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ABSTRACT

Offline-to-online reinforcement learning starts with pre-trained offline models and1

continuously learns via interacting with the environment in online mode. The2

challenge of it is to adapt to distribution drift while maintaining the quality of the3

learned policy simultaneously. We propose a novel policy regularization method4

that aims to automatically fine-tune the model by selectively increasing the average5

estimated Q-value in the sampled batches. As a result, our models maintain the6

performance of the pre-trained model and improve it, unlike methods that require7

learning from scratch. Furthermore, we added efficient O(1) complexity replay8

buffer techniques to adapt to distribution drift efficiently. Our experimental results9

indicate that the proposed method outperforms state-of-the-art methods on the10

D4RL benchmark.11

1 INTRODUCTION12

Traditionally, training and evaluation for Reinforcement learning (RL) is conducted in an online13

fashion while interacting with the environment (Silver et al., 2017; Todorov et al., 2012; Mnih et al.,14

2013; Silver et al., 2014; Fujimoto et al., 2018; Haarnoja et al., 2018). However, in many real-world15

problems, it is inefficient or infeasible to build simulators or models of the environments. Learning16

from randomly initialized policy is risky and dangerous in many domains, e.g., healthcare, industrial17

control, and trading.18

Batch or offline reinforcement learning methods (Levine et al., 2020; Lange et al., 2012) learn from19

p logged interactions which are stored as replay buffers (Lin, 1992). It requires no interaction with20

the environment during training, and it resembles most real-world use cases where there is existing21

data that could be treated as prior knowledge. In such settings, it is typical to have no accurate22

or reliable simulators of the environment. Exploration is limited for the offline approach because23

of the extrapolation errors induced by out-of-distribution (OOD) action selection. Thus, offline24

approaches tend to regularize the policy with behavioral policy or pessimistically underestimate the25

values (Fujimoto et al., 2019; Kumar et al., 2020; Fujimoto & Gu, 2021).26

Offline-to-online (O2O) reinforcement learning could further improve the performance of the pre-27

trained offline model with online learning. Nonetheless, avoiding policy collapse and adapting to the28

distribution drift at the beginning of the transition is challenging. Many previous methods (Zheng et al.,29

2023; Lee et al., 2022; Zhang et al., 2023) could achieve better policies than their pre-trained offline30

models but suffer from policy collapse. It means the models could not maintain the performance of31

existing pre-trained offline models. Instead, they suffer a sudden decrease in performance or even32

learn from scratch at the beginning of the transition from offline to online. Safe RL methods (Laroche33

et al., 2019; Scholl et al., 2022) might be assumed to solve the aforementioned problem due to their34

safe policy improvement techniques. However, the key limitation is that all these papers assume35

the ability to interact with the environment and behavior policy to accurately estimate the baseline36

performance. In offline RL, we do not have access to interact with the environment or behavior policy.37

We only have a fixed batch of logged data. Without environmental interaction, we cannot reliably38

estimate the baseline performance. Therefore, these papers do not directly apply in an offline setting.39

New methods are needed to constrain policy updates without relying on accurate baseline estimates40

from the environment.41
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We propose a novel regularization method in policy learning to selectively maximize the difference42

between the mean value of the sampled batch to a previous mean reference value. The key insight43

of our method is to train the agent to yield a policy that generates transitions with a higher average44

Q-value as training continues when the value function network is not converging and learns like a45

conservative offline model when the value network is converging. We also adopt previously proposed46

methodologies in experience replay buffers: combined experience replay (CER) (Zhang & Sutton,47

2017) to include the latest transition and remove the oldest policy (Fedus et al., 2020) by using a48

smaller replay buffer. We use a bootstrapped ensemble Q-network with an outlier filtering technique49

for more accurate value estimation to reduce the uncertainty encountered during the distribution drift.50

To summarize, our contributions are:51

• We design a novel regularization method in policy learning to automatically decide if we52

want to maximize the average Q-value of the replay buffer to accelerate the O2O learning53

with a value convergence constraint.54

• We incorporate replay-buffer techniques in O2O to adapt to the distribution drift: CER and55

removing the oldest policy with O(1) costs.56

• Q-network outlier filtering to stabilize the Q-value estimation in ensemble learning.57

• Our method requires fewer assumptions and is more efficient. It requires no information58

on the expert or random agent performance, does not re-train offline models and does not59

require extra models except for the pre-trained offline model.60

2 RELATED WORK61

2.1 OFFLINE RL62

In many real-world settings, we have access to data generated with an existing ‘behavioral’ policy63

when there are no established simulators of the environment. These logged interactions are saved64

as experience replay buffers. Offline RL learns exclusively from existing static datasets without65

interacting with an environment. Due to the lack of accurate value estimation of OOD actions,66

these methods learn a more conservative policy or a pessimistic lower bound of the true value67

function. BCQ (Fujimoto et al., 2019) mitigates the extrapolation errors induced by OOD actions68

via a variational autoencoder. BEAR (Kumar et al., 2019) uses ensemble Q-functions to reduce69

the accumulation of bootstrapping errors. BRAC (Wu et al., 2019) regularizes the learned policy70

towards the behavioral policy with a KL divergence constraint between the distributions over actions.71

CQL (Kumar et al., 2020) learns a lower bound of the true Q-function with SAC (Haarnoja et al.,72

2018)-style entropy regularization. TD3+BC (Fujimoto & Gu, 2021), derived from TD3 (Fujimoto73

et al., 2018), uses a behavioral cloning regularization for policy learning. UWAC (Wu et al., 2021)74

down-weights the OOD state-action pairs’ contribution to the training. Swazinna et al. (2022)75

presents a method to let the user adapt the policy behavior after training is finished. Ghosh et al.76

(2022) proposes an adaptive offline method in a Bayesian sense involves solving an implicit POMDP77

(Partially Observed Markov Decision Process). In this study, we specifically concentrate on the78

evaluation and comparison of model-free reinforcement learning methods. Our aim is to delve into79

the performance, robustness, and scalability of model-free approaches in addressing the distribution80

drift while no models or simulators are built. While acknowledging the significance of model-based81

methods, we deliberately limit our investigation to model-free algorithms to provide a comprehensive82

understanding of their capabilities in isolation.83

2.2 OFFLINE-TO-ONLINE RL84

Offline-to-Online RL follows the assumption of offline RL where there is no access to the simulator85

of the system. However, we could further improve the model with online interactions since the pure86

offline method cannot yield accurate value estimation of the OOD state-action values. Hence, the87

goal is to enhance the capability of the model with online training without learning from scratch as in88

the traditional online setting.89
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2.2.1 RL WITH OFFLINE DATA90

Previous studies focus on RL boosted with offline data. One branch in this research area is RL with91

Expert Demonstrations (RLED) with the assumption that a pre-trained offline model may not be92

necessary. APID (Kim et al., 2013) leverages few and/or sub-optimal demonstration data that is used93

as suggestions to guide the optimization performed by approximate policy iteration. DQfD (Hester94

et al., 2018) leverages demonstration data to accelerate the online learning process. Piot et al.95

(2014) proposes a method to minimize the optimal Bellman residual guided by constraints defined by96

the expert demonstrations. Recently, RLPD (Ball et al., 2023) extends standard off-policy RL and97

achieves state-of-the-art online performance on a number of tasks using offline data not limited to98

expert prior knowledge (Ball et al., 2023). This branch of research is different from our study in that99

we focus on fine-tuning the pre-trained offline models and not training the models from scratch with100

offline data to accelerate the learning.101

2.2.2 ONLINE FINE-TUNING WITH OFFLINE PRE-TRAINING102

Another branch, which is similar to our proposed method, assumes we fine-tune offline models in103

online settings to adapt to distribution drift. AWAC (Nair et al., 2020) trains an advantage-weighted104

actor-critic with an implicit policy constraint to avoid over-conservative behavior. Balanced replay is105

a method with a balanced replay between offline and online buffers, a pessimistic Q-ensemble (Lee106

et al., 2022), and a density ratio estimator to improve sample efficiency and prevent over-optimism.107

PEX (Zhang et al., 2023) freezes the pre-trained offline model, expands the policy set with the108

fine-tuning model, and constructs a categorial distribution for selecting the final action. APL (Zheng109

et al., 2023) obtains near-on-policy data and chooses an optimistic update strategy. On the other110

hand, it uses a pessimistic update strategy for sampled offline data. REDQ+ABC (Zhao et al., 2022)111

uses randomized ensemble Q-functions to increase sample efficiency and adaptive hyperparameter112

tuning to adjust the degree of behavioral policy regularization with a normalized target episode113

reward. ACA (Yu & Zhang) introduces a reconstruction of Q-functions for online fine-tuning as an114

alignment step so it is tamed to be consistent. TD3-C (Luo et al., 2023) considers conservative policy115

optimization as the approach for stabilizing finetuning when the offline dataset lacks diversity. (Hong116

et al., 2022) propose to learn a condition-adaptive policy that could adjust the degree of conservatism117

using online interaction.118

Unfortunately, the aforementioned offline-to-online methods need at least one of the following119

requirements that makes them resource-consuming (Yu & Zhang; Zhao et al., 2022; Lee et al.,120

2022; Luo et al., 2023): Changing the offline training processes (requires re-training of the offline121

models), introducing additional models other than existing ones, and maintaining multiple buffers.122

Other methods require information on absolute scores of expert and random agents that may not be123

accessible. Many suffer policy collapse at the very beginning of the transition from offline mode124

to online mode. Our method requires fewer assumptions, is efficient (single replay buffer, no extra125

models), but still outperforms other methods.126

3 BACKGROUND127

RL problems are formulated as a Markov Decision Process (MDP), a sequential decision-making128

problem that aims to maximize the discounted accumulative rewards. The MDP consists of a129

tuple: M = (S,A,P, r, γ), where S is the state space, A is the action space, P is the transition130

dynamics. The next state st+1 ∼ p(·|st, at) is decided by the current state and the action selected131

by a policy π(a|s), π : S → A either in a stochastic or a deterministic fashion. The reward function132

R : S × A → R, r ∈ R is mapped as a scalar, and the discount factor γ ∈ [0, 1). The agent’s goal133

is to optimize the policy to maximize the discounted accumulated return Eπ[
∑∞

t=0 γ
trt] (Sutton &134

Barto, 2018).135

3.1 OFFLINE TRAINING136

In offline training, the replay bufferD is generated by an unknown behavioral policy (or a combination137

of multiple policies) πβ(s). Then, the offline model aims to learn the optimal policy without138

interacting with the environment within the confined state-action visitations. Thus, when the trained139
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offline RL policy is deployed in the real environment, any OOD actions may lead to inaccurate value140

estimation due to extrapolation errors.141

Our method builds on TD3+BC, which is an offline version of TD3 (Fujimoto et al., 2018) with142

minimal modification from its online version. The learned policy is regularized with a behavior143

cloning term:144

π = argmax
π

E(s,a)∼D[λQ̄(s, π(s))− (π(s)− πβ(s))
2], λ =

α
1
N

∑
(si,ai)

|Q(si, ai)|
(1)

Where N is the size of the minibatch, Q̄ is the average Q-value in the sampled batch given s and145

π(s), πβ(s) denotes the behavioral policy given s, and α is a hyperparameter to balance between the146

online exploration and the exploitation of the behavioral policy.147

4 METHODOLOGY148

4.1 INCREASED SIMPLE MOVING AVERAGE Q-VALUE149

Our method ISMAQ (Increased Simple Moving Average of Q-value) is simple and straightforward150

– it aims to learn a policy that yields an increasing simple moving average (SMA) Q-value in the151

sampled batch compared to a previous reference SMA. We use SMA instead of the vanilla average152

since the average Q-value in the batch is noisy due to random sampling and inherited uncertainty153

within the models. The timestep difference between the current SMA and the reference SMA is154

a hyperparameter to be optimized; it depends on how rapidly the value estimation varies. If we155

simply use greedy Q-value increment, it would lead to abrupt performance fluctuations when Q-value156

estimation is uncertain while encountering unseen environment state-action distributions. Thus, we157

add safe constraints to conservatively train the models when observing decreased Q-SMA.158

4.1.1 OBSERVATION AND INSIGHT159

To develop ISMAQ, we conduct preliminary experiments to gain some insights into the episodic160

average Q-value progression with fine-tuning of pre-trained TD3+BC models with online interactions,161

i.e. pre-trained TD3+BC models convert to TD3 online training.162

Specifically, we add up all the averaged Q-values of the sampled batches at each timestep i for Q̄Bi .163

Then, when an episode ends at time te we store the episodic average Q̄e = 1
te

∑te
i=1 Q̄Bi

. Finally,164

we plot the average episodic mean Q-values over time in Fig. 1 (where the solid blue curves are the165

average values, and the shaded regions are the min/max range).166

We observe that the average Q-value increases as training proceeds for buffers with lower behavioral167

policy performance (i.e. medium buffers). For the expert task, the model is unable to learn a better168

policy to yield a higher estimated Q-value during the training, i.e., the value estimation converges (Sil-169

ver, 2015). This result is consistent with the mean episode return in the main experiments we shall170

present later.171

Figure 1: The average Q-value in the sampled batches in each episode of training.

4.1.2 AVERAGED Q-VALUE IN REPLAY BUFFERS172

Based on the observation in Sec. 4.1.1, we argue that a sub-optimal agent will yield a higher average173

Q-value estimate in the replay buffer with further online learning that leads to policy improvement. It174

could be proved by the following:175
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With policy improvement, the value function correspondingly improves based on the standard policy176

improvement theorem (see Appendix B).177

Lemma: An improved policy will yield a higher randomly sampled average Q-value from the replay178

buffer.179

Proof : Consider the Q-learning Watkins & Dayan (1992) update rule:180

Q(s, a)← Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a))

where Q(s, a) is the Q-value for the state-action pair (s,a), α is the learning rate, r is the immediate181

reward, γ is the discount factor, s′ the next state, a′ the next action. π′ is an improved policy over π.182

The improved policy π′ selects actions that, on average, lead to higher expected returns.183

Qπ′
(s, a) = Qπ(s, a) + α(r + γmax

a′
Qπ′

(s′, a′)−Qπ(s, a))

184

max
a′

Qπ′
(s′, a′) ≥ max

a′
Qπ(s′, a′)

185

Qπ′
(s, a) ≥ Qπ(s, a)

It implies that an improved policy π′ will yield a higher expected Q-value than the original policy (π)186

for the state-action pair (s, a). The proof holds for any randomly sampled state-action pair from the187

replay buffer, demonstrating that the improved policy results in higher randomly sampled average188

Q-values.189

4.1.3 ISMAQ IMPLEMENTATION190

Auto-tuned ISMAQ191

As we can observe in Fig. 1, the trace of the episodic average Q-value is noisy while the Q-SMA is192

more stable. Thus, we introduce the simple moving average of the average Q-values to yield a more193

statistically meaningful metric for the model. Our method uses the pre-trained TD3+BC models as194

the initialized policy without the requirement to modify the offline training. To apply our method on195

TD3+BC, we modify the policy update from equation 1 with the added loss term LISMAQ:196

LISMAQ = ReLU

(
Q̄t

SMA − Q̄t−d
SMA

Q̄t
SMA + Q̄t−d

SMA

)
(2)

where t is the current timestep, and d is the difference between the current timestep and the reference197

timestep. ReLU is the rectified linear unit activation function which automatically tunes this term198

based on the difference of the Q-SMA between the reference timestep and current timestep and our199

ensemble-Q:200

Q̄(s, π(s)) =
1

2K

2∑
j=1

K∑
i=1

Qi,j(s, π(s)) (3)

where i is the ith ensemble-Q in K, and j is the jth Q-network in double Q-network of TD3. And201

the SMA for the timestep t:202

Q̄SMAt =
Q̄t + Q̄t+1 + ...+ Q̄t+w

w
(4)

where w is the window size we use for calculating the SMA. Thus, the policy update follows:203

π = argmax
π

E(s,a)∼D[λQ̄(s, π(s))− (π(s)− πβ(s))
2 + ξLISMAQ] (5)

where w is the window size for calculating the SMA, and ξ is a hyper-parameter for co-efficient of204

LISMAQ. With the ReLU activation function, the added loss term is bounded, i.e. LISMAQ ∈ [0, 1].205

In Fig. 2, the black curve represents ISMAQ with only greedily adding the exploration term (Eq. 2206

without ReLU). It degrades the model performance when unseen state-action distribution is en-207

countered. However, by adding the ReLU as a safe constraint in the exploration term, we could208

conservatively maintain the current performance of the agent to yield a more reliable and stable209

policy.210
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Figure 2: Adding the ReLU activation helps stabi-
lize the model training

Q-network Outlier Filtering211

We also observe that the weak models in the212

Q-ensemble substantially harm the models’ per-213

formance during the training (see Fig. 3). Thus,214

we impose a constraint to remove the outlier dur-215

ing the policy update: First, we get the average216

of the Q-value estimates among the ensemble217

Q-networks. Then, we find the models with the218

largest absolute difference between the mean219

and itself. Finally, we exclude the particular220

model in the policy update 1. As a result, the221

policy training is more robust after the filtering222

(see Fig. 4, detailed description is in Appendix C).223

Figure 3: Outlier Q-network impacts on the
critic losses
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Figure 4: Comparison between Q-ensemble
models with and without the outlier.

To summarize, ISMAQ optimizes the policy by identifying if the current SMA of the averaged224

Q-value is higher than a previous reference SMA. If so, we encourage the policy to maximize this225

loss term. Otherwise, when the current SMA is lower than the reference value, we keep the actor226

loss as is since it means the Q-value is converging, i.e., leave it learning as the original offline model,227

which is conservatively trained with online transitions.228

4.2 ADAPTING TO DISTRIBUTION DRIFT229

Another critical challenge in O2O transition is the distribution drift. Previously, several methods230

are proposed to accelerate RL learning by utilizing replay buffers (Zhang & Sutton, 2017; Schaul231

et al., 2016; Fedus et al., 2020). We found some of them are suitable to deal with the distribution232

drift in the O2O setting. The first one we adopt is the combined experience replay (CER) (Zhang &233

Sutton, 2017), which adds the latest transition to the sampled batch and could speed up the learning.234

Intuitively, it forces the model to learn from the latest state-action distribution of the environment235

combined with the previous ones. The other technique we adopt is removing the oldest transition236

in the buffer faster by setting a smaller number of transitions stored in the replay buffer since it is237

implemented in queues (Fedus et al., 2020). When a policy is learning and improving, the transitions238

generated by the old policies might harm the convergence of the model due to its inferior performance239

cf. the current policy. Especially in off-policy settings, we learn from the behavioral policy via240

replay buffer. Observations from our experiments (Sec. 5.3) indicate that the performance of the241

models consistently improves with the reduced age of the oldest policy (Fedus et al., 2020). These242

two techniques both could be implemented with minimal changes with only O(1) time complexity243

without modifying the algorithm itself, which is efficient and reasonable in O2O training. We detail244

all the steps of our method in Algorithm 1.245

4.3 ENSEMBLE LEARNING246

Due to the need for exploring uncharted state-action spaces, most previous O2O studies take advantage247

of certain kinds of ensemble learning. However, most previous methods require random initialization248

for ensemble models to leverage. It is time-consuming to re-train the offline model and not reasonable249

to learn from scratch when pre-trained model is available. Thus, we use a more efficient method by250

bootstrapping K ensemble double-Q networks via different combinations of the randomly sampled251

1number of models excluded, ke could be tuned as a hyperparameter, in our experiments we use ke = 1
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batches in each iteration. To utilize the nature of the double Q-learning inherited in TD3+BC, we252

have a total of 2K estimated average Q-values in each training iteration and then average over them253

as the final value estimation for policy training (see Eq. 3).254

5 EVALUATION255

5.1 MAIN RESULTS256

The main goal of offline-to-online RL is to maintain the pre-trained models’ performance and contin-257

uously improve it as online training proceeds. We conduct the benchmark experiments with several258

state-of-the-art methods in MuJoCo (Todorov et al., 2012) control tasks with OpenAI gym (Brockman259

et al., 2016) environments. We compare our method with the following algorithms including the260

baseline method transitioning to online in different settings:261

• REDQ+ABC (Zhao et al., 2022): It combines the randomized ensemble Q-functions to262

improve sample efficiency along with a proportional-derivative (PD) controller to tune the263

hyperparameter of the weight of the behavioral cloning term α in Eq. 1 with a target score264

and current episodic return.265

• Balanced Replay (Lee et al., 2022): It trains an ensemble of pairs of CQL (Kumar et al.,266

2020) actor-critic agents with a prioritized buffer mixed with online and offline buffers and267

density ratios models.268

• TD3+BC to TD3 1 to TD3 (Fujimoto et al., 2018): With the baseline method, we directly269

convert the offline TD3+BC to TD3 by removing the behavior cloning term shown in Eq. 1270

at the beginning of the offline-to-online training.271

• PEX (Zhang et al., 2023): A policy expansion approach that adaptively composes a frozen272

behavioral policy and a learnable policy.273

As we observe in Fig. 5, our method ISMAQ not only maintains the proficiency of the pre-trained274

models but also improves upon them as training advances. From the experimental results in Table 1,275

our method outperforms other state-of-the-art methods in a sum of the first-10 and the last-10276

evaluation scores over 12 tasks. 2 It also empirically demonstrates that in most of the tasks, the model277

is still learning when we interrupt our experiments at 250K steps as shown in Fig. 1. While walker2d-278

expert and walker2d-medium-expert could be possibly improved, however, for other methods, they279

failed to learn a better policy. In the case of hopper-expert, the model performance saturates, but280

ISMAQ successfully maintains policy performance while other methods fail to do so.281

Table 1: Normalized scores averaged with 4 random seeds with the first-10 and the last-10 evaluation
scores and overall sum, the left column of each algorithm indicates the first-10 scores, and the right
column shows the last-10. Bold font highlights scores with the highest among all. (hc:halfcheetah,
ho:hopper, wa:walker2d, e:expert, m:medium, r:replay, all on D4RL v2.)

Task ISMAQ REDQ+ABC PEX Balanced Replay TD3+BC_TD3
hc-e 95.2 99.4 93.6 101.7 34.9 93.5 11.7 75.9 13.8 92.6

hc-m-e 79.5 99.4 91.7 104.4 49.3 90.3 63.6 100.4 54.8 96.6
hc-m 56.0 93.3 50.1 99.4 47.7 65.4 71.3 99.9 58.6 89.9

hc-m-r 51.2 83.0 46.3 95.6 45.5 54.3 63.4 96.4 50.3 78.9
ho-e 111.0 111.6 101.3 109.3 18.8 66.1 31.2 93.3 43.7 107.9

ho-m-e 86.7 111.9 90.6 101.3 32.0 75.2 35.1 98.7 72.1 108.6
ho-m 90.7 103.7 59.8 110.8 35.5 92.0 93.1 103.0 86.8 105.5

ho-m-r 90.7 110.0 68.4 106.7 61.7 89.8 12.2 29.4 85.5 109.5
wa-e 103.7 124.4 110.2 115.1 23.5 101.5 3.9 73.1 15.5 109.0

wa-m-e 111.9 123.0 110.5 112.1 71.5 110.0 4.57 89.4 48.7 115.4
wa-m 88.1 116.6 82.5 117.4 63.9 85.6 5.3 82.5 39.4 98.6

wa-m-r 88.2 113.8 80.3 112.7 74.4 88.6 73.4 101.2 69.7 100.3

Sum 1053.5 1289.9 986.0 1286.5 558.9 1012.3 468.7 1043.4 638.7 1212.7
2343.4 2272.5 1571.2 1512.1 1851.4

2In the "Sum" row of Table 1, the scores before "/" show the sum of first-10 and last-10, and the scores after
"/" show total improvement from the pre-trained model’s scores.
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Figure 5: Learning curves comparison: All scores are normalized with expert policy as 100 and
random policy as 0 standardized by D4RL (Fu et al., 2020) dataset. Solid lines and shaded regions
represent mean and range, respectively.

5.2 SENSITIVITY ANALYSIS282

We experiment on how ISMAQ’s hyperparameter variation affects the model performance. In our283

method, there are three hyperparameters:3284

Figure 6: Weight of ISMAQ exp.
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Figure 7: Number of ensemble-Q exp.

The weight ξ of the LISMAQ term in policy learning (Eq. 5) controls how greedily the model285

should increase the averaged Q-values. Intuitively, we assume it is beneficial to set it to be larger for286

low-quality buffers and smaller for high-quality buffers. In Fig. 6 it shows that with a smaller weight287

of the ISMAQ term (ξ=1), the learning is slower compared with other values, while the largest one288

(ξ=15) might be beneficial to medium-replay buffer but harmful to expert buffer. We set ξ = 7 in all289

our experiments.290

The number of ensemble models K in Eq. 3 decides how many Q-networks are trained in the value291

estimation. It affects the consumed computation resources and the variance between runs. Changing292

the number of the ensemble model does not necessarily affect the model’s performance. However,293

with more models to decide the value estimation, the variance of the model’s score is smaller. (see294

Fig. 7).295

The timestep difference d from the current timestep t to the previous reference point t−d is described296

in Eq. 2. It might depend on the speed of how Q-value increments in the environment. But it is297

3We keep the window size of SMA as the same as d throughout all the experiments.
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mainly affected by the second derivative of the mean Q-value indicated in Fig. 1. Since the distance298

to the reference point might vary, the reference value is also calculated with SMA. Thus, the current299

value and the reference value are both Q-SMA. Both of them are stable with an optimized window300

size for SMA. Hence, the adjustment of the hyperparameter d will not affect the model performance301

significantly. Thus, in Fig. 8 shows the difference between varied d is not obvious.302

5.3 ABLATION EXPERIMENT303
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Figure 8: Timestep difference exp.

We conduct a series of experiments to show how each spe-304

cific add-on influences learning. Our design of the exper-305

iment is to remove one enhancement at a time to compare306

to our full ISMAQ implementation and demonstrate the307

difference between the ablated methods. We chose the308

medium buffer since it is generated by a more monotonic309

and inferior policy than others. As the experimental results310

shown in Fig. 9, we could observe that without ISMAQ,311

the learning is the slowest among all other methods, espe-312

cially for the hopper-medium environment. Then deleting old policies, as concluded by (Fedus et al.,313

2020) , reducing the age of the oldest behavioral policy generally improves the performance of the314

off-policy models. The difference between removing CER and the ensemble model is not obvious,315

however, empirically it indicates they are both beneficial to the models’ performance overall.316

Figure 9: Ablation experiment: We remove the enhancement one at a time to observe how each one
affects the model’s performance. (no ISMAQ means the loss term of Eq. 2 is removed.)

6 CONCLUSION AND DISCUSSION317

We propose a novel policy regularization method maximizing the simple moving average of the318

mean Q-value in the sampled batch in each timestep of training, with low-cost experience replay319

techniques to adapt distribution drift and improve sample efficiency with Q-ensemble. Extensive320

experimental results indicate that our method ISMAQ outperforms other state-of-the-art methods in321

the early offline-to-online transitions and the final learning scores.322

The limitation of our method is that it relies on the accuracy of the Q-value prediction. Also, the323

initial policy’s performance also limits our model’s capability. However, we argue if the pre-trained324

models are not well- performed and/or the replay buffer is generated by ill-performed agents, it is325

unreasonable to fine-tune with these models. Instead, we should train online models from scratch.326

Additionally, ISMAQ has not been evaluated with stochastic MDPs. The MuJoCo benchmarks only327

use deterministic state transitions. The stochastic selection of initial states is not sufficient to be328

considered as stochastic MDPs (Mannor & Tamar, 2023). With our current work, we use a simple329

bootstrapped Q-ensemble to calculate the average based on all the ensemble’s predictions. To improve330

from this, the distributional method could be applied and/or with critic losses’ confidence level as331

uncertainty penalties. We will open-source our codes for research purposes.332
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APPENDIX437

A EXPERIMENT DETAILS438

In this section, we record the software configuration, algorithm implementation, hardware con-439

figuration, training/evaluation details, and the hyperparameters settings in our experiments for440

reproducibility.441

• Software442

– Python: 3.9.12443

– Pytorch: 1.12.1+cu113 (Paszke et al., 2019)444

– Numpy: 1.23.1 (Van Der Walt et al., 2011)445

– CUDA: 11.2446

• Algorithm implementation447

– TD3: Author-provided implementation448

– TD3+BC: Author-provided implementation449

– REDQ+ABC: Author-provided implementation450

– Balanced Replay: Author-provided implementation451

– CQL: d3rlpy452

– PEX: Author-provided implementation453

• Hardware454

– CPU: Intel Xeon Gold 6230 (2.10 GHz)455

– GPU: NVidia RTX A6000456

• Training and evaluation details457

– Offline pre-training: 1M timesteps458

– Online fine-tuning: Training: 250K timesteps, evaluation frequency: 1K, number of459

evaluation episodes: 10460

– Replay buffer sizes: Downsample D4RL’s original sizes with 5% following the461

REDQ+ABC’s (Zhao et al., 2022) settings.462
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A.1 PERFORMANCE OF PRE-TRAINED OFFLINE MODELS463

Table 2: Average scores of pre-trained offline models.

Task/Algo. ISMAQREDQ_ABC PEX Off2OnRLTD3+BC_TD3
halfcheetah-expert-v2 97.6 96.9 64.9 -1.9 97.6

halfcheetah-medium-expert-v2 93.7 95.4 74.1 37.2 93.7
halfcheetah-medium-v2 48.0 48.7 41.8 58.2 48.0

halfcheetah-medium-replay-v2 45.2 44.1 43.9 68.7 45.2
hopper-expert-v2 111.5 109.6 14.0 16.9 111.5

hopper-medium-expert-v2 80.1 99.9 5.5 94.9 80.1
hopper-medium-v2 61.1 53.6 13.6 1.8 61.1

hopper-medium-replay-v2 49.6 81.5 76.3 75.7 49.6
walker2d-expert-v2 110.4 115.9 22.1 6.8 110.4

walker2d-medium-expert-v2 110.8 116.3 67.9 0.1 110.8
walker2d-medium-v2 82.1 78.8 74.9 87.3 82.1

walker2d-medium-replay-v2 84.1 72.8 57.3 -0.1 84.1
Sum 974.4 1013.5 556.1 445.4 974.4

A.2 ISMAQ ALGORITHM464

Algorithm 1: ISMAQ online fine-tuning
Load pre-trained offline model as K ensemble double-Q networks {Qi,θ1 , Qi,θ2}Ki=1, actor network πϕ,

with random parameters {θi,1, θi,2}Ki=1, ϕ, target networks {θ′i,1 ← θi,1, θ
′
i,2 ← θi,2}Ki=1, ϕ′← ϕ, policy

update frequency f , horizon T , replay buffer B
for t = 0 to T do

Select actions with exploration noise
a ∼ πϕ(s) + ϵ, ϵ ∼ N (0, σ)
Observe reward r and next state s′

Store transition t = (s, a, r, s′)
Delete the oldest one in B (Remove the oldest policy)
for i = 1 to K do

Sample N transitions (s, a, r, s′) from B in which t ⊆ B (CER)
ã← πϕ′(s′) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)
y ← r + γminj=1,2 Qθ′i,j

(s′, ã)

Update critics
θi,j ← argminθi,j

N−1 ∑(y −Qθi,j (s, a))
2

if t mod f then
Update ϕ by policy gradient:
Policy update follows Eq. 2, 3, 4, and 5(Ensemble-Q and ISMAQ)
Calculate∇ϕJ(ϕ)
Update target networks:
for i = 1 to K do

θ′i,j ← τθi,j + (1− τ)θ′i,j
ϕ′ ← τϕ+ (1− τ)ϕ′

465

A.3 GENERALIZATION EXPERIMENT466

To further study how to generalize our approach in different settings, we conduct the experiments467

to add ISMAQ in a pure online setting (see also Appx. D.1 and D.2 for pure offline and CQL468

experiments). The experimental results shown in Fig. 10 indicate that combining ISMAQ with CER469

and deleting old policy (TD3_ISMAQ_All4) could outperform TD3 in all three environments and470

is more efficient than only adding ISMAQ. Without including the latest transition in the sampled471

batch during training, the algorithm does not use information from the value estimated by the value472

network and the actions selected by the policy network.473

4For fair comparison, we do not include ensemble-Q in this experiment.
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Figure 10: Online experiment: We add our enhancements onto TD3 in online training, and compare
to its baseline method - TD3.

B POLICY IMPROVEMENT THEOREM474

Proof (Silver, 2015):475

Given a policy π476

vπ(s) = E[Rt+1 + γRt+2 + ...|St = s]

π′ = greedy(vπ). Consider a deterministic policy a = π(s), improve it by acting greedily with477

respect to vπ478

π′(s) = argmax
a∈A

qπ(s, a)

it improves the value from any state s over one step:479

qπ(s, π
′(s)) = max

a∈A
qπ(s, a) ≥ qπ(s, π(s)) = vπ(s)

Hence, the value function is improved, i.e., vπ′(s) ≥ vπ(s)480

vπ(s) ≤ qπ(s, π
′(s)) = Eπ′ [Rt+1 + γvπ(St+1)|St = s]

≤ Eπ′ [Rt+1 + γqπ(St+1, π
′(St+1))|St = s]

≤ Eπ′ [Rt+1 + γRt+2 + γ2qπ(St+2, π
′(St+2))|St = s]

≤ Eπ′ [Rt+1 + γRt+2 + ...|St = s] = vπ′(s)

C Q-NETWORK OUTLIER FILTERING481

During the policy training, for each k Q-network in all K ensemble models, we use the sampled482

s and the selected actions a = π(s) to get the estimated Q-values Qk(s, a). Thus, we could483

calculate the mean Q-value among all the ensemble models to get Q̄(s, a). Then we use argmax484

to get the model with the maximum absolute difference from the mean and exclude that model, i.e.485

argmaxk{
∑N

i=1 |Q̄ki
(s, a)−Qki

(s, a)|}, where N is the size of minibatch.486

D ADDITIONAL GENERALIZATION EXPERIMENTS487

D.1 CQL + ISMAQ488

To test if the generalization of ISMAQ we add our enhancement on another representative offline-RL489

method: CQL (Kumar et al., 2020). We conduct experiments on CQL-DB. It follows the CQL490

training but with dynamic buffers. And CQL-ISMAQadded on CQL-DB. We directly add our loss491

term in Eq. 2 on their actor loss as the following equation:492

ϕt := ϕt−1 + ηπEs∼D,a∼πϕ(|̇s) [Qθ(s, a)− log πϕ(a|s) + ξLISMAQ] (6)

The experimental result in Fig. 11 indicates that ISMAQ improves CQL’s in general. However, the493

amount of improvement is limited. Given the stochasticity nature of CQL, during the training the494

agent might generate a set of more explorative transitions than deterministic ones. Thus, the average495

Q-value in the buffer might not be a well-defined metric combined with ISMAQ.496
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Figure 11: Experiment with CQL finetuning and CQL with ISMAQ

Task CQL_ISMAQ_DB CQL_DB
hc-e-v2 1.74 89.34 2.34 91.35
ho-e-v2 47.45 100.48 52.43 93.86
w-e-v2 11.61 81.85 11.43 63.08

hc-m-v2 68.88 98.8 68.86 97.29
ho-m-v2 87.57 71.25 85.26 73.82
w-m-v2 10.05 56.75 8.73 49.77

Sum 725.77 698.22

D.2 OFFLINE EXPERIMENT497

We conduct the experiments to add ISMAQ into pure offline training and as expected there is only498

negligible improvement cf. the baseline method TD3+BC. Since the buffer is static, there is no499

exploration involved to improve the performance substantially (see Fig. 12)500

Figure 12: Offline experiment: We add our ISMAQ onto TD3+BC in offline training, and compare it
with the baseline method TD3+BC, averaged over 3 seeds for both methods.
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Table 3: Offline experiment score table

Task TD3_BC_ISMAQTD3_BC
hc-e-v2 96.88 96.7

hc-m-e-v2 88.72 91.08
hc-m-r-v2 45.3 44.47
hc-m-v2 49.66 48.15
ho-e-v2 108.4 104.98

ho-m-e-v2 99.7 96.13
ho-m-r-v2 60.97 56.81
ho-m-v2 60.3 59.2
wa-e-v2 110.37 110.09

wa-m-e-v2 110.41 110.45
wa-m-r-v2 78.3 77.68
wa-m-v2 84.2 83.99

Sum 993.21 979.73

D.3 ANTMAZE AND ADROIT EXPERIMENTS501

We have also conducted experiments on Antmaze and Adroit tasks as a reference. PEX demonstrates a502

higher score in these tasks. However, with all the MuJoCo tasks considered, ISMAQ still outperforms503

other benchmarks.504

Table 4: Normalized scores of Antmaze and Adroit environments

Task/Algo. ISMAQPEXREDQ_ABCTD3+BC_TD3
pen-human-v1 -3.4 90.0 -2.1 -3.0

relocate-human-v1 -0.3 2.9 -0.3 -0.3
hammer-human-v1 0.2 2.1 0.3 0.3

antmaze-large-diverse-v2 0.0 1.4 0.0 0.0

E MODEL PARAMETERS505

We list the hyperparameters used (for TD3, TD3+BC, and our ISMAQ) in this paper for reproducibility.506

We keep the original hyperparameters setups as the authors’ implementations since DRL methods are507

sensitive to hyperparameter tuning (Henderson et al., 2018) (see Table 5).508

Table 5: ISMAQ, TD3, TD3+BC hyperparameters

Hyperparameter Value
Optimizer Adam (Kingma & Ba, 2014)
Critic learning rate 3e−4

Actor learning rate 3e−4

Mini-batch size 256
Discount factor 0.99

Algorithm hyperparameters Target update rate 5e−3

Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2
Weight of BC term (α) 2.5
Weight of ISMAQ(ξ) 7
Number of ensemble-Q (K) 10
Window for SMA (w) 500
Reference SMA distance (d) 500
Critic hidden dimension 256
Critic hidden layers 2
Critic activation function ReLU

Network architecture Actor hidden dimension 256
Actor hidden layers 2
Actor activation function ReLU
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