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Abstract

Automated radiology report generation from001
chest X-ray (CXR) images has the potential to002
improve clinical efficiency and reduce radiol-003
ogy workload. However, most datasets, includ-004
ing the publicly available MIMIC-CXR and005
CheXpert Plus, consist entirely of free-form006
reports, which are inherently variable and un-007
structured. This variability poses challenges for008
both generation and evaluation: existing mod-009
els struggle to produce consistent, clinically010
meaningful reports, and standard evaluation011
metrics fail to capture the nuances of radiolog-012
ical interpretation. To address this, we intro-013
duce Structured Radiology Report Generation014
(SRRG), a new task that reformulates free-text015
radiology reports into a standardized format,016
ensuring clarity, consistency, and structured017
clinical reporting. We create a novel dataset018
by restructuring reports using large language019
models (LLMs) following strict structured re-020
porting desiderata. Additionally, we introduce021
SRR-BERT, a fine-grained disease classifica-022
tion model trained on 55 labels, enabling more023
precise and clinically informed evaluation of024
structured reports. To assess report quality, we025
propose F1-SRR-BERT, a metric that leverages026
SRR-BERT’s hierarchical disease taxonomy to027
bridge the gap between free-text variability and028
structured clinical reporting. We validate our029
dataset through a reader study conducted by030
five board-certified radiologists and extensive031
benchmarking experiments.032

1 Introduction033

An important medical application of natural034

language generation (NLG) is the construction035

of assistive systems that take X-ray images of a036

patient and generate a textual report describing037

clinical observations in the images. This is a038

clinically important task, offering the potential to039

reduce the repetitive workload of radiologists and040

generally improve clinical communication (Dun-041

nick and Langlotz, 2008; Kahn Jr et al., 2009).042

043

Since the task’s debut on chest X-ray (CXR) 044

images, much of the related work, including 045

testing vanilla transformers (Chen et al., 2020), 046

reinforcement learning algorithms (Miura et al., 047

2021; Delbrouck et al., 2022), and foundation 048

models (Chen et al., 2024; Bannur et al., 2024), 049

has been conducted on two primary datasets: 050

MIMIC-CXR (Johnson et al., 2019) and CheXpert 051

Plus (Chambon et al., 2024). These datasets share 052

notable similarities in terms of size, population 053

diversity, and reporting style. 054

055

However, it is important to note that CXR reports 056

themselves are typically free-form rather than 057

structured by organ systems, primarily due to 058

protocols, workflow efficiency, and the holistic 059

nature of the necessary image interpretation (Weiss 060

and Langlotz, 2008; Bosmans et al., 2012). This 061

free-form style can pose unique challenges for 062

automated report generation and clinical decision 063

support as the variability in reporting styles often 064

leads to inconsistencies in the way findings are 065

described. 066

067

The need for more consistent, structured, or 068

template-based radiology reporting is further 069

reinforced given the difficulty faced by all pro- 070

posed metrics in evaluating automated radiology 071

report generation. Existing evaluation methods, 072

ranging from standard NLG metrics such as 073

BLEU (Papineni et al., 2002) and ROUGE (Lin, 074

2004) to clinical factuality-based metrics such 075

as F1-RadGraph (Delbrouck et al., 2022), Rad- 076

Fact (Bannur et al., 2024), or GREEN (Ostmeier 077

et al., 2024), may struggle to capture the nuances 078

of radiological interpretation due to the inherent 079

diversity in reporting styles. 080

081

Given these limitations and observations, we in- 082

troduce a new task, Structured Radiology Report 083
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Figure 1: Comparison between traditional free-text radiology report generation (left) and our proposed Structured
Radiology Report Generation (SRRG) approach (right). Traditional methods generate unstructured reports that vary
in style and clarity, making automated evaluation challenging. In contrast, SRRG enforces a standardized format
with anatomical section headers. This structured format enables more granular anatomy-level and utterance-level
evaluations, including our proposed F1-SRR-BERT metric, which complements traditional report-level evaluation
metrics.

Generation (SRRG, Section 2), aimed at trans-084

forming free-text radiology reports into a standard-085

ized format that enhances clarity and consistency086

through structured clinical documentation. To sup-087

port this task, we present a new dataset derived088

from MIMIC-CXR and CheXpert Plus, where re-089

ports have been reformulated using large language090

models (LLMs) following strict desiderata for struc-091

tured reporting. Additionally, we introduce SRR-092

BERT (Section 3), a novel disease classification093

model with 55 labels, designed to enable fine-094

grained automated evaluation. To further enhance095

the assessment of generated structured reports, we096

propose F1-SRR-BERT, a new metric that lever-097

ages SRR-BERT’s hierarchical disease taxonomy098

alongside a more precise evaluation paradigm made099

possible by the structured design of our task (Sec-100

tion 4.2.1). We validate our new datasets through a101

reader study (Section B) conducted by five board-102

certified radiologists, along with extensive exper-103

iments (Section 4) and additional validation (Ap-104

pendix E).105

2 Structured Radiology Reporting106

2.1 Desiderata107

We define a structured radiology report as a report108

that follows a standardized format to ensure109

clarity and consistency. Such a report consists110

of distinct sections, each introduced by a section111

header followed by a colon, ensuring uniformity112

in presentation. The required sections include113

Exam Type, History, Technique, Comparison,114

Findings, and Impression.115

116

The Findings section is organized under predefined 117

anatomical headers, which are strictly limited to 118

the following categories: Lungs and Airways, 119

Pleura, Cardiovascular, Hila and Mediastinum, 120

Tubes, Catheters, and Support Devices, Mus- 121

culoskeletal and Chest Wall, Abdominal, and 122

Other. Within each category, observations should 123

be clearly listed using bullet points, and include all 124

relevant positive and negative findings. 125

126

The Impression section summarizes the key 127

findings in a numbered list, ranked from most to 128

least clinically significant, ensuring that the most 129

critical observations are highlighted effectively. 130

131

To maintain clarity and relevance, strict content 132

guidelines need to be applied. References to pre- 133

vious studies or historical comparisons should be 134

excluded, ensuring that the report reflects only the 135

current examination. Identifiable information, in- 136

cluding dates, surnames, first names, healthcare 137

providers, vendors, and institutions, must be re- 138

moved, although patient sex and age should be re- 139

tained when provided. The content must strictly ad- 140

here to the defined structured sections, without ex- 141

trapolating interpretations or introducing unrelated 142

details. Additionally, only the specified anatomical 143

headers may be used, ensuring a standardized re- 144

port. The resulting prompt is available in Prompt 2. 145

2.2 Dataset Creation 146

Previous research has shown that GPT models can 147

outperform traditional fine-tuned models in gen- 148
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eral summarization tasks by offering better factual149

consistency and reducing hallucinations (Pu et al.,150

2023), achieve human-level performance in med-151

ical summarization of findings (Van Veen et al.,152

2024), and demonstrate strong capabilities in radio-153

logical error categorization (Ostmeier et al., 2024).154

Motivated by this, as well as by GPT-4’s "excep-155

tional" performance across various medical bench-156

marks (Nori et al., 2023), we leverage LLMs to157

restructure the two largest publicly available chest158

X-ray datasets: MIMIC-CXR (Johnson et al., 2019)159

and CheXpert Plus (Chambon et al., 2024). The160

prompt used to rephrase the reports in accordance161

with our desiderata is provided in Prompt 4. This162

prompt was executed using GPT-4 "Turbo 1106163

preview" via Azure services, with the account ex-164

plicitly opted out of human review.165

2.3 Dataset Statistics166

We structured our dataset to align with the Radi-167

ology Report Generation (RRG) task by specifi-168

cally mapping X-ray images to Findings (X-ray →169

Findings) and Impressions (X-ray → Impression).170

These setups correspond to our datasets, SRRG-171

Findings and SRRG-Impression, respectively. To172

construct the SRRG dataset, we combined MIMIC-173

CXR and CheXpert Plus and pooled them together174

to create our splits. Notably, SRRG-Impression175

is larger than SRRG-Findings, primarily because176

CheXpert predominantly contains Impression sec-177

tions while often lacking Findings sections.178

Dataset Split Num. Examples

SRRG-Impression

Train 405,972
Validate 1,505

Test 2,219
Test Reviewed 231

Total 409,927

SRRG-Findings

Train 181,874
Validate 976

Test 1,459
Test Reviewed 233

Total 184,542

Table 1: Dataset Statistics for SRRG-Impression and
SRRG-Findings

Lastly, we conducted a human review of 464 re-179

ports, sampled from the MIMIC-CXR test set and180

the CheXpert Plus validation set, with evaluations181

performed by five board-certified radiologists (Ap-182

pendix B). Statistics of our datasets and splits are183

highlighted in Table 1.184

3 Disease Classification Models 185

In this section, we introduce SRR-BERT, a novel 186

model for fine-grained disease prediction that 187

builds upon CheXbert to provide a more detailed as- 188

sessment. Our approach extends the traditional set 189

of 14 CheXbert disease labels to a set of 55 labels, 190

covering a more granular hierarchy of pulmonary, 191

pleural, cardiac, mediastinal, musculoskeletal, and 192

abdominal findings, as well as more detailed sup- 193

port devices. This expanded taxonomy allows for 194

more precise classification and evaluation of radi- 195

ological abnormalities, enhancing the depth and 196

accuracy of disease prediction. 197

3.1 Desiderata 198

To ensure clarity, consistency, and clinical rele- 199

vance, our disease annotation framework follows 200

the following key principles. Each finding must be 201

mapped to all relevant diseases from a predefined 202

list, allowing for zero, one, or multiple conditions. 203

If no disease is present, the annotation explicitly 204

states "No Finding" to ensure systematic coverage. 205

Every disease is assigned a status—Present, Ab- 206

sent, or Uncertain—capturing clinical uncertainty 207

and preventing over-assumptions. For example: 208

Right perihilar consolidation, likely atyp- 209

ical edema, with pneumonia as a differ- 210

ential diagnosis. 211

is annotated as: 212

=> Perihilar airspace opacity 213

(Present) 214

=> Edema (Uncertain) 215

=> Pneumonia (Uncertain) 216

The selected diseases and their hierarchical struc- 217

ture are detailed in Prompt 4. This disease tree 218

has been validated by a board-certified radiologist. 219

While the first level of the hierarchical structure 220

corresponds to the Anatomical Headers / Category, 221

the lowest level is referred to as tree "leaves", and 222

"upper" labels denote the item one-level above 223

"leaves". Appendix D shows a dataset breakdown 224

of each of the "upper" labels. 225

3.2 Dataset Creation 226

We annotate all utterances in our SRRG dataset, 227

where an utterance is defined as either a single- 228

sentence finding or a numbered impression. This 229

process results in 1,562,277 unique impressions. 230

To ensure consistency in annotation, we follow 231

3



the guidelines outlined in Section 3.1 and craft232

the structured annotation template accordingly233

provided in Prompt 3.234

235

To validate the correctness of the assigned labels,236

we employ both automated and human reviews.237

The automated review follows a mixture-of-experts238

approach, where each utterance is processed using239

three different GPT models: GPT-4 Turbo (2024-240

04-09), GPT-4 Turbo 1106 Preview, and GPT-4o241

(2024-08-06). The final labels for each utterance242

is determined by selecting the diseases that appear243

in at least two out of the three model outputs. This244

ensures robustness and reduces inconsistencies in245

the predictions. If an utterance has no labels, we246

discard it. We ultimately obtain a total of 1,506,158247

valid utterances (as detailed in Section 3.3)248

3.3 Dataset Statistics249

The dataset comprises 1,506,158 utterances250

annotated with 1,782,983 labels, averaging 1.18251

labels per utterance. Among all utterances,252

905,764 correspond to positive findings (i.e., not253

labeled as "No Finding"), with these having an254

average of 1.31 labels per utterance.255

256

Dataset Split Num. Examples

StructUtterances

Train 1,203,332
Validate 150,417

Test 150,417
Test Reviewed 1,609

Total 1,506,158

Table 2: Dataset Statistics for StructUtterances

The test-reviewed split was evaluated by five board-257

certified radiologists (Appendix B) and includes258

utterances extracted from the reports in the test-259

reviewed split of our SRRG dataset (Table 1).260

4 Benchmarking261

262

4.1 Disease Classification Models263

To benchmark disease classification, we fine-tune264

CXR-BERT (Boecking et al., 2022) on weakly-265

labeled utterances in the StructUtterances dataset266

under four experimental settings. First, we set aside267

the status annotations (i.e., Present, Absent, Uncer-268

tain) and only classify the "leaves" and "upper"269

labels. We then integrate the three statuses by creat- 270

ing a separate class for each combination, yielding 271

"leaves with statuses" and "upper with statuses". 272

The benchmarking results for the disease clas- 273

sification models demonstrate strong overall 274

performance on the reviewed test split, with F1 275

scores exceeding 0.75 for most classes. However, 276

as is typical in classification tasks, rare labels 277

posed a challenge. For the model operating at 278

the "leaves" level, the overall F1 score was 0.836, 279

with the three best-performing labels being "No 280

Finding" (F1 = 0.83, n=452), "Simple Pleural 281

Effusion" (F1 = 0.93, n=174), and "Atelectasis" 282

(F1 = 0.94, n=131). Noticeably poor-performing 283

classes include "Air space opacity-multifocal" (F1 284

= 0.62, n=60) and "Suboptimal central line" (F1 285

= 0.19, n=29). At the "upper" level with reduced 286

granularity, our model achieved an overall F1 score 287

of 0.839, with top-three performing labels being 288

"No Finding" (F1 = 0.82, n=452), "Consolidation" 289

(F1 = 0.89, n=215), and "Pleural Effusion" (F1 = 290

0.94, n=185). 291

292

When incorporating status annotations, perfor- 293

mance declined slightly due to the number of labels 294

effectively being tripled. The "leaves with statuses" 295

model yielded an F1 score of 0.794, while the 296

"upper with statuses" model achieved an F1 score 297

of 0.795. In both cases, "No Finding" remained 298

a strong performer (F1 = 0.82), while disease- 299

specific labels such as "Simple Pleural Effusion 300

(Present)" (F1 = 0.91, n=96) and "Cardiomegaly 301

(Present)" (F1 = 0.98, n=82) performed very well. 302

However, some uncertain findings, such as "Con- 303

solidation (Uncertain)" (F1 = 0.82, n=95), demon- 304

strated slightly lower scores, reflecting the intrinsic 305

difficulty of differentiating between ambiguous dis- 306

ease states. 307

4.1.1 Comparison to CheXbert 308

We compare our models to CheXbert as they 309

both aim to accomplish the same task of disease 310

classification. Given the more restricting label 311

set of CheXbert, we first filter the reviewed 312

test set to only include utterances with a label 313

that is mappable to CheXbert classes. This 314

mapping between label spaces was conducted 315

after consulting a combination of web sources, a 316

clinician, and GPT-4o. However, some degree of 317

overlap and ambiguity remains (Section 7). 318

319

Using structured utterances as input, we first 320
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Precision Recall F1-Score Support

Leaves

Micro Avg 0.85 0.82 0.84 1,644
Macro Avg 0.63 0.53 0.55 1,644
Weighted Avg 0.85 0.82 0.82 1,644
Samples Avg 0.84 0.84 0.84 1,644

Upper

Micro Avg 0.85 0.83 0.84 1,588
Macro Avg 0.70 0.62 0.65 1,588
Weighted Avg 0.87 0.83 0.83 1,588
Samples Avg 0.85 0.84 0.84 1,588

Leaves with Statuses

Micro Avg 0.81 0.78 0.80 1,644
Macro Avg 0.31 0.27 0.28 1,644
Weighted Avg 0.79 0.78 0.77 1,644
Samples Avg 0.80 0.80 0.79 1,644

Upper with Statuses

Micro Avg 0.81 0.79 0.80 1,574
Macro Avg 0.41 0.38 0.38 1,574
Weighted Avg 0.79 0.79 0.78 1,574
Samples Avg 0.80 0.80 0.80 1,574

Table 3: Benchmark results for disease classification on
the test_reviewed split. Highest scores are in bold and
the second highest are highlighted in gray.

derive CheXbert labels using the author-provided321

CheXbert model checkpoint. Using SRR-BERT,322

we then compute labels at both the "leaves" level323

and the "upper" level and map them to the 14324

classes used by CheXbert. Table 4 illustrates325

the direct comparison of model performances,326

where SRR-BERT outperformed CheXbert in both327

settings (0.80 vs. 0.61 when "leaves" were used328

for the mapping, and 0.83 vs. 0.47 when "upper"329

labels were used for the mapping).330

331

We acknowledge that SRR-BERT was trained on332

structured utterances while CheXbert was not,333

which may skew the comparison. Hence, we also334

leverage the unstructured full-length reports as in-335

put. SRR-BERT outperforms CheXbert when us-336

ing "upper" labels to map to CheXbert classes, and337

exhibits only slightly lower F1 when using "leaves".338

This demonstrates the robustness of SRR-BERT339

models as they can accommodate texts of varying340

lengths and complexity, from short utterances to341

full-length reports.342

4.2 Structured RRG343

4.2.1 Evaluation Metrics344

To ensure consistency with prior work in "tradi-345

tional" RRG, we report BLEU (Papineni et al.,346

Precision Recall F1-Score Support

Mapped with Leaves

Utterances
CheXbert 0.69 0.64 0.65 1,759
SRR-BERT 0.88 0.82 0.84 1,759

Full Reports
CheXbert 0.73 0.59 0.62 260
SRR-BERT 0.84 0.48 0.58 260

Mapped with Upper

Utterances
CheXbert 0.70 0.48 0.50 2,004
SRR-BERT 0.90 0.84 0.86 2,004

Full Report
CheXbert 0.80 0.49 0.56 278
SRR-BERT 0.89 0.60 0.70 278

Table 4: Weighted average performance comparison for
CheXbert and SRR-BERT using "leaves" and "upper"
mappings to 14 CheXbert classes on the test_reviewed
split. Highest scores are in bold and the second highest
are highlighted in gray.

2002), BERTScore (Zhang et al., 2019), ROUGE- 347

L (Lin, 2004), and F1-RadGraph (Delbrouck et al., 348

2022). Additionally, we introduce F1-SRR-BERT, 349

a new metric leveraging our SRR-BERT model 350

(Section 3), which is trained to predict abnormali- 351

ties across 55 diseases based on CXR utterances. 352

353

F1-SRR-BERT measures the F1-Score between 354

SRR-BERT’s predictions on the generated 355

structured report and the corresponding reference 356

structured reports. This score has two variants: (1) 357

leaves prediction, which classifies diseases at the 358

finest granularity (55 labels from the disease tree 359

in Prompt 4), and (2) upper-level prediction, which 360

groups diseases into 25 broader categories for a 361

coarser classification. These broader categories are 362

the level right above the "leaves". 363

364

An additional consideration in our evaluation is that 365

utterances can be assessed in either an aligned or 366

unaligned setting across all previously mentioned 367

metrics. In the aligned setting, utterances are eval- 368

uated in the order they appear under an organ sys- 369

tem header or by their numerical order in the im- 370

pression section (i.e., generated impression one is 371

compared to reference impression one). In con- 372

trast, the unaligned setting evaluates utterances as 373

a set—comparing all findings under an organ sys- 374

tem or all numbered impressions as a block against 375

the reference. This unaligned approach allows us 376

to assess whether the model prioritizes findings and 377
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SRRG-Impression (unaligned) Traditional Metrics F1-SRR-BERT

Model Split BLEU ROUGE-L BERTScore F1-RadGraph Precision Recall F1-Score

CheXagent Validate 7.86 28.94 60.55 20.62 50.02 56.32 50.60

CheXagent Test 6.95 27.18 61.51 19.70 49.78 56.47 50.63
CheXagent Test Reviewed 4.68 26.10 59.70 18.33 45.24 56.70 48.64

CheXpert-Plus Validate 16.86 33.42 62.74 27.74 54.40 51.26 50.26

CheXpert-Plus Test 14.84 28.01 60.76 22.14 48.74 47.60 46.48
CheXpert-Plus Test Reviewed 14.07 26.79 59.21 18.89 43.46 48.15 44.56

MAIRA-2 Validate 4.85 24.08 52.94 17.15 47.95 58.15 49.63

MAIRA-2 Test 4.26 22.97 53.60 16.55 48.27 55.40 48.76
MAIRA-2 Test Reviewed 3.67 21.86 54.25 15.95 40.47 55.13 44.49

RaDialog Validate 5.35 23.93 57.74 15.27 39.80 52.41 40.70

RaDialog Test 3.32 21.59 57.48 12.32 37.30 50.59 39.22
RaDialog Test Reviewed 3.33 19.95 54.82 10.26 33.65 50.71 36.39

Table 5: Model scores on different splits of our SRRG-impression dataset. Traditional metrics (BLEU, ROUGE-L,
BERTScore, F1-RadGraph) are shown as percentages. F1-SRR-BERT scores (weighted averages for utterance-level
diseases Precision, Recall, and F1-Score) are updated based on the new results. For each model group, only the Test
and Test Reviewed rows are compared, with the highest scores highlighted in bold.

impressions from the most to the least clinically378

relevant. Finally, we assign a score of 0 for missing379

references sections and extra predicted sections in380

findings.381

4.2.2 Results382

We benchmark four distinct models: MAIRA-383

2 (Bannur et al., 2024), CheXagent (Chen et al.,384

2024), CheXpert-Plus (Chambon et al., 2024), and385

RaDialog (Pellegrini et al., 2023). These mod-386

els vary in size, architecture, and reported perfor-387

mance.388

Table 5 shows the performance of various models389

in generating impressions (evaluated without align-390

ment), revealing that models tend to score higher391

in this task than in free-form impression genera-392

tion. Notably, CheXpert-Plus stands out as the393

best performer on the SRRG-Impression dataset.394

On the test split, it achieves the highest traditional395

metric scores, with a BLEU of 14.84, ROUGE-L396

of 28.01, and F1-RadGraph of 22.14, while also397

registering the highest utterance-level precision at398

58.99. Although CheXagent and MAIRA-2 excel399

in BERTScore and Recall respectively, CheXpert-400

Plus consistently delivers superior performance401

across both traditional and SRRG metrics.402

In the SRRG-Findings (unaligned) setting (Ta-403

ble 7), traditional metric scores are generally404

lower than in the SRRG-Impression setting,405

indicating that generating structured findings is406

Split BLEU ROUGE-L BERTScore F1-RadGraph

SRRG-Impression

Validate 7.61 ↓9.25 23.35 ↓10.07 39.95 ↓22.79 16.68 ↓11.06
Test 3.78 ↓11.06 16.77 ↓11.24 36.35 ↓24.41 10.23 ↓11.91
Test Reviewed 3.63 ↓10.44 16.89 ↓9.90 38.82 ↓20.39 10.42 ↓8.47

SRRG-Findings

Validate 3.77 ↓0.35 19.23 ↓1.67 26.81 ↓4.77 14.23 ↓2.72
Test 3.21 ↓0.30 16.89 ↓2.08 25.83 ↓5.67 12.31 ↓2.68
Test Reviewed 3.45 ↓0.51 16.27 ↓2.45 24.93 ↓6.40 11.68 ↓3.21

Table 6: Updated scores for the CheXpert-Plus model
using the "aligned" settings. The difference of scores,
highlighted in red, is presented as opposed to the un-
aligned settings (Table 5 and 7).

more challenging than producing impressions. 407

For findings, CheXpert-Plus achieves moderate 408

scores on validation (e.g., BLEU 4.12, ROUGE-L 409

20.90, BERTScore 31.58, F1-RadGraph 16.95), 410

while CheXagent and MAIRA-2 show similar 411

patterns with slight drops from validation to test 412

splits. Category scores—reflecting the correct 413

prediction of organ section headers—are consis- 414

tently high (around 75–78%) across models. In 415

contrast, the impression results reveal substantially 416

higher traditional metrics, with CheXagent and 417

CheXpert-Plus achieving BLEU scores above 14 418

and BERTScores in the low 60s, suggesting that 419

the impression task yields more polished, concise 420

outputs. Overall, these results highlight that while 421
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SRRG-Findings (unaligned) Traditional Metrics F1-SRR-BERT

Diseases Category

Model Split BLEU ROUGE-L BERTScore F1-RadGraph Precision Recall F1-Score Precision Recall F1-Score

CheXagent Validate 1.93 19.72 29.58 15.35 42.86 44.04 41.88 75.98 77.16 74.70

CheXagent Test 1.80 19.65 31.65 15.41 43.22 42.07 41.13 77.12 82.56 77.90
CheXagent Test Reviewed 2.38 19.88 32.48 16.04 44.56 42.53 41.73 75.26 85.22 77.40

CheXpert-Plus Validate 4.12 20.90 31.58 16.95 44.28 43.19 42.08 72.10 85.45 76.52

CheXpert-Plus Test 3.51 18.97 31.50 14.99 42.79 40.08 39.85 72.84 86.17 77.18

CheXpert-Plus Test Reviewed 3.96 18.72 31.33 14.89 42.78 39.10 39.28 71.63 88.71 77.24

MAIRA-2 Validate 5.58 24.54 33.34 19.65 43.60 41.69 41.42 76.15 68.09 70.06

MAIRA-2 Test 3.40 22.28 34.30 16.48 43.08 41.56 40.80 77.95 76.20 75.29
MAIRA-2 Test Reviewed 2.10 19.56 31.55 14.18 43.05 40.73 40.20 75.00 78.87 74.62

RaDialog Validate 1.47 18.23 28.67 13.92 40.15 39.63 39.08 70.12 70.48 69.33

RaDialog Test 1.28 17.53 29.07 13.82 38.42 38.10 37.89 69.48 70.12 69.76
RaDialog Test Reviewed 1.42 17.60 28.90 13.75 38.95 38.30 38.05 69.90 70.22 69.85

Table 7: Model scores on different splits of our SRRG-Findings dataset. Traditional Metrics include BLEU,
ROUGE-L, BERTScore, and F1-RadGraph. F1-SRR-BERT metrics (weighted averages) are evaluated for Diseases
and for Category (organ section headers). For each model group, the best scores between the Test and Test Reviewed
splits are highlighted in bold.

all models struggle with the detailed nature of422

findings, they perform significantly better when423

generating shorter, impression-style summaries.424

425

As expected, generating impressions and findings426

that align with the ground-truth is challenging, as427

demonstrated by CheXpert-Plus’ scores (Table 6).428

This challenge is even more pronounced in the429

impression setting, which typically contains more430

utterances than organ sections.431

Organ Precision Recall F1-Score

Pleura 54.53 40.28 44.23
Abdominal 10.53 10.53 10.53
Hila and Mediastinum 22.26 21.58 21.69
Other 3.69 3.42 3.39
Lungs and Airways 41.85 40.41 38.32
Cardiovascular 63.78 58.73 59.78
Musculoskeletal and Chest Wall 45.99 43.91 44.29
Tubes, Catheters, and Support Devices 51.27 54.94 50.56

Table 8: Organ-level F1-SRRG-Bert weighted-average
scores for CheXpert-Plus on the test-reviewed split.

5 Conclusion432

We presented Structured Radiology Report Gen-433

eration (SRRG), a new task reformulating free-434

text CXR reports into standardized templates to435

improve clarity and enable more precise evalua-436

tion. To support SRRG, we introduce a large-437

scale dataset with clinically validated structured438

reports and SRR-BERT, a 55-label disease classi-439

fier trained on fine-grained radiological findings.440

We further propose F1-SRR-BERT, a metric lever- 441

aging SRR-BERT’s hierarchical labels to capture 442

clinically meaningful variations. Our reader study, 443

conducted by board-certified radiologists, confirms 444

the quality of both the structured reports and an- 445

notated disease labels. Benchmark experiments 446

show that SRRG improves consistency compared 447

to existing free-form generation methods. 448

6 Related Work 449

Structured Reporting Chest X-ray reporting 450

has long been characterized by a free-text narrative 451

style, which, while flexible, can lack clarity and 452

consistency (Weiss and Langlotz, 2008; Bosmans 453

et al., 2012). The lack of widespread standardiza- 454

tion further reinforces this approach, as structured 455

reporting templates, such as RSNA’s RadLex 456

or BI-RADS for breast imaging, have not been 457

universally adopted for CXRs. Studies have shown 458

that even though structured reporting can improve 459

completeness and diagnostic clarity (Schwartz 460

et al., 2011; Bosmans et al., 2012), many radi- 461

ologists perceive it as rigid and less efficient 462

compared to narrative reporting (Bosmans et al., 463

2015). Consequently, structured reporting remains 464

underutilized, in part because CXRs require 465

simultaneous assessment of multiple structures in 466

context rather than in isolation (Langlotz, 2002). 467

468

Given these challenges, efforts to standardize CXR 469

reporting continue to face resistance, balancing the 470

need for consistency with the flexibility required 471
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for nuanced clinical communication (Dunnick and472

Langlotz, 2008; Kahn Jr et al., 2009). For systems473

aiming to generate automated or semi-automated474

reports from medical images, addressing this475

variability is crucial. Recent works in natural476

language processing and computer vision have477

attempted to handle the complexity of unstructured478

radiology reports, either by adopting standardized479

label sets derived from clinical knowledge bases480

or by using large-scale language models to learn481

patterns in free-text narratives. However, the482

gap between free-form clinical practice and483

structured data requirements remains a major484

challenge in achieving both clinical relevance and485

interoperability.486

487

Automated Radiology Reporting Prior work488

in radiology report generation has explored archi-489

tectural innovations, reinforcement learning, and490

retrieval-based approaches. Architectural novelties491

include memory-driven transformers to retain key492

generation details (Chen et al., 2020), cross-modal493

memory networks to align images and text (Chen494

et al., 2021), and models incorporating prior medi-495

cal knowledge graphs for structured report gener-496

ation (Liu et al., 2021a,b). Reinforcement learn-497

ing has also been used to optimize factual correct-498

ness (Liu et al., 2019; Miura et al., 2021; Delbrouck499

et al., 2022). Recently, larger models have been500

employed for radiology report generation. No-501

table examples include RaDialog (Pellegrini et al.,502

2023), which integrates visual features and struc-503

tured pathology findings with an LLM through504

parameter-efficient fine-tuning, and RGRG (Tanida505

et al., 2023), a region-guided model that detects506

and describes anatomical regions to enhance trans-507

parency, interactivity, and explainability. Addition-508

ally, "LLM-sized" models such as MAIRA-2 (Ban-509

nur et al., 2024), CheXagent (Chen et al., 2024),510

and MedVersa (Zhou et al., 2024) have also been511

introduced to further advance the field.512

7 Limitations513

Despite the promising results of our proposed Struc-514

tured Radiology Report Generation (SRRG) frame-515

work, several limitations remain:516

Synthetic Dataset & Annotations Our SRRG517

dataset was produced by reformulating free-form518

radiology reports into a structured format using519

LLMs. Although our methodology enforces strict520

desiderata to avoid hallucinations and preserve fac-521

tual content, it remains challenging to verify all 522

generated samples at scale. To mitigate inaccura- 523

cies, we conducted a comprehensive reader study 524

involving five board-certified radiologists, as de- 525

scribed in Appendix B. Nevertheless, the possibil- 526

ity of subtle inconsistencies or biases introduced 527

by the LLMs cannot be fully excluded. 528

Fine-tuning Approaches The range of model 529

sizes and different training strategies used in our 530

experiments (e.g., LoRA-based parameter-efficient 531

fine-tuning for large models such as MAIRA-2 vs. 532

full fine-tuning for smaller models) may affect the 533

comparability of results. While these choices were 534

made to accommodate computational feasibility, a 535

standardized fine-tuning scheme across all models 536

might yield a more uniform assessment of perfor- 537

mance and could be explored in future work. 538

Reader Study Constraints Our reader study fo- 539

cused on validating both structured reports and fine- 540

grained disease labels derived from the SRR-BERT 541

model. Although board-certified radiologists re- 542

viewed a representative sample of utterances, they 543

occasionally encountered ambiguous cases where 544

the available clinical context did not suffice to dif- 545

ferentiate among closely related conditions (e.g., 546

pneumonia, atelectasis, or aspiration). Addition- 547

ally, rare findings not covered by our disease tax- 548

onomy were annotated under an “Other” category, 549

potentially oversimplifying certain nuanced clinical 550

observations. Expanding the taxonomy or incorpo- 551

rating additional clinical context (e.g., lab values 552

or clinical notes) may address these ambiguities in 553

future iterations. 554

F1-SRR-BERT vs. F1-CheXbert Directly com- 555

paring F1-Scores of SRR-BERT (with 55 disease 556

labels) and CheXbert (with 14 labels) remains in- 557

herently imperfect due to the many-to-many rela- 558

tionship in label mapping. A single CheXbert class 559

can correspond to multiple labels in our hierarchi- 560

cal disease ontology, and vice versa. Although we 561

attempted a best-effort alignment, the lack of a one- 562

to-one mapping between the label spaces makes 563

straightforward performance comparisons challeng- 564

ing. Future work could improve this alignment 565

by exploring probabilistic approaches or expert- 566

guided hierarchical restructuring to reconcile label 567

disparities. 568
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A Potential Risks730

All experiments in this study are conducted731

using publicly available chest X-ray datasets732

(MIMIC-CXR and CheXpert Plus) that are fully733

deidentified, thereby minimizing risks related to734

patient privacy and data confidentiality. The text735

restructuring and disease label generation steps736

use GPT-4 deployed via Azure services, with the737

account explicitly configured to opt out of human738

data review.739

740

While we believe releasing our models and code is741

valuable for advancing research, we emphasize that742

these models are for investigational and educational743

purposes only. They have not received regulatory744

approval for clinical deployment, and medical pro-745

fessionals must retain ultimate responsibility for746

diagnosis and patient management. As with all747

machine learning models, there is an inherent risk748

of errors or hallucinations, and predictions should749

be verified by qualified clinicians. We strongly en-750

courage the community to apply robust validation,751

audits, and clinical oversight when exploring or752

extending our work.753

B Reader Study754

The reader study has been carried out by five755

board-certified radiologists from our institution on756

the annotation platform detailed in Appendix F.757

The following examples and statistics summa-758

rize the textual changes between the original and759

edited impression sections. For each report pair,760

differences were quantified by counting word-761

level insertions, deletions, and replacements. The762

similarity ratio was computed using Python’s763

difflib.SequenceMatcher via764

Similarity Ratio =
2× Matches

Total Tokens in Original and Edited
765

yielding a value between 0 (completely different)766

and 1 (identical).767

Example 1: mimic-53235571768

1 Original Impression:769
2 1. Bibasilar opacities that may be770

related to atelectasis , with a771
differential772

3 including underlying infection ,773
pneumonia , or aspiration.774

4 2. New opacity in the lateral left mid775
lung , nonspecific but potentially776

5 representing additional consolidation777
or pulmonary infarct.778

6 779
7 Edited Impression: 780
8 1. Bibasilar opacities may be related to 781

atelectasis , although underlying 782
9 infection , pneumonia , and/or 783

aspiration is of concern. 784
10 2. New opacity in the lateral left mid 785

lung , nonspecific but potentially 786
11 representing additional consolidation 787

or pulmonary infarct. 788
12 789
13 Diff Stats: 790
14 Insertions: 0, Deletions: 1, 791

Replacements: 9, Similarity Ratio: 792
0.82 793

Example 2: mimic-59654440 794

1 Original Impression: 795
2 1. Resolving consolidation at the right 796

lung base , likely due to dependent 797
3 edema or combined dependent edema and 798

atelectasis. 799
4 2. Mild to moderate enlargement of the 800

heart. 801
5 3. No pneumothorax. 802
6 4. Dual -channel dialysis catheter in 803

situ with the tip in the right 804
atrium. 805

7 806
8 Edited Impression: 807
9 1. Resolving consolidation at the right 808

lung base with minimal residual 809
10 interstitial edema. 810
11 811
12 Diff Stats: 812
13 Insertions: 0, Deletions: 0, 813

Replacements: 35, Similarity Ratio: 814
0.29 815

Impression Statistics 816

1 Total studies reviewed: 233 817
2 Studies with changes: 130 (55.79%) 818
3 Average insertions per study: 0.42 819
4 Average deletions per study: 4.16 820
5 Average replacements per study: 4.50 821
6 Average similarity ratio: 0.77 822

Although 55.79% of the impression exhibited 823

changes, many modifications are subtly reflected by 824

a relatively high overall similarity ratio. However, 825

some reports demonstrate significant edits, under- 826

lining the need for enhanced clarity and precise 827

clinical communication in the impression sections 828

of CXR reports. 829

Findings Statistics 830

1 Total studies reviewed: 233 831
2 Studies with changes: 164 (70.39%) 832
3 Average insertions per study: 4.97 833
4 Average deletions per study: 3.46 834
5 Average replacements per study: 4.64 835
6 Average similarity ratio: 0.88 836
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The analysis reveals that a significant portion of837

the studies (70.39%) underwent modifications, in-838

dicating that changes were applied in the majority839

of the cases. However, the higher average similar-840

ity ratio of 0.88 may suggest that these edits are841

relatively minor. On average, the modifications in-842

volved about 4.97 insertions, 3.46 deletions, and843

4.64 replacements per study, which implies that844

while the impression sections were updated, the845

overall content remains largely consistent with the846

original. This balance indicates that the editing847

process likely focused on refining clarity and pre-848

cision without altering the fundamental diagnostic849

information conveyed in the reports.850

Utterance Label Consistency851

In this experiment, we assess the consistency of852

utterance labels extracted from the GPT models853

and compare them with manually reviewed labels.854

Two metrics are computed:855

1. Exact match GPT’s labels and reviewed la-856

bels are the same.857

2. Jaccard Similarity: The ratio of the size of858

the intersection to the size of the union of the859

GPT’s and reviewed label sets.860

The overall statistics from the evaluation are as861

follows:862

1 Total utterances reviewed: 1609863
2 Matched utterances: 1339864
3 Exact Match Rate: 0.72865
4 Average Jaccard Similarity: 0.74866

These results indicate that, on average, 72% of the867

consensus labels are present in the reviewed labels,868

and there is a 74% overlap between the two label869

sets. The high similarity metrics suggest that the870

consensus approach is effective for capturing the871

expected labels across different sources, thereby872

validating our methodology for robust label extrac-873

tion in utterances.874

C Model Sizes and Hyperparameters875

MAIRA-2 uses an 87M-parameter ViT model, with876

its language model initialized from Vicuna 7B877

v1.5. We evaluated the 3B version of CheXagent-878

2. CheXpert-Plus is a SwinV2-based model with879

a BERT decoder (2 layers), while RaDialoG is a880

7B-parameter model. For fine-tuning SRRG, we881

trained all the weights of CheXpert-Plus and CheX-882

agent, using the default LoRA parameters from the883

Hugging Face PEFT library.884

D Dataset Breakdown of Diseases 885

Table 9: Dataset Breakdown for Upper Labels

Anatomical Header / Category Upper Levels Num. Examples

Lungs and Airways

Consolidation 340,867
Diffuse air space opacity 100,154

Lung Finding 95,122
Air space opacity 47,921

Solitary masslike opacity 40,831
Focal air space opacity 14,222

Segmental collapse 10,685
Multiple masslike opacities 547

Total 650,349

Pleura

Pleural Effusion 173,883
Pneumothorax 56,706

Pleural Thickening 31,210
Pleural finding 7,734

Total 269,533

Cardiovascular

Widened cardiac silhouette 58,189
Vascular finding 20,480

Total 78,669

Hila and Mediastinum

Widened aortic contour 17,513
Mediastinal finding 13,779
Mediastinal mass 5,922

Total 37,214

Musculoskeletal and Chest Wall

Fracture 34,192
Chest wall finding 11,614

Musculoskeletal finding 617

Total 46,423

Abdominal Subdiaphragmatic gas 3,475

Support Devices - 96,274

No Finding - 600,328

E Additional Evaluations 886

E.1 Report Integrity & Semantic Preservation 887

Section CoSim ROUGE-L BLEU Edit Dist

Full 0.95± 0.04 0.54± 0.10 0.20± 0.09 0.11± 0.09
Findings 0.94± 0.02 0.48± 0.06 0.17± 0.09 0.18± 0.15
Impressions 0.89± 0.10 0.51± 0.04 0.21± 0.07 0.51± 0.24

Table 10: Overall Report Transformation Evaluation.
A straightforward, albeit basic, evaluation was carried
out to gauge GPT-4’s capability to preserve report struc-
ture. All scores were computed using both original and
structured embeddings for direct comparison.

In Table 10, the high cosine similarities suggest 888

that the structured reports largely retain the seman- 889

tic meaning of the original reports, with only mi- 890

nor variations. While the lower BLEU (Papineni 891

et al., 2002) scores indicate some lexical differ- 892

ences—expected due to the shift from free-text 893

to structured format—the relatively low edit dis- 894

tance affirms that most of the original content has 895

been preserved. While the structured reports gen- 896

erally preserve the overall content of the original 897

free-form reports, there are noticeable variations 898

in certain sections, particularly in the Impressions. 899

These variations could be attributed to the nature 900
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of the impressions being more interpretative and901

subjective, thus harder to standardize. The findings902

section also shows some variability, likely due to903

efforts GPT-4’s inclination to condense and clarify904

Findings for structured formats.905

Section N K BERT Rank

Findings

5k

10 2.66± 1.52
30 2.62± 1.66
50 2.62± 1.73

100 2.63± 1.82

10k

10 2.66± 1.50
30 2.65± 1.65
50 2.64± 1.69

100 2.64± 1.80

30k

10 2.55± 1.54
30 2.56± 1.38
50 2.60± 1.29

100 2.58± 1.28

Impressions

5k

10 1.04± 0.82
30 1.01± 0.89
50 1.00± 0.92

100 0.97± 0.94

10k

10 1.07± 0.82
30 1.05± 0.90
50 1.04± 0.92

100 1.01± 0.98

30k

10 0.99± 0.83
30 1.00± 0.86
50 1.01± 0.80

100 0.96± 0.79

Table 11: Sentence-level Evaluations w/ BERT. We an-
alyzed utterances in both the Findings and Impressions
sections of all structured reports. The results reinforce
the effectiveness of the structured format in maintain-
ing content order. For instance, considering N utter-
ances and K nearest embeddings, the average rank for
Findings is ≈ 2.6 ± 1.5, while for Impressions it is
≈ 1.0 ± 0.9. This indicates that on average, the sen-
tence positions are close to the top of the list, with
µfind-rank ≈ 5.3 and µimpr-rank ≈ 3.4. These findings sug-
gest that sentences with similar meanings tend to appear
in similar positions, reflecting a consistent structural
transformation. As N increases to 30k, the variance in
ranks decreases, demonstrating a high level of consis-
tency in preserving sentence order.

In Table 11, we aim to determine if the structured906

reports maintain the relative order of semantically907

similar utterances from the original free-form re-908

ports. By using BERT embeddings to represent909

the semantics of each utterance, we compute the910

similarity between all pairs of utterances and finds911

the top K closest embeddings for a set number912

N of utterances. The key hypothesis is that if the913

structuring process preserves the semantic flow of914

the original report, semantically similar utterances915

should maintain a consistent rank order (position)916

across the structured reports. For the findings sec-917

tion, the average number of utterances per report is 918

µfind-rank ≈ 5.3, with a maximum of 12 and a min- 919

imum of 1. This provides a baseline expectation 920

for how varied the content length is within each 921

report. The Findings section appears to preserve 922

the semantic order effectively in structured reports, 923

as indicated by the consistent mean ranks and low 924

standard deviations across various values of N and 925

K. The more data we use, the better the model 926

appears to perform, which could be due to more 927

accurate embeddings from a richer context. 928

The Impressions section has a lower average num- 929

ber of utterances per report at µimpr-rank ≈ 3.4, with 930

a maximum of 9 and a minimum of 1. This sec- 931

tion is typically more concise and often provides a 932

summary or conclusion based on the Findings. The 933

impressions section shows exceptionally strong se- 934

mantic preservation in the structured format, as 935

indicated by the very low mean ranks and low vari- 936

ability. This suggests that the shorter and more stan- 937

dardized nature of impressions lends itself well to 938

consistent structuring – likely due to the standard- 939

ized and concise nature of impression statements 940

in radiology reports. 941

Section N ROUGE-L Rank

Findings
5k 3.05± 1.77
10k 2.95± 1.81
30k 3.00± 1.88

Impressions
5k 0.36± 0.12
10k 0.38± 0.14
30k 0.46± 0.16

Table 12: Utterance Pair Evaluations w/ ROUGE-L.
This table presents the average ranks for utterances in
the Findings and Impressions sections across different
numbers of utterances. For the ROUGE-L metric, which
evaluates similarity in terms of longest common sub-
sequences, the Findings section retains a considerable
amount of original content, the Impressions section does
so with higher precision.

Another method for calculating similarity is us- 942

ing ROUGE-L (Lin, 2004) and RadGraph (Jain 943

et al., 2021), but we now instead apply these met- 944

rics to individual pairs of utterances. We average 945

the positions for utterances with ROUGE scores 946

≥ 90% (Table 12) or with RadGraph annotations 947

that match 100% (Table 13). 948

In the Findings section, the reports are typically 949

longer and contain more detailed information about 950

observed conditions. The variability in length and 951

content presents a challenge for maintaining ex- 952

act semantic matches in a structured format. The 953
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Section N RadGraph Rank

Findings
500 2.35± 1.21
1k 2.23± 1.14
5k 2.22± 1.00

Impressions
500 0.51± 0.12
1k 0.51± 0.11
5k 0.53± 0.12

Table 13: Utterance Pair Evaluations w/ RadGraph.
This table provides an assessment of RadGraph anno-
tations across various utterances in the Findings and
Impressions sections. The RadGraph metric focuses on
critical clinical entities and relationships. For the Find-
ings section the metric indicates a reasonable degree of
content retention. In the impressions section, the mean
ranks are significantly lower with even tighter standard
deviations, demonstrating very strong preservation of
clinical information. These results highlight the struc-
tured format’s strength in maintaining essential clinical
content, particularly in the concise and standardized im-
pressions section.

mean ranks for ROUGE-L hover around 3 for all954

N values, with slight variations. The standard de-955

viations are relatively high, around 1.8, indicating956

some variability in how well structured reports cap-957

ture the original text’s content. This suggests that958

while the structured format retains most of the con-959

tent, there is some loss or rephrasing that leads960

to lower ROUGE-L scores. The consistent mean961

rank around 3 suggests a middle-ground retention962

of information, implying neither a perfect nor poor963

match. Mean ranks for RadGraph annotations are964

lower, ranging from about 2.2 to 2.3 with stan-965

dard deviations around 1.0 to 1.2. This suggests966

better preservation of critical clinical information967

when focusing on RadGraph-specific annotations.968

The lower mean ranks and tighter standard devi-969

ations indicate that while the structured reports970

might rephrase or condense information, they ef-971

fectively retain the essential clinical entities and972

relationships. The Findings section shows a rea-973

sonable degree of information preservation in the974

structured format, especially concerning critical975

clinical information, as indicated by the RadGraph976

results. However, ROUGE-L scores suggest some977

content and structural alterations, which could be978

due to varying report lengths and content densities.979

In juxtaposition, the impressions section typically980

provides a concise summary of the key findings,981

leading to shorter and more standardized text. This982

brevity allows for a more straightforward com-983

parison between original and structured reports.984

Mean ranks for ROUGE-L in impressions are sig-985

nificantly lower (around 0.35 to 0.46) compared 986

to the findings section, with lower standard de- 987

viations (0.12 to 0.16). This indicates that struc- 988

tured reports in the impressions section retain a 989

high degree of textual similarity to the original re- 990

ports. The low mean ranks suggest that when a 991

high ROUGE threshold is applied, the structured 992

impressions are almost exact matches in terms of 993

the textual content, further reinforcing the effective- 994

ness of structured formatting in this section. Mean 995

ranks for RadGraph annotations are even lower, 996

ranging from 0.5 to 0.53 with very low standard 997

deviations (around 0.1 to 0.12). This indicates near- 998

perfect preservation of clinical information in struc- 999

tured reports for the impressions section. The very 1000

low mean ranks and minimal variability highlight 1001

the structured format’s strength in capturing the 1002

essence of the impressions section without losing 1003

key clinical relationships. The Impressions section 1004

demonstrates exceptionally high levels of content 1005

retention in structured reports, as indicated by both 1006

ROUGE-L and RadGraph metrics. The structured 1007

format effectively preserves critical clinical infor- 1008

mation, making it potentially highly reliable for 1009

conveying key findings concisely and accurately. 1010
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Structuring Prompt

Your task is to improve the formatting of a radiology report, ensuring it is clear, concise, and
well-structured with appropriate section headings.
Guidelines:

1. Section Headers: Each section should begin with a section header followed by a colon.
Include only the relevant information as specified.

2. Identifiers: Remove any sentences containing identifiers such as dates, surnames, first names,
healthcare providers, vendors, or institutions. Important: Retain sex and age information if
present.

3. Findings and Impression Sections: Focus exclusively on the current examination results.
Do not reference previous studies or historical data.

4. Content Restrictions: Strictly include only content relevant to the structured sections
provided. Do not add or extrapolate beyond the original report.

Sections to Include (if applicable):

1. Exam Type: Specify the type of examination conducted.

2. History: Provide a brief clinical history and state the clinical question or suspicion prompting
the imaging.

3. Technique: Describe the examination technique and any specific protocols used.

4. Comparison: Indicate prior imaging studies reviewed for comparison.

5. Findings: List all positive and relevant negative observations for each organ system under
structured headers.

Template for Findings:
Header 1:
- Observation 1
- ...
Header 2:
- Observation 1
- Observation 2
- ...
...

Use only the following headers for organ systems:

• Lungs and Airways

• Pleura

• Cardiovascular

• Hila and Mediastinum

• Tubes, Catheters, and Support Devices

• Musculoskeletal and Chest Wall

• Abdominal

• Other

Important: Do not use any headers other than those listed above. Only use the specified headers
corresponding to the organ systems mentioned in the original radiology report.
6. Impression: Summarize the key findings in a numbered list, ranking them from most to least
clinically relevant.
The radiology report to improve is the following:
{}
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Diseases prompt

Your task is to identify the diseases discussed in chest X-ray findings. You will be provided with:
1) Instructions
2) A list of possible diseases
3) A list of chest X-ray findings

1) Instructions: Your task is to provide the following:

a) The diseases that are present as a numbered list. There can be zero, one, or multiple diseases
discussed. If no disease is present or discussed in a finding, answer: "1. No Finding" for
that finding.

b) The status of the disease discussed. The status can be:

• Present: The disease is confirmed to be present in the patient.
• Absent: The disease is confirmed to be not present in the patient.
• Uncertain: It is unclear whether the disease is present or absent, often due to inconclusive

test results or insufficient information.

Below is the template to provide your answer. You must respect this format and not provide any
explanations or additional content:

<finding 1> => 1. <disease 1> (Present) 2. <disease 2> (Uncertain)
<finding 2> => 1. <disease 1> (Absent)
...

2) List of possible diseases:

• No Finding

• Lung Lesion

• Edema

• Pneumonia

• Atelectasis

• Lung collapse

• Perihilar airspace opacity

• Air space opacity–multifocal

• Mass/Solitary lung mass

• Nodule/Solitary lung nodule

• Cavitating mass with content

• Cavitating masses

• Emphysema

...

3) List of chest X-ray findings (one per line):
{}
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Diseases Tree

1. No Finding
2. Lung Finding

2.1. Lung Opacity
2.1.1. Air space opacity

2.1.1.1. Diffuse air space opacity
2.1.1.1.1. Edema

2.1.1.2. Focal air space opacity
2.1.1.2.1. Consolidation

2.1.1.2.1.1. Pneumonia
2.1.1.2.1.2. Atelectasis
2.1.1.2.1.3. Aspiration

2.1.1.2.2. Segmental collapse
2.1.1.2.2.1. Lung collapse

2.1.1.2.3. Perihilar airspace opacity
2.1.1.3. Air space opacity–multifocal

2.1.2. Masslike opacity
2.1.2.1. Solitary masslike opacity

2.1.2.1.1. Mass/Solitary lung mass
2.1.2.1.2. Nodule/Solitary lung nodule
2.1.2.1.3. Cavitating mass with content

2.1.2.2. Multiple masslike opacities
2.1.2.2.1. Cavitating masses

2.2. Emphysema
2.3. Fibrosis
2.4. Pulmonary congestion
2.5. Hilar lymphadenopathy
2.6. Bronchiectasis

3. Pleural Finding
3.1. Pneumothorax

3.1.1. Simple pneumothorax
3.1.2. Loculated pneumothorax
3.1.3. Tension pneumothorax

3.2. Pleural Thickening
3.2.1. Pleural Effusion

3.2.1.1. Simple pleural effusion
3.2.1.2. Loculated pleural effusion

3.2.2. Pleural scarring
3.3. Hydropneumothorax
3.4. Pleural Other

4. Widened Cardiac Silhouette
4.1. Cardiomegaly
4.2. Pericardial effusion

5. Mediastinal Finding
5.1. Mediastinal Mass

5.1.1. Inferior mediastinal mass
5.1.2. Superior mediastinal mass

5.2. Vascular Finding
5.2.1. Widened aortic contour

5.2.1.1. Tortuous Aorta
5.2.2. Calcification of the Aorta
5.2.3. Enlarged pulmonary artery

5.3. Hernia
5.4. Pneumomediastinum
5.5. Tracheal deviation

6. Musculoskeletal Finding
6.1. Fracture

6.1.1. Acute humerus fracture
6.1.2. Acute rib fracture
6.1.3. Acute clavicle fracture
6.1.4. Acute scapula fracture
6.1.5. Compression fracture

6.2. Shoulder dislocation
6.3. Chest wall finding

6.3.1. Subcutaneous Emphysema
7. Support Devices

7.1. Suboptimal central line
7.2. Suboptimal endotracheal tube
7.3. Suboptimal nasogastric tube
7.4. Suboptimal pulmonary arterial catheter
7.5. Pleural tube
7.6. PICC line
7.7. Port catheter
7.8. Pacemaker
7.9. Implantable defibrillator
7.10. LVAD
7.11. Intraaortic balloon pump

8. Upper Abdominal Finding
8.1. Subdiaphragmatic gas

8.1.1. Pneumoperitoneum
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F Reader Study Platform1011

Figure 5: This figure illustrates our reader study annotation workflow. At the top, the radiologist sees the original
report (left), the GPT-generated structured report (middle), and an editable text box (right). At the bottom, after
validating the structured report, the radiologist annotates each utterance. The labels for these utterances are pre-filled
based on the GPT model’s consensus. Throughout this process, the radiologist can consult both the edited report
and a disease tree to guide the labeling.
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