
Uncertainty-Aware Action Repeating Options

Joongkyu Lee
Seoul National University
jklee0717@snu.ac.kr

Seung Joon Park
Samsung Research

soonjun.park@samsung.com

Yunhao Tang
Columbia University
yt2541@columbia.edu

Min-hwan Oh
Seoul National University
minoh@snu.ac.kr

Abstract

In reinforcement learning, employing temporal abstraction within the action space
is a prevalent strategy for simplifying policy learning through temporally-extended
actions. Recently, algorithms that repeat a primitive action for a certain number
of steps, a simple method to implement temporal abstraction in practice, have
demonstrated better performance than traditional algorithms. However, a signifi-
cant drawback of earlier studies on action repetition is the potential for repeated
sub-optimal actions to considerably degrade performance. To tackle this prob-
lem, we introduce a new algorithm that employs ensemble methods to estimate
uncertainty when extending an action. Our framework offers flexibility, allowing
policies to either prioritize exploration or adopt an uncertainty-averse stance based
on their specific needs. We provide empirical results on various environments,
highlighting the superior performance of our proposed method compared to other
action-repeating algorithms. These results indicate that our uncertainty-aware
strategy effectively counters the downsides of action repetition, enhancing policy
learning efficiency.

1 Introduction

Temporal abstraction is a promising approach to solving complex tasks in reinforcement learning (RL)
with complex structures and long horizons [15, 14, 27, 36, 30, 4, 7, 20]. Hierarchical reinforcement
learning (HRL) enables the decomposition of this sequential decision-making problem into simpler
lower-level actions or subtasks. Intuitively, an agent explores the environment more effectively when
operating at a higher level of abstraction and solving smaller subtasks [20]. One of the most prominent
approaches for HRL is the option framework [36, 30], which describes the hierarchical structure in
decision making in terms of temporally-extended courses of action. Temporally-extended actions
have been shown to speed up learning, potentially providing more effective exploration compared to
single-step explorative action and requiring a smaller number of high-level decisions when solving
a problem [34, 10]. From a cognitive perspective, such observations are also coherent with how
humans learn, generalize from experiences, and perform abstraction over tasks [41].

There has been a line of works that propose repetition of action for an extended period as a specialized
form of temporal abstraction [17, 33, 13, 22, 10, 26].1 Hence, the action-repetition methods address
the problem of learning when to perform a new action while repeating an action for multiple time-
steps [13, 10]. The extension length, the interaction steps to repeat the same action, is learned

1In fact, action repetition for a fixed number of steps was one of the strategies deployed in solving Atari 2600
games [23, 19]. Despite its simplicity, the action repetition provided sufficient performance gains so that almost
all modern methods of solving Atari games are still implementing such action repetitions.

NeurIPS 2023 Workshop on Generalization in Planning (GenPlan 2023).

by an agent along with what action to execute [33, 10]. As shown by the improved empirical
performances [13, 10], these action repetition approaches can be well justified by the commitment to
action for deriving a deeper exploration. These approaches can help suppress the dithering behavior
of the agent that can result in short-sighted exploration in a local neighborhood.

However, simple action repetition alone cannot guarantee performance improvement. Repetition of a
sub-optimal action for an extended period can lead to severe deterioration in the performance. For
example, a game may terminate due to reckless action repetition when an agent is in a dangerous
region. A more uncertainty-averse behavior would be helpful in this scenario. On the other hand, an
agent may linger in the local neighborhood due to a lack of optimism, especially in sparse reward
settings. In that case, a more exploration-favor behavior can be beneficial. In either case, a suitable
control of uncertainty of value estimates over longer horizons can be a crucial element. In particular,
the calibration of how much exploration the agent can take, or how uncertainty-averse the agent
should be, can definitely depend on an environment. Thus, the degree of uncertainty to be considered
should be adaptive depending on the environment. To this end, we propose to account for uncertainties
when repeating actions. To our best knowledge, consideration of uncertainty in the future when
instantiating action repetition has been not addressed previously. Such consideration is essential in
action repetition in both uncertainty-averse and exploration-favor environments.

In this paper, we propose a novel method that learns to repeat actions while incorporating the estimated
uncertainty of the repeated action values. We can either impose aggressive or uncertainty-averse
exploration by controlling the degree of uncertainty in order to take suitable uncertainty-aware
strategy for the environment. Through extensive experiments and ablation studies, we demonstrate
the efficacy of our proposed method and how it enhances the performances of deep reinforcement
learning agents in various environments. In comparison with the benchmarks, we show that our
proposed method outperforms baselines, consistently outperforming the existing action repetition
methods. Our contributions are:

• We present a novel framework that allows the agent to repeat actions in a uncertainty-aware
manner using an ensemble method. Suitably controlling the amount of uncertainty induced
by repeated actions, our proposed method learns to choose extension length and learns how
optimistic or pessimistic it should be, hence enabling efficient exploration (Section 4).

• Our method offers a notable insight: it’s advantageous to account for the inherent uncertainty
preference of an environment. Some environments favor uncertainty, while others are
uncertainty-averse (see Section 5.1).

• In a series of test environments, we demonstrate that UTE consistently surpasses existing
action-repetition baselines like DAR, ϵz-Greedy, DQN, and B-DQN, in both final evaluation
scores and learning speeds (see Section 5.2).

2 Related Work

Temporal Abstraction and Action Repetition. Temporal abstractions can be viewed as an attempt
to find a time scale that is adequate for describing the actions of an AI system [30]. The options
framework [36, 30, 4] formalizes the idea of temporally-extended actions. An MDP endowed with a
set of options are called Semi-Markov Decision Process (SMDP) which we define in Section 3. The
generalization of conventional action-value functions for the options framework is called option-value
functions [36]. The mapping from states to probabilities of taking an option is called policy over
options. In the options framework, the agent attempts to learn a policy over options that maximizes
the option-value functions.

One simple form of an option is repeating a primitive action for certain number of steps [32]. Action
repetition has been widely explored in the literature [17, 33, 13, 22, 10, 26]. Action repetition has
been empirically shown to induce deeper exploration [13] and lead to efficient learning by reducing
the granularity of control [17, 33, 22, 10]. Action repetition can be implemented by deciding the
extension length of an action which is either sampled from a distribution [13] or returned by a
policy [17, 33]. The closest related to our work is Biedenkapp et al. [10]. They proposed an algorithm
called TempoRL that not only selects an action in a state but also for how long to commit to that
action. TempoRL [10] proposes a hierarchical structure in which behavior policy determines the
action a to be played given the current state s, and a skip policy determines how long to repeat this
action. However, our main intuition is that simply repeating the chosen action is not enough. We

2

may encounter undesirable states while repeating the action. This could lead to catastrophic failure
when an agent enters a “risky” area, as we describe in Section 5.1.2. Our method has been shown
to effectively manage this issue by quantifying the uncertainty of the option in form of repeating
actions.

Uncertainty in Reinforcement Learning. Recently, many works have made significant advances
in empirical studies by quantifying and incorporating uncertainty [25, 8, 5, 18]. There are two
types of uncertainty: aleatoric and epistemic. Aleatoric uncertainty is the uncertainty caused by the
uncontrollable stochastic nature of the environment and cannot be reduced. Epistemic uncertainty is
caused by the current imperfect training of the neural network and can be reducible.

One mainstream of estimating the uncertainty in deep RL relies on bootstrapping. Osband et al. [25]
introduced Bootstrapped DQN as a method for effcient exploration. This approach is a variation of the
classic DQN neural network architecture, which has a shared torso with K ∈ Z+ heads. Anschel et al.
[1], Peer et al. [28] leveraged an ensemble of Q-functions to mitigate overestimation in DQN. In this
paper, we propose an algorithm that quantifies uncertainty of Q-value estimates of the states reached
under the repeated-action. This algorithm utilizes multiple randomly-initialized bootstrapped heads
that stretch out from a shared network, providing multiple estimates of the option-value function. The
variance between these estimates is then used as a measure of uncertainty. Notably, this approach
allows us to capture both aleatoric and epistemic uncertainty. Then, we establish a UCB-style [3, 2]
option-selecting algorithm that simply adds the estimated uncertainty to the averaged ensemble
Q-values and chooses an action that maximizes the quantity [11, 28].

3 Preliminaries and Notations

In reinforcement learning, an agent interacts with an environment whose underlying dynamics is
modeled by a Markov Decision Process (MDP) [31]. The tuple ⟨S,A, P,R, γ⟩ defines an MDPM,
where S is a state space, A is an action space, P : S × A → S is a transition dynamics function,
r : S×A → R is a reward function, and γ ∈ [0, 1] is the discount factor. We consider a Semi-Markov
Decision Process (SMDP) model to incorporate the options framework [36, 30]. An SMDP is an
original MDP with a set of options, i.e.,Mo := ⟨S,Ω, Po, Ro⟩, where ω ∈ Ω is an option in the
option space, Po(s

′ | s, ω) : S × Ω → S is the probability of transitioning from state s to state s′

after taking an option ω and Ro : S × Ω→ R is the reward function for the option.

For any set X , let P(X) denote the space of probability distributions over X . Then a policy over
option πω : S → P(Ω) assigns a probability to an option conditioned on a given state. Our
goal is to learn a policy πω that maximizes the expectation of discounted return starting from a
initial state s0; then, define the value functions V πω (s0) = Eπω

[
∑∞

t=0 γ
tRt | s0], the action-value

functions Qπω (s0, a) = Eπω
[
∑∞

t=0 γ
tRt | s0, a], or the option-value functions Q̃πω (s0, ω) =

Eπω
[
∑∞

t=0 γ
tRt | s0, ω].

In general, options depend on the entire history between time step t when they were initiated and
the current time step t + k, ht:t+k := statst+1...at+k−1st+k. Let H be the space of all possible
histories h, then a semi-Markov option ω is a tuple ω := ⟨Io, πo, βo⟩, where Io ⊂ S is an initiation
set, πo : H → P(A) is an intra-option policy, and βo : H → [0, 1] is a termination function. In
this framework, we define an action repeating option to be ωaj := ⟨S,1a, β(h) = 1|h|=j⟩, in which
h ∈ H and 1a indicates |A|-dimensional vector where the element corresponding to a is 1 and 0
otherwise. This action repeating option takes action a for j times and then terminates.

When an agent plays a chosen action for extension length j, total of j(̇j+1)
2 skip-transitions are

observed and stored in the replay buffer [10]. Specifically, when repeating the action for j times from
state s, we can also experience (s → s′(1)), (s → s′(2)), . . . , (s

′
(1) → s′(2)), . . . , (s

′
(j−1) → s′(j)), in

total j·(j+1)
2 transitions. We leverage these transitions to update option-values. Consequently, the

observations for short extensions are updated more frequently, leading to smaller uncertainties for
short extensions and larger uncertainties for long extensions.

3

4 Uncertainty-aware Temporal Extension

In this section, we propose our algorithm UTE: Uncertainty-Aware Temporal Extension, which repeats
the action in consideration of uncertainty in Q-values. We first demonstrate temporally-extended
Q-learning by decomposing the action repeating option. We then describe how we estimate the
uncertainty of an option-value function Q̃πω by utilizing the ensemble method to select an extension
length j in consideration of uncertainty. We additionally show that n-step targets can be used for
learning the action-value function Qπω without worrying about off-policy correction.

4.1 Temporally-Extended Q-Learning

In this work, we mainly depend on techniques based on the Q-learning algorithm [39], which seeks
to approximate the Bellman optimality operator to learn the optimal policy:

Definition 4.1. We define the optimal action-value function Qπ∗
ω and the optimal option-value

function Q̃π∗
ω respectively as

Qπ∗
ω(s, a)=Es′

(1)
∼P

[
R(s, a)+γmax

a′
Qπ∗

ω (s′(1), a
′)
]
, (1)

Q̃π∗
ω(s, ωaj)=Es′

(j)
∼Po

[
Ro(s, ωaj)+γjmax

ω′
Q̃π∗

ω (s′(j), ω
′)
]
, (2)

where s′(0) and s′(j), respectively, indicate one-step and j-step later state from the state s . In practice,
it is common to use a function approximator to estimate each Q-value, Qπω (s, a; θ) ≈ Qπ∗

ω (s, a)

and Q̃πω (s, ωaj ;ϕ) ≈ Q̃π∗
ω (s, ωaj). We use two different neural network function approximators

parameterized by θ and ϕ respectively.

Option Decomposition. Learning the optimal policy over options, instead of the optimal action
policy, has the same effect as enlarging the action space from |A| to |A| × |J |, where J ={1, 2, ... ,
max repetition}. Generally, inaccuracies in Q-function estimations can cause the learning process to
converge to a sub-optimal policy, and this phenomenon is amplified in situations with large action
spaces [37, 42]. Therefore, we consider decomposed policy over option [10], πω(ωaj | s) := πa(a |
s) · πe(j | s, a), in which an action policy πa(a | s) : S → P(A) assigns some probability to each
action conditioned on a given state, and then an extension policy πe(j | s, a) : S ×A → P(J)
assigns some probability to each extension length conditioned on a given state and action. Note that
there exists a hierarchy between decomposed policies πa and πe, thus, πa always has to be queried
before πe at every time an option initiates. The agent first chooses an action a from action policy πa

based on the action-value function Qπω (e.g. ϵ-greedy). Then, given this action a, it selects extension
length j from πe according to the option-value function Q̃πω .

By decomposing the policy over option πω, we can decrease the search space from |A| × |J | to
|A| + |J |. However, this learning process may converge to a sub-optimal policy because it is
intractable to search all the possible combinations of actions and extension lengths (a, j). The agent
may repeat the sub-optimal action excessively or sometimes be overly myopic. Our algorithm can
mitigate this issue by controlling the level of uncertainty when executing the extension policy πe.
Proposition 4.2. In a Semi-Markov Decision Process (SMDP), let an option ω ∈ Ω be the action
repeating option defined by action a and extension length j, i.e. ωaj := ⟨S,1a, β(h) = 1h=j⟩. For
all ω ∈ Ω, a policy over option, πω, can be decomposed by an action policy πa(a | s) : S → P(A)
and an extension policy πe(j | s, a) : S ×A → P(|J |), i.e. πω(ωaj | s) := πa(a | s) · πe(j | s, a).
Then, for the corresponding optimal policy π∗

ω , the following holds:

V π∗
ω (s) = max

ωaj

Qπ∗
ω (s, ωaj) = max

a
Qπ∗

ω (s, a).

Proof of Propositon 4.2. For any s ∈ S, define the value of executing an action in the context of a
state-option pair as QU : S × Ω×A → R. Let πU (a | s, ωaj) : S × Ω→ P(A) be an intra-option
policy [36], which returns an action a when executing an option ωaj at state s. Then, option-value
functions can be written as:

Q̃πω (s, ωaj) =
∑
a′

πU (a
′|s, ωaj)QU (s, ωaj , a

′) =
∑
a′

1aQU (s, ωaj , a
′) = QU (s, ωaj , a), (3)

4

Algorithm 1 UTE: Uncertainty-aware Temporal Extension

1: Input: uncertainty parameter λ, the number of output heads of option-value functions B.
2: Initialize: Qπω , {Q̃πω

(b)}
B
b=1.

3: for episode = 1, . . . ,K do
4: Obtain initial state s from environment
5: repeat
6: a← ϵ-greedy argmaxa′ Qπω (s, a)
7: Calculate µ̂πω

(s, ωaj), σ̂2
πω

(s, ωaj) by Eq. (4).
8: j ← argmaxj′ {µ̂πω (s, ωaj′) + λσ̂πω (s, ωaj′)}
9: while j ̸= 0 and s is not terminal do

10: Take action a and observe s′, r
11: s← s′, j ← j − 1
12: end while
13: until episode ends
14: end for

where the second equality holds since πU deterministically returns action a. Therefore we have,

V π∗
ω (s0) = max

ωaj

Q̃π∗
ω (s0, ωaj) = max

a,j
Q̃π∗

ω (s0, ωaj) = max
a,j

Q∗
U (s, ωaj , a)

= max
a

{
max

j
Q∗

U (s, ωaj , a)

}
= max

a
Qπ∗

ω (s, a),

where the second equality holds since ωaj is determined by an action a and extension length j, the
third equality is by Eq.(3), and the last equality holds since π∗

ω is the optimal policy. This concludes
the proof.

Proposition 4.2 implies that target value for the option selection of repeated actions can be the same
as the target for a single-step action selection within the option. In our implementation, we use
max
a′

Qπ∗
ω (s′(j), a

′) instead of max
ω′

Q̃π∗
ω (s′(j), ω

′
aj) for the target value in Eq.(2). This can stabilize

the learning process by sharing the same target.

4.2 Ensemble-based Uncertainty Quantification

In the previous action repetition methods [17, 33, 13, 10], they extend the chosen action without
considering uncertainty which could easily run to failure. The only situation where these problems
do not occur is when their extension policies are optimal, which means they need to expect the j step
later state precisely. However, it is improbable in the sense that this situation rarely occurs in the
learning process. In order to solve this problem, we propose a strategy of choosing a extension length
j in an uncertainty-aware manner. UTE is a uncertainty-aware version of the TempoRL [10]. Our main
intuition is that it is crucial to consider the uncertainty of option-value functions Q̃πω , when selecting
extension length j by extension policy πe.

We use the ensemble method, which has recently become prevalent in RL [25, 12, 6], to estimate
uncertainty in our estimated option-value functions. We use a network consisting of a shared architec-
ture with B independent. “head” branching off from the shared network. Each head corresponds to
a option-value function, Q̃πω

(b), for b ∈ {1, 2, . . . , B}. Each head is randomly-initialized and trained
by different samples from an experience buffer. Unlike Bootstrapped DQN (B-DQN) [25] where
each one of the value function heads is trained against its own target network, our UTE trains each
value function head against the same target. If each head has its own target head respectively, since
the objective function of neural networks is generally non-convex, each Q-value may converge to
different modes. In this case, as training the policy, the estimated uncertainty of option Q-value, σ̂πω ,
could not converge to zero. This means that it is unable to learn an optimal policy. Therefore, using
the same target is one of the key points of our implementation.

5

Given state s and action a, Q̃πω

(b)-values are aggregated by extension length j to estimate mean and
variance as follows:

µ̂πω (s, ωaj) :=
1

B

B∑
b=1

Q̃πω

(b)(s, ωaj), σ̂2
πω

(s, ωaj) :=
1

B

B∑
b=1

(Q̃πω

(b)(s, ωaj))
2 − (µ̂πω (s, ωaj))

2.

(4)
Then, we define uncertainty-aware extension policy πe, which takes extension length j deterministi-
cally given state and action, by introducing the uncertainty parameter λ ∈ R:

j = argmax
j′∈J

{µ̂πω (s, ωaj′) + λσ̂πω (s, ωaj′)}.

where λ indicates the level of uncertainty to be considered. The positive λ induces more aggressive
exploration, and the negative one causes uncertainty-averse exploration.

4.3 Adaptive Uncertainty Parameter λ.

Instead of fixing λ during the learning process, we propose the adaptive selection of λ utilizing a
non-stationary multi-arm bandit algorithm, as described in [5]. Consider Λ as the predefined set of
uncertainty parameters. At the onset of each episode k, the bandit selects an arm, denoted by λk ∈ Λ,
and subsequently receives feedback in the form of episode returns Rk(λk). Given that the reward
signal Rk(λk) is non-stationary, we employ a sliding-window UCB combined with ϵucb-greedy
exploration to optimize the process.

Let τ ∈ Z+ be the size of window such that τ < K. The number of time episodes an arm λ ∈ Λ has
been played in episode k for a window size τ as:

Nτ
k (λ) =

k−1∑
k′=max(0,k−τ)

1(Ak′ = λ),

where Ak indicates the chosen action at episode k and 1(Ak = λ) is an indicator function. Define
the empirical mean reward of an arm λ for a window size τ as:

µ̂τ
k(λ) =

1

Nτ
k (λ)

k=1∑
k′=max(0,k−τ)

Rk′(λ)1(Ak′ = λ).

Since we use the sliding window UCB with ϵucb-greedy exploration, our bandit algorithm is as
follows:

∀0 ≤ k ≤ N − 1, Ak = k,

∀N ≤ k ≤ K − 1 and Uk ≥ ϵucb, Ak = argmaxλ∈Λ µ̂τ
k−1(λ) + β

√
log(k−1)
Nτ

k−1(λ)
,

∀N ≤ k ≤ K − 1 and Uk < ϵucb, Ak = Yk,

where Uk is a random variable drawn uniformly from [0, 1] and Yk is a random action sampled
uniformly from Λ.

4.4 n-step Q-Learning

We make use of n-step Q-learning [35] to learn both Qπω and Q̃πω , whereas TempoRL [10] used it
only for updating Q̃πω . We found that n-step targets can also be used to update Qπω -values without
any off-policy correction [16], e.g., importance sampling. Given the sampled n-step transition
τt = (st, at, Ro(st, oan), st+n) from replay buffer R, as long as n is smaller than or equal to the
current extension policy πe’s output j, the transition τt trivially follows our target policy πω. Thus,
τt can be directly used to update the action-value function Qπω . Instead of one step Q-learning in
Eq.(1), UTE uses n-step Q-Learning to update Qπω :

LQπω (θ) = Eτt∼R
[
(Qπω (st, at; θ)−

n−1∑
k=0

γkrt+k − γn max
a′

Qπ∗
ω (st+n, a

′; θ̄))2
∣∣∣n ≤ j ∼ πe

]
,

where θ̄ are the delayed parameters of action-value function Qπω and j ∼ πe(jt | st, at). In general,
n-step returns can be used to propagate rewards faster [40, 29]. It mitigates the overestimation
problem in Q-learning as well [21]. Note that we don’t need to pre-define n because it is dynamically
determined by current extension policy πe.

6

5 Experiments

In this section, we validate our hypothesis that a positive λ promotes aggressive exploration, while
a negative λ leads to uncertainty-averse exploration (Section 5.1). We then highlight the profound
influence of a well-tuned λ on performance in more intricate environments, showcasing that the
adaptive choice of λ consistently surpasses other baseline measures (Section 5.2).

5.1 Tabular RL

5.1.1 Chian MDP

. . .<latexit sha1_base64="Mic0xWFzd6dy9/EWBxgfmcBSCaY=">AAAB6nicjVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCcpePFYqf2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3KY9qCj4YODx3gwz84JECoOu++EUVlbX1jeKm6Wt7Z3dvfL+QdvEqWa8xWIZ625ADZdC8RYKlLybaE6jQPJOMLme+517ro2I1R1OE+5HdKREKBhFKzWbA29QrnhVNwf5m1Rgicag/N4fxiyNuEImqTE9z03Qz6hGwSSflfqp4QllEzriPUsVjbjxs/zUGTmxypCEsbalkOTq14mMRsZMo8B2RhTH5qc3F3/zeimGl34mVJIiV2yxKEwlwZjM/yZDoTlDObWEMi3srYSNqaYMbTql/4XQPqt659Xaba1Sv1rGUYQjOIZT8OAC6nADDWgBgxE8wBM8O9J5dF6c10VrwVnOHMI3OG+f2WKNgw==</latexit>

S1
<latexit sha1_base64="E8O2nPJOWmlIp5zibS2NiEWe29Q=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoJ4k4MVjJOYByRJmJ7PJkNnZZaZXCCGf4MWDIl79Im/+jZNkD5pY0FBUddPdFSRSGHTdbye3sbm1vZPfLeztHxweFY9PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8d3cbz9xbUSsHnGScD+iQyVCwShaqdHoV/rFklt2FyDrxMtICTLU+8Wv3iBmacQVMkmN6Xpugv6UahRM8lmhlxqeUDamQ961VNGIG3+6OHVGLqwyIGGsbSkkC/X3xJRGxkyiwHZGFEdm1ZuL/3ndFMMbfypUkiJXbLkoTCXBmMz/JgOhOUM5sYQyLeythI2opgxtOgUbgrf68jppVcreVbn6UC3VbrM48nAG53AJHlxDDe6hDk1gMIRneIU3RzovzrvzsWzNOdnMKfyB8/kD1oGNgQ==</latexit>

S2

<latexit sha1_base64="LNMFR+bITZenX/Ss02D6K7EC81U=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbArQT1JwIsniWgekCxhdtJJhszOLjOzQljyEV48KOLV7/Hm3zhJ9qCJBQ1FVTfdXUEsuDau++3kVlbX1jfym4Wt7Z3dveL+QUNHiWJYZ5GIVCugGgWXWDfcCGzFCmkYCGwGo5up33xCpXkkH804Rj+kA8n7nFFjpeZDN7078ybdYsktuzOQZeJlpAQZat3iV6cXsSREaZigWrc9NzZ+SpXhTOCk0Ek0xpSN6ADblkoaovbT2bkTcmKVHulHypY0ZKb+nkhpqPU4DGxnSM1QL3pT8T+vnZj+lZ9yGScGJZsv6ieCmIhMfyc9rpAZMbaEMsXtrYQNqaLM2IQKNgRv8eVl0jgvexflyn2lVL3O4sjDERzDKXhwCVW4hRrUgcEInuEV3pzYeXHenY95a87JZg7hD5zPH6FLjxs=</latexit>

SN�1

<latexit sha1_base64="FPt6PB4mBLfnA5lbMrkiK37ffdw=">AAAB7HicjVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCcpePEkFU1baEPZbDft0s0m7E6EEvobvHhQxKs/yJv/xu3HQUXBBwOP92aYmRemUhh03Q+nsLS8srpWXC9tbG5t75R395omyTTjPktkotshNVwKxX0UKHk71ZzGoeStcHQ59Vv3XBuRqDscpzyI6UCJSDCKVvJve/n1pFeueFV3BvI3qcACjV75vdtPWBZzhUxSYzqem2KQU42CST4pdTPDU8pGdMA7lioacxPks2Mn5MgqfRIl2pZCMlO/TuQ0NmYch7Yzpjg0P72p+JvXyTA6D3Kh0gy5YvNFUSYJJmT6OekLzRnKsSWUaWFvJWxINWVo8yn9L4TmSdU7rdZuapX6xSKOIhzAIRyDB2dQhytogA8MBDzAEzw7ynl0XpzXeWvBWczswzc4b5/Jzo6s</latexit>

SN

<latexit sha1_base64="PpM0i5ftkjpeiTLCkpa2wjQZ4Os=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GjLttJ0ulIIblxXtA9qhZNJMG5rJDElGKKWf4MaFIm79Inf+jelDUNEDFw7n3Mu99wQJZ0oj9GFl1tY3Nrey27md3b39g/zhUUvFqSS0SWIey06AFeVM0KZmmtNOIimOAk7bwfhq7rfvqVQsFnd6klA/wkPBQkawNtKtvHD6+QKyUcmreWWI7FIZFYsVQ6rI9WoudGy0QAGs0Ojn33uDmKQRFZpwrFTXQYn2p1hqRjid5XqpogkmYzykXUMFjqjyp4tTZ/DMKAMYxtKU0HChfp+Y4kipSRSYzgjrkfrtzcW/vG6qQ8+fMpGkmgqyXBSmHOoYzv+GAyYp0XxiCCaSmVshGWGJiTbp5EwIX5/C/0mraDsV271xC/XLVRxZcAJOwTlwQBXUwTVogCYgYAgewBN4trj1aL1Yr8vWjLWaOQY/YL19AkikjdA=</latexit>

r = 1

<latexit sha1_base64="gvApYv1EMLDEmarqeJW6BUC/8J4=">AAAB+XicdVDLSgMxFM34rPU16tJNsAiuhqRO29koBTcuK9gHtEPJpJk2NPMgyRTK0D9x40IRt/6JO//G9CGo6IELh3Pu5d57glRwpRH6sNbWNza3tgs7xd29/YND++i4pZJMUtakiUhkJyCKCR6zpuZasE4qGYkCwdrB+GbutydMKp7E93qaMj8iw5iHnBJtpL5ty6teKAnN8SzHCKFZ3y4hp1LBnluFyKnhMr5Ehnhe2S0jiB20QAms0Ojb771BQrOIxZoKolQXo1T7OZGaU8FmxV6mWEromAxZ19CYREz5+eLyGTw3ygCGiTQVa7hQv0/kJFJqGgWmMyJ6pH57c/Evr5vp0PNzHqeZZjFdLgozAXUC5zHAAZeMajE1hFDJza2QjogJQpuwiiaEr0/h/6RVdnDVce/cUv16FUcBnIIzcAEwqIE6uAUN0AQUTMADeALPVm49Wi/W67J1zVrNnIAfsN4+AcW0kxw=</latexit>

r =
1

1000

Figure 1: Chain MDP

We conducted experiments in the Chain MDP environ-
ment, as depicted in Figure 1 [25]. In this setting, there
are two possible actions: {left, right}. When the agent
reaches the left end (s1) of the chain and chooses the
left action, it receives a small deceptive reward of 0.001.
Conversely, if the agent reaches the right end (sn) and se-
lects the right action, it is rewarded with a larger amount
of 1.0. This makes the optimal policy straightforward:
always take the right action. The agent’s interactions with the environment have a fixed horizon
length of N + 8, where N represents the chain length. As a result, the agent can achieve rewards
ranging from zero to 10 in each episode. Given the sparse nature of the rewards, a "deep" exploration
strategy is necessary to discern the optimal policy. In this toy environment, our goal is to validate the
hypothesis that a positive uncertainty parameter (λ) promotes deep exploration. We anticipate that this
will lead to UTE outperforming other baselines such as DDQN[38], ϵz-Greedy[13], and TempoRL [10].
For both TempoRL and UTE, we set a maximum extension length of 10.

TempoRL ϵz-Greedy
UTE (λ)

Chain Length -2.0 -1.0 0.0 1.0 2.0

10 0.90 0.65 0.88 0.91 0.90 0.92 0.92
30 0.74 0.43 0.45 0.55 0.62 0.73 0.76
50 0.25 0.43 0.07 0.05 0.37 0.47 0.67
70 0.06 0.13 0.01 0.01 0.01 0.07 0.19

Table 1: Normalized AUC for reward over 20 random seeds in Chain MDP.

Exploration-Favor. Table 1 summarizes the results for various chain lengths in terms of the
normalized area under the reward curve (AUC). A reward AUC value closer to 1.0 indicates that the
agent found the optimal policy more quickly. The total number of training episodes used to calculate
the AUC was set to 1, 000 for chain lengths of 10, 30, and 50, and 5, 000 for 70. The table’s results
demonstrate that UTE consistently outperforms the other two baselines across various chain lengths,
even in more challenging scenarios with longer chain lengths, especially when uncertainty parameter
is set to λ = +2.0. When the agent selects a random action using the ϵ-greedy action policy, it can
explore more deeply by adopting a more optimistic stance, leading to quicker convergence to the
optimal solution. An aggressive exploration strategy is advantageous in this environment, as there are
no risky areas where the game terminates due to repeated actions.

5.1.2 Gridworlds

In this subsection, we examine the empirical behavior of various algorithms within the Gridworlds
environment, specifically the Lava scenario (refer to Figure 2). This environment is represented as a
6× 10 grid, comprising discrete states and actions. An agent commences its journey from the top-left
corner and strives to reach its goal to obtain a positive reward of +1. However, the agent must avoid
the lava, as stepping into it results in a reward of−1. Unlike the chain MDP environment, the presence
of the perilous "lava" region implies that an uncertainty-averse strategy is more advantageous. For
our analysis, we compare our approach with several other methods, including vanilla DDQN [38],
ϵz-Greedy[13], and TempoRL[10]. All agents were trained over a span of 3.0× 103 episodes. We
employed three distinct types of ϵ-greedy exploration schedules: one that linearly decays from 1.0 to
0.0 throughout the episodes, a logarithmically decaying schedule, and a fixed schedule with ϵ = 0.1.

7

Additionally, we capped the maximum extension length at 7. It’s important to mention that instead of
utilizing tabular Q-learning, we opted for neural networks to deduce the Q-value functions.

S G

(a) Bridge

S

G

(b) ZigZag

Figure 2: 6 × 10 Gridworlds. Agents
have to reach a goal state (G) from a
starting state (S) detouring the lava. Dots
represent decision steps with and with-
out temporally-extended actions.

UTE (λ)

Env ϵ-decay DDQN TempoRL -0.5 -1.0 -1.5

Bridge
Linear 0.61 0.44 0.83 0.84 0.86
Log 0.54 0.32 0.85 0.88 0.92
Fixed 0.57 0.41 0.72 0.82 0.83

Zigzag
Linear 0.38 0.14 0.73 0.82 0.84
Log 0.46 0.12 0.66 0.86 0.89
Fixed 0.34 0.19 0.62 0.70 0.76

Table 2: Normalized AUC for reward across different ϵ
exploration schedules over 20 random seeds.

Uncertainty-Averse. Table 2 shows that, across all ϵ exploration strategies, UTE consistently outper-
forms other methods. Notably, its performance improves as the uncertainty parameter λ becomes
more negative (i.e., a larger negative value for λ). This finding aligns with our assertion that a
pessimistic strategy is more advantageous in environments fraught with unsafe regions. Additionally,
even when the exploration rate for πa is set relatively high (e.g., fixed at ϵ = 0.1), UTE consistently
exhibits superior performance compared to other methods. These results underscore UTE’s robustness
against various ϵ-greedy schedules.

Intriguingly, the performance of TempoRL falls significantly short of that described in the original
paper [10]. This deviation can be attributed to our use of function approximation for estimating
Q-values, in contrast to the traditional tabular Q-learning method. It’s well-documented that function
approximation can sometimes introduce uncontrolled or undesirable overestimation biases [24].
Consequently, opting for the extension length with the highest value can lead to unfavorable outcomes,
especially in settings relying on function approximation.

5.2 Deep RL: Atari 2600

In this subsection, we assess UTE’s performance on the Atari benchmark. We compare it against six
baseline algorithms: i) vanilla DDQN [38], ii) Fixed Repeat with j = 4, iii) ϵz-Greedy[13], iv) DAR
(Dynamic Action Repetition[17]), v) TempoRL[10], and vi) B-DQN (Bootstrapped DQN)[25].

Fixed Repeat is an algorithm that consistently repeats a given action a set number of times. Due to
resource constraints, each algorithm underwent training for a total of 2.5 × 106 steps, equivalent
to 10 million frames. All algorithms, with the exception of B-DQN, employed a linearly decaying
ϵ-greedy exploration schedule for the initial 200, 000 time-steps, subsequently settling at a fixed ϵ of
0.01. We evaluated all agents after every 10, 000 training steps, evaluating over 3 episodes with a
very small ϵ exploration rate of 0.001. The experiments were conducted using OpenAi Gym’s Atari
environment, incorporating a 4 frame-skip [9]. We set the maximum extension length value to 10. To
guarantee a fair comparison, we extensively explored a broad range of hyperparameters to determine
the optimal value for each algorithm. For a detailed breakdown, please refer to Tables C.1 and C.2 in
the Appendix.

Uncertainty-Awareness. Figure 3 presents the learning curves for UTE alongside other baseline
algorithms (a comprehensive version can be found in Figure C.1). Table 3 summarizes the game
results in terms of average rewards accrued over the last 100, 000 time steps (for results on other
environments, see Table C.3). Overall, especially when using the best λ, UTE consistently achieves
higher final rewards than other agents. These findings underscore that when λ is adeptly calibrated
to the environment, our method significantly outstrips the performance of existing action repetition
methods like DAR, ϵz-Greedy, and TempoRL, as well as the deep exploration algorithm B-DQN.
Notably, we observed that the Fixed Repeat algorithm struggles to learn effectively in most games,
underscoring the importance of mastering a extension policy to optimize performance.

Moreover, the results in Table 3 highlight that implementing n-step learning dramatically bolsters
performance. This lends empirical weight to our contention that off-policy correction is superfluous
within our action-repeating options framework, as discussed in Section 4.4.

8

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

2000

4000

6000

crazy_climber

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

2000

4000

6000

8000

10000
road_runner

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

50

100

150

200

250

300
seaquest

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

200

400

600

800

up_n_down
DDQN ez-greedy TempoRL Bootstrapped DQN UTE-best UTE-adaptive

Figure 3: Learning curves of UTE with best λ, UTE with adaptive λ and other baseline algorithms on
Atari environments. The shaded area represents the standard deviation over 7 random seeds.

Environment DDQN Fixed-j ϵz-Greedy DAR TempoRL B-DQN
UTE

1-step n-step Adaptive λ

Crazy Climber 5265.8
± 4063.4

3731.1
± 2997.2

5295.1
±3609.7

2059.1
±1225.1

4885.5
±3378.3

2961.6
±3080.0

6761.9
±5061.9

8175.6
±5790.4

7046.3
±5350.0

Road Runner 3277.0
±4470.3

1230.3
±1640.9

3733.8
±4716.5

845.5
±791.9

8131.5
±4099.3

4976.8
±6032.6

4935.6
±5206.4

12323.2
±4177.1

10353.3
±3283.3

Sea Quest 207.6
±124.5

47.0
±26.2

214.5
±85.6

42.8
±33.9

128.2
±55.5

145.1
±64.5

206.9
±92.4

313.4
±141.1

320.3
±159.4

Up n Down 536.4
±361.5

594.8
±324.6

823.1
±320.0

348.7
±227.0

641.5
±428.6

383.2
±242.8

911.5
±476.7

1072.8
±664.0

990.4
±707.5

Table 3: Average rewards and standard deviations (small numbers) over the last 100, 000 time steps
over Atari environments.

Adaptive Uncertainty Parameter λ. As described in Section 4.3, each arm corresponds to extension
length λ. At the beginning of each episode, the bandit algorithm chooses λk among the set, λk ∈
Λ := {+1.0,+0.5,+0.2, 0.0,−0.2,−0.5,−1.0,−1.5}, and gets the feedback of episode rewards
Rk(λk). Then, the bandit algorithm update Nτ

k (λk).

As shown in Figure 3 and Table 3, the learning speed of UTE when using an adaptively chosen λ
is marginally slower than that of the standard UTE. This minor slowdown can be attributed to the
need for extra samples to fine-tune λ. However, despite this adjustment, UTE with an adaptive λ
consistently surpasses other baseline methods by a significant margin. These findings are particularly
promising because they eliminate the necessity to predetermine the value of λ, thereby alleviating the
challenges of hyperparameter tuning. Such a feature accentuates the practicality and efficacy of our
approach in intricate learning environments.

6 Conclusion

We propose a new method that learns to repeat actions while explicitly considering the uncertainty over
the Q-value estimates of the states reached under the repeated-action option. In various environments,
we empirically showed that it is important to consider environment-inherent uncertainty, and a well-
suited uncertainty parameter λ significantly outperforms other existing action repetition algorithms.
The improved performance comes from its ability to repeat a sub-optimal action less in risky
environments and explore deeper in exploration-favor environments. To our best knowledge, this
is the first deep RL algorithm considering uncertainty in the future when instantiating temporally
extended

References
[1] Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction and

stabilization for deep reinforcement learning. In International conference on machine learning,
pages 176–185. PMLR, 2017.

[2] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. Exploration–exploitation tradeoff
using variance estimates in multi-armed bandits. Theoretical Computer Science, 410(19):
1876–1902, 2009.

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47:235–256, 2002.

9

[4] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

[5] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvit-
skyi, Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human
benchmark. In International Conference on Machine Learning, pages 507–517. PMLR, 2020.

[6] Chenjia Bai, Lingxiao Wang, Lei Han, Jianye Hao, Animesh Garg, Peng Liu, and Zhaoran Wang.
Principled exploration via optimistic bootstrapping and backward induction. In International
Conference on Machine Learning (ICML 2021), pages 577–587. PMLR, 2021.

[7] André Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün, Philippe Hamel,
Daniel Toyama, Shibl Mourad, David Silver, Doina Precup, et al. The option keyboard:
Combining skills in reinforcement learning. Advances in Neural Information Processing
Systems, 32, 2019.

[8] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation. Advances in neural
information processing systems, 29, 2016.

[9] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[10] André Biedenkapp, Raghu Rajan, Frank Hutter, and Marius Lindauer. TempoRL: Learning
when to act. In Proceedings of the 38th International Conference on Machine Learning (ICML
2021), July 2021.

[11] Richard Y Chen, John Schulman, Pieter Abbeel, and Szymon Sidor. Ucb and infogain explo-
ration via q-ensembles. arXiv preprint arXiv:1706.01502, 9, 2017.

[12] Felipe Leno Da Silva, Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. Uncertainty-
aware action advising for deep reinforcement learning agents. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages 5792–5799, 2020.

[13] Will Dabney, Georg Ostrovski, and Andre Barreto. Temporally-extended ε-greedy exploration.
In 9th International Conference on Learning Representations, ICLR 2021, 2020. URL https:
//openreview.net/forum?id=ONBPHFZ7zG4.

[14] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in neural
information processing systems, 5, 1992.

[15] Richard E Fikes, Peter E Hart, and Nils J Nilsson. Learning and executing generalized robot
plans. Artificial intelligence, 3:251–288, 1972.

[16] Anna Harutyunyan, Marc G Bellemare, Tom Stepleton, and Rémi Munos. Q (λ) with off-policy
corrections. In International Conference on Algorithmic Learning Theory, pages 305–320.
Springer, 2016.

[17] Aravind Lakshminarayanan, Sahil Sharma, and Balaraman Ravindran. Dynamic action repe-
tition for deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31, 2017.

[18] Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pages 1702–1712. PMLR, 2022.

[19] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht,
and Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and
open problems for general agents. Journal of Artificial Intelligence Research, 61:523–562,
2018.

[20] Marlos C Machado, Andre Barreto, and Doina Precup. Temporal abstraction in reinforcement
learning with the successor representation. arXiv preprint arXiv:2110.05740, 2021.

10

https://openreview.net/forum?id=ONBPHFZ7zG4
https://openreview.net/forum?id=ONBPHFZ7zG4

[21] Lingheng Meng, Rob Gorbet, and Dana Kulić. The effect of multi-step methods on overes-
timation in deep reinforcement learning. In 2020 25th International Conference on Pattern
Recognition (ICPR), pages 347–353. IEEE, 2021.

[22] Alberto Maria Metelli, Flavio Mazzolini, Lorenzo Bisi, Luca Sabbioni, and Marcello Restelli.
Control frequency adaptation via action persistence in batch reinforcement learning. In Interna-
tional Conference on Machine Learning (ICML 2020), pages 6862–6873. PMLR, 2020.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[24] Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, Michael Arbel, and Michael Jordan. Tac-
tical optimism and pessimism for deep reinforcement learning. Advances in Neural Information
Processing Systems, 34, 2021.

[25] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration
via bootstrapped DQN. In Advances In Neural Information Processing Systems 29, pages
4026–4034, 2016.

[26] Seohong Park, Jaekyeom Kim, and Gunhee Kim. Time discretization-invariant safe action
repetition for policy gradient methods. Advances in Neural Information Processing Systems, 34,
2021.

[27] Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. Advances
in neural information processing systems, 10, 1997.

[28] Oren Peer, Chen Tessler, Nadav Merlis, and Ron Meir. Ensemble bootstrapping for q-learning.
In International Conference on Machine Learning, pages 8454–8463. PMLR, 2021.

[29] Jing Peng and Ronald J Williams. Incremental multi-step q-learning. In Machine Learning
Proceedings 1994, pages 226–232. Elsevier, 1994.

[30] Doina Precup. Temporal abstraction in reinforcement learning. University of Massachusetts
Amherst, 2000.

[31] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[32] Ralf Schoknecht and Martin Riedmiller. Speeding-up reinforcement learning with multi-step
actions. In International Conference on Artificial Neural Networks, pages 813–818. Springer,
2002.

[33] Sahil Sharma, Aravind Srinivas, and Balaraman Ravindran. Learning to repeat: Fine grained ac-
tion repetition for deep reinforcement learning. In 5th International Conference on Learning Rep-
resentations, ICLR 2017, 2017. URL https://openreview.net/forum?id=B1GOWV5eg.

[34] Martin Stolle and Doina Precup. Learning options in reinforcement learning. In International
Symposium on abstraction, reformulation, and approximation, pages 212–223. Springer, 2002.

[35] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3(1):9–44, 1988.

[36] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999.

[37] Sebastian Thrun and Anton Schwartz. Issues in using function approximation for reinforcement
learning. In Proceedings of the 1993 Connectionist Models Summer School Hillsdale, NJ.
Lawrence Erlbaum, volume 6, 1993.

[38] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[39] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279–292, 1992.

11

https://openreview.net/forum?id=B1GOWV5eg

[40] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

[41] Liyu Xia and Anne GE Collins. Temporal and state abstractions for efficient learning, transfer,
and composition in humans. Psychological review, 2021.

[42] Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J Mankowitz, and Shie Mannor. Learn
what not to learn: Action elimination with deep reinforcement learning. Advances in Neural
Information Processing Systems, 31, 2018.

12

A Details of Baselines

Fixed Repeat. Fixed Repeat in Atari experiment corresponds to a DDQN agent that always repeats the
action for a fixed amount of times. In other words, the extension policy returns the same j at every
decision time. In our settings, j is set to 4. The reason for evaluating this naive method is to confirm
that this approach fails so that learning extension length is crucial.

Temporally-Extended ϵ-Greedy. ϵz-Greedy [13] is a simple add-on to the ϵ-greedy policy. The
agent follows the current policy for one step with probability 1 − ϵ, or with probability ϵ samples
an action a from a uniform random distribution and repeats it for j times, which is drawn from
a pre-defined duration distribution. We used the heavy-tailed zeta distribution, with µ = 1.25 as
the duration distribution in the Chain MDP and the Gridworlds environment. This was done by
conducting a hyperparameter search on µ for the set {1.25, 1.5, 2.0, 2.5, 3.0}. In Atari games, we
choose the best per-game µ among the set {1.5, 1.75, 2.0, 2.25, 2.5} for a fair comparison to our UTE.
A combination of ϵ chance to explore and zeta-distributed duration is called ϵz-greedy exploration.

The experimental results from [13] show that ϵz-Greedy incorporated in existing R2D2 and Rainbow
agents result higher median human-normalized score over the 57 Atari games. However, this algorithm
is highly dependent on the exploration rate ϵ, which can cause difficulties in online learning.

Dynamic Action Repetition. DAR [17] is a framework for discrete-action space deep RL algorithms.
DAR duplicates the output heads twice such that an agent can choose from 2× |A| actions. And each
output heads corresponds to pre-defined repetition values, r1, r2, where r1 and r2 are fixed hyper
parameters. Hence, action ak is repeated r1 number of times if k < |A| and r2 number of times if
k ≥ |A|. In our experiments, r1 is fixed to maximum extension length J and r2 to 1 to allow for
actions at every time step.

There are some drawbacks to this approach. First, r1 and r2 have to be predefined, which means
we need prior knowledge of the environments. And also, the learning process becomes a lot more
difficult because the action space doubled.

TempoRL. TempoRL [10] proposes a “flat” hierarchical structure in which behavior policy (πa)
determines the action a to be played given the current state s, and a skip policy (πj) determines
how long to repeat this action. The flat hierarchical structure refers to behavior policy and skip
policy having to make decisions at the same time-step. The action policy has to be always queried
before the skip policy. When an agent plays a chosen action for extension length j, total of j(̇j+1)

2
skip-transitions are observed and stored in the replay buffer. The behavior and the skip Q-functions
can be updated using one-step observations and the overarching skip-observation. Using the samples
collected, the behavior policy can be learned by a classical one step Q-learning. The n-step Q-learning
is used to learn the skip value with the condition that, at each step in the j steps, the action stays the
same.

Bootstrapped DQN. B-DQN [25] is an algorithm for temporally-extended (or deep) exploration.
Inspired by Thompson sampling, it selects an action without the need for an intractable exact
posterior update. Osband et al. [25] suggest bootstrapped neural nets can produce reasonable
posterior estimates. The network of bootstrapped DQN consists of a shared architecture with K
bootstrapped “heads” stretching off independently. Each head is initialized randomly and trained only
on its bootstrapped sub-sample of the data. The shared network learns a joint feature representation
across all the data. For evaluation, an ensemble voting policy is used to decide action.

B Atari Experiments Details

All experiments were run on an internal cluster containing GeForce RTX 3090 GPUs. Atari exper-
iments took 13 hours to train for 10 million frames on GPU. TempoRL baseline implementation is
from Biedenkapp et al. [10]. This asset is licensed under Apache License 2.0. The Arcade Learning
Environment (ALE) [9] for Atari games is licensed under the GNU General Public License Version 2.
Baseline codes can be found at https://github.com/automl/TempoRL.

Network Architecture. The input size of images is 84× 84, and the last 4 frames of this image are
stacked together. This will be our input throughout the experiment.

13

https://github.com/automl/TempoRL

DDQN agent uses the same architecture for DQN of [23] with the target network [38]. This architecture
has 3 convolutional layers of 32, 64 and 64 feature planes with kernel sizes of 8,4 and 3, and strides
of 4,2, and 1, respectively. These are followed by a fully connected network with 512 hidden units
followed by another fully connected layer to the Q-Values for each action.
ϵz-Greedy agent uses the exact same architecture as Mnih et al. [23]. The only difference with
DDQN is that ϵz-Greedy repeats an exploratory action, which is sampled from uniform random
distribution. And the extension length j is sampled from zeta distribution. The hyper-parameter µ for
zeta distribution is set depending on the experiments: 1.25 for Chain-MDP and Gridwolrds, and the
best one for each game in Atari experiment.
DAR agent selects action and extension length based on 2× |A| Q-values. Therefore, the output of the
last layer is duplicated and the duplicate outputs corresponding to a different extension length, r1 and
r2. The hyper-parameters, r1 and r2, are set to 1 and 10 respectively.
TempoRL agent uses the shared architecture, the structure of which is the same as one described
in Biedenkapp et al. [10]. On top of DQN architecture [23], an additional output stream for the
extension length is incorporated. The extension length is embedded into a 10-dimensional vector and
then concatenated with the output of the last convolutional layer of the network. The features then
pass through two fully connected hidden layers, each with 512 units.
B-DQN has one torso network of 3 convolutional layers, which is the same as that of DQN [23].
However, it has 10 heads branching off independently [25]. Each head consists of two fully connected
hidden layers, each with 512 units. Therefore the agent returns 10 Q-values from each head.
UTE uses the similar architecture as that of TempoRL [10]. The main difference compared to TempoRL
is that UTE uses an ensemble method for the output stream of extension length. After concatenating a
10-dimensional extension length vector and the output of the last convolutional layer, the concatenated
vector pass through 10 heads branching off independently. Each 10 head consists of fully connected
layer with 512 hidden units followed by a fully connected layer to the Q-Values for each extension
length.

Hyper-parameter Value

Discount rate 0.99
Gradient Clip 40.0
Target update frequency 500
Learning starts 10 000
Initial ϵ 1.0
Final ϵ 0.01
Evaluation ϵ 0.001
ϵ time-steps 200 000
Train frequency 4
Loss Function Huber Loss
Optimizer Adam
Learning rate 0.0001
Batch Size 32
Extension Batch Size 32
Replay buffer size 5× 104

Extension replay buffer size 5× 104

Number of ensemble heads 10
Max extension length (J) 10
Uncertainty parameter (λ) -1.5, -1.0, -0.5, -0.2,

0.0, 0.2, 0.5, 1.0
Table B.1: Hyper-parameters used for the Atari experiments

C Additional Experimental Results on Atari 2600

Per-game Best Parameter. We applied various kinds of uncertainty parameters to our proposed
model from +1.0 to -1.5. As shown in Table C.2, the optimal uncertainty parameter varies from
environment to environment. In most games, such as Beam Rider, Centipede, Crazy Climber, Freeway,
Qbert, Road Runner, Up n Down, the uncertainty-averse strategy (negative λ) exhibits an improvement

14

in averaged rewards over the last 100,000 time steps. Meanwhile, on Kangaroo, the exploration-favor
strategy (positive λ) shows better performance.
Table C.1 describes that optimal hyperparameter µ for ϵz-Greedy also varies from environment to
environment. For fair comparison with our algorithm, we used the per-game best µ for ϵz-Greedy.

ϵz-Greedy (µ)
Environment 1.5 1.75 2.0 2.25 2.5

Beam Rider 331.6 272.9 409.1 261.4 328.9
Centipede 1271.8 1222.6 1080.2 1316.0 1431.7
Crazy Climber 5026.1 4420.0 3128.0 5295.1 4690.9
Freeway 30.8 30.7 25.6 20.5 25.6
Kangaroo 609.1 518.8 604.0 360.0 396.4
Ms Pacman 580.0 551.3 584.5 514.9 597.2
Pong 19.7 18.4 19.8 19.4 19.9
Qbert 392.8 388.6 345.2 264.7 270.6
Riverraid 810.4 835.5 945.6 695.5 738.2
Road Runner 2943.0 2215.2 3733.8 3131.2 848.5
Sea Quest 116.1 214.5 172.6 123.8 119.6
Up n Down 700.6 823.1 669.0 794.8 653.2

Table C.1: Average rewards for ϵz-Greedy varying values for hyperparameter µ in the Atari 2600
environments. (7 random seeds)

UTE (uncertainty parameter: λ)
Environment +1.0 +0.5 +0.2 +0.0 -0.2 -0.5 -1.0 -1.5

Beam Rider 384.3
(137.8)

431.6
(162.9)

401.1
(143.3)

425.2
(153.5)

403.1
(127.9)

417.1
(115.4)

439.5
(163.0)

414.2
(112.3)

Centipede 1898.2
(889.2)

1327.8
(760.6)

1581.4
(1008.2)

2125.6
(1356.4)

2190.1
(1073.0)

1893.6
(954.9)

1605.9
(1167.7)

1377.5
(875.2)

Crazy Climber 5093.2
(4011.6)

4426.2
(3987.4)

6163.6
(5025.2)

5033.9
(2653.9)

6484.8
(4797.2)

8175.6
(5790.4)

5198.6
(4049.5)

5220.2
(4751.1)

Freeway 28.6
(3.7)

29.9
(2.0)

27.9
(5.4)

30.5
(1.5)

30.7
(1.9)

24.1
(3.9)

25.1
(4.7)

25.0
(6.8)

Kangaroo 555.2
(650.7)

493.3
(515.7)

543.0
(450.3)

661.0
(630.4)

623.3
(630.6)

577.6
(622.6)

718.2
(859.1)

728.5
(832.6)

Ms Pacman 446.5
(229.7)

509.6
(256.3)

551.0
(237.5)

545.5
(218.3)

551.6
(225.5)

544.1
(249.1)

511.2
(182.2)

540.4
(228.3)

Pong 17.5
(5.9)

18.0
(5.1)

17.1
(5.9)

16.9
(4.5)

19.1
(2.5)

16.8
(6.2)

18.4
(4.7)

16.4
(4.6)

Qbert 387.4
(415.8)

400.5
(490.3)

457.4
(461.3)

399.2
(461.9)

297.2
(302.7)

417.1
(441.0)

582.5
(558.7)

459.1
(499.7)

Riverraid 938.0
(388.8)

828.6
(339.6)

823.3
(363.0)

922.1
(418.0)

880.3
(341.0)

909.8
(350.1)

863.1
(354.8)

795.8
(310.5)

Road Runner 10051.5
(4107.8)

10853.3
(5789.4)

10712.7
(3290.1)

9788.2
(4054.3)

9019.5
(4469.1)

12323.2
(4177.1)

6638.6
(3602.0)

5763.6
(4681.0)

Sea Quest 260.3
(126.7)

301.0
(162.6)

290.4
(154.4)

308.5
(150.8)

313.4
(141.1)

282.4
(164.7)

250.9
(162.0)

226.8
(125.4)

Up n Down 1012.7
(613.6)

999.6
(504.3)

865.8
(451.2)

912.1
(611.0)

990.3
(532.0)

972.5
(530.2)

1072.8
(664.0)

1039.6
(573.0)

Table C.2: Average rewards and standard deviations (numbers in bracket) over the last 100,000 time
steps for different uncertainty parameter of our proposed method. (7 random seeds)

15

Environment DDQN Fixed-j ϵz-Greedy DAR TempoRL B-DQN
UTE

1-step n-step Adaptive λ

Beam Rider 290.1
(101.5)

277.9
(109.9)

409.9
(124.0)

177.7
(73.3)

431.9
(140.4)

315.6
(131.1)

414.4
(141.1)

439.5
(163.0)

423.9
(158.5)

Centipede 1574.7
(1044.6)

1222.8
(840.8)

1431.7
(1169.1)

1410.3
(982.8)

1958.0
(1166.4)

1285.2
(867.2)

1437.1
(887.2)

2190.1
(1073.0)

1829.9
(969.6)

Crazy Climber 5265.8
(4063.4)

3731.1
(2997.2)

5295.1
(3609.7)

2059.1
(1225.1)

4885.5
(3378.3)

2961.6
(3080.0)

6761.9
(5061.9)

8175.6
(5790.4)

7046.3
(5350.0)

Freeway 27.1
(4.6)

25.2
(3.1)

30.8
(1.3)

22.5
(2.9)

32.1
(1.0)

31.7
(1.1)

31.7
(1.2)

30.7
(1.9)

30.8
(1.7)

Kangaroo 547.2
(764.9)

222.2
(247.9)

609.1
(880.1)

305.5
(340.6)

424.2
(282.0)

534.8
(467.4)

586.4
(753.5)

728.5
(832.6)

661.0
(613.5)

Ms Pacman 509.8
(204.6)

388.8
(201.6)

597.2
(261.5)

371.3
(166.5)

495.6
(245.1)

516.1
(206.5)

645.6
(267.1)

551.6
(225.5)

537.6
(263.8)

Pong 19.2
(4.8)

-20.3
(0.9)

19.9
(1.8)

-20.6
(0.6)

15.6
(7.7)

18.3
(3.6)

19.4
(1.8)

19.1
(2.5)

19.5
(2.3)

Qbert 278.3
(312.9)

133.8
(267.9)

392.8
(438.3)

104.7
(70.8)

299.7
(349.8)

470.8
(489.5)

387.3
(423.1)

582.5
(558.7)

581.4
(602.5)

Riverraid 740.5
(291.9)

360.9
(231.6)

945.6
(457.9)

102.8
(66.0)

807.7
(354.7)

843.8
(407.2)

942.2
(319.3)

938.0
(388.8)

890.5
(330.7)

Road Runner 3277.0
(4470.3)

1230.3
(1640.9)

3733.8
(4716.5)

845.5
(791.9)

8131.5
(4099.3)

4976.8
(6032.6)

4935.6
(5206.4)

12323.2
(4177.1)

10353.3
(3283.3)

Sea Quest 207.6
(124.5)

47.0
(26.2)

214.5
(85.6)

42.8
(33.9)

128.2
(55.5)

145.1
(64.5)

206.9
(92.4)

313.4
(141.1)

320.3
(159.4)

Up n Down 536.4
(361.5)

594.8
(324.6)

823.1
(320.0)

348.7
(227.0)

641.5
(428.6)

383.2
(242.8)

911.5
(476.7)

1072.8
(664.0)

990.4
(707.5)

Table C.3: Average rewards and standard deviations (numbers in bracket) over the last 100,000 time
steps over Atari environments.

16

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

100

200

300

400

beam_rider

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

250

500

750

1000

1250

1500

1750

2000
centipede

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

1000

2000

3000

4000

5000

6000

7000

crazy_climber

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

5

0

5

10

15

20

25

30

35
freeway

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

200

400

600

800

1000

kangaroo

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

100

200

300

400

500

600

ms_pacman

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

20

10

0

10

20
pong

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

100

200

300

400

500
qbert

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

200

400

600

800

riverraid

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

2000

4000

6000

8000

10000
road_runner

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

50

100

150

200

250

300
seaquest

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

200

400

600

800

up_n_down

DDQN ez-greedy TempoRL Bootstrapped DQN UTE-best UTE-adaptive

Figure C.1: Per-game Atari learning curves for ϵz-Greedy with the best µ for zeta distribution,
UTE with the best uncertainty parameter, UTE with adaptive uncertainty parameter and the other
baselines.(7 random seeds)

17

	Introduction
	Related Work
	Preliminaries and Notations
	Uncertainty-aware Temporal Extension
	Temporally-Extended Q-Learning
	Ensemble-based Uncertainty Quantification
	Adaptive Uncertainty Parameter .
	n-step Q-Learning

	Experiments
	Tabular RL
	Chian MDP
	Gridworlds

	Deep RL: Atari 2600

	Conclusion
	Details of Baselines
	Atari Experiments Details
	Additional Experimental Results on Atari 2600

