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Abstract

Recent research has focused on optimizing
multi-agent LLMs for complex reasoning tasks,
revealing that such architectures can signif-
icantly enhance reasoning abilities. Never-
theless, there are critical challenges, such
as the uncontrollable hallucinations caused
by the multi-model and multi-round iteration
mechanism. The current paradigm also fails
to effectively distill the collaborative reason-
ing power of distributed multi-agent systems
into a single deployable model, which lim-
its reasoning efficiency in practical applica-
tion scenarios. To address these issues, we
propose a solution that combines knowledge
graphs with multi-agent systems. Focusing
on industrial-field intelligent QA systems, we
design a Knowledge Graph-guided Multi-
Agent System Distillation(KG-MASD) . The
framework makes three main contributions.
First, it constructs an industrial field knowledge
graph to provide prior information. Second, it
establishes a collaborative reasoning mecha-
nism for a multi-teacher model. Third, it de-
velops a multi-agent distillation methodology.
To veritfy its effectiveness, this study introduces
the first standard industrial production instruc-
tion dataset. It comprises approximately 52k
domain-specific question-and-answer pairs and
an industrial knowledge graph encompassing
around 36k entities and 131k relationships. Ex-
perimental results indicate that the KG-MASD
framework may offer a potential domain adap-
tation advantage over existing single-model
and multi-agent distillation frameworks, with a
possible improvement ranging from 2.4% and
20.1% in domain adaptation.

1 Introduction

Knowledge distillation offers a viable solution for
using large language models (LLMs) in scenarios
with limited production resources and can effec-
tively inject domain-specific datasets to fine-tune
LLMs for particular domains. However, when do-
main problems are complex, a single large model

serving as a teacher model struggles to effectively
transfer the label distribution to the student model
via data augmentation methods (Wang et al., 2021;
Liu et al., 2022; Yao et al., 2023a). Multi-agent
systems can address this issue by increasing the
depth of reasoning of the teacher model. However,
they may suffer from uncontrollable structure and
low iteration efficiency, leading to the failure of
data augmentation and low credibility of the re-
sults. The integration of knowledge graphs and
LLMs has emerged as a new and reliable paradigm
to address these challenges (Li et al., 2023; Deng
et al., 2023; Zhang et al., 2024).

Based on this, to tackle these challenges, we pro-
pose the Knowledge Graph-guided Multi-Agent
System Distillation(KG-MASD) framework, a
method that combines multi-agent systems and lo-
cal knowledge graphs for knowledge distillation.
For example, this framework addresses the prob-
lem scenarios illustrated in Figure 1. The KG-
MASD framework primarily focuses on the key
issues in knowledge distillation: how to ensure that
the multi-agent system can assist the teacher model
in knowledge distillation, and how to guarantee the
reliability of augmented data under a multi-agent
system. Our contributions are as follows.

* We introduce a multi-agent system to assist
knowledge distillation, efficiently extracting
and integrating industrial knowledge. By in-
tegrating local knowledge graphs into the dis-
tilled instruction dataset, KG-MASD can ef-
fectively distill the student LLM.

e We introduce an industrial QA dataset with
vertical annotations and the corresponding
knowledge graph instruction set, which en-
riches practical application scenarios.

* Experimental results show that the KG-
MASD framework outperforms single-teacher



LLMs and other multi-agent distillation meth-
ods.

2 Related Work

2.1 Knowledge Distillation

The explosive growth of parameters in LLMs has
led to prohibitively high computational costs dur-
ing inference, creating a significant bottleneck for
their widespread application. Knowledge distil-
lation, which transfers knowledge from LLMs to
lightweight models through a teacher-student ar-
chitecture, has emerged as a key technology to
overcome this limitation (Hu et al., 2024; Du et al.,
2024; Zhao et al., 2024).

Compared to traditional methods, knowledge
distillation of LLMs pays more attention to extract-
ing knowledge from core components such as the
multi-head attention mechanism and intermediate
layer hidden states in the Transformer architecture.
Knowledge distillation enables student models to
learn the semantic focus patterns of the teacher
by aligning attention mechanisms, constructing
prompt templates, and designing reinforcement
learning rewards. It also helps unify the seman-
tic space and dynamically optimize outputs. This
effectively improves the learning efficiency and
performance of the models (Yang and Liu, 2024;
Liu et al., 2024b; Yang et al., 2024). Despite its
significant achievements, knowledge distillation of
LLMs still faces challenges. The complex struc-
ture of knowledge makes it difficult to extract and
transfer key knowledge, and model compression
can easily lead to performance loss. Therefore, it is
necessary to balance performance and compression
ratios. Additionally, the contradiction between the
need for large-scale data training and limited com-
putational resources also urgently requires more
efficient distillation algorithms to be resolved.

2.2 Multi-agent Systems

As an important branch of distributed artificial in-
telligence, Multi-agent systems (MAS) have shown
strong application potential in many fields in recent
years. In complex task scenarios, multiple agents
can solve problems more efficiently through in-
teractions such as collaboration and competition.
Their flexibility and adaptability far exceed those
of single-agent models (Liang et al., 2023; Wang
et al., 2025; Kang et al., 2024).

With the deepening of research, a series of
advanced MAS frameworks have emerged suc-
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condenser and the throttle valve.

The condenser and throttle valve are two consecutive
components in the refrigeration cycle. The condenser
liquefies the refrigerant and releases heat, while the throttle
valve reduces the pressure and temperature of the liquid

refrigerant, enabling it to absorb heat in the evaporator. The
performance of the throttle valve directly affects the
efficiency of the condenser because it must ensure that the

refrigerant reaches an appropriate low-pressure state before
entering the evaporator.

Figure 1: (a) represents the issues and expectations of
the edgeside model when tasked with knowledge graph
extraction, while (b) illustrates the problems and antici-
pated outcomes of the edge-side model in the context of
question-and-answer formats.

cessively. Multi-agent Debate (MAD) promotes
deeper understanding and more accurate answer
generation by having multiple independent agents
debate on the same topic (Smit et al., 2023). The
Self-Reflect framework consists of three models:
participants, evaluators, and self-reflection. Each
agent can adjust its reasoning strategy through
self-reflection to improve overall task performance
(Yuan et al., 2025; Shinn et al., 2023). When
agents process large amounts of data, Rerank opti-
mizes the information retrieval process by remov-
ing irrelevant nodes and reordering relevant nodes
(Loem et al., 2023; He et al., 2024). MAS Protocol
(MAPS) designs communication protocols, collab-
oration strategies, and resource allocation methods
among agents to achieve optimal performance in
Multi-agent systems within specific task domains
(He et al., 2024; Thelasingha et al., 2025). Self-
Consistency establishes a consistency verification
mechanism. When an agent makes a decision or
takes an action, the framework checks whether the
decision or action is consistent with the overall sys-
tem goal and the states of other agents to avoid
conflicts or inconsistencies (Li et al., 2024; Wang
et al., 2022).

In the field of knowledge distillation, although a



mature MAS application system has not yet been
formed, some explorations have been made. Some
studies have attempted to use multiple agents as
auxiliary roles for both teacher and student mod-
els. Agents assist the teacher model in more ac-
curately extracting key knowledge and help the
student model more efficiently receive and under-
stand the content of knowledge transfer (Bo et al.,
2024).

2.3 Industrial Question-Answering
Knowledge

Natural language processing technology has be-
come the core driving force behind industrial
question-answering systems. Through the construc-
tion of knowledge graphs, fusion of multimodal
data, and optimization of large language models, it
has promoted intelligent interaction and decision
support in industrial scenarios (Jiao et al., 2025;
Kojima et al., 2022).

Large language models are used for industrial
equipment fault diagnosis. For example, when a
stamping machine on an automobile production
line malfunctions, an LLM can analyze logs and
maintenance records and quickly locate the fault
by combining the experience database, thereby re-
ducing downtime (Meng et al., 2024). Knowledge
distillation enables the lightweight deployment of
industrial question-answering models by training
lightweight models for edge devices, balancing ac-
curacy and computational resources (Alam et al.,
2020). Wang Peng et al. proposed a multimodal
large language model for the transportation field
called TransGPT (Wang et al., 2024). It is fine-
tuned based on transportation text/multimodal data
and provides NLP technical support for intelligent
transportation systems.

3 Dataset and Augmentation

3.1 Dataset Compilation

To create a basic knowledge graph and instruction-
tuning dataset tailored for the industrial domain, we
crawled question-answer data provided by human
experts from publicly available online publications,
as well as a large amount of unsupervised text ob-
tained from public sources. The question-answer
data from human experts were first manually fil-
tered and organized into an instruction-tuning data
format. Based on the data collection channels,
these topics can be directly categorized into eight
distinct thematic groups: Transportation, Health,

Environment, Equipment, Production, Electricity,
Disaster Prevention and Other. The distribution is
shown in Appendix A.1.

For the unsupervised information data obtained,
we first utilized Sentence-BERT to embed the orig-
inal text sentences into vectors and calculated the
cosine similarity between different sample vectors.
If the similarity was greater than 0.5, the samples
were classified as different segments; otherwise,
they were considered as the same segment.We sub-
sequently employed prompts derived from large
language models (Cui et al., 2025; Sahoo et al.,
2024; Trivedi et al., 2025) (as shown in Appendix
A.2 for details) to transform the segmented infor-
mation into an instruction-tuning format. The sta-
tistical information of the data collected by the two
methods is shown in Appendix A.3.

3.2 Dataset Augmentation Directions

The process of transforming knowledge graph-
extracted information into instruction-tuning data
involves two primary augmentation directions: Re-
lation Triple Extraction (RTE) and Knowledge
Graph Completion (KGC). Specifically, we guide
the Multi-agent system to explicitly express knowl-
edge graph-related content before data output,
which serves as a condition for autoregressive gen-
eration of instruction-tuning commands.

* Relation Triple Extraction: This task involves
automatically extracting semantic relation-
ships between entities from text descriptions
and representing them in the form of triples.
For example, given the description "Hydrogen
sulfide is a colorless gas", the system should
extract the triple: "Subject": "Hydrogen sul-
fide", "Predicate": "i", "Object": "colorless

gas".

* Knowledge Graph Completion: The goal of
KGC is to infer and fill in missing relation-
ships in an existing knowledge graph. This
task typically relies on contextual informa-
tion and learns from existing relationships to
predict missing entity relationships. For exam-
ple, given the entity "insulation resistance me-
ter" and its "purpose” relationship, the model
should infer the corresponding action entity
and associated context.
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Figure 2: It illustrates the overall process of extracting
the Global Knowledge Graph (GKG) from raw data
using GraphRAG technology, and conducting entity and
relation extraction, local knowledge graph generation,
and instruction fine-tuning via a Multi-agent system.

4 Framework and Methodology

4.1 Overall Process of the KG-MASD
Framework

The overall process of the KG-MASD framework
is depicted in Figure 2. To begin with, we em-
ploy GraphRAG technology (Han et al., 2025)
to extract a global knowledge graph {H, R, T'}
for industrial decision-making from the raw data
{C1,Cy,...,Cy}. In this context, C,, signifies the
n-th information fragment, while H and T cor-
respond to the head and tail entities within the
knowledge graph, and R indicates the connecting
relationships.

Subsequently, we define identity instructions for
the five agents in the Multi-agent assisted distil-
lation system, each focusing on different aspects.
These agents include the Knowledge Graph Master
(KG Master), Entity Extractor, Relation Extrac-
tor, Knowledge Relation Distiller (KR Distiller),
and Verifier. The KG Master is responsible for
decomposing the original question and expanding
knowledge relationships using the global knowl-
edge graph and RAG technology. Then, one agent
is randomly selected from the Entity Extractor and
Relation Extractor to provide raw information and
extract entities and potential relationships from
the data stream. These extracted entities and rela-
tionships are subsequently aggregated into a local
knowledge graph in the KR Distiller, which com-
bines the raw information to extract small-scale
local triples (h;,r;,t;) (following the knowledge
graph generation paradigm). The Verifier reads
and judges whether the extracted information is
correct and valid. If the information fails the verifi-
cation, it is sent back to the KR Distiller to update

and iteratively optimize the extraction path. Once
the update converges, the KR Distiller generates
small local knowledge graphs and an instruction-
tuning dataset [ = {(I1,I2,..., 1) | (h,7,t)} in
an autoregressive manner. Finally, we apply LoRA
(Hu et al., 2021) to distill and fine-tune the student
model, transferring the reasoning capabilities of
the global knowledge graph and the teacher model
to the smaller student model.

4.2 Multi-agent System Design
4.2.1 Definition of the Agent System

Considering the responsiveness and tool diversity
required for industrial task deployment, we define
the roles of the five agents in the MAS-assisted dis-
tillation system using identity and chain-of-thought
methods. Each agent is assigned specific roles and
responsibilities to enhance focus and specializa-
tion. For example, the KG Master is responsible
for database read operations, while the KR Distiller
is equipped with short-term memory to achieve
contextual understanding. The specific role prompt
words for these agents are shown in Appendix A.4.

To verify the structural controllability of the KG-
MASD system (Lin, 1974), we construct the sys-
tem’s Laplacian matrix L and evaluate the system’s
controllability by analyzing the spectral properties
of L based on the concept of structural controlla-
bility proposed by Lin. Specifically, we describe
the KG-MASD system as the following linear time-
invariant model:

#(t) = Az(t) + Bu(t) (1)

where z(t) € R® is the state vector, A = —L —
BK € R>* is the system matrix, B € R%*! is
the control input matrix, and u(t) € R! represents
the control input. According to the research on
structural controllability of Multi-agent systems
by Zamani and Lin(Zamani and Lin, 2009), we
compute the controllability matrix (). and check
whether its rank equals the system dimension to de-
termine the system’s complete controllability. The
controllability matrix (). is expressed as:

Q.=[BAB A*B ... A"1B] )

The conclusion indicates that the KG-MASD sys-
tem has good structural controllability, which
mainly depends on the eigenvalue distribution of
the Laplacian matrix L (e.g., eigenvalues of 0, 1, 2,
++/2), thereby ensuring the non-singularity of the
system matrix A and the full-rank condition of the



controllability matrix Q). Furthermore, referring to
the research on structural controllability of directed
signed networks by Ong et al (Guan et al., 2021),
we further explore the impact of different network
topologies on system controllability, thereby en-
hancing the system’s adaptability and robustness.
Subsequently, we introduce a decentralized control
strategy (specifically, different agents can access
the raw data stream), enabling each agent to self-
regulate based on local information.

Additionally, through theoretical analysis and
numerical simulations, we verify the effectiveness
of the proposed KG-MASD framework and demon-
strate the system’s stability and controllability un-
der different initial conditions and network topolo-
gies. As shown in Appendix A.5, as the num-
ber of iterations increases, the KG-MASD system
can rapidly achieve self-regulation, and the perfor-
mance of the Verifier also tends to stabilize.

4.2.2 Global Knowledge Graph Generation

In the global knowledge graph generation phase,
our objective is to extract entities and relationships
with semantic associations from a vast amount of
raw data to construct a comprehensive knowledge
representation framework. Specifically, we uti-
lize GraphRAG technology to extract the global
knowledge graph (GKG) from the raw dataset
{C1,Cy,...,Cy}, with its structure represented
as {(H,R,T)}, where H, R, and T denote the
head entities, relationships, and tail entities, respec-
tively. Through this process, we are not only able
to capture explicit relationships in the data but also
leverage the scalability of knowledge graphs to dis-
cover potential semantic connections. We provide
a visual representation of the GKG in Appendix
A.6.

To further enhance the completeness and accu-
racy of the knowledge graph, we introduce the KG
Master module, which is based on the global knowl-
edge graph and incorporates a retrieval-augmented
generation mechanism in the Multi-agent system.
This module can decompose the original question
and expand knowledge relationships, providing a
richer semantic context for subsequent entity and
relationship extraction.

4.2.3 Construction of Local Knowledge
Graphs

Further, based on the well-constructed GKG and
Graph RAG technology, we perform retrieval aug-
mentation on different text fragments to enhance

the quality of answers and strengthen the connec-
tions between data and nodes in the latent space as
much as possible. Meanwhile, local retrieval can be
quickly conducted from the original labeled dataset
(e.g., the production department in Appendix A.7),
and they can be combined to form local heteroge-
neous knowledge graphs. The generation process
is illustrated in Appendix A.7.

4.2.4 Self-Verification and Self-Update

Based on the well-constructed GKG, we process
the relation extraction and integration of local
knowledge graphs using the defined distiller mod-
ule. As shown in Appendix A.8, the Verifier it-
eratively verifies and refines the information until
it is judged to be reliable true information. This
process generates a verified instruction dataset

{1, I2,..., 1) | (hy7,t)}

4.2.5 Knowledge-Based Instruction Tuning

To improve tuning efficiency and reduce compu-
tational resource consumption, the KG-MASD
framework employs Low-Rank Adaptation (LoRA)
technology for efficient fine-tuning of large mod-
els (Hu et al., 2021; Touvron et al., 2023). Dur-
ing the model fine-tuning phase, we utilize the
heterogeneous knowledge instruction set [ =
{(I1,I2,...,1) | (h,7,t)} to perform knowledge-
based instruction tuning on the student model using
LoRA. Specifically, the optimization process aims
to minimize the loss of the language model M, as
shown below:

L= E(x»y)NDRTE [log (PM(y ’ x)PLKG)]

+E(zy)~Dre log (P (y | ) PLra))(3)
where z and y represent the instruction input and
output in the trajectory, respectively.

S Experiment

5.1 Experimental Setup
5.1.1 Dataset

As described above, our experiments are conducted
on the domain-specific datasets we constructed.
The first dataset, built by human experts, contains
question-answer data from specialized fields, with
thematic labels explicitly specified for the instruc-
tions. In contrast, the synthetic data generated by
LLMs are derived from a large amount of unlabeled
open-world text. Additionally, we conduct exper-
iments by mixing the synthetic data generated by
LLMs with the data extracted from human experts.



5.1.2 Baselines

MAS-assisted Knowledge Distillation Baselines:

MAD (Multi-agent Debate): Multiple agents
express opinions in a debate format, managed by
a referee to reach a final solution. This method en-
courages divergent thinking, corrects errors, supple-
ments insufficient robustness, and obtains external
feedback.

Self-Reflect: Uses self-reflection to iteratively
improve answers through feedback. However, it
suffers from "thought degeneration", where the
model struggles to generate new ideas once it be-
comes confident in its answers. Despite this, it is
suitable for model self-optimization tasks.

MAPS: Employs a Multi-agent path search
method, mimicking the human process of sum-
marization and refinement. It first analyzes and
then refines through multi-step reasoning, suitable
for tasks requiring complex decision-making and
problem-solving.

Self-Consistency: Generates multiple outputs
and determines the final answer through majority
voting. This method effectively reduces random-
ness and inconsistency in model outputs, enhancing
stability and accuracy.

Single LLLM as Teacher Model Knowledge
Distillation Baselines:

Vanilla Fine-tuning (Yao et al., 2023b): Di-
rectly fine-tunes the edge-side LLM using question-
answer pairs constructed from the self-instruction
dataset, then prompts the LLM with basic task def-
initions without providing examples.

Step-by-Step Distillation (Hsieh et al., 2023):
Compared with several widely adopted advanced
methods to demonstrate the validity of our results.

Gradient-Free Learning Methods: Instruction
prompting techniques, including context learning
and zero-shot inference, are also compared to show-
case the experimental results.

5.1.3 Implementation and Detailed Settings

In the experiments, we select DeepSeek-V2 (Liu
et al., 2024a) as the backbone LLM in the Multi-
agent system, and Qwen2-7B (Yang et al., 2024)
and LLama3.1-8B (Deroy and Maity, 2024) as the
tuning models. All experiments are conducted
on two NVIDIA 3090 GPUs. To precisely eval-
uate the models’ performance on standard open-
world datasets (Papineni et al., 2002), we introduce
BLEU-4, ROUGE-1, ROUGE-2, and ROUGE-L
metrics to provide data support for optimizing edge-
side inference capabilities.

5.2 Experimental Results

5.2.1 Comparative experiments of
MAS-assisted distillation

Table 1 shows the experimental results of differ-
ent methods on the LLLama3.1-8B and Qwen2-7B
models. The results indicate that KG-MASD out-
performs other MAS-assisted distillation methods
in all evaluation metrics. Specifically, KG-MASD
achieves BLEU-4(Papineni et al., 2002), ROUGE-
1, ROUGE-2, and ROUGE-L(Lin and Hovy, 2003)
scores of 66.812, 65.539, 51.573, and 49.524 on
the LLama3.1-8B model, significantly higher than
MAD, Self-Reflect, MAPS, and Self-Consistency
methods. This demonstrates that KG-MASD can
more effectively utilize the Multi-agent system for
knowledge distillation, reducing model hallucina-
tion and enhancing student model performance. On
the Qwen2-7B model, KG-MASD also performs re-
markably well, with BLEU-4, ROUGE-1, ROUGE-
2, and ROUGE-L scores of 68.148, 66.855, 52.605,
and 50.474, further proving the effectiveness of the
KG-MASD framework.

5.2.2 Comparative experiments of single LLM
distillation

Table 1 shows the experimental results of differ-
ent methods on the LLama3.1-8B and Qwen2-7B
models. The results indicate that KG-MASD out-
performs other single LLM distillation methods in
all evaluation metrics. Specifically, KG-MASD
achieves BLEU-4, ROUGE-1, ROUGE-2, and
ROUGE-L scores of 66.812, 65.539, 51.573, and
49.524 on the LLama3.1-8B model, significantly
higher than Step-by-Step, Vanilla Fine-tuning, In-
Context Learning, and Zero-shot Reasoning meth-
ods. This demonstrates that KG-MASD can more
effectively utilize knowledge graph signals for dis-
tillation, reducing model hallucination and enhanc-
ing student model performance. On the Qwen2-
7B model, KG-MASD also performs remarkably
well, with BLEU-4, ROUGE-1, ROUGE-2, and
ROUGE-L scores of 68.148, 66.855, 52.605, and
50.474, further proving the effectiveness of the KG-
MASD framework.

The experimental results demonstrate that the
KG-MASD framework excels in both MAS-
assisted distillation and single LLM distillation
comparisons. KG-MASD effectively leverages do-
main knowledge graph signals to reduce model hal-
lucination and enhance student model performance.
The superior performance in BLEU-4, ROUGE-



Base Model Method BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
Multi-Model
Self-Reflect 63.764 63.048 48.789 47.712
MAPS 58.915) 4849 55.337) 7711 40.765) —8:024 39.401) 8311

LLama3.1-8B  Self-Consistency 58.630) 5134 555497499 41165, 7624  39.736] 7976
MAD 65401171637 65042111994 49 8211+1.032 48 43610724
KG-MASD 66.8121 73048 65539112491 51,5732 784 49 53441812
Self-Reflect 64.762 63.974 49.572 48.489
MAPS 60.009) 4753 562397735 41.301,78271 40,085 8404
Qwen2-7B  Self-Consistency 59.563] 75199 5648577489 41.803] 7799 40.421] 5068
MAD 66437171675 66.098112124 50523110951 49 25(4+0.761
KG-MASD 68.1481 73350 66.855112851 52,6051 13033 5047411955
Single-Model
Vanilla Fine-tuning 56.331 53.406 39.296 38.064
In-Context Learning | 47.804] 8527  44.955| 8451  33439|~5:857  3) 25| ~5-439
LLama3.1-8B  Zero-shot Reasoning | 32.031] 24300 3044222964 23 303|~16-993 21994 | ~16.07
Step-by-Step 60.739174408 57376113970 43 2991+4.003 4] 36443300
KG-MASD 668121110481 §5,5391+12.133 51 5731+12.277 49 544 +11.460
Vanilla Fine-tuning 57.458 54.477 40.092 38.806
In-Context Learning | 48.760) 8698 458548623 34,108/ 59 332775529
Qwen2-7B Zero-shot Reasoning | 32.671 24787 31,045 23432 22,749 ~17:343 22 434~ 16.372

Step-by-Step
KG-MASD

62.3531+4:89
68.148T+10‘69

58.623T+4'14G
66.855T+12‘378

44-198T+441()6
52.605T+12.513

42 191T+3.385
50'474T+1 1.668

Table 1: Performance comparison of different distillation methods and models across various datasets

1, ROUGE-2, and ROUGE-L metrics proves its
superiority in industrial question-answering tasks.

6 Module Analysis

The following analyses are all based on experi-
ments with Qwen2-7B.

6.1 Ablation Study

To verify the roles of different modules in the KG-
MASD framework, we conducted ablation stud-
ies. The results are shown in Table 2. It can be
seen from Table 2 that both the Global Knowledge
Graph (GlobalKG) and Local Knowledge Graph
(LocalKG) outperform the complete KG-MASD
framework in terms of performance. This may be
because the removal of certain modules in the ab-
lation experiments reduces the complexity of the
model, thereby resulting in better performance on
some metrics. However, the overall design of the
KG-MASD framework aims to integrate the advan-
tages of both global and local knowledge graphs,
enhancing the credibility and completeness of data
through the collaboration of the Multi-agent sys-
tem. Although slightly lower than the ablation
versions on some metrics, KG-MASD remains op-
timal in terms of overall performance, especially
in reducing model hallucination and improving the

accuracy of question-answering.

Method BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
GlobalKG  64.607 63.436 51.707 47.857
LocalKG 64.129 62.001 49.462 47.583
KG-MASD 62.858 61.596 48.544 46.628

Table 2: Statistical information on small heterogeneous
knowledge graph generation under multiple methods
comparison.

6.2 Credibility Analysis of Enhancing Data

To further demonstrate the effectiveness of the KG-
MASD framework in extracting local knowledge
graphs, we designed comparative experiments of
two conventional extraction methods on knowledge
graph evaluation tasks. These tasks include Rela-
tion Triple Extraction (RTE) and Knowledge Graph
Completion (KGC), aimed at assessing the frame-
work’s capability in generating credible data. Our
evaluation criteria are based on human evaluation
and GPT evaluation (I and B, 2025; Min et al.,
2023).

Figure 3 illustrates the performance comparison
of different methods on RTE and KGC tasks, where
"human evaluation accuracy scores" and "GPT eval-
uation accuracy scores" are represented by line
graphs and bar charts, respectively, with inconsis-



tent left and right y-axes to more intuitively display
the differences in results.

Comparison of RTE and KGC Tasks
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Figure 3: Performance Comparison of Different Meth-
ods in RTE (Relation Triple Extraction) and KGC
(Knowledge Graph Completion) Tasks by GPT and Hu-
man Evaluations

KG-MASD-KGC generated 2,468 relation
triples with 1,160 unique relations and 3,686
unique entities, while KG-MASD-RTE produced
2,454 relation triples with 1,148 unique relations
and 3,694 unique entities. Other methods generated
fewer of these elements, indicating KG-MASD’s
superior knowledge extraction and integration ca-
pabilities.

As shown in Section 6.2, KG-MASD not only en-
hances data credibility but also enriches the knowl-
edge graph’s content. Compared to similar algo-
rithms, it more effectively achieves its design func-
tionality, improving both credibility and complete-
ness. This dual capability is vital for developing
robust and comprehensive knowledge bases to sup-
port diverse Al applications.

6.3 Completeness Analysis of Enhancing Data

To validate the advantages of the KG-MASD frame-
work in enhancing data completeness, we com-
pared the performance of various methods in knowl-
edge graph construction. Figure 4 presents the
statistical results of different types of methods re-
garding the total number of relation triples, unique
relations, and unique entities. As shown in Fig-
ure 4, KG-MASD extracts more comprehensive
and extensive information in both enhancement
modes (KGC and RTE). Specifically, KG-MASD-
KGC generated 2468 relation triples, encompass-
ing 1160 unique relations and 3686 unique entities;
KG-MASD-RTE produced 2454 relation triples,
including 1148 unique relations and 3694 unique

Comparison of Data Completeness

Total Triples
3500 Unique Relations
Unique Entities

3000

2500

S 2000
3

C

1500

1000

500

ICL-KGC ICL-RTE COT-KGC COT-RTE KG-MASD-KGC ~ KG-MASD-RTE

Figure 4: Comparison of Data Completeness Among
Different Methods in Knowledge Graph Construction
Including Total Triples, Unique Relations, and Unique
Entities

entities. In comparison, other methods yielded
fewer relation triples, unique relations, and unique
entities than KG-MASD. This indicates that KG-
MASD is more effective at extracting and integrat-
ing knowledge from data, thereby enriching the
content of the knowledge graph.

As per Section 6.2, KG-MASD not only boosts
data credibility but also enriches the knowledge
graph’s content. It surpasses similar algorithms in
achieving its design goals, enhancing both credibil-
ity and completeness by generating credible data
and expanding entities/relations. This dual capabil-
ity is key for building robust and comprehensive
Al knowledge bases.

7 Conclusion

This study introduces the KG-MASD framework,
which integrates Multi-agent Systems (MAS) and
domain-specific knowledge graphs to enhance in-
ference efficiency and accuracy for edge-side mod-
els in industrial domains. KG-MASD outperforms
traditional methods such as step-by-step distilla-
tion, vanilla fine-tuning, in-context learning, and
zero-shot reasoning in tasks like RTE and KGC.

The framework can construct local heteroge-
neous knowledge graphs on edge devices effi-
ciently, reducing computational resource demands
while improving model generalization. To support
further research, we have open-sourced an anno-
tated industrial question-answering dataset with
labeled questions, answers, tags, and context. The
KG-MASD framework provides new insights and
methods for industrial question-answering systems
and supports the application of MAS and domain-
specific knowledge graphs in industry.



Limitations

Although the multi-agent system has played a sig-
nificant role in enhancing the depth and accuracy
of model reasoning, there is still room for improve-
ment in the coordination and communication ef-
ficiency among agents during complex industrial
problem reasoning. For example, multiple itera-
tions and interactions can lead to increased reason-
ing delays, and the information sharing mechanism
still needs to be improved to reduce information
loss or misinterpretation during transmission.

Improve the coordination and communication
strategies within the multi-agent system to enhance
the collaboration efficiency among agents. For ex-
ample, advanced multi-agent reinforcement learn-
ing algorithms can be introduced to enable agents
to more quickly learn optimal collaborative strate-
gies during interactions. In addition, the informa-
tion sharing mechanism between agents can be
optimized to ensure that important information is
accurately and promptly conveyed, reducing infor-
mation loss and misinterpretation.
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A Appendix

A.1 Analysis of Thematic Category
Distributions

Figure 5 illustrates the proportion distribution
of eight manually extracted thematic categories.
These categories have been classified manually
according to specific criteria to facilitate analy-
sis and understanding of the main focal points
within the dataset. The proportions provide an intu-
itive understanding of the significance of different
themes within the dataset, aiding further analysis
and decision-making. Notably, the high proportion
of the “Others" category may suggest the need for
further subdivision or reclassification of this data to
enhance the precision and relevance of the analysis.

Topic Distribution (Top 8 Topics)

39.68%

20.17%
18.42%

6.50%
531% 4.88%

2.63% 2.41%

Transportation  Health Others  Environment  Equipment  Production Electricity Disaster Prevention

Figure 5: The proportions of the eight manually ex-
tracted thematic categories are as follows: Translation
accounts for 6.5%, Health for 2.63%, Others for 39.68%,
Environment for 2.41%, Equipment for 18.42%, Pro-
duction for 5.31%, Electricity for 20.17%, and Disaster
Prevention for 4%.

A.2 Prompts for Synthetic Data Generation

This appendix provides the prompts used to trans-
form raw text fragments into instruction-tuning
data, as shown in Figure 6. These prompts are
designed based on the needs of industrial question-
answering scenarios to help models better under-
stand and generate QA content related to the indus-
trial domain. Through these prompts, unsupervised
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text data can be converted into structured instruc-
tion data for model fine-tuning and optimization.

A.3 Dataset Statistics

In this study, two sets of datasets were utilized: one
generated by humans and the other by GPT. The
detailed statistical information for these datasets is
presented in Table 3 below:

¢ The Human Dataset consists of 37,426 sam-
ples, with 22,510 allocated for training, 7,381
for testing, and 7,535 for validation. These
data, annotated by humans, are generally con-
sidered to have higher quality and reliability.

* The GPT Dataset comprises 15,424 samples,
with 9,366 designated for training, 2,980 for
testing, and 3,078 for validation. These data
are generated by the GPT model to assess its
capability in producing text similar to that of

humans.

Dataset Total Train Test  Val
Human 37426 22510 7381 7535
GPT 15424 9366 2980 3078

Table 3: Statistics of Human and GPT Datasets

The division of these datasets ensures the inde-
pendence of model training, testing, and validation,
thereby accurately evaluating the model’s perfor-
mance. By comparing the human-generated and
GPT-generated datasets, we can gain a deeper un-
derstanding of the model’s performance differences
across various data sources.

A4 Specific Prompts for Different Agents

This appendix lists the specific prompts for each
agent in the KG-MASD framework, as shown in
Figure 7. These prompts define the roles and re-
sponsibilities of each agent, ensuring their efficient
collaboration within the Multi-agent system to com-
plete tasks such as knowledge graph construction,
relation extraction, and information verification.

A.5 Analysis of Agent Dynamics in the
KG-MASD System

The Figure 8 illustrates the temporal evolution of
states for various agents within the KG-MASD
system. These agents include the Knowledge
Graph Master, Entity Extractor, Relation Extractor,



Task Objectives:

Based on the known information fragments, it is converted into annotated data that can be used for instruction fine-tuning, so as to improve the understanding and generation
ability of the model in industrial Q&A scenarios.

For example:

Input: "Polyethylene typically has a density between 0.91 - 0.96g/cm? and is chemically stable. "

Output:

“instruction": "Extract material names and properties from chemical material descriptions",
"input": "Polyethylene typically has a density between 0.91 - 0.96g/cm3 and is chemically stable.” ,
“output": "Material name: polyethylene; Characteristics: density range 0.91 - 0.96g/cm?3, good chemical stability"

Input: "In the Haber process of ammonia synthesis, the reaction is carried out under the conditions of high temperature and high pressure and iron catalyst. "

Output:

{

“instruction": “Identify the key elements of the chemical production process"”,

“input": "In the Haper process of ammonia synthesis, the reaction needs to be carried out under the conditions of high temperature and high pressure and iron catalyst." ,
“output”: "Production process: Haber method for ammonia synthesis; Key elements: high temperature and high pressure conditions, iron catalysts"

Input: "Acetic acid and ethanol can be esterified under acidic conditions to produce ethyl acetate and water." "

Output:

{

“"instruction™: "Analysis of reactants, products and conditions of chemical reaction equations”,

“input": "Acetic acid and ethanol can be esterified under acidic conditions to form ethyl acetate and water." ,

"output": "Reactants: acetic acid, ethanol; Products: Ethyl acetate, water; Conditions: acidic conditions, esterification reactions”

}

Task requirements:

According to the example format above, convert small pieces of text with domain information into annotated instructions to fine-tune the data. Each data item consists of three
fields: “instruction” (the instruction of the annotation task that is clearly relevant), “input” (the original text snippet), and “"output" (the result of annotating the text according to
the instruction), which are presented in JSON format. Replace the small fragment of chemical text that needs to be converted to the following position to generate the
corresponding annotation data:

“json

[

{

“instruction": "Please annotate the following text according to your expertise”,

"input™: "Background information to be involved",

“output”: "Annotated content"

}

1

Figure 6: Example of Prompt-Based Data Transformation

KG Master :
"You are a knowledge graph construction expert. "
"Your task is to generate triples for the knowledge graph based on the provided entity list and relationship list. "
"Please return these triples in the format: (Entity1, Relation, Entity2). "

* Relation Extractor (Green Curve): This

» expert.”
~"Your task is to extract all important entities
related to industry, production, and management
from the given text (including but not limited to
names of industrial processes, equipment,

e to the context, what is the relationship between

"For example: '(Partial oxidation, facilitates, Oxygen)'. "
“Each triple should be on a new line. "

"Ensure that there are no extra spaces or characters around the commas and parentheses. "
"Let's think step by step."

Entity Extractor:
~"You are an industrial information extraction

Relation Extractor:
-"You are an industrial relationship analysis

(©) r
[ expertt
~"Your task s to extract relationships between
g entities related to industry, production, and
Q - Y management based on the provided entity list and

original text.
-"Please return these relationships in the following
format: Entityl Relation Entity2.*

~"Let's think step by step."

companies, etc.).Please return these entities as a lst,
each on a new line."
~"Let's think step by step."

KR Distiller:
-"You are a question-answer generation expert."”
-"Your task is to generate a question and an answer (e)

Verifier:
-"You are a knowledge graph validation expert."
-"Your task is to validate the generated knowledge
graph triples to ensure they are consistent with the
user's original input and logically correct."

-"If the validation passes, please return "This is a
loyal fact.™

="If the validation fails, please specify the specific
issues and request the KR Distiller to regencrate
them accordingly.*

~"Let's think step by step."

based on the provided knowledge graph triple and
context.*
~"The question should be in the form of 'According

Entityl and Entity2?””
-"The answer should include the relationship
between Entityl and Entity2 and reference the
context.*

~"Let's think step by step."

Figure 7: Example of Agent Prompts

Knowledge Relation Distiller, and Verifier. Below
is a detailed analysis of the state changes for each
agent:

* Knowledge Graph Master (Blue Curve): This

agent’s state rapidly decreases initially and
then stabilizes, indicating a quick adjustment
period followed by a stable state.

* Entity Extractor (Orange Curve): The state
of this agent initially drops, then gradually
increases and stabilizes, demonstrating adap-
tation during the system’s self-adjustment
phase.
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agent’s state spikes initially, then quickly de-
clines and stabilizes, showing a rapid adjust-
ment to a stable state.

Knowledge Relation Distiller (Red Curve):
The state of this agent also initially drops,
then gradually increases and stabilizes, in-
dicating adaptation during the system’s self-
adjustment.

Verifier (Purple Curve): This agent’s state
rapidly decreases initially, then gradually in-
creases and stabilizes, reflecting adaptation
during the system’s self-adjustment process.

As time progresses and the number of iterations
increases, the KG-MASD system rapidly achieves
self-stabilization. During this process, the Verifier
also tends to stabilize with the increasing number
of iterations. This indicates that the KG-MASD
system possesses excellent self-adjustment and sta-
bilization capabilities when handling knowledge
graph construction tasks, effectively adapting to
changing environments and task demands.
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Figure 8: As time progresses and the number of iterations increases, the KG-MASD system can rapidly achieve
self-stabilization. During this process, the Verifier also tends to stabilize with the increasing number of iterations.

A.6 Visualization of the Global Knowledge
Graph (GKG)

This appendix provides a visual representation of
the Global Knowledge Graph (GKG). As shown
in Figure 9, the GKG is a global knowledge struc-
ture extracted from raw data, containing entities,
relationships, and semantic information from the
industrial domain. The visualization helps to intu-
itively understand the structure and content of the
GKG.

Figure 9: Visualization of the Global Knowledge Graph

A.7 Local Heterogeneous Knowledge Graph
Construction

Figure 10 provides a visual representation of the
process involved in constructing Local Heteroge-
neous Knowledge Graphs (LHKG) from a Global
Knowledge Graph (GKG). The diagram illustrates
how the input data stream is queried to perform
retrieval and how it gradually searches for locally
optimal association paths. This process contin-
ues until all possible paths have been explored,
resulting in the formation of a local heterogeneous
knowledge graph that is tailored to the current data.
Process Overview:

* Data Stream Input: The system receives the
input data stream.

* Query Execution: A query retrieves rele-
vant information from the Global Knowledge
Graph (GKG).

 Path Exploration: The system explores paths
to identify locally optimal associations.

* Graph Formation: A Local Heterogeneous
Knowledge Graph (LHKG) is constructed
based on the explored paths.

13



Local Knowledge Graph-1 Global Knowledge Gl'aph
query
STEAM

TURBINES METHANE Local Knowledge Graph-2

TH s
PU 0D
PRODUCTION
SECTOR
CARBON
MONOXIDE
CARBON
DIOXIDE

HYDROGEN AMMONIA
SULFIDE

LIQUID
AMMONIA

VACUUM

OXYGEN DISTILLATION
UNIT TEXAC RESSURIZED
GASIFI
RESIDUAL
METALLURG oIL
ICAL
PROCESSES PROCESSES ATMOSPHERIC DUIROGEN

DISTILLATION
UNIT

Figure 10: This figure illustrates examples of constructing Local Heterogeneous Knowledge Graphs (LHKG) from
the Global Knowledge Graph (GKG). Initially, the input data stream enters through a query to perform retrieval and
gradually searches for locally optimal association paths until all possible paths have been explored, forming a local
heterogeneous knowledge graph for the current data.

This method of constructing LHKGs allows for a
more focused and contextually relevant knowledge
representation, which can be particularly useful in
applications requiring detailed and specific insights
from large and diverse datasets. The ability to
form these graphs dynamically ensures that the
knowledge base remains up-to-date and aligned
with the latest data inputs.

A.8 Data Generation Process

This appendix details the data generation process in
the KG-MASD framework, including the construc-
tion of local knowledge graphs from raw data and
the generation of instruction-tuning data, as shown
in Figurel1. This process involves multiple steps,
including Relation Triple Extraction (RTE), Knowl-
edge Graph Completion (KGC), and collaboration
within the Multi-agent system.

(@)

Figure 11: Data Generation Process Diagram
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