Since deep neural networks are usually trained using SGD on mini-batches, this requires

7



0 1 2 3 4 5 6
# of samples seen ×10

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
C

C

MNIST

Ours k=1
Ours k=2
Ours k=4
MSG k=1
MSG k=2
MSG k=4

(a) on MNIST

0 0.5 1 1.5 2 2.5
# of samples seen ×10

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
C

C

MEDIAMILL

Ours k=1
Ours k=2
Ours k=4
MSG k=1
MSG k=2
MSG k=4

(b) on Mediamill

0 1 2 3 4 5 6
# of samples seen ×10

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
C

C

CIFAR

Ours k=1
Ours k=2
Ours k=4
MSG k=1
MSG k=2
MSG k=4

(c) on CIFAR

Figure 2: Performance on three datasets in terms of PCC as a function of # of seen samples.

obtaining an estimate of the CCA objective at every iteration in a streaming fashion, thus our RSG+
can be a natural fit. We conduct experiments on a noisy version of MNIST dataset to evaluate RSG+.

Table 2: Results of feature learning on MNIST.
N/A means fails to yield a result on our hardware.

Accuracy(%) d = 100 d = 500 d = 1000
DeepCCA 80.57 N/A N/A
Ours 79.79 84.09 86.39

Dataset. We follow Wang et al. [2015a] to con-
struct a noisy version of MNIST: View 1 is a
randomly sampled image which is first rescaled
to [0, 1] and then rotated by a random angle from
[−π

4 ,
π
4 ]. View 2 is randomly sampled from the

same class as view 1. Then we add independent
uniform noise from [0, 1] to each pixel. Finally
the image is truncated into [0, 1] to form view 2.

Implementation details. We use a simple 2-layer MLP with ReLU nonlinearity, where the hidden
dimension in the middle is 512 and the output feature dimension is d ∈ {100, 500, 1000}. After the
network is trained on the CCA objective, we use a linear Support Vector Machine (SVM) to measure
classification accuracy on output latent features. Andrew et al. [2013] uses the closed form CCA
objective on the current batch directly, which costs O(d3) memory and time for every iteration.

Performance. Table 2 shows that we get similar performance when d = 100 and can scale to large
latent dimensions d = 1000 while the batch method Andrew et al. [2013] encounters numerical
difficulty on our GPU resources and the Pytorch Paszke et al. [2019] platform in performing an
eigen-decomposition of a d× d matrix when d = 500, and becomes difficult if d is larger than 1000.

3.3 CCA for Fairness applications

Figure 3: Training architecture for fairness experiment. The model above is the pretrained model and
the model below is being trained. Use of CCA allows the two network architectures to be different.

Background and motivation. Fairness is becoming an important issue to consider in the design
of learning algorithms. A common strategy to make an algorithm fair is to remove the influence of
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one/more protected attributes when training the models, see Lokhande et al. [2020]. Most methods
assume that the labels of protected attributes are known during training but this may not always be
possible. CCA enables considering a slightly different setting, where we may not have per-sample
protected attributes which may be sensitive or hard to obtain for third-parties Price and Cohen [2019].
On the other hand, we assume that a model pre-trained to predict the protected attribute labels is
provided. For example, if the protected attribute is gender, we only assume that a good classifier
which is trained to predict gender from the samples is available rather than sample-wise gender
values themselves. We next demonstrate that fairness of the model, using standard measures, can be
improved via constraints on correlation values from CCA.

Dataset. CelebA Wang et al. [2015b] consists of 200K celebrity face images from the internet. There
are up to 40 labels, each of which is binary-valued. Here, we follow Lokhande et al. [2020] to focus
on the attactiveness attribute (which we want to train a classifier to predict) and the gender is treated
as “protected” since it may lead to an unfair classifier according to Lokhande et al. [2020].

Table 3: Fairness results on CelebA. We applied CCA on three dif-
ferent layers in Resnet-18 respectively. See appendix for positions of
conv 0, 1, 2. “Ours-conv[0,1]-conv[1,2]” means stacking features from
different layers to form hypercolumn features Hariharan et al. [2015],
which shows that our approach allows two networks to have different
shape/size.

Accuracy(%) DEO(%) DDP(%)
Unconstrained 76.3 22.3 4.8
Ours-conv0 76.5 17.4 1.4
Ours-conv1 77.7 15.3 3.2
Ours-conv2 75.9 22.0 2.8
Ours-conv[0,1]-conv[1,2] 76.0 22.1 3.9

Method. Our strategy is
inspired by Morcos et al.
[2018] which showed that
canonical correlations can
reveal the similarity in neu-
ral networks: when two net-
works (same architecture)
are trained using different
labels/schemes for exam-
ple, canonical correlations
can indicate how similar
their features are. Our ob-
servation is the following.
Consider a classifier that is
trained on gender (the pro-
tected attribute), and another classifier that is trained on attractiveness, if the features extracted by
the latter model share a high similarity with the one trained to predict gender, then it is more likely
that the latter model is influenced by features in the image pertinent to gender, which will lead to an
unfairly biased trained model. We show that by imposing a loss on the canonical correlation between
the network being trained (but we lack per-sample protected attribute information) and a well trained
classifier pre-trained on the protected attributes, we can obtain a more fair model. This may enable
training fairer models in settings which would otherwise be difficult. The training architecture is
shown in Fig. 3.

Implementation details. To simulate the case where we only have a pretrained network on protected
attributes, we train a Resnet-18 He et al. [2016] on the gender attribute, and when we train the
classifier to predict attractiveness, we add a loss using the canonical correlations between these two
networks on intermediate layers: Ltotal = Lcross-entropy + LCCA where the first term is the standard
cross entropy term and the second term is the canonical correlation. See appendix for more details of
training/evaluation.

Results. We choose two commonly used error metrics for fairness: difference in Equality of
Opportunity Hardt et al. [2016] (DEO), and difference in Demographic Parity Yao and Huang [2017]
(DDP). We conduct experiments by applying the canonical correlation loss on three different layers
in Resnet-18. In Table 3, we can see that applying canonical correlation loss generally improves the
DEO and DDP metrics (lower is better) over the standard model (trained using cross entropy loss
only). Specifically, applying the loss on early layers like conv0 and conv1 gets better performance
than applying at a relatively late layer like conv2. Another promising aspect of our approach is that is
can easily handle the case where the protected attribute is a continuous variable (as long as a well
trained regression network on the protected attribute is given) while other methods like Lokhande
et al. [2020], Zhang et al. [2018] need to first discretize the variable and then enforce constraints
which can be much more involved.

Limitations. Our current implementation has difficulty to scale beyond d = 105 data dimension and
this may be desirable for large scale DNNs. Exploring sparsity may be one way to solve the problem
and will be enabled by additional developments in modern toolboxes.
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4 Related Work

Stochastic CCA: There has been much interest in designing scalable and provable algorithms for
CCA: Ma et al. [2015] proposed the first stochastic algorithm for CCA, where local convergence is
proven for the non-stochastic version. Wang et al. [2016] designed an algorithm which uses alternating
SVRG combined with shift-and-invert pre-conditioning, with global convergence properties. These
stochastic methods, and Ge et al. [2016] Allen-Zhu and Li [2016], which reduce the CCA problem to
a generalized eigenvalue problem and solve it via an efficient power method, all belong to the class of
methods that seeks to to solve the empirical CCA problem. It can be seen as an ERM approximation of
the original population objective, which requires solving numerically the empirical CCA objective on
a fixed data set. These methods usually assume access to the full dataset at the outset, which may not
be suitable for some practical applications where data is presented in a streaming manner. Recently,
there appears to be an interest in considering the population CCA problem Arora et al. [2017] Gao
et al. [2019]. The main difficulty in the population setting is that we have limited knowledge about
the objective unless we know the distribution of X and Y. Arora et al. [2017] handles this problem
by deriving an estimation of the gradient of the population objective whose error can be properly
bounded so that applying proximal gradient to a convex relaxed objective will provably converge.
Gao et al. [2019] provides a tightened analysis of the time complexity of the algorithm in Wang et al.
[2016], and provides sample complexity for certain distributions. The problem we study is similar to
the one in Arora et al. [2017], Gao et al. [2019]: to optimize the population objective of CCA in a
streaming fashion.

Riemannian Optimization: Riemannian optimization is a generalization of standard Euclidean
optimization methods to smooth manifolds, which takes the following form: given f : M → R, solve
minx∈M f(x), where M is a Riemannian manifold. Advantages often include efficient numerical
procedures for certain classes of constrained optimization problems. Applications include matrix
and tensor factorization Ishteva et al. [2011], Tan et al. [2014], PCA Edelman et al. [1998], CCA
Yger et al. [2012], and so on. We remark that Yger et al. [2012] also describes CCA formulation by
rewriting it as a Riemannian optimization on the Stiefel manifold. In our work, we further explore the
benefits of the Riemannian optimization toolkit, decomposing the linear space spanned by canonical
vectors into products of several matrices which lie in several different Riemannian manifolds.

5 Conclusions

In this work, we presented a stochastic approach (RSG+) for the CCA model based on the observation
that the solution of CCA can be decomposed into a product of matrices which lie on certain structured
spaces. This affords specialized numerical schemes and makes the optimization more efficient. The
optimization is based on Riemannian stochastic gradient descent and we provide a proof for its
O( 1t ) convergence rate with the number of iterates upper bounded, with O(d2k) time complexity
per iteration. In experimental evaluations, we find that our RSG+ behaves favorably relative to the
baseline stochastic CCA method in capturing the correlation in the datasets. We also show the use of
RSG+ in the DeepCCA setting showing feasibility when scaling to large dimensions as well as in an
interesting use case in training fair models.

Our full codebase is available for use at https://github.com/zihangm/riemannian-streaming-cca.

Potential negative societal impacts. Since CCA is a fundamental problem in statistical machine
learning and not tied to specific applications, we do not see a negative societal impact of our proposed
method. However, it is possible that CCA can be used to uncover relationships between measurements
which can be used for undesirable purposes.
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