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Abstract001

Recent research has focused on optimizing002
multi-agent LLMs for complex reasoning tasks,003
revealing that such architectures can signif-004
icantly enhance reasoning abilities. Never-005
theless, there are critical challenges, such006
as the uncontrollable hallucinations caused007
by the multi-model and multi-round iteration008
mechanism. The current paradigm also fails009
to effectively distill the collaborative reason-010
ing power of distributed multi-agent systems011
into a single deployable model, which lim-012
its reasoning efficiency in practical applica-013
tion scenarios. To address these issues, we014
propose a solution that combines knowledge015
graphs with multi-agent systems. Focusing016
on industrial-field intelligent QA systems, we017
design a Knowledge Graph-guided Multi-018
Agent System Distillation(KG-MASD) . The019
framework makes three main contributions.020
First, it constructs an industrial field knowledge021
graph to provide prior information. Second, it022
establishes a collaborative reasoning mecha-023
nism for a multi-teacher model. Third, it de-024
velops a multi-agent distillation methodology.025
To verify its effectiveness, this study introduces026
the first standard industrial production instruc-027
tion dataset. It comprises approximately 52k028
domain-specific question-and-answer pairs and029
an industrial knowledge graph encompassing030
around 36k entities and 131k relationships. Ex-031
perimental results indicate that the KG-MASD032
framework may offer a potential domain adap-033
tation advantage over existing single-model034
and multi-agent distillation frameworks, with a035
possible improvement ranging from 2.4% and036
20.1% in domain adaptation.037

1 Introduction038

Knowledge distillation offers a viable solution for039

using large language models (LLMs) in scenarios040

with limited production resources and can effec-041

tively inject domain-specific datasets to fine-tune042

LLMs for particular domains. However, when do-043

main problems are complex, a single large model044

serving as a teacher model struggles to effectively 045

transfer the label distribution to the student model 046

via data augmentation methods (Wang et al., 2021; 047

Liu et al., 2022; Yao et al., 2023a). Multi-agent 048

systems can address this issue by increasing the 049

depth of reasoning of the teacher model. However, 050

they may suffer from uncontrollable structure and 051

low iteration efficiency, leading to the failure of 052

data augmentation and low credibility of the re- 053

sults. The integration of knowledge graphs and 054

LLMs has emerged as a new and reliable paradigm 055

to address these challenges (Li et al., 2023; Deng 056

et al., 2023; Zhang et al., 2024). 057

Based on this, to tackle these challenges, we pro- 058

pose the Knowledge Graph-guided Multi-Agent 059

System Distillation(KG-MASD) framework, a 060

method that combines multi-agent systems and lo- 061

cal knowledge graphs for knowledge distillation. 062

For example, this framework addresses the prob- 063

lem scenarios illustrated in Figure 1. The KG- 064

MASD framework primarily focuses on the key 065

issues in knowledge distillation: how to ensure that 066

the multi-agent system can assist the teacher model 067

in knowledge distillation, and how to guarantee the 068

reliability of augmented data under a multi-agent 069

system. Our contributions are as follows. 070

• We introduce a multi-agent system to assist 071

knowledge distillation, efficiently extracting 072

and integrating industrial knowledge. By in- 073

tegrating local knowledge graphs into the dis- 074

tilled instruction dataset, KG-MASD can ef- 075

fectively distill the student LLM. 076

• We introduce an industrial QA dataset with 077

vertical annotations and the corresponding 078

knowledge graph instruction set, which en- 079

riches practical application scenarios. 080

• Experimental results show that the KG- 081

MASD framework outperforms single-teacher 082
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LLMs and other multi-agent distillation meth-083

ods.084

2 Related Work085

2.1 Knowledge Distillation086

The explosive growth of parameters in LLMs has087

led to prohibitively high computational costs dur-088

ing inference, creating a significant bottleneck for089

their widespread application. Knowledge distil-090

lation, which transfers knowledge from LLMs to091

lightweight models through a teacher-student ar-092

chitecture, has emerged as a key technology to093

overcome this limitation (Hu et al., 2024; Du et al.,094

2024; Zhao et al., 2024).095

Compared to traditional methods, knowledge096

distillation of LLMs pays more attention to extract-097

ing knowledge from core components such as the098

multi-head attention mechanism and intermediate099

layer hidden states in the Transformer architecture.100

Knowledge distillation enables student models to101

learn the semantic focus patterns of the teacher102

by aligning attention mechanisms, constructing103

prompt templates, and designing reinforcement104

learning rewards. It also helps unify the seman-105

tic space and dynamically optimize outputs. This106

effectively improves the learning efficiency and107

performance of the models (Yang and Liu, 2024;108

Liu et al., 2024b; Yang et al., 2024). Despite its109

significant achievements, knowledge distillation of110

LLMs still faces challenges. The complex struc-111

ture of knowledge makes it difficult to extract and112

transfer key knowledge, and model compression113

can easily lead to performance loss. Therefore, it is114

necessary to balance performance and compression115

ratios. Additionally, the contradiction between the116

need for large-scale data training and limited com-117

putational resources also urgently requires more118

efficient distillation algorithms to be resolved.119

2.2 Multi-agent Systems120

As an important branch of distributed artificial in-121

telligence, Multi-agent systems (MAS) have shown122

strong application potential in many fields in recent123

years. In complex task scenarios, multiple agents124

can solve problems more efficiently through in-125

teractions such as collaboration and competition.126

Their flexibility and adaptability far exceed those127

of single-agent models (Liang et al., 2023; Wang128

et al., 2025; Kang et al., 2024).129

With the deepening of research, a series of130

advanced MAS frameworks have emerged suc-131

I'm sorry, but based on the information provided in the 
context, it is not possible to infer the relationship between 
the entities. Please provide more relevant information.

Please Extract the entity information of ‘Physical 
properties: At room temperature, …with a density 
greater than that of air.’

Please tell me what is the relationship between the 
condenser and the throttle valve.

The condenser and throttle valve are two different 
components in a refrigeration system, each with distinct 
functions. If you have any additional information, you can 
tell me, and that would help with the analysis.

-(Hydrogen sulfide (H₂S), contributes to, acid rain)
-(Hydrogen sulfide (H₂S), is used in, oil and gas industry)
-(Hydrogen sulfide (H₂S), forms, hydrosulfuric acid)…

Please Extract the entity information of ‘Physical 
properties: At room temperature, …with a density 
greater than that of air.’

Please tell me what is the relationship between the 
condenser and the throttle valve.

The condenser and throttle valve are two consecutive 
components in the refrigeration cycle. The condenser 
liquefies the refrigerant and releases heat, while the throttle 
valve reduces the pressure and temperature of the liquid 
refrigerant, enabling it to absorb heat in the evaporator. The 
performance of the throttle valve directly affects the 
efficiency of the condenser because it must ensure that the 
refrigerant reaches an appropriate low-pressure state before 
entering the evaporator.

(a)

(b)

Figure 1: (a) represents the issues and expectations of
the edgeside model when tasked with knowledge graph
extraction, while (b) illustrates the problems and antici-
pated outcomes of the edge-side model in the context of
question-and-answer formats.

cessively. Multi-agent Debate (MAD) promotes 132

deeper understanding and more accurate answer 133

generation by having multiple independent agents 134

debate on the same topic (Smit et al., 2023). The 135

Self-Reflect framework consists of three models: 136

participants, evaluators, and self-reflection. Each 137

agent can adjust its reasoning strategy through 138

self-reflection to improve overall task performance 139

(Yuan et al., 2025; Shinn et al., 2023). When 140

agents process large amounts of data, Rerank opti- 141

mizes the information retrieval process by remov- 142

ing irrelevant nodes and reordering relevant nodes 143

(Loem et al., 2023; He et al., 2024). MAS Protocol 144

(MAPS) designs communication protocols, collab- 145

oration strategies, and resource allocation methods 146

among agents to achieve optimal performance in 147

Multi-agent systems within specific task domains 148

(He et al., 2024; Thelasingha et al., 2025). Self- 149

Consistency establishes a consistency verification 150

mechanism. When an agent makes a decision or 151

takes an action, the framework checks whether the 152

decision or action is consistent with the overall sys- 153

tem goal and the states of other agents to avoid 154

conflicts or inconsistencies (Li et al., 2024; Wang 155

et al., 2022). 156

In the field of knowledge distillation, although a 157

2



mature MAS application system has not yet been158

formed, some explorations have been made. Some159

studies have attempted to use multiple agents as160

auxiliary roles for both teacher and student mod-161

els. Agents assist the teacher model in more ac-162

curately extracting key knowledge and help the163

student model more efficiently receive and under-164

stand the content of knowledge transfer (Bo et al.,165

2024).166

2.3 Industrial Question-Answering167

Knowledge168

Natural language processing technology has be-169

come the core driving force behind industrial170

question-answering systems. Through the construc-171

tion of knowledge graphs, fusion of multimodal172

data, and optimization of large language models, it173

has promoted intelligent interaction and decision174

support in industrial scenarios (Jiao et al., 2025;175

Kojima et al., 2022).176

Large language models are used for industrial177

equipment fault diagnosis. For example, when a178

stamping machine on an automobile production179

line malfunctions, an LLM can analyze logs and180

maintenance records and quickly locate the fault181

by combining the experience database, thereby re-182

ducing downtime (Meng et al., 2024). Knowledge183

distillation enables the lightweight deployment of184

industrial question-answering models by training185

lightweight models for edge devices, balancing ac-186

curacy and computational resources (Alam et al.,187

2020). Wang Peng et al. proposed a multimodal188

large language model for the transportation field189

called TransGPT (Wang et al., 2024). It is fine-190

tuned based on transportation text/multimodal data191

and provides NLP technical support for intelligent192

transportation systems.193

3 Dataset and Augmentation194

3.1 Dataset Compilation195

To create a basic knowledge graph and instruction-196

tuning dataset tailored for the industrial domain, we197

crawled question-answer data provided by human198

experts from publicly available online publications,199

as well as a large amount of unsupervised text ob-200

tained from public sources. The question-answer201

data from human experts were first manually fil-202

tered and organized into an instruction-tuning data203

format. Based on the data collection channels,204

these topics can be directly categorized into eight205

distinct thematic groups: Transportation, Health,206

Environment, Equipment, Production, Electricity, 207

Disaster Prevention and Other. The distribution is 208

shown in Appendix A.1. 209

For the unsupervised information data obtained, 210

we first utilized Sentence-BERT to embed the orig- 211

inal text sentences into vectors and calculated the 212

cosine similarity between different sample vectors. 213

If the similarity was greater than 0.5, the samples 214

were classified as different segments; otherwise, 215

they were considered as the same segment.We sub- 216

sequently employed prompts derived from large 217

language models (Cui et al., 2025; Sahoo et al., 218

2024; Trivedi et al., 2025) (as shown in Appendix 219

A.2 for details) to transform the segmented infor- 220

mation into an instruction-tuning format. The sta- 221

tistical information of the data collected by the two 222

methods is shown in Appendix A.3. 223

3.2 Dataset Augmentation Directions 224

The process of transforming knowledge graph- 225

extracted information into instruction-tuning data 226

involves two primary augmentation directions: Re- 227

lation Triple Extraction (RTE) and Knowledge 228

Graph Completion (KGC). Specifically, we guide 229

the Multi-agent system to explicitly express knowl- 230

edge graph-related content before data output, 231

which serves as a condition for autoregressive gen- 232

eration of instruction-tuning commands. 233

• Relation Triple Extraction: This task involves 234

automatically extracting semantic relation- 235

ships between entities from text descriptions 236

and representing them in the form of triples. 237

For example, given the description "Hydrogen 238

sulfide is a colorless gas", the system should 239

extract the triple: "Subject": "Hydrogen sul- 240

fide", "Predicate": "i", "Object": "colorless 241

gas". 242

• Knowledge Graph Completion: The goal of 243

KGC is to infer and fill in missing relation- 244

ships in an existing knowledge graph. This 245

task typically relies on contextual informa- 246

tion and learns from existing relationships to 247

predict missing entity relationships. For exam- 248

ple, given the entity "insulation resistance me- 249

ter" and its "purpose" relationship, the model 250

should infer the corresponding action entity 251

and associated context. 252
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Figure 2: It illustrates the overall process of extracting
the Global Knowledge Graph (GKG) from raw data
using GraphRAG technology, and conducting entity and
relation extraction, local knowledge graph generation,
and instruction fine-tuning via a Multi-agent system.

4 Framework and Methodology253

4.1 Overall Process of the KG-MASD254

Framework255

The overall process of the KG-MASD framework256

is depicted in Figure 2. To begin with, we em-257

ploy GraphRAG technology (Han et al., 2025)258

to extract a global knowledge graph {H,R, T}259

for industrial decision-making from the raw data260

{C1, C2, . . . , Cn}. In this context, Cn signifies the261

n-th information fragment, while H and T cor-262

respond to the head and tail entities within the263

knowledge graph, and R indicates the connecting264

relationships.265

Subsequently, we define identity instructions for266

the five agents in the Multi-agent assisted distil-267

lation system, each focusing on different aspects.268

These agents include the Knowledge Graph Master269

(KG Master), Entity Extractor, Relation Extrac-270

tor, Knowledge Relation Distiller (KR Distiller),271

and Verifier. The KG Master is responsible for272

decomposing the original question and expanding273

knowledge relationships using the global knowl-274

edge graph and RAG technology. Then, one agent275

is randomly selected from the Entity Extractor and276

Relation Extractor to provide raw information and277

extract entities and potential relationships from278

the data stream. These extracted entities and rela-279

tionships are subsequently aggregated into a local280

knowledge graph in the KR Distiller, which com-281

bines the raw information to extract small-scale282

local triples (hi, ri, ti) (following the knowledge283

graph generation paradigm). The Verifier reads284

and judges whether the extracted information is285

correct and valid. If the information fails the verifi-286

cation, it is sent back to the KR Distiller to update287

and iteratively optimize the extraction path. Once 288

the update converges, the KR Distiller generates 289

small local knowledge graphs and an instruction- 290

tuning dataset I = {(I1, I2, . . . , In) | (h, r, t)} in 291

an autoregressive manner. Finally, we apply LoRA 292

(Hu et al., 2021) to distill and fine-tune the student 293

model, transferring the reasoning capabilities of 294

the global knowledge graph and the teacher model 295

to the smaller student model. 296

4.2 Multi-agent System Design 297

4.2.1 Definition of the Agent System 298

Considering the responsiveness and tool diversity 299

required for industrial task deployment, we define 300

the roles of the five agents in the MAS-assisted dis- 301

tillation system using identity and chain-of-thought 302

methods. Each agent is assigned specific roles and 303

responsibilities to enhance focus and specializa- 304

tion. For example, the KG Master is responsible 305

for database read operations, while the KR Distiller 306

is equipped with short-term memory to achieve 307

contextual understanding. The specific role prompt 308

words for these agents are shown in Appendix A.4. 309

To verify the structural controllability of the KG- 310

MASD system (Lin, 1974), we construct the sys- 311

tem’s Laplacian matrix L and evaluate the system’s 312

controllability by analyzing the spectral properties 313

of L based on the concept of structural controlla- 314

bility proposed by Lin. Specifically, we describe 315

the KG-MASD system as the following linear time- 316

invariant model: 317

ẋ(t) = Ax(t) +Bu(t) (1) 318

where x(t) ∈ R5 is the state vector, A = −L − 319

BK ∈ R5×5 is the system matrix, B ∈ R5×1 is 320

the control input matrix, and u(t) ∈ R1 represents 321

the control input. According to the research on 322

structural controllability of Multi-agent systems 323

by Zamani and Lin(Zamani and Lin, 2009), we 324

compute the controllability matrix Qc and check 325

whether its rank equals the system dimension to de- 326

termine the system’s complete controllability. The 327

controllability matrix Qc is expressed as: 328

Qc = [B AB A2B . . . An−1B] (2) 329

The conclusion indicates that the KG-MASD sys- 330

tem has good structural controllability, which 331

mainly depends on the eigenvalue distribution of 332

the Laplacian matrix L (e.g., eigenvalues of 0, 1, 2, 333

±
√
2), thereby ensuring the non-singularity of the 334

system matrix A and the full-rank condition of the 335
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controllability matrix Qc. Furthermore, referring to336

the research on structural controllability of directed337

signed networks by Ong et al (Guan et al., 2021),338

we further explore the impact of different network339

topologies on system controllability, thereby en-340

hancing the system’s adaptability and robustness.341

Subsequently, we introduce a decentralized control342

strategy (specifically, different agents can access343

the raw data stream), enabling each agent to self-344

regulate based on local information.345

Additionally, through theoretical analysis and346

numerical simulations, we verify the effectiveness347

of the proposed KG-MASD framework and demon-348

strate the system’s stability and controllability un-349

der different initial conditions and network topolo-350

gies. As shown in Appendix A.5, as the num-351

ber of iterations increases, the KG-MASD system352

can rapidly achieve self-regulation, and the perfor-353

mance of the Verifier also tends to stabilize.354

4.2.2 Global Knowledge Graph Generation355

In the global knowledge graph generation phase,356

our objective is to extract entities and relationships357

with semantic associations from a vast amount of358

raw data to construct a comprehensive knowledge359

representation framework. Specifically, we uti-360

lize GraphRAG technology to extract the global361

knowledge graph (GKG) from the raw dataset362

{C1, C2, . . . , Cn}, with its structure represented363

as {(H,R, T )}, where H , R, and T denote the364

head entities, relationships, and tail entities, respec-365

tively. Through this process, we are not only able366

to capture explicit relationships in the data but also367

leverage the scalability of knowledge graphs to dis-368

cover potential semantic connections. We provide369

a visual representation of the GKG in Appendix370

A.6.371

To further enhance the completeness and accu-372

racy of the knowledge graph, we introduce the KG373

Master module, which is based on the global knowl-374

edge graph and incorporates a retrieval-augmented375

generation mechanism in the Multi-agent system.376

This module can decompose the original question377

and expand knowledge relationships, providing a378

richer semantic context for subsequent entity and379

relationship extraction.380

4.2.3 Construction of Local Knowledge381

Graphs382

Further, based on the well-constructed GKG and383

Graph RAG technology, we perform retrieval aug-384

mentation on different text fragments to enhance385

the quality of answers and strengthen the connec- 386

tions between data and nodes in the latent space as 387

much as possible. Meanwhile, local retrieval can be 388

quickly conducted from the original labeled dataset 389

(e.g., the production department in Appendix A.7), 390

and they can be combined to form local heteroge- 391

neous knowledge graphs. The generation process 392

is illustrated in Appendix A.7. 393

4.2.4 Self-Verification and Self-Update 394

Based on the well-constructed GKG, we process
the relation extraction and integration of local
knowledge graphs using the defined distiller mod-
ule. As shown in Appendix A.8, the Verifier it-
eratively verifies and refines the information until
it is judged to be reliable true information. This
process generates a verified instruction dataset
{(I1, I2, . . . , In) | (h, r, t)}

4.2.5 Knowledge-Based Instruction Tuning 395

To improve tuning efficiency and reduce compu- 396

tational resource consumption, the KG-MASD 397

framework employs Low-Rank Adaptation (LoRA) 398

technology for efficient fine-tuning of large mod- 399

els (Hu et al., 2021; Touvron et al., 2023). Dur- 400

ing the model fine-tuning phase, we utilize the 401

heterogeneous knowledge instruction set I = 402

{(I1, I2, . . . , In) | (h, r, t)} to perform knowledge- 403

based instruction tuning on the student model using 404

LoRA. Specifically, the optimization process aims 405

to minimize the loss of the language model M , as 406

shown below: 407

L = E(x,y)∼DRTE
[log (PM (y | x)PLKG)] 408

409
+ E(x,y)∼DKGC

[log (PM (y | x)PLKG)](3) 410

where x and y represent the instruction input and 411

output in the trajectory, respectively. 412

5 Experiment 413

5.1 Experimental Setup 414

5.1.1 Dataset 415

As described above, our experiments are conducted 416

on the domain-specific datasets we constructed. 417

The first dataset, built by human experts, contains 418

question-answer data from specialized fields, with 419

thematic labels explicitly specified for the instruc- 420

tions. In contrast, the synthetic data generated by 421

LLMs are derived from a large amount of unlabeled 422

open-world text. Additionally, we conduct exper- 423

iments by mixing the synthetic data generated by 424

LLMs with the data extracted from human experts. 425
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5.1.2 Baselines426

MAS-assisted Knowledge Distillation Baselines:427

MAD (Multi-agent Debate): Multiple agents428

express opinions in a debate format, managed by429

a referee to reach a final solution. This method en-430

courages divergent thinking, corrects errors, supple-431

ments insufficient robustness, and obtains external432

feedback.433

Self-Reflect: Uses self-reflection to iteratively434

improve answers through feedback. However, it435

suffers from "thought degeneration", where the436

model struggles to generate new ideas once it be-437

comes confident in its answers. Despite this, it is438

suitable for model self-optimization tasks.439

MAPS: Employs a Multi-agent path search440

method, mimicking the human process of sum-441

marization and refinement. It first analyzes and442

then refines through multi-step reasoning, suitable443

for tasks requiring complex decision-making and444

problem-solving.445

Self-Consistency: Generates multiple outputs446

and determines the final answer through majority447

voting. This method effectively reduces random-448

ness and inconsistency in model outputs, enhancing449

stability and accuracy.450

Single LLM as Teacher Model Knowledge451

Distillation Baselines:452

Vanilla Fine-tuning (Yao et al., 2023b): Di-453

rectly fine-tunes the edge-side LLM using question-454

answer pairs constructed from the self-instruction455

dataset, then prompts the LLM with basic task def-456

initions without providing examples.457

Step-by-Step Distillation (Hsieh et al., 2023):458

Compared with several widely adopted advanced459

methods to demonstrate the validity of our results.460

Gradient-Free Learning Methods: Instruction461

prompting techniques, including context learning462

and zero-shot inference, are also compared to show-463

case the experimental results.464

5.1.3 Implementation and Detailed Settings465

In the experiments, we select DeepSeek-V2 (Liu466

et al., 2024a) as the backbone LLM in the Multi-467

agent system, and Qwen2-7B (Yang et al., 2024)468

and LLama3.1-8B (Deroy and Maity, 2024) as the469

tuning models. All experiments are conducted470

on two NVIDIA 3090 GPUs. To precisely eval-471

uate the models’ performance on standard open-472

world datasets (Papineni et al., 2002), we introduce473

BLEU-4, ROUGE-1, ROUGE-2, and ROUGE-L474

metrics to provide data support for optimizing edge-475

side inference capabilities.476

5.2 Experimental Results 477

5.2.1 Comparative experiments of 478

MAS-assisted distillation 479

Table 1 shows the experimental results of differ- 480

ent methods on the LLama3.1-8B and Qwen2-7B 481

models. The results indicate that KG-MASD out- 482

performs other MAS-assisted distillation methods 483

in all evaluation metrics. Specifically, KG-MASD 484

achieves BLEU-4(Papineni et al., 2002), ROUGE- 485

1, ROUGE-2, and ROUGE-L(Lin and Hovy, 2003) 486

scores of 66.812, 65.539, 51.573, and 49.524 on 487

the LLama3.1-8B model, significantly higher than 488

MAD, Self-Reflect, MAPS, and Self-Consistency 489

methods. This demonstrates that KG-MASD can 490

more effectively utilize the Multi-agent system for 491

knowledge distillation, reducing model hallucina- 492

tion and enhancing student model performance. On 493

the Qwen2-7B model, KG-MASD also performs re- 494

markably well, with BLEU-4, ROUGE-1, ROUGE- 495

2, and ROUGE-L scores of 68.148, 66.855, 52.605, 496

and 50.474, further proving the effectiveness of the 497

KG-MASD framework. 498

5.2.2 Comparative experiments of single LLM 499

distillation 500

Table 1 shows the experimental results of differ- 501

ent methods on the LLama3.1-8B and Qwen2-7B 502

models. The results indicate that KG-MASD out- 503

performs other single LLM distillation methods in 504

all evaluation metrics. Specifically, KG-MASD 505

achieves BLEU-4, ROUGE-1, ROUGE-2, and 506

ROUGE-L scores of 66.812, 65.539, 51.573, and 507

49.524 on the LLama3.1-8B model, significantly 508

higher than Step-by-Step, Vanilla Fine-tuning, In- 509

Context Learning, and Zero-shot Reasoning meth- 510

ods. This demonstrates that KG-MASD can more 511

effectively utilize knowledge graph signals for dis- 512

tillation, reducing model hallucination and enhanc- 513

ing student model performance. On the Qwen2- 514

7B model, KG-MASD also performs remarkably 515

well, with BLEU-4, ROUGE-1, ROUGE-2, and 516

ROUGE-L scores of 68.148, 66.855, 52.605, and 517

50.474, further proving the effectiveness of the KG- 518

MASD framework. 519

The experimental results demonstrate that the 520

KG-MASD framework excels in both MAS- 521

assisted distillation and single LLM distillation 522

comparisons. KG-MASD effectively leverages do- 523

main knowledge graph signals to reduce model hal- 524

lucination and enhance student model performance. 525

The superior performance in BLEU-4, ROUGE- 526
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Base Model Method BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
Multi-Model

LLama3.1-8B

Self-Reflect 63.764 63.048 48.789 47.712
MAPS 58.915↓−4.849 55.337↓−7.711 40.765↓−8.024 39.401↓−8.311

Self-Consistency 58.630↓−5.134 55.549↓−7.499 41.165↓−7.624 39.736↓−7.976

MAD 65.401↑+1.637 65.042↑+1.994 49.821↑+1.032 48.436↑+0.724

KG-MASD 66.812↑+3.048 65.539↑+2.491 51.573↑+2.784 49.524↑+1.812

Qwen2-7B

Self-Reflect 64.762 63.974 49.572 48.489
MAPS 60.009↓−4.753 56.239↓−7.735 41.301↓−8.271 40.085↓−8.404

Self-Consistency 59.563↓−5.199 56.485↓−7.489 41.803↓−7.769 40.421↓−8.068

MAD 66.437↑+1.675 66.098↑+2.124 50.523↑+0.951 49.250↑+0.761

KG-MASD 68.148↑+3.386 66.855↑+2.881 52.605↑+3.033 50.474↑+1.985

Single-Model

LLama3.1-8B

Vanilla Fine-tuning 56.331 53.406 39.296 38.064
In-Context Learning 47.804↓−8.527 44.955↓−8.451 33.439↓−5.857 32.625↓−5.439

Zero-shot Reasoning 32.031↓−24.300 30.442↓−22.964 22.303↓−16.993 21.994↓−16.07

Step-by-Step 60.739↑+4.408 57.376↑+3.970 43.299↑+4.003 41.364↑+3.300

KG-MASD 66.812↑+10.481 65.539↑+12.133 51.573↑+12.277 49.524↑+11.460

Qwen2-7B

Vanilla Fine-tuning 57.458 54.477 40.092 38.806
In-Context Learning 48.760↓−8.698 45.854↓−8.623 34.108↓−5.984 33.277↓−5.529

Zero-shot Reasoning 32.671↓−24.787 31.045↓−23.432 22.749↓−17.343 22.434↓−16.372

Step-by-Step 62.353↑+4.895 58.623↑+4.146 44.198↑+4.106 42.191↑+3.385

KG-MASD 68.148↑+10.69 66.855↑+12.378 52.605↑+12.513 50.474↑+11.668

Table 1: Performance comparison of different distillation methods and models across various datasets

1, ROUGE-2, and ROUGE-L metrics proves its527

superiority in industrial question-answering tasks.528

6 Module Analysis529

The following analyses are all based on experi-530

ments with Qwen2-7B.531

6.1 Ablation Study532

To verify the roles of different modules in the KG-533

MASD framework, we conducted ablation stud-534

ies. The results are shown in Table 2. It can be535

seen from Table 2 that both the Global Knowledge536

Graph (GlobalKG) and Local Knowledge Graph537

(LocalKG) outperform the complete KG-MASD538

framework in terms of performance. This may be539

because the removal of certain modules in the ab-540

lation experiments reduces the complexity of the541

model, thereby resulting in better performance on542

some metrics. However, the overall design of the543

KG-MASD framework aims to integrate the advan-544

tages of both global and local knowledge graphs,545

enhancing the credibility and completeness of data546

through the collaboration of the Multi-agent sys-547

tem. Although slightly lower than the ablation548

versions on some metrics, KG-MASD remains op-549

timal in terms of overall performance, especially550

in reducing model hallucination and improving the551

accuracy of question-answering. 552

Method BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
GlobalKG 64.607 63.436 51.707 47.857
LocalKG 64.129 62.001 49.462 47.583
KG-MASD 62.858 61.596 48.544 46.628

Table 2: Statistical information on small heterogeneous
knowledge graph generation under multiple methods
comparison.

6.2 Credibility Analysis of Enhancing Data 553

To further demonstrate the effectiveness of the KG- 554

MASD framework in extracting local knowledge 555

graphs, we designed comparative experiments of 556

two conventional extraction methods on knowledge 557

graph evaluation tasks. These tasks include Rela- 558

tion Triple Extraction (RTE) and Knowledge Graph 559

Completion (KGC), aimed at assessing the frame- 560

work’s capability in generating credible data. Our 561

evaluation criteria are based on human evaluation 562

and GPT evaluation (I and B, 2025; Min et al., 563

2023). 564

Figure 3 illustrates the performance comparison 565

of different methods on RTE and KGC tasks, where 566

"human evaluation accuracy scores" and "GPT eval- 567

uation accuracy scores" are represented by line 568

graphs and bar charts, respectively, with inconsis- 569
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tent left and right y-axes to more intuitively display570

the differences in results.
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Figure 3: Performance Comparison of Different Meth-
ods in RTE (Relation Triple Extraction) and KGC
(Knowledge Graph Completion) Tasks by GPT and Hu-
man Evaluations

571

KG-MASD-KGC generated 2,468 relation572

triples with 1,160 unique relations and 3,686573

unique entities, while KG-MASD-RTE produced574

2,454 relation triples with 1,148 unique relations575

and 3,694 unique entities. Other methods generated576

fewer of these elements, indicating KG-MASD’s577

superior knowledge extraction and integration ca-578

pabilities.579

As shown in Section 6.2, KG-MASD not only en-580

hances data credibility but also enriches the knowl-581

edge graph’s content. Compared to similar algo-582

rithms, it more effectively achieves its design func-583

tionality, improving both credibility and complete-584

ness. This dual capability is vital for developing585

robust and comprehensive knowledge bases to sup-586

port diverse AI applications.587

6.3 Completeness Analysis of Enhancing Data588

To validate the advantages of the KG-MASD frame-589

work in enhancing data completeness, we com-590

pared the performance of various methods in knowl-591

edge graph construction. Figure 4 presents the592

statistical results of different types of methods re-593

garding the total number of relation triples, unique594

relations, and unique entities. As shown in Fig-595

ure 4, KG-MASD extracts more comprehensive596

and extensive information in both enhancement597

modes (KGC and RTE). Specifically, KG-MASD-598

KGC generated 2468 relation triples, encompass-599

ing 1160 unique relations and 3686 unique entities;600

KG-MASD-RTE produced 2454 relation triples,601

including 1148 unique relations and 3694 unique602

ICL-KGC ICL-RTE COT-KGC COT-RTE KG-MASD-KGC KG-MASD-RTE
Type

0

500

1000

1500

2000

2500

3000
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Figure 4: Comparison of Data Completeness Among
Different Methods in Knowledge Graph Construction
Including Total Triples, Unique Relations, and Unique
Entities

entities. In comparison, other methods yielded 603

fewer relation triples, unique relations, and unique 604

entities than KG-MASD. This indicates that KG- 605

MASD is more effective at extracting and integrat- 606

ing knowledge from data, thereby enriching the 607

content of the knowledge graph. 608

As per Section 6.2, KG-MASD not only boosts 609

data credibility but also enriches the knowledge 610

graph’s content. It surpasses similar algorithms in 611

achieving its design goals, enhancing both credibil- 612

ity and completeness by generating credible data 613

and expanding entities/relations. This dual capabil- 614

ity is key for building robust and comprehensive 615

AI knowledge bases. 616

7 Conclusion 617

This study introduces the KG-MASD framework, 618

which integrates Multi-agent Systems (MAS) and 619

domain-specific knowledge graphs to enhance in- 620

ference efficiency and accuracy for edge-side mod- 621

els in industrial domains. KG-MASD outperforms 622

traditional methods such as step-by-step distilla- 623

tion, vanilla fine-tuning, in-context learning, and 624

zero-shot reasoning in tasks like RTE and KGC. 625

The framework can construct local heteroge- 626

neous knowledge graphs on edge devices effi- 627

ciently, reducing computational resource demands 628

while improving model generalization. To support 629

further research, we have open-sourced an anno- 630

tated industrial question-answering dataset with 631

labeled questions, answers, tags, and context. The 632

KG-MASD framework provides new insights and 633

methods for industrial question-answering systems 634

and supports the application of MAS and domain- 635

specific knowledge graphs in industry. 636
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Limitations637

Although the multi-agent system has played a sig-638

nificant role in enhancing the depth and accuracy639

of model reasoning, there is still room for improve-640

ment in the coordination and communication ef-641

ficiency among agents during complex industrial642

problem reasoning. For example, multiple itera-643

tions and interactions can lead to increased reason-644

ing delays, and the information sharing mechanism645

still needs to be improved to reduce information646

loss or misinterpretation during transmission.647

Improve the coordination and communication648

strategies within the multi-agent system to enhance649

the collaboration efficiency among agents. For ex-650

ample, advanced multi-agent reinforcement learn-651

ing algorithms can be introduced to enable agents652

to more quickly learn optimal collaborative strate-653

gies during interactions. In addition, the informa-654

tion sharing mechanism between agents can be655

optimized to ensure that important information is656

accurately and promptly conveyed, reducing infor-657

mation loss and misinterpretation.658
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A Appendix851

A.1 Analysis of Thematic Category852

Distributions853

Figure 5 illustrates the proportion distribution854

of eight manually extracted thematic categories.855

These categories have been classified manually856

according to specific criteria to facilitate analy-857

sis and understanding of the main focal points858

within the dataset. The proportions provide an intu-859

itive understanding of the significance of different860

themes within the dataset, aiding further analysis861

and decision-making. Notably, the high proportion862

of the “Others" category may suggest the need for863

further subdivision or reclassification of this data to864

enhance the precision and relevance of the analysis.865
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Figure 5: The proportions of the eight manually ex-
tracted thematic categories are as follows: Translation
accounts for 6.5%, Health for 2.63%, Others for 39.68%,
Environment for 2.41%, Equipment for 18.42%, Pro-
duction for 5.31%, Electricity for 20.17%, and Disaster
Prevention for 4%.

866

A.2 Prompts for Synthetic Data Generation867

This appendix provides the prompts used to trans-868

form raw text fragments into instruction-tuning869

data, as shown in Figure 6. These prompts are870

designed based on the needs of industrial question-871

answering scenarios to help models better under-872

stand and generate QA content related to the indus-873

trial domain. Through these prompts, unsupervised874

text data can be converted into structured instruc- 875

tion data for model fine-tuning and optimization. 876

877

A.3 Dataset Statistics 878

In this study, two sets of datasets were utilized: one 879

generated by humans and the other by GPT. The 880

detailed statistical information for these datasets is 881

presented in Table 3 below: 882

• The Human Dataset consists of 37,426 sam- 883

ples, with 22,510 allocated for training, 7,381 884

for testing, and 7,535 for validation. These 885

data, annotated by humans, are generally con- 886

sidered to have higher quality and reliability. 887

• The GPT Dataset comprises 15,424 samples, 888

with 9,366 designated for training, 2,980 for 889

testing, and 3,078 for validation. These data 890

are generated by the GPT model to assess its 891

capability in producing text similar to that of 892

humans. 893

Dataset Total Train Test Val

Human 37426 22510 7381 7535
GPT 15424 9366 2980 3078

Table 3: Statistics of Human and GPT Datasets

The division of these datasets ensures the inde- 894

pendence of model training, testing, and validation, 895

thereby accurately evaluating the model’s perfor- 896

mance. By comparing the human-generated and 897

GPT-generated datasets, we can gain a deeper un- 898

derstanding of the model’s performance differences 899

across various data sources. 900

A.4 Specific Prompts for Different Agents 901

This appendix lists the specific prompts for each 902

agent in the KG-MASD framework, as shown in 903

Figure 7. These prompts define the roles and re- 904

sponsibilities of each agent, ensuring their efficient 905

collaboration within the Multi-agent system to com- 906

plete tasks such as knowledge graph construction, 907

relation extraction, and information verification. 908

A.5 Analysis of Agent Dynamics in the 909

KG-MASD System 910

The Figure 8 illustrates the temporal evolution of 911

states for various agents within the KG-MASD 912

system. These agents include the Knowledge 913

Graph Master, Entity Extractor, Relation Extractor, 914
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Task Objectives：
Based on the known information fragments, it is converted into annotated data that can be used for instruction fine-tuning, so as to improve the understanding and generation 
ability of the model in industrial Q&A scenarios.
For example:
Input: "Polyethylene typically has a density between 0.91 - 0.96g/cm³ and is chemically stable. ”
Output:
{
"instruction": "Extract material names and properties from chemical material descriptions",
"input": "Polyethylene typically has a density between 0.91 - 0.96g/cm³ and is chemically stable." ,
"output": "Material name: polyethylene; Characteristics: density range 0.91 - 0.96g/cm³, good chemical stability"
}
Input: "In the Haber process of ammonia synthesis, the reaction is carried out under the conditions of high temperature and high pressure and iron catalyst. ”
Output:
{
"instruction": "Identify the key elements of the chemical production process",
"input": "In the Haper process of ammonia synthesis, the reaction needs to be carried out under the conditions of high temperature and high pressure and iron catalyst." ,
"output": "Production process: Haber method for ammonia synthesis; Key elements: high temperature and high pressure conditions, iron catalysts"
}
Input: "Acetic acid and ethanol can be esterified under acidic conditions to produce ethyl acetate and water." ”
Output:
{
"instruction": "Analysis of reactants, products and conditions of chemical reaction equations",
"input": "Acetic acid and ethanol can be esterified under acidic conditions to form ethyl acetate and water." ,
"output": "Reactants: acetic acid, ethanol; Products: Ethyl acetate, water; Conditions: acidic conditions, esterification reactions"
}
Task requirements：
According to the example format above, convert small pieces of text with domain information into annotated instructions to fine-tune the data. Each data item consists of three 
fields: "instruction" (the instruction of the annotation task that is clearly relevant), "input" (the original text snippet), and "output" (the result of annotating the text according to 
the instruction), which are presented in JSON format. Replace the small fragment of chemical text that needs to be converted to the following position to generate the 
corresponding annotation data:
```json
[
{
"instruction": "Please annotate the following text according to your expertise",
"input": "Background information to be involved",
"output": "Annotated content"
}
]
```

Figure 6: Example of Prompt-Based Data Transformation

KG Master :
            "You are a knowledge graph construction expert. "
            "Your task is to generate triples for the knowledge graph based on the provided entity list and relationship list. "
            "Please return these triples in the format: (Entity1, Relation, Entity2). "
            "For example: '(Partial oxidation, facilitates, Oxygen)'. "
            "Each triple should be on a new line. "
            "Ensure that there are no extra spaces or characters around the commas and parentheses. "
            "Let's think step by step."

Entity Extractor:
-"You are an industrial information extraction 
expert." 
-"Your task is to extract all important entities 
related to industry, production, and management 
from the given text (including but not limited to 
names of industrial processes, equipment, 
companies, etc.).Please return these entities as a list, 
each on a new line." 
-"Let's think step by step."

Relation Extractor:
-"You are an industrial relationship analysis 
expert.“
-"Your task is to extract relationships between 
entities related to industry, production, and 
management based on the provided entity list and 
original text.“
-"Please return these relationships in the following 
format: Entity1 Relation Entity2.“
-"Let's think step by step."

KR Distiller:
-"You are a question-answer generation expert." 
-"Your task is to generate a question and an answer 
based on the provided knowledge graph triple and 
context.“
-"The question should be in the form of 'According 
to the context, what is the relationship between 
Entity1 and Entity2?’”
-"The answer should include the relationship 
between Entity1 and Entity2 and reference the 
context.“
-"Let's think step by step."

Verifier:
-"You are a knowledge graph validation expert." 
-"Your task is to validate the generated knowledge 
graph triples to ensure they are consistent with the 
user's original input and logically correct." 
-"If the validation passes, please return 'This is a 
loyal fact.’”
-"If the validation fails, please specify the specific 
issues and request the KR Distiller to regenerate 
them accordingly.“
-"Let's think step by step."

(a)

(b) (c)

(d) (e)

Figure 7: Example of Agent Prompts

Knowledge Relation Distiller, and Verifier. Below915

is a detailed analysis of the state changes for each916

agent:917

• Knowledge Graph Master (Blue Curve): This918

agent’s state rapidly decreases initially and919

then stabilizes, indicating a quick adjustment920

period followed by a stable state.921

• Entity Extractor (Orange Curve): The state922

of this agent initially drops, then gradually923

increases and stabilizes, demonstrating adap-924

tation during the system’s self-adjustment925

phase.926

• Relation Extractor (Green Curve): This 927

agent’s state spikes initially, then quickly de- 928

clines and stabilizes, showing a rapid adjust- 929

ment to a stable state. 930

• Knowledge Relation Distiller (Red Curve): 931

The state of this agent also initially drops, 932

then gradually increases and stabilizes, in- 933

dicating adaptation during the system’s self- 934

adjustment. 935

• Verifier (Purple Curve): This agent’s state 936

rapidly decreases initially, then gradually in- 937

creases and stabilizes, reflecting adaptation 938

during the system’s self-adjustment process. 939

As time progresses and the number of iterations 940

increases, the KG-MASD system rapidly achieves 941

self-stabilization. During this process, the Verifier 942

also tends to stabilize with the increasing number 943

of iterations. This indicates that the KG-MASD 944

system possesses excellent self-adjustment and sta- 945

bilization capabilities when handling knowledge 946

graph construction tasks, effectively adapting to 947

changing environments and task demands. 948
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Figure 8: As time progresses and the number of iterations increases, the KG-MASD system can rapidly achieve
self-stabilization. During this process, the Verifier also tends to stabilize with the increasing number of iterations.

A.6 Visualization of the Global Knowledge949

Graph (GKG)950

This appendix provides a visual representation of951

the Global Knowledge Graph (GKG). As shown952

in Figure 9, the GKG is a global knowledge struc-953

ture extracted from raw data, containing entities,954

relationships, and semantic information from the955

industrial domain. The visualization helps to intu-956

itively understand the structure and content of the957

GKG.

(b)

(d) (e)

(a)

(c)

Figure 9: Visualization of the Global Knowledge Graph

958

A.7 Local Heterogeneous Knowledge Graph 959

Construction 960

Figure 10 provides a visual representation of the 961

process involved in constructing Local Heteroge- 962

neous Knowledge Graphs (LHKG) from a Global 963

Knowledge Graph (GKG). The diagram illustrates 964

how the input data stream is queried to perform 965

retrieval and how it gradually searches for locally 966

optimal association paths. This process contin- 967

ues until all possible paths have been explored, 968

resulting in the formation of a local heterogeneous 969

knowledge graph that is tailored to the current data. 970

Process Overview: 971

• Data Stream Input: The system receives the 972

input data stream. 973

• Query Execution: A query retrieves rele- 974

vant information from the Global Knowledge 975

Graph (GKG). 976

• Path Exploration: The system explores paths 977

to identify locally optimal associations. 978

• Graph Formation: A Local Heterogeneous 979

Knowledge Graph (LHKG) is constructed 980

based on the explored paths. 981
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Figure 10: This figure illustrates examples of constructing Local Heterogeneous Knowledge Graphs (LHKG) from
the Global Knowledge Graph (GKG). Initially, the input data stream enters through a query to perform retrieval and
gradually searches for locally optimal association paths until all possible paths have been explored, forming a local
heterogeneous knowledge graph for the current data.

This method of constructing LHKGs allows for a982

more focused and contextually relevant knowledge983

representation, which can be particularly useful in984

applications requiring detailed and specific insights985

from large and diverse datasets. The ability to986

form these graphs dynamically ensures that the987

knowledge base remains up-to-date and aligned988

with the latest data inputs.989

A.8 Data Generation Process990

This appendix details the data generation process in991

the KG-MASD framework, including the construc-992

tion of local knowledge graphs from raw data and993

the generation of instruction-tuning data, as shown994

in Figure11. This process involves multiple steps,995

including Relation Triple Extraction (RTE), Knowl-996

edge Graph Completion (KGC), and collaboration997

within the Multi-agent system.

Input : In the production sector, what are the properties and uses of 
hydrogen sulfide? Physical properties: At room temperature, it is a colorless 

gas that is soluble in water, with a density greater than that of air.

KG Master : 
Hydrogen sulfide (H₂S) is a chemical compound with significant implications 
in various industrial and production sectors. Below is a detailed analysis of 
its properties and uses, expanding on the provided information.

*Physical Properties
-State and Color: Colorless gas at room temperature.
-Odor: Known for its "rotten egg" smell at low concentrations, but causes 
olfactory fatigue at higher concentrations.
-Solubility: Highly soluble in water, forming hydrosulfuric acid.
-Density: Greater than air, tends to accumulate in low-lying areas.
*Uses in the Production Sector
-Chemical Manufacturing: Key raw material for producing sulfur and sulfuric 
acid, used in fertilizers, detergents, and other industrial chemicals.
-Petroleum Refining: Encountered as a byproduct during crude oil and natural 
gas refining; removed via amine gas treating.
-Metallurgy: Used in the production of metal sulfides, which are critical in 
manufacturing batteries and pigments.
-Laboratory Research: Utilized as a reagent in the synthesis of organic and 
inorganic compounds.
*Safety Considerations
-Toxic and flammable.
-High exposure can cause respiratory failure, neurological damage, and death.
-Requires proper ventilation, gas detection systems, and personal protective 
equipment (PPE).
*Environmental Impact
-Regulated due to its contribution to air pollution and acid rain.
-Industries must implement measures to capture and neutralize H₂S emissions.

Entity Extractor:
-Chemical Manufacturing: Sulfur, 
sulfuric acid, fertilizers, detergents.
-Petroleum Refining: Amine gas 
treating, crude oil, natural gas.
-Metallurgy: Metal sulfides, batteries, 
pigments.
-Safety: Gas detection systems, PPE, 
ventilation systems.
-Environmental: Air pollution, acid 
rain, environmental regulations.
…
 

Relation Extractor: 
-(Hydrogen sulfide (H₂S), is used in, 
chemical manufacturing)
-(Hydrogen sulfide (H₂S), is a raw 
material for, sulfur)
-(Hydrogen sulfide (H₂S), requires, 
personal protective equipment (PPE))
-(Hydrogen sulfide (H₂S), requires, 
ventilation systems)
-(Hydrogen sulfide (H₂S), contributes 
to, air pollution)
-(Hydrogen sulfide (H₂S), contributes 
to, acid rain)
-(Hydrogen sulfide (H₂S), is regulated 
by, environmental regulations)
-(Hydrogen sulfide (H₂S), is a 
byproduct of, crude oil refining)
-(Hydrogen sulfide (H₂S), is a 
byproduct of, natural gas refining)
…

KR Distiller(round n):
-KGC Triplets:
[
    {
        "head entity name": "Hydrogen Sulfide",
        "head entity type": "industry",
        "relation": "physical property",
        "tail entity name": "colorless",
        "tail entity type": "industry",
        "context": "What are the properties …with a density 
greater than air."
    },
…
]
-RTE Triplets:
[
    {
        "entity name": "Hydrogen Sulfide",
        "entity type": "industry",
        "text description": "What are the properties …with a 
density greater than air.",
        "triplet": [{"subject": "Hydrogen Sulfide", 
"predicate": "has", "object": "colorless"}]
    },
…
]
-Local KG Instruction:
[
    {
     "instruction": "According to 'In production…the 
relation between them, and the context.",
     "input": "",
     "output": "The relationship between Hydrogen sulfide 
(H₂S) and Hydrosulfuric acid is that Hydrosulfuric acid is 
the aqueous …where the gas dissolves and partially ionizes 
to form the acid."
    },
…
]

Verifier(round 1):
-The context description needs to accurately …not "odorless." 
This point needs to be corrected.-…
Verifier(round n):
-All of them are loyal truth.

(a) (b) (c)

Figure 11: Data Generation Process Diagram

998
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