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Abstract

Recent studies have highlighted the presence
of cultural biases in Large Language Models
(LLMs), yet often lack a robust methodology
to dissect these phenomena comprehensively.
Our work aims to bridge this gap by delving
into the FOOD domain—a universally relevant
yet culturally diverse aspect of human life. We
introduce FMLAMA, a multilingual dataset
centered on food-related cultural facts and vari-
ations in food practices. We analyze LLMs
across various architectures and configurations,
evaluating their performance in both monolin-
gual and multilingual settings. By leveraging
templates in six different languages, we in-
vestigate how LLMs interact with language-
specific and cultural knowledge. Our findings
reveal that (1) LLMs demonstrate a pronounced
bias towards food knowledge prevalent in the
United States; (2) Incorporating relevant cul-
tural context significantly improves LLMs’ abil-
ity to access cultural knowledge; (3) The effi-
cacy of LLMs in capturing cultural nuances is
highly dependent on the interplay between the
probing language, the specific model architec-
ture, and the cultural context in question. This
research underscores the complexity of inte-
grating cultural understanding into LLMs and
emphasizes the importance of culturally diverse
datasets to mitigate biases and enhance model
performance across different cultural domains.

1 Introduction

Asking a French person for the recipe of Beef
Bourguignon in English might yield an immedi-
ate and precise response, while the same query
might pose challenges to a Chinese individual un-

less posed as ?}J EEPFF VT’ (its literal translation).
The phenomenon of incorporating multiple lan-
guages within a single sentence or conversation
is known as code-switching. It occurs naturally in
conversational speech among multilingual speak-
ers (Aguilar and Solorio, 2020; Dogruéz et al.,
2021). In China, the dish is also commonly referred
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Figure 1: Summary of the various aspects of our work.

flour

to by its broader description, £LiE %4 A (Red
Wine Stewed Beef), highlighting the main ingredi-
ents and cooking technique, albeit without speci-

fying a regional origin. Employing “‘&ﬁﬂi?)@‘@
H-IN” (French-style Red Wine Stewed Beef) with
an adjectival description can indicate adherence
to French culinary traditions, illustrating how cul-
tural and linguistic nuances influence knowledge
transmission. This variability underscores the chal-
lenges language models encounter in navigating
cross-cultural culinary contexts and highlights the
difficulty of responding with cultural knowledge,
which involves using specific language, engaging
in code-switching, and integrating cultural context.

Trained on vast datasets, Large Language Mod-
els (LLMs) encode a wide array of knowledge,
but also face challenges with various biases, such
as those related to gender (Savoldi et al., 2021;
Kaneko et al., 2022), belief (Sggaard, 2021;
Gonzélez et al., 2021; Lent and Sggaard, 2021), and
culture (Cao et al., 2023; Deshpande et al., 2022;



Yin et al., 2022). In this paper, we address the fol-
lowing research questions: (1) What cultural biases
exist within the cultural knowledge contained in
LLMs? (2) How can we best prompt and evaluate
LLMs to elicit culture-specific knowledge? Specif-
ically, we first design an automated construction
method for the dataset FMLAMA (§3). Next, we
introduce the cultural knowledge probing method
(§4), encompassing the probing task, template and
metric. We then conduct experiments (§5) and
analysis (§6) to address our proposed research ques-
tions. Finally, we delve into comprehensive evalua-
tion (§7), including case study and human evalua-
tions. Figure 1 provides an overview of our work’s
various aspects, and our contributions are:

* We present FMLAMA, a pioneering dataset
focused on the food domain, which is inher-
ently rich in cultural diversity. This dataset is
a multifaceted tool for probing LLMs across
cultures and languages.

* We propose novel metrics designed to assess
LLMs’ ability to accurately and sensitively
probe for cultural knowledge, incorporating
both absolute- and fuzzy-match techniques.

* We analyze the impact of integrating cultural
context and language specificity in prompts,
offering insights to optimize LL.Ms for equi-
table cross-cultural knowledge retrieval.

Our methodology for automated collection of cul-
tural knowledge corpora extends the analysis po-
tential in other domains, broadening the scope of
research on cultural biases in LLMs. !

2 Related Work

Cultural knowledge datasets. Cultural knowl-
edge, encompassing the customs, beliefs, tradi-
tions, and practices of a culture, is crucial yet chal-
lenging to encapsulate. While some researchers
focus on manually curating cultural knowledge
datasets, others evaluate LLMs’ performance on
culturally related tasks. Yin et al. (2022) and
Palta and Rudinger (2023) have developed bench-
marks such as geo-diverse prompts and food-
custom datasets (FORK) to probe cultural biases in
commonsense reasoning systems. However, man-
ual dataset construction is inefficient and hard to
scale, prompting a shift towards automated meth-
ods. For instance, StereoKG (Deshpande et al.,

'Data and code will be available.

2022) offers a scalable knowledge graph that blends
cultural knowledge with stereotypes, and CAN-
DLE (Nguyen et al., 2023) extracts cultural com-
monsense knowledge from the web, organizing it
into clusters. Despite these advances, the variability
in data representation—from sentences to triplets
using OpenIE—poses challenges for consistency
and noise control in knowledge probing. Keleg
and Magdy (2023) aims to mitigate this by select-
ing culturally diverse factual triples from Wikidata,
focusing mainly on explicit country information.
In contrast, our work proposes an automated, effi-
cient approach to constructing a cultural knowledge
dataset in a uniform triplet format, addressing the
limitations of existing methods and focusing on
implicit cultural knowledge. Table 1 contrasts our
dataset with prior cultural knowledge collections.

Knowledge probing. Deciphering the knowl-
edge encoded by LLMs poses significant chal-
lenges due to their opaque nature , early bench-
marks like LAMA (Petroni et al., 2019) sought
to quantify the factual knowledge in English
LLMs, while ParaRel (Elazar et al., 2021) high-
lighted their consistency issues. Subsequent ef-
forts as mLAMA (Kassner et al., 2021) and mPara-
Rel (Fierro and Sggaard, 2022) expanded these
benchmarks multilingually, though such methods
often focus on single-word entities, limiting their
depth of assessment. To address these shortcom-
ings, newer studies (Shin et al., 2020; Zhong et al.,
2021; Meng et al., 2022) have evolved towards
eliciting more comprehensive factual knowledge,
including multi-word entities, with Jiang et al.
(2020a) developing algorithms for multi-token pre-
dictions. LPAQA (Jiang et al., 2020b) further re-
fines this by optimizing prompt discovery for more
accurate knowledge probing. Our work builds
on this foundation, targeting multi-token probing
within the food domain, characterized by complex
expressions like Trigonella foenum-graecum and
almond paste. We also introduce absolute- and
fuzzy-match metrics for a nuanced evaluation of
LLMs’ cultural knowledge.

3 FMLAMA Construction

To assess whether LLMs encode and access cul-
tural information, we develop FMLAMA, a mul-
ticultural, multilingual dataset focusing on culi-
nary knowledge. The designed framework can be
adapted to other cultural domains.



Datasets Format Topic Construction method Size
GEOMLAMA (Yinet al., 2022) Manual Template ~ Geo-Diverse Concept Manually curated 3125
FORK (Palta and Rudinger, 2023) CommonsenseQA  Culinary culture Manually curated 184

StereoKG  (Deshpande et al., 2022)
CANDLE (Nguyen et al., 2023)

Triplet knowledge
Sentences

FmLAMA (ours)

Stereotypes about religion and ethnicity

Automatically constructed 4722

Several cultural facets (food, drinks, clothing, Automatically constructed 47360
traditions, rituals, behaviors)
Food domain Automatically constructed 33600

Triplet knowledge

Table 1: Comparison of cultural knowledge datasets. Size is in number of instances.

Step #1: Obtain countries set. Following Zhou
et al. (2023), we use countries of food origin to
delineate cultural groups. This method leverages
countries as proxies for cultural identity, encap-
sulating diverse traditions, values, and norms that
reflect the breadth of human civilizations across
geographical boundaries (Minkov and Hofstede,
2012; Peterson et al., 2018).

Step #2: Acquire food instances. We utilize
SPARQL to query Wikidata, extracting a vast array
of food-related data. This approach exploits Wiki-
data’s RDF triple structure to gather detailed infor-
mation on food instances, offering a rich source of
comprehensive food knowledge.

i. Class. For our food-focused dataset, we
concentrate on the dish class and employ two ap-
proaches to find food instances:

» Explicit instance of dish, e.g., bouillabaisse.

* Inferred through a hierarchy, e.g., Blanquette de

subclass of subclass of ;.
veau stew dish.

This enables comprehensive inclusion of food in-

(instance of|subclass of )+
stances, represented as [

dish, where ‘|” denotes “or”, and ‘+’ is “one or
more”.

ii. Cultural group. We organize food instances
by their origin, applying these strategies:

* Directly specified in Wikidata, e.g., bouillabaisse

country of origin
France.

» Through the associated cuisine category, e.g.,

mapo doufu <usine, Chinese cuisine <y China.

We exclude dishes with multiple origin countries
to maintain cultural specificity.

iii. Properties included. We prioritize the prop-
erty “has part(s)” to identify food ingredients for
each dish. Additional properties like “made from
material” and “image” are collected to support fu-
ture research (e.g., multimodal), though they are
not utilized in this study. In each instance, the

descriptive language for all attributes remains con-
sistent.

Ultimately, our constructed dataset, FMLAMA,
comprises 33,600 dish instances, detailed by name,
origin, ingredients, and optionally, materials and
images, encompassing 128 cultural country groups
and 250 languages. The average number of ingre-
dients in FMLAMA dataset is 2.04. Examples and
statistics are provided in Appendix A.

4 Cultural Knowledge Probing
4.1 Probing task

We adopt Word Predictions (WP) as knowledge-
probing tasks following most knowledge-probing
methods (Fierro and Sggaard, 2022; Wu et al.,
2023). Firstly, we manually design a prompt tem-
plate ¢ focused on the core attribute “has part(s)”,
illustrating a connection between a dish (subject)
and its ingredient(s) (object). WP is usually im-
plemented as a candidate retrieval problem. The
candidate set consists of all objects in the focused,
filtered sub-dataset of FMLAMA.? The primary
objective is to utilize LLMs to obtain the probabil-
ity of each candidate C' and subsequently rank the
predicted objects based on these probabilities.

MASK operation Using subject-object tuples
([X1], [Y]) as queries, we probe LLMs by replacing
the subject and masking the object. Considering
that each candidate object is tokenized into d subto-
kens {ci1,-- - ,cq} by LLMs correspondingly, we
apply [MASK] token of varying lengths to the ob-
jects within each query. D queries are constructed
for each food subject X based on the same tem-
plate ¢, D is the maximum number of object tokens,
each query Qfl( is defined as:

QF =t(X,[MASK] *d),d € [1,D]. (1)

2As the size of the filtered sub-dataset increases, the can-
didate object set also expands, leading to greater difficulty
in probing. Consequently, in this paper, results obtained by
probing across different filtered sub-datasets cannot be used
for horizontal comparison.
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Probability acquisition We use Mean Pooling?
method to obtain the prediction probability of each
candidate. Specifically, for candidate object C' =
{c1,-- -, cq} of length d, its probability is obtained
from the likelihoods associated with the [MASK]
tokens in Qé( , and the predicted probability of C'
is calculated as the average of the probabilities of
composing its subtokens:

d
Z (QF,MASK], == ¢;), (2)

&M—‘

Qd7

where p (-) is obtained after the log softmax opera-
tion.

4.2 Probing template

Prompt diversity consideration Considering
LLMs produce varied predictions based on prompt
framing (Elazar et al., 2021; Wang et al., 2023),
we craft five templates conveying identical mean-
ings in each prompt language. For example, “The
food [X] has the ingredients of [Y]”, “[X] is a kind
of food with [Y]”. To explore various prompt lan-
guage settings, we crafted prompts in six languages
written by native speakers, namely English (en),
Chinese (zh), Arabic (ar), Korean (ko), Russian
(ru), and Hebrew (he). These languages span 4 dif-
ferent language families — Indo-European (English,
Russian), Semitic (Hebrew, Arabic), Altaic (Ko-
rean), and Sino-Tibetian (Chinese), and are spoken
by more than 2.356 billion speakers. Furthermore,
these languages represent cultural diversity, being
spoken on different continents by groups with rich
and distinct cultural backgrounds. These prompt
illustrations and language details are depicted in
Appendix B.

Cultural context integration To explore the im-
pact of introducing cultural context on LLMs’ abil-
ity to access cultural knowledge, we enhance the
basic templates by integrating location adverbials.
For instance, “In [C], the food [X] includes the in-
gredients of [Y]”, where [C] denotes the country of
origin for the dish [X], [Y] indicates the ingredient
object.

Code-switching setting To evaluate how the cul-
tural knowledge probing abilities of multilingual
LLMs are influenced in code-switching scenar-
ios, mirroring real-world language use, we design

3Mean Pooling is usually used in multi-token probing and
much better than max-pooling and first-pooling methods (Wu
etal., 2023).

prompt variations using both English-Chinese and
Chinese-English code-switching settings, specifi-
cally using prompts in pure English and Chinese.
as follows:
EN_en: The food beef bourguignon has the ingredients of [Y].
EN_zh: The food ZLiE /4 has the ingredients of [Y].
ZH_zh: SERLLEA AR Y9 Z SRR R -
ZH_en: & &beef bourguignonsg LAY E B FRHITERT -

Here, EN and ZH signify the main language of
the prompt, while en and zh indicate the subject’s
language.

4.3 Probing Metric

Despite the considerable amount of research dedi-
cated to knowledge probing, even studies employ-
ing a similar LAMA-style approach lack a stan-
dardized evaluation criterion. Although our exper-
iments solely focus on a single relationship, that
is, the ingredients of a food item, our probing task
poses greater challenges for LLMs: (1) The num-
ber of objects in each instance is not fixed. (2)
The number of food instances contained in each
cultural group varies. (3) The expression of cer-
tain ingredients is not always absolute. For in-

stance, in Chinese, both %nli and /E\Jiﬂ'i can denote
salt. (4) There is flexibility in specifying cooking
ingredients. Consider the example of frico, the
Italian dish known as “a cheese crisp” in English.
Although the knowledge base specifies cheese as
the ingredient, there is an option to choose a spe-
cific type, such as mozzarella cheese or feta. Con-
sidering these constraints, we introduce both an
absolute-match metric, Mean Average Preci-
sion (mAP), and a fuzzy-match metric, Mean
Word Similarity (mWS).

Mean Average Precision. mAP is widely used
in information retrieval settings, assessing the rele-
vance of predicted objects (in our case ingredients)
only when they precisely match the golden ones.
The precision at rank k£ (P@k) for a given food
instance ¢ is defined as follows:

|ing, mktOPki| ’ 3)
where ing; is the golden ingredients set, topk; sig-
nifies the set of top-k objects with the highest pre-
dicted probability of belonging to food item ¢ by
LLMs. Then the average precision of food item ¢
is computed as follows:

P@k =

1

ling;|

AP, =

Z P@k x rel@k, 4)
k



where n refers to the size of the candidate object set
and rel@k is a relevance indicator function, which
equals 1 if the object at rank k is relevant to food
item ¢ and equals to 0 otherwise. Finally, we com-
pute the mAP in the following way:

1
mAP = — ) " AP;, 5)
Gl i
where G represents a food group we are focusing
on (i.e. a subset of FMLAMA).

Mean Word Similarity. mWS is defined based
on the semantic similarity between predicted and
golden objects. First, we define the similarity score
S (i, g) for each ingredient g within each food in-
stance 4. Only the predicted objects in the top-I
rankings of the model prediction that are most simi-
lar to g contribute to the evaluation score, where [ is
the size of ing;. Mathematically, S (7, g) is defined
as follows:

SQ[ (i,g9) = max [cos (wg,wp)],g € ing;, (6)

pEtopl;

where wg, and w,, are the continuous word repre-
sentations for the ingredient g and the predicted
object p, respectively, and are obtained using
Fasttext (Bojanowski et al., 2017; Joulin et al.,
2016), cos(-) is the cosine similarity function.
Then we can compute the probing similarity W'.S;
for each food instance 7 and mWS for the targeted
food group as follows:

1
WS; = - 5Ql (i, g N
o], 2 5109
1
mWS = > WS, ®)
i€G

Both mAP and mWS metrics range from [0,1].

S Experiments: What Cultural Biases
Exist?
5.1 Experimental setup

We mainly explore the encoder-only language mod-
els: BERT (Devlin et al., 2019) and its multilingual
version, mBERT, along with the encoder-decoder
language models: TS5 (Raffel et al., 2020) and its
multilingual counterpart, mT5 (Xue et al., 2020).
For the English prompt, we create sub-datasets by
applying English language filtering to the created
FMLAMA-en dataset. The final result is obtained
by averaging the results of 5 prompt probings. No-
tably, we also probe decoder-only language models,
but the filling mask task is unsuitable due to their

autoregressive nature. Probing these LLMs usually
involves multiple-choice questions, which are im-
practical with many options. Appendix C details
the probing results and analysis for decoder-only
LLMs using an alternative fuzzy matching method.

5.2 Experimental results

Table 2 showcase the probing results based on En-
glish prompt on the filtered dataset FMLAMA-en.*

Metric comparison Regarding the adopted two
metrics, we observe the following: 1) Across di-
verse cultural groups, evaluating probing results
with the absolute-match metric, mAP, reveals a
significantly greater disparity in cultural knowl-
edge accessibility compared to assessments using
the fuzzy-match metric, mWS. This highlights the
challenge of absolute-match evaluation and the im-
portance of introducing the fuzzy-match metric. 2)
We evaluate the correlation between the two met-
rics, mAP, and mWS, utilizing all probing results
from Table 2, resulting in a Pearson correlation co-
efficient of 0.66. This signifies a moderate to strong
positive correlation between the two metrics.

Group comparison Regarding the various cul-
tural groups in Table 2, we observe the following:
(1) Regardless of absolute or fuzzy evaluation, the
U.S. group almost consistently achieves the high-
est probing results on FMLAMA-en with English
prompts. This suggests that evaluated LLMs pos-
sess a greater familiarity with food-related knowl-
edge specific to the U.S. context. (2) The quan-
tity of knowledge within cultural groups in the
knowledge base may not fully reflect the poten-
tial knowledge within LLMs. For example, despite
the Italy group having more dishes than the U.K.
and India groups, LLMs achieve lower probing
result scores for the Italy group. We speculate
that this difference may be due to the official lan-
guages of the U.K. and India including English,
aligning with the prompt language in the experi-
ments. However, it is notable that LLMs do not
exhibit lower probing result scores in China, de-
spite its official language not including English. >
(3) Monolingual English LL.Ms excel in access-
ing cultural knowledge within English-speaking
countries, while multilingual LL.Ms may not per-
form superior in non-English-speaking countries.

*The probing results with prompts in the other five lan-
guages on the corresponding filtered sub-datasets can be found
in the Appendix D.

>Additional discussion can be found in the Appendix E.



Origin Count Encoder-only LLMs Encoder-Decoder LLMs Ave,
Bb-c Bb-u Bl-c Bl-u mB-c mB-u mT5 TS
Italy 215(8.3%) | 3.93+2.29 5.43+2.26 4.39+2.44  5.3243.14 5254240 5.65+4.03 4494137  5.09+1.82 | 4.94
UsS. 285(11.0%) | 10.26+4.94 14.58+6.29  11.60+4.67 12.72+6.25 13.79+5.16 13.10+7.62 | 12.37+3.37 13.16+5.32 | 12.70
Turkey 98 3.8%) | 7.80+5.13  10.53+5.09 6.724£3.97  8.02+£5.66 11.55+6.37 9.12+6.28 6294277  7.84+£398 | 848
Japan 186 (7.2%) | 7.99+3.75 7.53+4.09 8.68+4.03 6.64+3.75 7.18+£3.41  7.59+4.59 55742.63  5.64+1.40 | 7.10
France 175 (6.8%) | 5.01+2.99 6.57+2.90 6.15+£2.58  5.55+2.29 5.64+2.62  6.02+3.59 3.63£1.90 4.05£1.67 | 5.33
UK. 83 (3.2%) | 8.40+5.34 8.84+3.39  11.17£6.01 9.29+5.83 10.48+4.16  8.52+6.48 6.29+3.94  7.71+£3.55 | 8.83
Mexico 57 (22%) | 6.41+£3.12 6.93+£2.95 7724258  7.16+£4.55 8.08+2.64 7.92+2.26 3.61£0.97 4.18+£2.72 | 6.50
India 132 (5.1%) | 12.63+6.56 14.184+5.99  13.37+7.32 12.10+6.99 9.78+4.34 10.56+5.67 8.64+3.41  5.41+2.55 | 10.83
Germany 57 (22%) | 4.94+3.21 5.42+3.39 5.64+£3.43  5.78+2.69 7.40+£2.65 7.81+4.92 4.20+1.61 5.79+1.26 | 5.87
China 97 3.8%) | 10.43+4.17  12.354£3.13  12.36+3.34 11.27+4.69 12.54+3.47 11.79+5.54 7.93+£1.97  9.36+3.18 | 11.00
Iran 21 (0.8%) | 7.00+5.17 5.96+4.26 6.32+4.56  6.33+3.82 8.314+4.73  9.424+5.85 | 10.37£3.09 5.67+£042 | 742
Greece 21(0.8%) | 3.15+2.93 3.99+2.46 2.78+1.84  2.73+1.63 3724324 3.12+1.42 2.1240.92  0.73+£0.27 | 2.79
Spain 95 (3.7%) | 3.54+1.93 5.92+2.74 4.26+2.24  5.374+2.89 4.61+1.84  5.424+1.90 3.26£1.77  3.01£1.17 | 442
Russia 27 (1.0%) | 5.55+3.53 7.68+2.17 5.34+43.21 5.48+3.64 5314322  5.57+2.58 1.45+1.28 1.85+0.23 | 4.78
Others 1031 (40.0%) | 5.9243.04 6.30+£2.81 6.41+2.88  6.37+3.17 6.06+£2.51 5.62+2.42 3.82+1.21 3.61+£1.06 | 5.51
ALL 2580 (100.0%) ‘ 6.87+3.46 8.09+3.40 7.59+3.36  7.51+£3.77 7.70£2.91 7.43+3.73 ‘ 551£1.75  5.58+1.95 ‘ 7.04
(a) Performance results evaluated using mAP (%).
Origin Encoder-only LLMs Encoder-Decoder LLMs Ave.
Bb-c Bb-u Bl-c Bl-u mB-c mB-u mT5 TS
Italy 0.3107+£0.07  0.3391£0.05  0.32064+0.07 0.3246+0.05 0.29924+0.05  0.3279+0.04 | 0.3287+0.02 0.3097+0.01 | 0.3201
u.s. 0.3593+0.08  0.3957+0.07  0.3793+0.07 0.3813+0.07 0.3730£0.05  0.3760+0.06 | 0.3796-:0.03 0.3844+0.04 | 0.3786
Turkey 0.3431+£0.07  0.3592+0.08  0.35424+0.07 0.3521+0.06 0.3478+0.08  0.34804+0.05 | 0.3501+0.04 0.3243+0.03 | 0.3474
Japan 0.3247+£0.07  0.3321£0.06  0.33124+0.08 0.3072+0.05 0.2902+0.05  0.2965+0.05 | 0.3072+£0.03 0.2815+0.01 | 0.3088
France 0.3280+£0.07  0.3420£0.04  0.3348+0.05 0.3372+0.03 0.3261+0.05 0.3278+0.03 | 0.3342+0.02 0.3268+0.02 | 0.3321
UK. 0.3132+£0.08  0.3343+0.03  0.3401+0.06 0.3362+0.05 0.3177+£0.04  0.3255+0.05 | 0.3126+0.04 0.3079+0.02 | 0.3234
Mexico 0.3123+£0.05  0.3418+0.03  0.3473+£0.06 0.3254+0.05 0.3087+0.05 0.3152+0.02 | 0.3276+0.01 0.3130+0.01 | 0.3239
India 0.3638+£0.09  0.3741+0.08  0.3796+0.09 0.3531+0.08 0.3215+£0.06  0.3367+0.07 | 0.3352£0.05 0.2920+0.02 | 0.3445
Germany | 0.3127+0.10  0.32684+0.08  0.3362+0.08 0.3191+0.06 0.3118+0.05 0.3473+£0.06 | 0.3189+0.05 0.3263+0.03 | 0.3249
China 0.3210£0.04  0.3493+0.02  0.3476+0.02 0.33544+0.03 0.3398+£0.02  0.3309+0.04 | 0.3569+0.02 0.3156+0.03 | 0.3371
Iran 0.3195+£0.07  0.3145+0.09  0.3399+0.08 0.3145+0.08 0.3252+0.07  0.3476+0.04 | 0.3555+£0.03 0.3233+0.04 | 0.3300
Greece 0.3113+£0.08  0.3399+0.06  0.3359+0.08 0.3178+0.06 0.2822+0.08  0.3180+0.02 | 0.3530+0.05 0.3048+0.01 | 0.3204
Spain 0.3008+£0.06  0.3280£0.05  0.3189+0.06 0.3117+0.04 0.2856+0.05  0.3068+0.03 | 0.3168+0.02 0.2828+0.01 | 0.3064
Russia 0.3368+£0.05 0.3680+£0.04  0.33554+0.06 0.3397+0.04 0.3113+0.07  0.3158+0.02 | 0.3313+£0.03 0.2721+0.02 | 0.3263
Others 0.3235+£0.06  0.3378+0.04  0.3376+0.06 0.3263+0.04 0.3088+0.05 0.3150+0.02 | 0.3266+0.02 0.2821+0.02 | 0.3197
ALL 0.3278+£0.06  0.3468+0.05  0.3428+0.06 0.3339+0.05 0.31774+0.05  0.3264+0.03 ‘ 0.3338+£0.02  0.3050+0.02 | 0.3293

(b) Performance results evaluated using mWS.

Table 2: Probing performance comparison with English prompts and FMLAMA-en sub-dataset. “B/mB” respec-
tively represent abbreviations for BERT and mBERT. “b/I” stands for base/large and “c/u” stands for cased/uncased.
Bold represents the best-performing cultural group within the same model (each column). Red indicates the
best-performing LLMs in each specific cultural group (each row). We find that LLMs typically score higher on U.S.
cultural knowledge, and monolingual English LLMs perform better in English-speaking countries. The Pearson
correlation coefficient between mAP and mWS is 0.66 based on the results above.

This discrepancy may arise because the pretraining
data for monolingual models is solely in English,
whereas for multilingual models, it encompasses
languages beyond English.

6 Analysis: How to Design Better
Prompts?

In this part, we examine the impact of different
prompt settings on cross-cultural knowledge explo-
ration. This involves integrating references to cul-
tural backgrounds, incorporating code-switching
settings, and considering language choices within
the prompts.

Cultural background analysis Using the En-
glish prompts from Figure 9 as a basis, we in-
corporate information about the country of origin
into the probing prompts for each specific dish (as
described in §4.2). Figure 2 presents a compar-
ative analysis of probing results on FMLAMA-

en across different LLMs, taking into account the
inclusion of cultural information mentions in the
prompts. We find that, whether through absolute
or fuzzy evaluation, English prompts with cultural
information achieve higher probing scores in cap-
turing LLMs’ knowledge within the food domain.
This suggests the importance of emphasizing the
cultural background when utilizing LLMs, espe-
cially in the exploration of culture-related topics.
Moreover, in the comparison of the absolute-match
metric mAP, cultural information contributes more
in multilingual LLMs compared to monolingual
LLMs. This seems to align with real-world social
dynamics, indicating that in multicultural settings,
introducing cultural backgrounds enhances com-
munication.

Code-switching analysis Code-switching prob-
ing focused on dishes common in both English and
Chinese in a filtered subset of FmLAMA. Only cul-
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Figure 2: Comparative probing results on FMLAMA.-
en: incorporating cultural information about the origin
of dishes into English prompts can enhance the probing
of cultural knowledge.
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Figure 3: Probing results with monolingual prompts and
code-switching prompts, O and O signify the absence
or presence of cultural background information in the
prompt, respectively.

tural groups with dish counts exceeding 20 are re-
tained. Our objective is to ensure that the language
of the predicted ingredients matches the main lan-
guage used in the prompt. Probing results on each
multilingual LLMs display for Figure 3: (1) In
code-switching settings, the probing abilities of
LLMs for EN_zh relative to EN_en and ZH_en rel-
ative to ZH_zh both notably decrease, with the lat-
ter showing a more pronounced decline in the mB-c
language model. (2) Whether in code-switching
mode or not, the introduction of relevant cultural
backgrounds in the prompts generally facilitates
cultural knowledge probing. The detailed prob-
ing results of each cultural group can be seen in
Appendix F.

Language analysis We adopt prompts in six dif-
ferent languages and conduct knowledge probing
on multilingual LLMs. To ensure a fair compari-
son of the probing results across different language
prompts, we filter a sub-dataset consisting of only
175 food instances that have labels in all of the lan-
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Figure 4: Average probing results of all multilingual
LLMs on the filtered sub-dataset with prompts in dif-
ferent languages. The ability of LLMs to access cul-
tural knowledge may not consistently outperform in the
cultural group where that language is spoken for each
language prompt.

Most common ingredients Gold label ingredients

en zh ko ‘ en zh ko
yogurt water tangerine egg grain flour egg
avocado sugar cumin seeds flour egg wheat flour
vegetable glucose hot stone sugar sugar sugar
olive oil oil lime juice potato rice potato
rice salt pork floss almond chicken salt
bread egg rice meat tomato  chicken meat
baking powder quince  drinking water onion onion butter
ice cream milk apple tomato butter meat
extra virgin olive oil  sugar cheese chicken meat pork milk
vegetable oil cilantro tofu butter potato bread

Table 3: Ingredients analysis. The first three columns
display the 10 most common ingredients for mBERT-
base-uncased in English (en), Chinese (zh), and Ko-
rean (ko). The remaining three columns show the 10
most common gold standard ingredients, sourced from
Wikipedia.

guages that are involved. This underscores the lack
of aligned knowledge across multiple languages.
Considering the relatively limited size of the fil-
tered dataset, we opt for a broader categorization
based on continents rather than individual coun-
tries to differentiate cultural groups. Appendix G
illustrates the distribution of cultural groups within
this filtered sub-dataset. Figure 4 displays prob-
ing results on the filtered sub-dataset with prompts
in different languages. The probing performance
varies with prompts in different languages. The
ability of LLMs to access cultural knowledge may
not consistently outperform in the cultural group
where that language is spoken for each language
prompt. For instance, Chinese prompts yield better
results in English-speaking countries. Our exper-
imental results suggest that determining the most
suitable language for knowledge probing in a spe-
cific cultural context proves challenging.

7 Comprehensive Evaluation

Case study — Ingredients analysis We conduct
a more fine-grained analysis of the model’s pre-



dictions to better understand its behavior, particu-
larly to discern whether it is relying on “educated”
guesses or leveraging its cultural knowledge when
providing answers. We focus on two multilingual
models, mT5 and mbert-base-uncased, and three
languages: Korean, Chinese, and English®. For
every language and dish in the multilingual dataset
(see §3), we extract the top 5 ingredients with the
highest probability as predicted by the model and
calculate the set of distinct ingredients. Table 3
shows mbert’s 10 most common ingredients in each
language. In Korean, Chinese, and English, these
ingredients cover 0.59%, 0.91%, and 0.97% of the
total predictions, respectively.” This indicates that
the model tends to depend on repetitive predictions,
consistently selecting the same subset of ingredi-
ents regardless of the context. 3 For example, in
Korean, mbert often predicts ingredients specific
to Korean dishes, such as hot stone, which refers to
various Korean dishes served in a hot stone pot, and
tofu. However, in Chinese/English, the model tends
to predict more widely used ingredients, like flour
and sugar, which are common across various cul-
tural cuisines. This observation might imply that
Chinese/English models perform better because the
ingredients they predict have broader applicability
and are more likely to be found in a variety of
dishes.

Human evaluation To check the validity of the
two proposed metrics, we conduct a human eval-
uation of the probing results, including 372 food
instances. Specifically, we extract the probing re-
sults for all dishes originated in the U.S and China
from the best-performing prompt setting in the
code-switching EN_en experiments. In each dish
instance, only the top-/ predicted objects are evalu-
ated, where [ is the number of golden labels, similar
to the setting of the mWS metric. In addition to
assessing the absolute matching between predicted
objects and golden objects as measured by mAP,
our human evaluation also considers: (1) whether a
predicted object can replace a certain golden object
in cooking, and (2) whether the predicted object is
an ingredient of the dish, even if not listed in the

®This subset of languages is selected for clarity. The ob-
served trends are consistent across all languages in our dataset.

"To compute the coverage we divide the number of times
the most common 10 predictions are predicted by the model,
by the number of its top 5 predictions. For each dish we take
only 5 predictions because more than 0.95% of the dishes
contain less than 5 ingredients.

8This trend persist for all models, and languages.

.. ‘ mBERT-uncased ‘ mT5
Origin
‘ mAP mWS Human ‘ mAP mWS Human
US. 10.68 37.96 33.61 | 1470 38.24 37.56
China 8.40 32.79 25.16 | 9.40 37.41 32.19

Table 4: Comparison of scores (%) from human evalua-
tion and two automated metric evaluations. The Pearson
correlation coefficient between mAP and human is 0.88,
whereas that between mWS and human is 0.94 as per
the aforementioned results.

golden label (e.g, lemon is an ingredient of the dish
lemon chicken, even though it erroneously has only
chicken meat in Wikidata).

The calculation method for human evaluation
scores is the same as mAP. Four authors partici-
pated in human evaluation for this work, who come
from three different countries, three of whom have
experience living across various cultures. The Krip-
pendorff’s alpha value about inter-annotator agree-
ment is 0.581, which suggests a moderate level of
agreement among raters. Nevertheless, it remains a
reliable evaluation, as the task is subjective rather
than ill-specified, influenced to some extent by cul-
tural backgrounds.

We average their final scores to obtain the ul-
timate assessment score. Table 4 compares the
scores from human evaluation with those from two
automated metric evaluations. The Pearson corre-
lation coefficient between mAP and Human is 0.88,
whereas that between mWS and Human is 0.94 as
per the aforementioned results, which indicates the
significance of mWS, as it aligns more closely with
human evaluation.

8 Conclusion

This study presents an automated method for gen-
erating extensive cultural knowledge datasets, ex-
emplified by the creation of FMLAMA, a diverse,
food-centric dataset that spans multiple cultures
and languages. We introduce novel metrics for cul-
tural knowledge evaluation in LLMs, emphasizing
the influence of cultural context and language in
the probing process. Our findings reveal a predomi-
nant bias towards American culture in LLMs when
using English prompts, a bias that diminishes with
prompts in other languages. Interestingly, incorpo-
rating explicit cultural cues in prompts enhances
LLMs’ cultural knowledge access. The study also
highlights the scarcity of culturally diverse knowl-
edge across languages, pointing to a potential root
of observed biases in LLMs.



9 Limitations

While this study provides valuable insights into
cross-cultural knowledge probing in LLMs, it is es-
sential to acknowledge several limitations. Firstly,
the food domain knowledge dataset utilized in this
research is sourced from Wikidata, which may not
offer comprehensive coverage. For example, the
dish soy sauce chicken may only include the in-
gredient chicken meat while lacking the inclusion
of soy sauce. Moreover, ingredient descriptions
are not always detailed. For instance, the Wikidata
gold label might be oil when the recipe requires
a specific type of oil, such as sesame oil. This in-
consistency underscores the motivation behind our
mWS metric. Furthermore, aside from well-known
dishes, certain recipes lack standardization and may
vary depending on individual preferences and cook-
ing styles, posing challenges to precise probing.
Additionally, the fuzzy-match metric mWS, intro-
duced in this study, relies on Fasttext for obtaining
object representation vectors. However, for cer-
tain objects in Chinese and Korean, zero vectors
may result, rendering similarity calculation impos-
sible. Furthermore, we employ manually crafted
templates in this paper. However, research has
shown that sampling templates from large corpora
can also enhance knowledge-probing evaluation.
This aspect is deferred to future work. Despite our
endeavors to construct comprehensive multilingual
and multicultural knowledge repositories, the avail-
ability of aligned cross-cultural knowledge remains
limited in multilingual settings. This constraint
presents challenges in exploring the interaction be-
tween language and culture.
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A FMLAMA details
A.1 Examples

Figure 5 illustrates examples from dataset FM-
LAMA. Each dish instance in FMLAMA is de-
fined as: (url, na, cou, la, pa, [ma,im]), the ele-
ments in [-] indicate optional:

e url: the link in Wikidata;

* na: the name of the dish;

* cou: the country of origin of the dish;
* la: the language used in this entry;

* pa: the ingredients of this dish;

* ma: the material used in the dish;

* ¢m: the image of this dish.

Particularly, in each instance, la = LANG (na) =
LANG (pa) = LANG (ma), which indicates the
descriptive language for all attributes remains con-
sistent. For a dish with the same wurl, there may be
several instances with different languages.

A.2 Statistics

There are a total of 33,600 dishes in FMLAMA.
We count the number of dishes corresponding to
each language and country in the dataset, as shown
in Figures 6 and 7. Figure 6a shows the top 20
languages ranked by the number of dishes, with
English (en) having the highest count at 2804, fol-
lowed by Spanish (es), French (fr), and Japanese
(ja). Figure 6b displays the distribution of dish
counts across different intervals for all languages,
indicating that most languages have fewer than
200 dishes. Similarly, Figure 7a shows the top 20
countries ranked by the number of dishes, with
Italy having the highest count at 2975, followed by
France, America, and Japan. Figure 7b shows the
distribution of dish counts across various intervals
for all countries, indicating that only 8 countries
have more than 200 dishes. Figure 8 shows the
dish statistics by ingredient count. The majority of
dishes contain only one ingredient, totaling 18,546.
Dishes with two ingredients are the second most
common, with a count of 6,426. The counts de-
crease as the number of ingredients increases, with
dishes containing eleven ingredients being the least
common, at 32.

B Probing Templates

B.1 Prompt illustration

Probing templates in six involved languages are
shown in Figure 9, in which [X] represents the sub-
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Figure 5: Examples of FMLAMA.
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ject (dish) and [Y] indicates the object (ingredient).

B.2 Language details

In this section, we discuss the representative coun-
tries where each selected language is spoken and
their geographic distribution:

* English (en): Mainly spoken in U.S., Canada,
Australia, Guyana, etc., spanning North and
South America, Europe, Australia, and Africa.

* Chinese (zh): Mainly spoken in China, Singa-
pore, etc., covering huge area of Asia.

e Arabic (ar): Mainly spoken in Saudi Ara-
bia, Egypt, United Arab Emirates, etc., cover-
ing the Arabian Peninsula, North Africa, and
some sub-Saharan African countries.

» Korean (ko): Mainly spoken in South Korea,
North Korea.
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* Russian (ru): Mainly spoken in Russia, Be-
larus, Kazakhstan, etc., covering Eastern Eu-
rope, Central Asia, and Northern Asia.

* Hebrew (he): Mainly spoken in Israel, with
Hebrew-speaking communities worldwide.

These languages represent cultural diversity, being
spoken on different continents by groups with rich
and distinct cultural backgrounds, demonstrating
the broad geographic and cultural diversity repre-
sented by these languages.

C Probing Results and Analysis for
Decoder-Only LLMs

We specifically conduct cultural knowledge prob-
ing on decoder-only models. Considering the char-
acteristics of these LLMs, we employ a simple
approach to probe and evaluate them.
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C.1 Experiential setup

Decoder-only LLMs : LlaMa2-chat (Touvron
et al.,, 2023), a collection of pre-trained and
fine-tuned chat models; Vicuna (Chiang et al.,
2023), a chat assistant trained by fine-tuning
LLaMA on user-shared conversations collected
from ShareGPT; and gpt-3.5-turbo* (OpenAl,
2023), a GPT-3.5 model fine-tuned on human in-
structions using Reinforcement Learning with Hu-
man Feedback (RLHF).

Prompt construction Decoder-only LLMs, in
contrast to encoder-only LLMs and encoder-
decoder LLMs, focus solely on generating text
based on contextual information provided to them.
Considering these factors, the probing task involv-
ing predicting the probability of the [MASK] token
during decoder-only LLLM probing will no longer
be applicable. We extend the initial template with
fill-in instructions, such as “The food [X] has the
ingredients of []. Please fill in the sentence.” We
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only select the best-performing template for ex-
tension and probing of the decoder-only LLMs
here. Taking into account the diversity of responses
from chat LLMs and the ease of evaluating the
probing results, we also consider employing an al-
ternative fill-in instruction: “Please complete the
sentence with only one entity”. The final results
only showcase the probing outcomes under the best-
performing settings.

Evaluation For each dish instance, we parse the
text generated by the decoder-only LLMs to obtain
the final predicted object list. This object list is
not derived from a candidate object set, resulting in
greater diversity. Therefore, before conducting the
matching evaluation, we lemmatize each object in
both the golden object list and the predicted object
list to obtain the lemmatized format of each word,
such as potatoes — potato. We utilize accuracy
(ACC) as the metric here, employing a forgiving
form of absolute matching to assess result accu-
racy. Specifically, for each dish instance, if any
predicted object matches any object in the golden
object list, we consider the prediction for that dish
to be correct.

C.2 Experimental results

Table 5 shows the overall probing results us-
ing accuracy for both the monolingual and code-
switching prompt settings. We observe that gpt-3.5-
turbo demonstrates the highest extent of cultural
knowledge. Additionally, all decoder-only LLMs
demonstrate better performance with monolingual
English prompts compared to monolingual Chinese
prompts, and the performance with code-switching
prompts is inferior to that with their corresponding
monolingual prompts.
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Figure 9: Probing templates in six involved languages, with [X] representing the subject and [Y] indicating the

object that can be substituted.

Prompt language EN ZH
Subject language en zh en zh

Llama2-7b-chat-hf 2736 1791 728 591
Llama2-13b-chat-hf 35.04 22.64 1043 7.87
vicuna-7b 3622 19.69 12.01 14.37
vicuna-13b 28.15 20.87 17.72 16.54
gpt-3.5-turbo 47.64 34.06 20.28 25.00

Table 5: Accuracy (%) of decoder-only LLMs’ results.

C.3 Cultural probing analysis

Table 13 show the probing results in each cul-
tural group, including monolingual prompts and
code-switching prompts. In monolingual English
prompts, all decoder-only LLMs exhibit superior
probing performance for knowledge related to the
cultural groups of Italy, the U.S., and France. When
using English-Chinese code-switching prompts,
the overall probing performance tends to decrease,
but the best-performing cultural groups remain
largely unchanged. However, there are some im-
provements in the probing rankings for the China
group in L1ama2-7b-chat-hf and the U.K. group
in vicuna-13b. In the case of monolingual Chi-
nese prompts, the cultural groups with the best
probing performance are primarily concentrated in
China, the U.K., and the U.S. Similarly, when us-
ing Chinese-English code-switching prompts, the
overall probing performance tends to decrease.

D Probing results in each FMLAMA-la

Besides the multilingual LLMs discussed in §5,
we also probe XLLM-RoBERTa (Conneau et al.,

(a) English prompt

3 EN_en(w/o) [ EN_en(w/) [ EN_zh(w/o) [ EN_zh(w/)
17.5
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E 75
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0.0
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Country
16 (b) Chinese prompt
3 ZH_zh(w/o) 3 ZH_zh(w/) [ ZH_en(w/o) [ ZH_en(w/)

o
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Ll
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Figure 10: Probing results with code-switching settings
in each cultural group, w/o and w/ signify the absence
or presence of cultural background information in the
prompt, respectively.

2020) here.? Furthermore, in addition to Hebrew,
we configure probing for monolingual LLMs in
Arabic, Russian, Korean, and Chinese, including
asafaya/bert-base-arabic (Safaya et al,
2020), DeepPavlov/rubert-base-cased (Kura-
tov and Arkhipov, 2019), kykim/bert-kor-base,
klue/bert-base (Park et al., 2021) and
bert-base-chinese.

°Indeed, we probe XLM-RoBERTa on FMLAMA-en as
well, yielding very poor probing results. Nonetheless, al-
though XLM-RoBERTa’s performance remains subpar in
other languages, it shows some relatively positive outcomes.
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The probing results with prompts in the other
five languages (Arabic, Hebrew, Russian, Ko-
rean, and Chinese) on the corresponding filtered
sub-datasets (FMLAMA-ar, FMLAMA-he, FM-
LAMA-ru, FMLAMA-ko, and FMLAMA-zh) are
depicted in Table 6 through Table 10, respectively.
Because certain objects in Chinese and Korean
have representation vectors that result in all zeros
when obtained through Fasttext, calculating cosine
similarity was not feasible. Consequently, mWS
evaluation was not conducted for prompts in Chi-
nese and Korean prompts. Overall, irrespective of
the language used for probing, LLMs still exhibit
a relatively strong familiarity with knowledge in
the food domain within American culture. How-
ever, they may show a slight preference for certain
cultural knowledge; for example, when probing
in Arabic, LLLMs may show a better capability in
probing knowledge related to Iranian groups. Ad-
ditionally, the probing capability of monolingual
LLMs may not necessarily surpass that of multilin-
gual LLMs.

E Cultural bias vs Dish popularity

The disparity in performance stemming from cul-
tural bias versus dish popularity presents an intrigu-
ing facet of LLMs’ behavior in natural language
processing and comprehension. This can be primar-
ily attributed to cultural bias in training data and
dish popularity.

Cultural Bias in Training Data Training data
used to develop LLMs often reflects the cultural
background and biases of the data sources. For ex-
ample, datasets might predominantly feature Amer-
ican or Western European cuisines, ingredients,
and cooking styles compared to Indian or other
non-Western cultures. Models trained on culturally
biased data may initially struggle with dishes, ingre-
dients, or culinary practices not well-represented
in the training data. This can lead to lower accu-
racy or understanding when encountering recipes
or culinary references from underrepresented cul-
tures. For example, in the context of Indian cui-
sine, ingredients such as garam masala or tamarind,
which are integral to Indian cooking, may be less
familiar or misunderstood by models trained pre-
dominantly on Western recipes. Similarly, cultural
intricacies in recipe writing (Cao et al., 2024), such
as regional variations and traditional cooking meth-
ods, might not be adequately captured in models
biased towards Western culinary norms.
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Dish Popularity Certain dishes like pizza or
sushi enjoy global popularity and are well-
represented across diverse datasets. Models trained
on such data can generalize better to recognize and
understand these widely known dishes.

F Cultural results for Code-switching
probing

For a more detailed comparison of the knowledge
probing abilities of LLLMs across various cultural
groups, we evaluate the probing results for each
cultural group individually. Figure 10 shows the
average probing results for the three multilingual
LLMs in each cultural group, from which we find:
(1) English-dominant prompt settings generally out-
perform those where Chinese is the primary lan-
guage. (2) En_en prompt setting excels in probing
food knowledge for U.K., U.S., India, and China
cultures, while proficiency in the ZH_zh prompt
setting is also notable for the above cultural groups
except India. (3) In code-switching settings, the
detection abilities of EN_zh relative to EN_en and
ZH_en relative to ZH_zh both notably decrease,
with the latter showing a more pronounced de-
cline. (4) Whether in code-switching mode or
not, introducing relevant cultural backgrounds in
the prompts aids in the detection of cross-cultural
knowledge, manifested in overall probing results
and the probing ability within almost every cultural
group. The more detailed probing results for each
multilingual LLLM across various cultural groups
can be found in Tables 11 and 12.

G Data distribution of 175 dishes

The figure 11 illustrates the data distribution of the
filtered sub-dataset used in the language analysis
in §6. It encompasses both continent-level and
country-level data distributions.
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Figure 11: Data distribution for the filtered sub-dataset comprising 175 dishes.
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Origin Count Bb-ar Bl-ar mB-c mB-u XRb XRI mT5 | Avg.
Italy 76 (13.3%) | 2.16£0.95  2.55+0.97 3.52+1.73 2.55+1.25 1.33+£0.63 1.30+0.43 3.35+0.71 | 2.39
U.S. 54 (9.5%) | 3.07£1.45 6.01+3.35 4.7442.46 4.32+4.47 2.88+2.46 226+1.05 6.17£0.97 | 4.21
Turkey 52 (9.1%) | 4.59+£2.30  5.97+4.08 4.584+1.37 4.41£3.98 2.50+1.14 1.93+0.11 3.18+0.90 | 3.88
Japan 44 (7.7%) | 3.02£1.11  2.86+£1.01 3.76+1.54 2.80+0.56 1.69+0.93 1.30+0.10 2.18+0.77 | 2.52
France 37 (6.5%) | 5.25+2.06  5.874+4.09 4.92+3.30 3.98+3.64 4.28+4.26 3.67+2.76 6.17+2.40 | 4.88
UK. 26 (4.6%) | 6.78+2.88  8.97+6.33 8.5345.48 6.02+£6.67 2.77+3.28 2.18+1.86 8.84+5.02 | 6.30
Mexico 20 (3.5%) | 2.95+0.40 5444222 4524285 574+1.82 2.08+0.34 1.884+0.27 3.24+1.27 | 3.69
India 18 (3.2%) | 3.67£3.17 6.41+£3.58 9.02+7.34 4.444549 1.90+0.27 1.79+0.13 5.554+2.93 | 4.68
Germany 13(2.3%) | 6.92+£3.83  9.6745.54 8.03+4.78 6.05+4.50 1.45+0.72 1.49+0.65 5.41£3.72 | 5.57
China 13(23%) | 3.2542.55 2914251 4.44+3.22 4334476 1.9340.16 1.76+£0.10 4.04+2.01 | 3.24
Iran 11 (1.9%) | 7.74+£5.56 11.09+5.02 6.61+4.79 4.61+£5.41 4.04+4.51 4.10+4.54 6.02+4.34 | 6.32
Greece 11 (1.9%) | 3.31+0.85 4984435 4.16£3.98 4.66+4.18 1.79+1.15 1.72+0.89 4.04+£1.80 | 3.52
Spain 10 (1.8%) | 6.03+2.68  4.754+3.35 6.16+4.09 3.04+2.87 3.46+1.32 2.794+0.27 5.53+£1.39 | 4.54
Russia 10 (1.8%) | 3.36+£0.63  2.32+0.49 1.934+0.27 1.82+0.32 2.05£0.41 1.914+0.21 2.47+0.48 | 2.27
Others 176 (30.8%) | 4.03£0.97 3.54£1.57 4.30+1.40 283+1.72 2.74+1.19 2.31+0.15 4.56+1.59 | 3.47
ALL 571 (100.0%) | 3.95+1.31 4.66+2.36 4.73+£2.03 3.61+2.66 2.48+1.46 2.10+0.59 4.53+1.37 | 3.72
(a) Performance results evaluated on mAP (%).

Bb-ar Bl-ar mB-c mB-u XRb XRI mT5 | Average
Italy 0.3147+0.02 0.27864+0.05 0.2917+£0.04 0.2383+0.02 0.1991+£0.02 0.1930+0.00 0.3120+0.03 0.2611
U.S. 0.2943+0.03 0.30574+0.05 0.3087+0.02 0.2648+0.05 0.2208+0.05 0.2072+0.02 0.3264+0.02 0.2754
Turkey 0.2996+0.03  0.275440.07 0.2787+0.04 0.24324+0.03 0.1941+£0.03 0.1866+0.01 0.2867+0.02 0.2520
Japan 0.2977+0.02 0.2416+0.04 0.2685+0.02 0.2409+0.03 0.1795+0.02 0.1729+0.01 0.2791+0.03 0.2400
France 0.3360+0.02 0.32214+0.05 0.3032+0.04 0.28774+0.03 0.2255+0.08 0.2103+0.05 0.3333+£0.04 | 0.2883
UK. 0.3125+0.05 0.34184+0.06 0.3632+£0.06 0.27364+0.09 0.2270+£0.07 0.2103+0.03  0.3681+£0.04 | 0.2995
Mexico 0.3273+0.02 0.2866+0.04 0.3036+0.03 0.2923+0.04 0.2039+0.04 0.2043+0.04 0.3036+0.04 0.2745
India 0.2707+0.03  0.27264+0.07 0.3030+0.04 0.2261+0.06 0.1950+0.02 0.1814+0.01 0.2808+0.03 0.2471
Germany | 0.3106+0.03 0.3321+£0.06 0.32754+0.05 0.2758+0.05 0.20484+0.03 0.1923+£0.00 0.3113+0.02 0.2792
China 0.3006+0.04 0.2658+0.04 0.3366+0.03 0.2854+0.06 0.2035+0.02 0.2000+0.01 0.3037+0.05 0.2708
Iran 0.3714+0.05  0.3420+0.06 0.3370+0.05 0.26874+0.05 0.2291+£0.07 0.2286+0.07 0.3289+0.04 | 0.3008
Greece 0.3068+£0.01 0.3067+0.06 0.3260+£0.05 0.2693+0.03 0.2270+£0.01 0.2306+0.02 0.3147+£0.04 | 0.2830
Spain 0.3930+0.03 0.3049+0.06 0.3487+0.06 0.3124+0.03  0.2377+0.03 0.2395+0.03 0.3418+0.05 0.3111
Russia 0.3353+0.01 0.30684+0.04 0.2885+0.03 0.27844+0.01 0.2264+0.05 0.2183+0.03 0.3157+0.03 0.2813
Others 0.2989+0.01 0.27204+0.05 0.2932+0.04 0.24524+0.01 0.2049+0.04 0.1939+0.01 0.3001+£0.02 | 0.2583
ALL 0.3078+0.02 0.28544+0.05 0.2999+0.03 0.2549+0.02 0.2065+0.04 0.1972+0.02 0.3083+0.02 0.2657

(b) Performance results evaluated on mWS.

Table 6: Probing performance comparison with Arabic prompts and FMLAMA -ar sub-dataset. “B/mB” respec-
tively represent abbreviations for BERT and mBERT, “XR” denotes XLM-RoBERTa, “b/1” stands for base/large and
“c/u” stands for cased/uncased. Bold and underline represent the best-performing and second-performing cultural
group within the same model. The Pearson correlation coefficient between mAP and mWS is 0.71 based on the
results above.
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Origin Count mB-c mB-u XRb XRI mT5 | Avg.
Italy 59 (12.7%) 5.734£2.00 3.62+1.43 3.60+£0.16 4.04+0.85 4.724+0.60 | 4.34
U.S. 67 (14.5%) | 11.59+£2.64 6.72+2.59 4.51+£0.81 5.05+0.58 11.5542.31 7.88
Turkey 12 (2.6%) 9.29+7.33 9.31+5.64 8.83+0.45 9.00+0.78 13.64+7.43 | 10.01
Japan 19 (4.1%) 8.37+4.61 5.81+3.26 7.39+1.97 8.0240.77 8.56+3.44 | 7.63
France 65 (14.0%) 9.26+1.15 3.55+1.25 3.61+0.25 4.03+0.54 4.63+1.26 5.02
UK. 23 (5.0%) | 16.17+3.36 9.89+4.31 3.54+0.78 3.43+0.84  8.024+1.97 8.21
Mexico 11 (2.4%) 2.38+0.57 2.304+0.86 4.90+£1.97 4.93+1.48 2.59+1.09 3.42
India 18 (3.9%) 4.83+3.24 5.68+6.31 5.30+2.41 6.45+0.15 6.30+4.71 5.71
Germany 11 (2.4%) | 15.414+5.12 8.46+£4.91 297+0.33 3.67+1.64 14.204+4.70 | 8.94
China 9 (1.9%) 3.9443.35 2.63+£1.49 6.12+1.36 647+0.97 4.1944.65 4.67
Iran 6 (1.3%) | 16.57+7.01 7.544+6.06 6.15+2.83 6.27+2.68 6.49+4.44 8.60
Greece 6 (1.3%) 4334231 1.85+0.60 6.734+2.89 6.824+2.87 4.24+1.18 4.79
Spain 7 (1.5%) 5174275 2.744+0.72 5.54+2.15 5.77£1.56  7.624+3.32 5.37
Russia 4 (0.9%) 5224297 4.8243.18 591£0.27 5.44+0.84 3.53+1.26 | 4.98
Others 146 (31.5%) 5.484+0.57 3.60+1.46 4.944+0.84 5.15£0.43 4.38+1.34 | 4.71
ALL 463 (100.0%) 7.90+1.15 4.77+41.90 4.70+0.73 5.05+0.08 6.42+1.33 5.77
(a) Performance results evaluated on mAP (%).
mB-c mB-u XRb XRI mT5 | Average
Italy 0.3313+0.01 0.3286+0.03 0.29634+0.00 0.30324+0.02 0.2987+0.07 0.3116
U.S. 0.3706+0.02 0.34424+0.04 0.30904+0.01 0.31304+0.02 0.3565+0.07 0.3387
Turkey 0.3085+£0.07 0.31824+0.05 0.3048+0.04 0.29584+0.01 0.2868+0.15 0.3028
Japan 0.2963+0.04 0.2998+0.06 0.2765+0.02 0.27084+0.01 0.286840.09 0.2860
France 0.3429+0.01 0.32784+0.04 0.29874+0.02 0.29484+0.01 0.3089+0.05 0.3146
U.K. 0.3832+0.04 0.3776+0.02 0.27774+0.03 0.2681+0.01 0.321740.06 0.3257
Mexico 0.3585+0.02 0.35344+0.09 0.34444+0.03 0.32604+0.01 0.360540.06 0.3486
India 0.3401£0.03 0.34314+0.06 0.2809+0.02 0.29014+0.04 0.2738+0.13 0.3056
Germany | 0.37034+0.06 0.3536+0.04 0.2923+0.06 0.2829+0.04 0.3623+0.07 0.3323
China 0.2713+0.02 0.3245+0.05 0.2646+0.04 0.25314+0.02 0.254140.12 0.2735
Iran 0.3856+0.08 0.3494+0.08 0.3827+0.00 0.3642+0.04 0.372440.06 0.3709
Greece 0.3310+£0.02 0.304040.02 0.3393+0.02 0.33884+0.02 0.3286+0.05 0.3283
Spain 0.3128+0.03 0.37684+0.06 0.3646+0.01 0.34884+0.03 0.4115+0.10 0.3629
Russia 0.3431+0.04 0.3713+0.07 0.38034+0.04 0.35964+0.00 0.326840.06 0.3562
Others 0.3048+0.01 0.3105+0.05 0.28904+0.02 0.28424+0.01 0.278240.08 0.2933
ALL 0.3321+0.01 0.3287%+0.04 0.29794+0.02 0.295240.01 0.3068+0.07 0.3121

(b) Performance results evaluated on mWS.

Table 7: Probing performance comparison with Hebrew prompts and FMLLAMA -he sub-dataset. “B/mB” respec-
tively represent abbreviations for BERT and mBERT, “XR” denotes XLM-RoBERTa, “b/1” stands for base/large and
“c/u” stands for cased/uncased. Bold and underline represent the best-performing and second-performing cultural
group within the same model. The Pearson correlation coefficient between mAP and mWS is 0.31 based on the
results above.
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Origin Count Bb-ru mB-c mB-u XRb XR1 mT5 | Avg.
Italy 101 (10.5%) | 2.97+2.52 6.28+3.53  8.19£3.72 1.79£0.13 1.61+0.29 4.35+1.19 | 4.20
U.S. 79 (82%) | 6.86£2.93 8.244+3.97 11.054+3.62 2.29+0.82 1.814+0.15 5.49+1.63 | 5.96
Turkey 28 (29%) | 4.12+£3.32 4.19£2.62  7.924+0.85 1.984+0.06 1.824+0.50 3.82+3.07 | 3.98
Japan 68 (7.1%) | 4.41£2.32 3.79+£1.22 5374+2.72 1.67+0.22 1.524+0.02 1.91%+1.15 | 3.11
France 93(9.7%) | 4.36+£2.40 3924244 4.82+3.74 1914+0.67 1.52+0.16 4.86+3.00 | 3.56
UK. 33(3.4%) | 6.03+£6.40 7.81£3.94 9.744+3.14 3.144+3.90 1.37+0.19 9.79+6.82 | 6.31
Mexico 22 (2.3%) | 3.84+£1.45 1.26£0.72 1.95£0.93 1.30+0.51 1.02+0.08 2.8440.99 | 2.04
India 21 (22%) | 5.86+£5.73 9.58+5.82 15.71+6.27 1.55+0.43 1.494+0.55 5.29+4.03 | 6.58
Germany 45 (4.7%) | 4.84£4.05 6.92+2.61 9.73+3.90 2.20+1.63 1.38+0.17 5.09+£2.00 | 5.03
China 30 (3.1%) | 10.09+6.49 6.93+2.75 10.5945.73 1.2940.99 0.83+0.09 5.08+3.75 | 5.80
Iran 13(1.4%) | 8.25£5.29 6.80£5.72  8.39+7.91 1.53+0.56 1.39+0.53 7.92+6.33 | 5.71
Greece 18 (1.9%) | 3.54£4.18 0.99£0.22  1.15+0.43 1.48+0.09 1.51+0.14 4.09+£1.45 | 2.13
Spain 38 (4.0%) | 2.50+£1.31 4.83£229  6.1742.48 1.254+0.17 1.25+0.04 4.64+1.45 | 3.44
Russia 45 (@4.7%) | 3.61£1.79 3.23£1.01 4.10+2.41 2.18+0.89 2.16+0.69 2.90+0.74 | 3.03
Others 327 34.0%) | 3.36+2.13 431£1.80 5.79+£1.31 1.77£0.15 1.57+£0.29 3.68£1.00 | 3.41
ALL 961 (100.0%) | 4.29+£2.63 5.07£1.92 6.89+1.46 1.85+0.49 1.554+0.16 4.294+1.62 | 3.99
(a) Performance results evaluated on mAP (%).
Bb-ru mB-c mB-u XRb XRI mT5 | Average
Italy 0.3229+0.06 0.3243+£0.06 0.3730+0.06 0.2217£0.05 0.2206+0.05 0.3660+£0.03 | 0.3048
US. 0.3555+£0.05 0.3370+0.07 0.38954+0.03 0.2439+0.06 0.2336+0.03 0.384440.03 | 0.3240
Turkey 0.3129+£0.05 0.3006+£0.06 0.3554+0.05 0.2018£0.07 0.1915+0.04 0.3472+0.05 | 0.2849
Japan 0.2609+0.04 0.2622+0.02 0.2906+0.01 0.1619+£0.04 0.1618+0.04 0.2712+0.01 0.2348
France 0.3233+0.05 0.2967£0.04 0.3378+0.03 0.2126£0.05 0.2099+0.04 0.3825+£0.05 | 0.2938
U.K. 0.3513+0.08 0.3186+0.07 0.3735+0.03 0.2208+0.08 0.2059+0.05 0.4273+0.07 | 0.3162
Mexico 0.3264+0.03 0.3010£0.04 0.3348+0.04 0.2480£0.05 0.2431+0.03 0.3815+£0.06 | 0.3058
India 0.2936+0.07 0.3112+0.09 0.4053+0.04 0.1877+0.05 0.1862+0.05 0.32354+0.04 | 0.2846
Germany | 0.3403£0.06 0.3267£0.06 0.3825+0.07 0.2064+0.07 0.1894+0.03 0.3722+0.04 | 0.3029
China 0.3415+0.08 0.3144+0.04 0.3596+0.04 0.1873£0.06 0.1842+0.05 0.3515+£0.04 | 0.2898
Iran 0.3358+0.07 0.3156£0.05 0.3699+0.06 0.2099+£0.06 0.2020+0.04 0.4037£0.05 | 0.3061
Greece 0.3058+0.11 0.2960+£0.05 0.3348+0.02 0.2252+0.04 0.2303+0.05 0.3716+0.02 | 0.2939
Spain 0.3287+0.04 0.3035£0.06 0.35324+0.03 0.2425+£0.04 0.2406+0.03 0.3946+£0.04 | 0.3105
Russia 0.3495+0.03 0.3152+0.05 0.3489+0.04 0.2590+0.05 0.2575+0.05 0.41774+0.03 | 0.3246
Others 0.3240+0.05 0.3105+0.05 0.3489+0.04 0.2186+0.05 0.21624+0.04 0.3660+0.03 | 0.2974
ALL 0.3245+0.05 0.3098+£0.05 0.3536+0.03 0.2173£0.05 0.2132+0.04 0.3674+0.03 | 0.2976

(b) Performance results evaluated on mWS.

Table 8: Probing performance comparison with Russian prompts and FMLAMA -ru sub-dataset. “B/mB” respec-
tively represent abbreviations for BERT and mBERT, “XR” denotes XLM-RoBERTa, “b/1” stands for base/large and
“c/u” stands for cased/uncased. Bold and underline represent the best-performing and second-performing cultural
group within the same model. The Pearson correlation coefficient between mAP and mWS is 0.70 based on the
results above.
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Origin Count Bb-ky Bb-kl mB-c mB-u XRb XRI mT5 | Avg.
Italy 88 (10.9%) | 6.77£2.85 7.01£2.68 1.19+0.15 3.14+£2.45 1.90£1.27 2964344  6.81£1.50 | 4.25
U.S. 64 (79%) | 10.72£5.32 10.49£4.97 2.74£1.35 4.84+£4.86 3.07£3.62 3.25+3.75 11.65+2.84 | 6.68
Turkey 19(24%) | 3.23+£2.85 2.77+0.81 3.58+2.81 4.53+2.97 1.83+0.07 2.37+0.71  1.75+0.39 | 2.87
Japan 101 (12.5%) | 5.56+£3.00 5.73+£3.43 2.43£1.00 1.94+1.37 3.45+0.68 3.47+0.41 6.77£1.79 | 4.19
France 67 (83%) | 2.33£0.74 3.56£1.47 1.40+0.31 2.76£0.17 1.60+£0.24 1.62+0.20 2.42+0.12 | 2.24
UK. 27 (3.3%) | 12.25£6.50 16.39+£5.29 4.46+4.18 5.81+541 2.11+1.30 3.81+4.73 11.71+4.34 | 8.08
Mexico 13(1.6%) | 7.40+£5.58 4.58+1.71 1.99+0.22 5.58+4.32 1.79£0.17 1.78+0.21  2.28+1.25 | 3.63
India 32(4.0%) | 4.54+2.64 5.22+1.79 1.20+0.08 2.06+1.10 2.704+3.58 1.68+1.30  5.55+1.09 | 3.28
Germany 15(1.9%) | 2.26+1.15  3.27+0.71 1.56+0.19 2.74+245 2264237 2.06+1.56 3.514£2.73 | 2.52
China 54(6.7%) | 6.59+£3.41  7.074+3.14 2.10+£1.05 2.43+£2.01 3.304£3.93 2.80+2.60 6.10£1.59 | 4.34
Iran 8(1.0%) | 1.74+0.76  8.47+6.64 2.284+0.13 1.50£0.80 1.30£0.48 1.15£0.21  1.56+0.53 | 2.57
Greece 9(1.1%) | 1.27+£0.27  6.00£3.98 2.06+0.09 2.31+0.56 0.97+0.15 1.12+£0.11  5.67+4.15 | 2.77
Spain 21 2.6%) | 2.53+1.12  2.95+1.22 3.8442.58 2.53+2.12 3.04+2.33 3.87+3.90 4.26+2.11 | 3.29
Russia 8(1.0%) | 2.04+1.88 3.98+2.35 1.284+0.28 1.89+0.78 3.05£4.75 1.71£1.19  1.82+0.33 | 2.25
Others 281 (34.8%) | 4.46+£1.86 5.12+1.67 1.84+£0.31 1.93£0.99 1.87+1.11 2.00£1.21  4.244+0.63 | 3.07
ALL 807 (100.0%) | 5.42+2.33  6.09£2.16 2.05£0.71 2.68+1.74 2.31+1.52 2.49+1.70 5.56+0.81 | 3.80

Table 9: Probing performance comparison on mAP (%) with Korean prompts and FMLAMA -ko sub-dataset.
“B/mB” respectively represent abbreviations for BERT and mBERT, “XR” denotes XLM-RoBERTa, “b/I” stands
for base/large and “c/u” stands for cased/uncased. Bold and underline represent the best-performing and second-
performing cultural groups within the same model.

Origin Count Bb-zh mB-c mB-u XRb XRI1 mT5 | Avg.
Italy 49 (5.8%) | 13.30+4.45 10.57+2.58 14.37+2.34 10.52+3.21 11.61£3.41 10.15£1.19 | 11.75
U.S. 101 (11.9%) | 15.92+£3.83 14.10£2.67 16.08+1.70  9.00£5.25 9.31+4.08 12.67+0.77 | 12.85
Turkey 12(1.4%) | 8.26k1.41 4.10£1.61 491£1.53 2.43+0.85 2.02+0.54 4.94+048 | 4.44
Japan 114 (13.4%) | 11.51£4.77 12.29£2.43 12.89+2.23 7314470 8.32+4.04 7.85+0.48 | 10.03
France 70 (8.2%) | 15344447 15314+3.04 15.29+2.19 10.36+£5.22 12.79£3.97  7.90£0.97 | 12.83
UK. 38 (4.5%) | 23.26+5.66 15.85+4.90 18.49+4.34 14.03+6.94 14.95+4.25 9.00£2.26 | 15.93
Mexico 19 2.2%) | 17.20£3.14 12.524+1.39 12.63+1.61 10.68+3.44 13.99+1.16 15.19+1.90 | 13.70
India 24 (2.8%) | 5.694+2.14  4.96+2.12  6.79+2.52  3.50+£2.36  5.27£1.84 1.01£0.11 | 4.54
Germany 16 (1.9%) | 6.97+2.09 11.28+1.30 13.08£3.16 5.61+445 5744234  7.55+£0.64 | 8.37
China 87 (10.2%) | 16.68£7.05 15.474+4.87 17.70+£6.07  9.20+5.50 12.71+£6.72  8.33+1.34 | 13.35
Iran 7(0.8%) | 9.25£1.04 5.60£1.05 11.304+6.38  7.38+6.42 8.71+£6.74 3.21£0.09 | 7.58
Greece 7(0.8%) | 4294+0.79 2.13£0.70  1.93+0.28  2.70+1.17  5.58+2.37 4.35£048 | 3.50
Spain 12 (1.4%) | 11.98+1.11  7.524+2.42 10.18+1.07  7.55£2.97 9.46£3.33 11.65£1.92 | 9.72
Russia 8(09%) | 548+0.98  2.82+0.84 3.79£0.69 2.56+0.98  3.65+1.62 2.11+043 | 3.40
Others 251 30.8%) | 10.55+£3.73  9.904£2.97 10.28£1.60  6.59+£3.07 9.38+3.56  5.70+0.41 | 8.73
ALL 815 (100.0%) | 12.99+£3.96 11.78+2.65 13.01£2.06 8.05£4.00 9.98+3.69  7.88+0.55 | 10.62

Table 10: Probing performance comparison with Chinese prompts and FMLAMA-zh sub-dataset. “B/mB”
respectively represent abbreviations for BERT and mBERT, “XR” denotes XLM-RoBERTa, “b/I” stands for
base/large and “c/u” stands for cased/uncased. Bold and underline represent the best-performing and second-
performing cultural groups within the same model.
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Origin mB-c mB-u mT5 Average Origin mB-c mB-u mT5 Average

Italy 9.70+4.24 10.42+6.42 12.61+2.28 10.91 Italy 5.77£3.04  6.18£3.57 4.21£1.12 5.39
US. 1491+4.71 12.86+5.63 11.45+£3.22 13.07 UsS. 5114231  5.75+141 2.62+0.63 4.49
Japan 8.27+3.62  9.04£5.07 6.99+3.13 8.10 Japan 10.51£2.87  9.66£4.55 2.75£1.23 7.64
France 8.26+3.15  8.13+4.40  5.00+2.18 7.13 France 5.02+241  6.06£1.66 2.76+0.54 4.61
UK. 19.84+7.17 13.97+9.13 13.11+7.97 15.64 UK. 3.14£1.06  3.77£0.98 2.93£0.54 3.28
India 13.87+4.46 13.94+7.00 8.84+3.44 12.22 India 14.43+9.56 16.22+7.65 4.05+1.59 11.57
China 14.89£3.74 13.23£5.08  9.04£2.73 12.39 China 3.87£1.39  6.08£3.77 2.85£1.04 4.27
Indonesia  8.33+3.68  6.75£2.38  6.79+2.12 7.29 Indonesia 10.60+£1.80  8.76+£3.04 3.32+0.90 7.56
ALL 11.97£3.27 10.98+£4.65  9.03+£2.77 10.66 ALL 6.77£2.26  7.28£1.95 2.99+0.65 5.68
(a) EN_en: mAP (%) (b) EN_zh: mAP (%)
Origin mB-c mB-u mT5 Average Origin mB-c mB-u mT5 Average
Italy 7.25£3.72 6.66+£545  7.15£1.16 7.02 Italy 1.53+£0.20 2.28+0.25 2.52+0.56 2.11
U.S. 13.2343.64 7.69+£5.49 11.42+2.11 10.78 US. 2.02+0.21 3.46+£0.49 3.451+0.69 2.98
Japan 12.194£3.70 6.45+4.36  7.61£1.81 8.75 Japan 2.59+0.44 2.74+0.73 2.65+£0.15 2.66
France 11.64+4.46 7.25£596  7.66+2.84 8.85 France 2.04+0.60 2.41+0.58 2.4240.44 2.29
UK. 13.60£6.01 9.17+£7.54 11.34+4.36 11.37 UK. 1.42+£0.22 3.40+£1.27 2.29+0.35 2.37
India 3.70+1.51 3.03£1.66  1.57+0.18 2.77 India 2.03+0.37 2.53+£0.77 2.234+0.91 2.26
China 15.04+3.69 9.09+8.25  8.80+3.81 10.98 China 2.85+0.44 2.99+1.34 2.29+0.56 2.71
Indonesia  9.65+£1.93 4.88+2.55 5.41£2.06 6.65 Indonesia 2.04+0.27 2.36+0.36 1.25+0.20 1.88
ALL 11.88+3.49 7.22+548  8.40+2.22 9.17 ALL 2.20+0.33  2.85+0.64 2.58+0.34 2.54
(c) ZH_zh: mAP (%) (d) ZH_en: mAP (%)

Table 11: Code-switching analysis: Probing results by using prompts without introducing cultural background.

Origin mB-c mB-u mT5 Average Origin mB-c mB-u mT5 Average
Italy 9.20+4.55 9.97+4.71 11.27+2.42 10.15 Italy 7.57+£1.67  6.79+1.71 4.18+1.02 6.18
US. 15.49+4.37 13.05+£5.40 11.37£4.10 13.30 UsS. 6.01+1.71  7.51+£1.08 2.86+0.55 5.46
Japan 11.81£3.16 11.844+3.99 10.11£3.43 11.25 Japan 13.96+2.05 10.454+3.31 4.77+1.61 9.73
France 8.29+2.81 8.93+429 5.92+1.38 7.71 France 528+1.72  6.63+£0.78 2.92+0.70 4.94
UK. 20.02+9.00 15.814+7.65 15.79+6.17 17.21 UK. 3.194091  3.60+£0.77 4.44+1.47 3.74
India 17.95+2.38 21.88+7.42 11.51+4.65 17.11 India 23.58+2.64 19.51+6.39 6.59+2.59 16.56
China 14.774£3.49 13.75+£6.35  9.13£3.70 12.55 China 5.234+0.14  6.39+3.55 3.98+1.08 5.20
Indonesia  9.02+1.01  8.75+£2.36  8.11£3.19 8.63 Indonesia 10.12+£1.01  7.91£2.69 6.35+£1.81 8.13
ALL 13.06£3.26 12.42+4.46 10.12£3.16 11.87 ALL 8.57+1.25 8.09£1.35 4.10+0.98 6.92
(a) EN_en: mAP (%) (b) EN_zh: mAP (%)
Origin mB-c mB-u mT5 Average Origin mB-c mB-u mT5 Average
Italy 6.35+3.08 7.67+4.89  6.33£1.80 6.78 Italy 1.57+0.18 2.73+£0.63 2.77+0.61 2.36
U.S. 13.60+£3.06  8.50+5.41 10.17£1.91 10.76 US. 2.2940.13 3.61+1.16 4.30+0.73 3.40
Japan 13.02+2.43  7.32+447  8.83£1.60 9.72 Japan 2.7940.65 2.69+1.35 2.35£0.60 2.61
France 12.12+4.46  9.00+5.67  7.48+2.82 9.53 France 3.02+0.86 2.56+0.70 2.254+0.20 2.61
UK. 13.97+6.02  8.21+7.81 10.87+4.47 11.02 UK. 1.77£0.21 2.38+£1.43 2.24+0.38 2.13
India 4.60+£1.88  3.3842.06 1.82+0.30 3.27 India 2.304+0.51 2.85£1.29 2.304+0.86 2.48
China 20.49+4.29 10.22+8.87 9.71+£4.53 13.47 China 3.1240.71 2.39+1.70 2.314+0.45 2.61
Indonesia  9.09+3.50 4.12+2.30 5.53+1.74 6.25 Indonesia 2.39+0.46 2.284+0.77 1.20+0.12 1.96
ALL 13.07£3.13  7.99+5.34  8.46+2.24 9.84 ALL 2544042 2.77+£1.07 2.68+0.21 2.66
(c) ZH_zh: mAP (%) (d) ZH_en: mAP (%)

Table 12: Code-switching analysis: Probing results by using prompts with introducing cultural background.
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Origin Llama2-7b-chat-hf Llama2-13b-chat-hf

EN_en EN_zh ZH_zh ZH_en | EN_en EN_zh ZH_zh ZH_en
Italy 42.86 20.41 2.04 2.04 48.98 30.61 6.12 10.20
U.S. 37.62 13.86 4.95 4.95 49.50 27.72 5.94 12.87
Japan 14.91 16.67 3.51 4.39 20.18 15.79 4.39 6.14
France 39.71 22.06 5.88 11.76 48.53 26.47 2.94 10.29
U.K. 36.84 18.42 15.79 5.26 39.47 21.05 15.79 7.89
India 20.83 12.50 4.17 4.17 33.33 12.50 12.50 16.67
China 17.65 23.53 10.59 15.29 21.18 24.71 16.47 15.29
Indonesia 6.90 10.34 0 6.90 24.14 13.79 345 345
All 27.36 17.91 5.91 7.28 35.04 22.64 7.87 10.43

(a) Performance results of LLlama2-chat.

Origin vicuna-7b vicuna-13b

EN_en EN_zh ZH_ zh ZH_ en | EN.en EN_zh ZH_ zh ZH_en
Italy 51.02 26.53 8.16 12.24 42.86 30.61 1837 2245
U.S. 49.50 27.72 17.82 13.86 37.62 25.74 20.79 2277
Japan 21.93 14.04 7.02 7.02 16.67 14.04 9.65 7.02
France 44.12 23.53 11.76 13.24 39.71 20.59 14.71 17.65
U.K. 47.37 21.05 15.79 10.53 34.21 31.58 23.68 26.32
India 41.67 4.17 12.50 12.50 16.67 16.67 12.50 12.50
China 23.53 18.82 27.06 15.29 17.65 18.82 20.00 22.35
Indonesia 20.69 6.90 10.34 13.79 20.69 10.34 13.79 13.79
All 36.22 19.69 14.37 12.01 28.15 20.87 16.54 17.72

(b) Performance results of vicuna.

Origin gpt-3.5-turbo

EN_en EN_zh ZH zh ZH_en
Italy 69.39  48.98 20.41 26.53
uU.S. 60.40 39.60 22.77 25.74
Japan 28.95 31.58 10.53 16.67
France 63.24 33.82 17.65 27.94
UK. 57.89 36.84 26.32 26.32
India 54.17 12.50 12.50 16.67
China 30.59 34.12 31.76 37.65
Indonesia 34.48 13.79 20.69 13.79
All 47.64 34.06 20.28 25.00

(c) Performance results of gpt-3.5-turbo.

Table 13: Accuracy (%) of decoder-only LLMs’ probing results in each cultural group.
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