nanoT5: A PyTorch Framework for Pre-training and Fine-tuning
TS-style Models with Limited Resources

Piotr Nawrot
University of Edinburgh
https://github.com/PiotrNawrot/nanoT5

Abstract

State-of-the-art language models like T5 have
revolutionized the NLP landscape, but their
computational demands hinder a large por-
tion of the research community. To address
this challenge, we present nanoT3, a specially-
optimized PyTorch framework for efficient pre-
training and fine-tuning of TS5 models. Drawing
on insights from optimizer differences and pri-
oritizing efficiency, nanoT5 allows a T5-Base
model to be pre-trained on a single GPU in
just 16 hours, without any loss in performance.
With the introduction of this open-source frame-
work, we hope to widen the accessibility to
language modelling research and cater to the
community’s demand for more user-friendly
T5 (Encoder-Decoder) implementations. We
make our contributions, including configura-
tions, codebase, pre-training insights, and pre-
trained models, available to the public.

1 Introduction

The transformative power of large pre-trained lan-
guage models such as GPT-3 (Brown et al., 2020),
T5 (Raffel et al., 2019), and PaLM (Chowdhery
et al., 2022) is undeniable. However, their massive
computational requirements remain a barrier for
many researchers. Notably, models like T5 require
extensive datasets and significant computational
resources for their pre-training (Raffel et al., 2019).
Furthermore, many open-source implementations
lean heavily on TPU accelerators (Shazeer, 2020),
which are not as available to the academic commu-
nity as GPUs.

Recognizing this gap, we introduce nanoT5, a
resource-efficient, open-source PyTorch framework
designed for the pre-training and fine-tuning of TS
models. Inspired by pioneering efforts such as
nanoGPT (Karpathy, 2021) and Cramming (Geip-
ing and Goldstein, 2022), nanoT5 uniquely con-
centrates on enhancing the training pipeline specif-
ically for T5 encoder-decoder models. Our frame-
work includes optimized configurations and scripts,

enabling researchers to pre-train a T5-Base model
with 248M parameters on a single GPU in just 16
hours. Every facet, from data preprocessing and
model architecture to the learning rate schedule,
has been tuned for both efficiency and adaptabil-
ity. With nanoT5, users can seamlessly initiate
model pre-training within minutes of accessing our
GitHub repository.

This paper underscores two main innovations:
First, we delve into the nuances between the Adam
and Adafactor optimizer performances as detailed
in (Havinga), suggesting a version of AdamW
(Loshchilov and Hutter, 2017), augmented with
matrix-wise learning rate scaling based on root
mean square. This variant showcases better speed
and robustness compared to the default Adafactor
(Shazeer and Stern, 2018). Second, we demon-
strate that TS5 models trained with nanoT5, housing
around 250M parameters, can achieve performance
akin to the publicly-available checkpoints while
requiring 150x less pre-training data.

Our primary motivation stems from the grow-
ing demand for reproducible and tuned baselines
(Kaddour et al., 2023), enabling fast and small-
scale hypothesis validation in the evolving realm
of large pre-trained Transformers. With nanoT5,
we address a gap highlighted by community re-
quests '23, providing an approachable platform
for working with T5 (Encoder-Decoder) archi-
tecture. To our understanding, nanoT5 pioneers
the effort to reproduce TS5 v1.1 pre-training us-
ing PyTorch, deviating from prior Jax/Flax im-
plementations. We invite the community to ex-
plore our training configurations, codebase, and
pre-trained models, all of which are available at
https://github.com/PiotrNawrot/nanoT5.

1 https://github.com/google-research/text-to-text-transfer-transformer/issues/172
zhttps://github.Com/huggingface/transformers/issuesﬁ 8030

3https://github.t:om/huggingface/transFormers/issues/5079

https://github.com/PiotrNawrot/nanoT5
https://github.com/PiotrNawrot/nanoT5

2 Related Work

The landscape of open-source repositories tailored
for efficient pre-training of Transformer language
models is vast. Notably, nanoGPT (Karpathy,
2021) sheds light on decoder-only models, while
Cramming (Geiping and Goldstein, 2022) homes
in on the optimal pre-training of the encoder-only
BERT architecture (Devlin et al., 2019). Contrast-
ingly, with nanoT5, we sought to bridge the exist-
ing gap by providing a standalone research tem-
plate tailored for the T5-style (Encoder-Decoder)
models.

To expedite the training process of nanoT5 we
incorporated various optimizations. These encom-
pass mixed precision training (Micikevicius et al.,
2017), compiled runtimes (Narang et al., 2021),
and more. Additionally, we delved into the po-
tential of efficient training methodologies such as
recent optimizers (Chen et al., 2023; Liu et al.,
2023), and fast attention mechanism (Dao et al.,
2022), which are elaborated further in Section 4.3.
It’s crucial to note that while we evaluated various
efficient algorithms, we consciously opted against
those, such as (Nawrot et al., 2022; Shazeer et al.,
2017), that would modify the core model structure.
Instead, our intent with nanoT5 was to cultivate
a straightforward baseline for further research en-
deavors. The standout contribution of our work in
terms of efficient training algorithms is the AdamW
variant, with the RMS matrix scaling, which im-
proves TS pre-training convergence.

3 Methodology

Our validation strategy seeks to replicate the T5-
base pre-training outcomes detailed in (Shazeer,
2020) and the fine-tuning results of Tk-Instruct on
the Super Natural-Instructions (SNI) meta-dataset
(Wang et al., 2022).

3.1 Training pipeline

We’ve devised a comprehensive training pipeline
prioritizing efficient data management, low-level
optimizations, and coding simplicity, all while pre-
serving the core model and training logic:

* Dataset Handling: Given the extensive vol-
ume of the C4 dataset, which exceeds 300GB,
our repository implements concurrent data
downloading with model training. This op-
timization speeds up the commencement of
TS5 model pre-training to a few minutes.

* Exposure and Simplicity: Our methodology
aims to strike a balance between adaptability
and abstraction. With tools such as the Hug-
gingFace Accelerator (Sylvain Gugger, 2022),
we abstract tasks like checkpoint management
and tensor operations. Experiment tracking is
realized via neptune.ai (Neptune team, 2019),
and we’ve employed hydra (Yadan, 2019) for
coordinated hyperparameter handling.

 Efficiency: We’ve leveraged the optimiza-
tions of PyTorch 2.0 (Paszke et al., 2019),
and employed mixed-precision training in line
with established optimization guidelines *°.

* Flexibility: Our repository is designed with
adaptability in mind, offering support for
multi-GPU training, gradient accumulation,
and gradient checkpointing. This ensures
users can reproduce our results on a variety of
GPUs beyond the A100 and can experiment
with configurations larger than the T5-base
size emphasized in this study. Additionally,
we provide support for both CPUs and Ap-
ple’s ARM M1 chips.

3.2 Pre-training

Our experiments strictly follow the T5-v1.1-base
training configuration (Shazeer, 2020), where the
model itself comprises of roughly 248M parame-
ters. The C4 dataset (Raffel et al., 2019), sourced
directly from Huggingface, undergoes tokeniza-
tion via the Wordpiece tokenizer (Schuster and
Nakajima, 2012), with the original model’s vocab-
ulary. During pre-processing, 15% of input data
is masked using sentinel tokens, setting the neural
network’s target as the prediction of these tokens,
leveraging its decoder. Consistent with the origi-
nal study, we’ve set the batch size at 128 examples,
with inputs of 512 tokens and outputs of 114 tokens.
Optimization is facilitated through the Adafactor
optimizer (Shazeer and Stern, 2018), combined
with the Inverse-Square-Root (ISR) learning rate
schedule. The model is trained for 216 steps. For
more details please refer to the original work.

3.3 Fine-tuning

Our fine-tuning employs the Super Natural-
Instructions (SNI) meta-dataset (Wang et al., 2022),
which has been previously used for fine-tuning

4https://huggingface. co/docs/transformers/perf_train_gpu_one

5https://pytv.)rch.org/tutorials/recipes/recipes/tuning,guide.html

SNI Rouge-L test

nanoTs + RougeL=40.7
-=- t5v1_l-base :RougeL=40.9
--- t5-base-im-adapt : RougeL=42.1

20 24

Figure 1: Downstream performance of models across
various pre-training durations, including existing T5-
base variants accessible through Huggingface Hub.

models like FlanT5 (Chung et al., 2022), BLOOM
(Scao et al., 2022), and Tk-Instruct (Wang et al.,
2022). To assess the correctness of our fine-tuning
setup, and the efficiency of our pre-training, we
decided to reproduce the Tk-Instruct methodology.

3.4 Reproducibility

Ensuring that our work can be reliably replicated is
a core focus of our methodology. To facilitate this,
we have taken the following measures:

* Model Weights: We make the model’s
weights available on the HuggingFace Hub.
These can be downloaded and used for fine-
tuning on the SNI dataset with nanoT5.

* Loss Curves: We openly share both the pre-
training and fine-tuning loss curves to provide
insight into the model’s learning dynamics.

* Hyperparameters: All hyperparameters used
in our experiments have been released.

* Environment and Hardware: In our reposi-
tory we offer comprehensive instructions on
how to recreate our environment, including de-
tailed information about our hardware. This
encompasses specifications of our CPU and
GPU, as well as the relevant driver versions.

* Statistical Robustness: To ensure the validity
of our results, each experiment was conducted
three times with different random seeds.

4 Results
4.1 Reproducing Pre-Training

By following the original experimental setup
described above, we achieved a negative log-
likelihood of 1.995 on the held-out set, which is
slightly inferior to the reference.

0 10000 20000 30000 40000 50000 60000
aining ste]

Figure 2: Training loss curves contrasting different opti-
mizers and learning rate schedules.

In exploring alternative optimization methods,
we tested the AdamW optimizer as a potential
replacement for the original Adafactor. While
AdamW theoretically promises greater training sta-
bility by directly estimating the second moment
of the gradients (as opposed to Adafactor’s low-
rank approximation), our training with AdamW
diverged. This behavior mirrors findings from a
study on T5 pre-training (Havinga). Upon further
investigation, we identified that matrix-wise learn-
ing rate (LR) scaling using its root mean square
(RMS) ® was the crucial element ensuring Adafac-
tor’s convergence. After augmenting AdamW with
this extra LR scaling, which we will refer to as
RMS scaling, it not only converged but also exhib-
ited improved stability during pre-training and op-
erated slightly faster, thanks to the direct retrieval
of the second moment from memory instead of
approximating it.

Nonetheless, when combined with the Inverse-
Square-Root LR schedule, AdamW'’s performance
was still outpaced by Adafactor. By replacing
the ISR schedule with a Cosine LR Schedule,
we achieved a superior negative log-likelihood of
1.953 on the held-out set, significantly surpassing
Adafactor with the ISR schedule. The specific re-
sults of these experiments can be found in Table
2. A comparison of the training loss curves using
different optimizers (Adafactor vs. AdamW) and
schedules (ISR vs. Cosine) is provided in Figure 2.

4.2 Fine-Tuning Performance Across
Different Pre-Training Durations

Our fine-tuning configuration strictly aligns with
that of Tk-Instruct. However, there remains some
ambiguity regarding whether Tk-Instruct was ini-
tialized from a regular checkpoint (google/t5-v1_1-
base) or from a version specifically tailored for Lan-

6 For more details please refer to (Shazeer and Stern, 2018), Section 8, titled "Relative Step Size"

Mixed Precision | Torch 2.0 compile | Grad Acc | Time per 1 Pre-training step | Total Pre-training time
FP32 No 2 ~4.10s ~T74.6h
TF32 No 2 ~1.39s ~25.3h
BF16 No 2 ~1.30s ~23.7h
TF32 Yes 2 ~0.95s ~17.3h
BF16 Yes 1 ~0.56s ~10.2h

Table 1: Efficiency metrics across various configuration settings during pre-training, with the "Total Pre-training
Time" column referencing 2'6 steps following the default config.

Inverse-Square-Root | Cosine
Adafactor 1.995 1.993
AdamW 2.040 1.953

Table 2: Comparison of negative log-likelihood scores
on the held-out set of C4 using different optimization
methods and learning rate schedules.

guage Modelling (google/t5-base-lm-adapt). To
cover all bases, we evaluated both, and success-
fully reproduced the original results.

Figure 1 presents a performance comparison of
the model we trained in various time increments
(ranging from 4 to 24 hours) against the original T5-
base-v1.1 model weights from Huggingface Hub
and its language modeling-adapted version. No-
tably, our model, trained for 16 hours on a single
GPU, lagged by only 0.2 RougeL on average com-
pared to the original T5-base-v1.1. This is an im-
pressive result given the vast disparity in training
data (the T5 paper indicates training on approxi-
mately 150x more data than we did). The language
modeling-adapted checkpoint outperformed both
the original T5-base-v1.1 model and ours, but this
language modeling model adaptation extends be-
yond the scope of this study. A single fine-tuning
step in our setup took approximately 0.18s, culmi-
nating in roughly an hour for the entire fine-tuning
process.

4.3 Efficiency Statistics

Table 1 showcases the efficiency metrics from our
pre-training experiments. It details the time taken
for a single pre-training step and the overall pre-
training time based on our default configuration
desribed in Section 3.2. A noteworthy observation
is that, because of the large batch size (128) used
for pre-training, for numerical precisions other than
BF16 we need to increase the number of gradient
accumulation steps from 1 to 2.

Attempts at Boosting Efficiency In our pursuit
of efficiency, we experimented with various strate-

gies, albeit with limited success:

* Optimization Algorithms: We assessed the
performance of recent optimizers like Lion
(Chen et al., 2023) and Sophia (Liu et al.,
2023). However, neither outperformed the
AdamW with RMS scaling.

* Positional Embeddings: We tried replacing
T5’s learned relative positional embeddings
with ALiBi (Press et al., 2021). Although
such a switch had the potential to reduce the
number of parameters, leading to faster train-
ing and inference rates, and paving the way
for integrating Flash Attention (Dao et al.,
2022) (currently limited to non-parametric
bias), our trials revealed that training with AL-
iBi was more volatile and yielded suboptimal
pre-training loss.

* FP16 Precision: Unfortunately, all our at-
tempts using FP16 precision consistently di-
verged.

5 Conclusions

In this study, we demonstrated the feasibility of
pre-training a substantial model like TS5 under re-
source constraints, specifically using a single A100
GPU within a 24-hour timeframe. Through selec-
tion of optimization methods and configurations,
we achieved results comparable to large-scale train-
ing settings. Our intention in sharing the codebase,
configurations, and training logs is to bridge the
gap between research accessibility and computa-
tional resource limitations in the NLP domain. We
invite and welcome community suggestions to fur-
ther refine and enhance our approach.

Moving forward, we aim to enrich our code-
base by incorporating additional training objectives,
such as those suggested by (Tworkowski et al.,
2023; Tay et al., 2022), in hopes of further opti-
mizing the training pipeline.

Acknowledgements

This work was supported by the UKRI Centre for
Doctoral Training in Natural Language Processing,
funded by the UKRI (grant EP/S022481/1) and
the University of Edinburgh, School of Informatics
and School of Philosophy, Psychology & Language
Sciences.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real,
Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V.
Le. 2023. Symbolic discovery of optimization algo-
rithms. ArXiv, abs/2302.06675.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao,
Parker Barnes, Yi Tay, Noam M. Shazeer, Vinod-
kumar Prabhakaran, Emily Reif, Nan Du, Benton C.
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pillai,
Marie Pellat, Aitor Lewkowycz, Erica Moreira, Re-
won Child, Oleksandr Polozov, Katherine Lee, Zong-
wei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathleen S.
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. ArXiv, abs/2204.02311.

Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph,
Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Dasha
Valter, Sharan Narang, Gaurav Mishra, Adams Wei
Yu, Vincent Zhao, Yanping Huang, Andrew M.
Dai, Hongkun Yu, Slav Petrov, Ed Huai hsin Chi,

Jeff Dean, Jacob Devlin, Adam Roberts, Denny
Zhou, Quoc V. Le, and Jason Wei. 2022. Scal-
ing instruction-finetuned language models. ArXiv,
abs/2210.11416.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and
Christopher R’e. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
ArXiv, abs/2205.14135.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. ArXiv, abs/1810.04805.

Jonas Geiping and Tom Goldstein. 2022. Cramming:
Training a language model on a single gpu in one day.
ArXiv, abs/2212.14034.

Yeb Havinga. Pre-training dutch t5 models.

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale
Minervini, and Matt J. Kusner. 2023. No train
no gain: Revisiting efficient training algorithms
for transformer-based language models. ArXiv,
abs/2307.06440.

Andrej Karpathy. 2021. nanogpt. https://github.
com/karpathy/nanoGPT. GitHub repository.

Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy
Liang, and Tengyu Ma. 2023. Sophia: A scal-
able stochastic second-order optimizer for language
model pre-training. ArXiv, abs/2305.14342.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Frederick Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, and Hao Wu. 2017. Mixed preci-
sion training. ArXiv, abs/1710.03740.

Sharan Narang, Hyung Won Chung, Yi Tay, William
Fedus, Thibault Févry, Michael Matena, Karishma
Malkan, Noah Fiedel, Noam M. Shazeer, Zhenzhong
Lan, Yanqi Zhou, Wei Li, Nan Ding, Jake Marcus,
Adam Roberts, and Colin Raffel. 2021. Do trans-
former modifications transfer across implementations
and applications? ArXiv, abs/2102.11972.

Piotr Nawrot, Jan Chorowski, Adrian La’ncucki, and
E. Ponti. 2022. Efficient transformers with dynamic
token pooling. In Annual Meeting of the Association
for Computational Linguistics.

Neptune team. 2019. neptune.ai.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,

https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:256846990
https://api.semanticscholar.org/CorpusID:256846990
https://api.semanticscholar.org/CorpusID:247951931
https://api.semanticscholar.org/CorpusID:247951931
https://api.semanticscholar.org/CorpusID:249151871
https://api.semanticscholar.org/CorpusID:249151871
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:255185900
https://api.semanticscholar.org/CorpusID:255185900
https://huggingface.co/spaces/yhavinga/pre-training-dutch-t5-models
https://api.semanticscholar.org/CorpusID:259847436
https://api.semanticscholar.org/CorpusID:259847436
https://api.semanticscholar.org/CorpusID:259847436
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://api.semanticscholar.org/CorpusID:258841030
https://api.semanticscholar.org/CorpusID:258841030
https://api.semanticscholar.org/CorpusID:258841030
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:3297437
https://api.semanticscholar.org/CorpusID:3297437
https://api.semanticscholar.org/CorpusID:232035936
https://api.semanticscholar.org/CorpusID:232035936
https://api.semanticscholar.org/CorpusID:232035936
https://api.semanticscholar.org/CorpusID:253581399
https://api.semanticscholar.org/CorpusID:253581399
https://neptune.ai/

Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Pro-
cessing Systems 32, pages 8024-8035. Curran Asso-
ciates, Inc.

Ofir Press, Noah A. Smith, and Mike Lewis. 2021. Train

short, test long: Attention with linear biases enables
input length extrapolation. ArXiv, abs/2108.12409.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-

ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the
limits of transfer learning with a unified text-to-text
transformer. ArXiv, abs/1910.10683.

Teven Le Scao, Angela Fan, Christopher Akiki,

Elizabeth-Jane Pavlick, Suzana Ili’c, Daniel Hesslow,
Roman Castagn’e, Alexandra Sasha Luccioni, Franc-
cois Yvon, Matthias Gallé, Jonathan Tow, Alexan-
der M. Rush, Stella Rose Biderman, Albert Web-
son, Pawan Sasanka Ammanamanchi, Thomas Wang,
Benoit Sagot, Niklas Muennighoff, Albert Villanova
del Moral, Olatunji Ruwase, Rachel Bawden, Stas
Bekman, Angelina McMillan-Major, Iz Beltagy, Huu
Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz
Suarez, Victor Sanh, Hugo Laurenccon, Yacine Jer-
nite, Julien Launay, Margaret Mitchell, Colin Raf-
fel, Aaron Gokaslan, Adi Simhi, Aitor Soroa Etx-
abe, Alham Fikri Aji, Amit Alfassy, Anna Rogers,
Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou,
Chris C. Emezue, Christopher Klamm, Colin Leong,
Daniel Alexander van Strien, David Ifeoluwa Ade-
lani, Dragomir R. Radev, Eduardo Gonz’alez Pon-
ferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar
Natan, Francesco De Toni, Gérard Dupont, Germén
Kruszewski, Giada Pistilli, Hady ElSahar, Hamza
Benyamina, Hieu Trung Tran, Ian Yu, Idris Abdul-
mumin, Isaac Johnson, Itziar Gonzalez-Dios, Javier
de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu,
Jonathan Chang, Jorg Frohberg, Josephine L. To-
bing, Joydeep Bhattacharjee, Khalid Almubarak,
Kimbo Chen, Kyle Lo, Leandro von Werra, Leon
Weber, Long Phan, Loubna Ben Allal, Ludovic Tan-
guy, Manan Dey, Manuel Romero Mufioz, Maraim
Masoud, Mar’ia Grandury, Mario vSavsko, Max
Huang, Maximin Coavoux, Mayank Singh, Mike
Tian-Jian Jiang, Minh Chien Vu, Mohammad Ali
Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora
Kassner, Nurulaqilla Khamis, Olivier Nguyen, Omar
Espejel, Ona de Gibert, Paulo Villegas, Peter Hen-
derson, Pierre Colombo, Priscilla Amuok, Quentin
Lhoest, Rheza Harliman, Rishi Bommasani, Roberto
L’opez, Rui Ribeiro, Salomey Osei, Sampo Pyysalo,
Sebastian Nagel, Shamik Bose, Shamsuddeen Has-
san Muhammad, Shanya Sharma, S. Longpre, So-
maieh Nikpoor, Stanislav Silberberg, Suhas Pai, Syd-
ney Zink, Tiago Timponi Torrent, Timo Schick, Tris-
tan Thrush, Valentin Danchev, Vassilina Nikoulina,
Veronika Laippala, Violette Lepercq, Vrinda Prabhu,
Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin
Heinzerling, Chenglei Si, Elizabeth Salesky, Sab-
rina J. Mielke, Wilson Y. Lee, Abheesht Sharma, An-
drea Santilli, Antoine Chaffin, Arnaud Stiegler, Deba-

jyoti Datta, Eliza Szczechla, Gunjan Chhablani, Han
Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan
Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Sai-
ful Bari, Maged S. Al-shaibani, Matteo Manica, Ni-
hal V. Nayak, Ryan Teehan, Samuel Albanie, Sheng
Shen, Srulik Ben-David, Stephen H. Bach, Taewoon
Kim, Tali Bers, Thibault Févry, Trishala Neeraj, Ur-
mish Thakker, Vikas Raunak, Xiang Tang, Zheng Xin
Yong, Zhiqing Sun, Shaked Brody, Y Uri, Hadar
Tojarieh, Adam Roberts, Hyung Won Chung, Jae-
sung Tae, Jason Phang, Ofir Press, Conglong Li,
Deepak Narayanan, Hatim Bourfoune, Jared Casper,
Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia
Zhang, Mohammad Shoeybi, Myriam Peyrounette,
Nicolas Patry, Nouamane Tazi, Omar Sanseviero,
Patrick von Platen, Pierre Cornette, Pierre Franc-
cois Lavall’ee, Rémi Lacroix, Samyam Rajbhan-
dari, Sanchit Gandhi, Shaden Smith, Stéphane Re-
quena, Suraj Patil, Tim Dettmers, Ahmed Baruwa,
Amanpreet Singh, Anastasia Cheveleva, Anne-Laure
Ligozat, Arjun Subramonian, Aur’elie N’ev’eol,
Charles Lovering, Daniel H Garrette, Deepak R.
Tunuguntla, Ehud Reiter, Ekaterina Taktasheva, Eka-
terina Voloshina, Eli Bogdanov, Genta Indra Winata,
Hailey Schoelkopf, Jan-Christoph Kalo, Jekate-
rina Novikova, Jessica Zosa Forde, Xiangru Tang,
Jungo Kasai, Ken Kawamura, Liam Hazan, Ma-
rine Carpuat, Miruna Clinciu, Najoung Kim, New-
ton Cheng, Oleg Serikov, Omer Antverg, Oskar
van der Wal, Rui Zhang, Ruochen Zhang, Sebastian
Gehrmann, S. Osher Pais, Tatiana Shavrina, Thomas
Scialom, Tian Yun, Tomasz Limisiewicz, Verena
Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada
Pruksachatkun, Yonatan Belinkov, Zachary Bam-
berger, Zdenvek Kasner, Alice Rueda, Amanda Pes-
tana, Amir Feizpour, Ammar Khan, Amy Faranak,
Ananda Santa Rosa Santos, Anthony Hevia, Antig-
ona Unldreaj, Arash Aghagol, Arezoo Abdollahi,
Aycha Tammour, Azadeh HajiHosseini, Bahareh
Behroozi, Benjamin Olusola Ajibade, Bharat Kumar
Saxena, Carlos Muiioz Ferrandis, Danish Contrac-
tor, David M. Lansky, Davis David, Douwe Kiela,
Duong Anh Nguyen, Edward Tan, Emily Baylor, Ez-
inwanne Ozoani, Fatim T Mirza, Frankline Onon-
iwu, Habib Rezanejad, H.A. Jones, Indrani Bhat-
tacharya, Irene Solaiman, Irina Sedenko, Isar Ne-
jadgholi, Jan Passmore, Joshua Seltzer, Julio Bonis
Sanz, Karen Fort, Livia Macedo Dutra, Mairon Sama-
gaio, Maraim Elbadri, Margot Mieskes, Marissa Ger-
chick, Martha Akinlolu, Michael McKenna, Mike
Qiu, M. K. K. Ghauri, Mykola Burynok, Nafis
Abrar, Nazneen Rajani, Nour Elkott, Nourhan Fahmy,
Olanrewaju Samuel, Ran An, R. P. Kromann, Ryan
Hao, Samira Alizadeh, Sarmad Shubber, Silas L.
Wang, Sourav Roy, Sylvain Viguier, Thanh-Cong
Le, Tobi Oyebade, Trieu Nguyen Hai Le, Yoyo Yang,
Zachary Kyle Nguyen, Abhinav Ramesh Kashyap,
Alfredo Palasciano, Alison Callahan, Anima Shukla,
Antonio Miranda-Escalada, Ayush Kumar Singh,
Benjamin Beilharz, Bo Wang, Caio Matheus Fon-
seca de Brito, Chenxi Zhou, Chirag Jain, Chuxin
Xu, Clémentine Fourrier, Daniel Le’on Perin’an,
Daniel Molano, Dian Yu, Enrique Manjavacas, Fabio

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://api.semanticscholar.org/CorpusID:237347130
https://api.semanticscholar.org/CorpusID:237347130
https://api.semanticscholar.org/CorpusID:237347130
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007

Barth, Florian Fuhrimann, Gabriel Altay, Giyased-
din Bayrak, Gully A. Burns, Helena U. Vrabec,
Iman L.B. Bello, Isha Dash, Ji Soo Kang, John
Giorgi, Jonas Golde, Jose David Posada, Karthi
Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa
Shinzato, Madeleine Hahn de Bykhovetz, Maiko
Takeuchi, Marc Pamies, Maria Andrea Castillo, Mar-
ianna Nezhurina, Mario Sanger, Matthias Samwald,
Michael Cullan, Michael Weinberg, M Wolf, Mina
Mihaljcic, Minna Liu, Moritz Freidank, Myung-
sun Kang, Natasha Seelam, Nathan Dahlberg,
Nicholas Michio Broad, Nikolaus Muellner, Pascale
Fung, Patricia Haller, R. Chandrasekhar, R. Eisen-
berg, Robert Martin, Rodrigo L. Canalli, Rosaline
Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda,
Shlok S Deshmukh, Shubhanshu Mishra, Sid Ki-
blawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Ku-
mar, Stefan Schweter, Sushil Pratap Bharati, T. A.
Laud, Th’eo Gigant, Tomoya Kainuma, Wojciech
Kusa, Yanis Labrak, Yashasvi Bajaj, Y. Venkatra-
man, Yifan Xu, Ying Xu, Yun chao Xu, Zhee Xao
Tan, Zhongli Xie, Zifan Ye, Mathilde Bras, Younes
Belkada, and Thomas Wolf. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
ArXiv, abs/2211.05100.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and Korean voice search. In 2012 IEEE Interna-

tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5149-5152.

Noam M. Shazeer. 2020. Glu variants improve trans-
former. ArXiv, abs/2002.05202.

Noam M. Shazeer, Azalia Mirhoseini, Krzysztof
Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hin-
ton, and Jeff Dean. 2017. Outrageously large neu-
ral networks: The sparsely-gated mixture-of-experts
layer. ArXiv, abs/1701.06538.

Noam M. Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
ArXiv, abs/1804.04235.

Thomas Wolf Philipp Schmid Zachary Mueller Sourab
Mangrulkar Marc Sun Benjamin Bossan Syl-
vain Gugger, Lysandre Debut. 2022. Acceler-
ate: Training and inference at scale made sim-
ple, efficient and adaptable. https://github.com/
huggingface/accelerate.

Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia,
Jason Wei, Xuezhi Wang, Hyung Won Chung, Dara
Babhri, Tal Schuster, Huaixiu Steven Zheng, Denny
Zhou, Neil Houlsby, and Donald Metzler. 2022. Ul2:
Unifying language learning paradigms. In Interna-
tional Conference on Learning Representations.

Szymon Tworkowski, Konrad Staniszewski, Mikolaj
Pacek, Yuhuai Wu, Henryk Michalewski, and Piotr
Milo’s. 2023. Focused transformer: Contrastive train-
ing for context scaling. ArXiv, abs/2307.03170.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,

Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Is-
han Purohit, Ishani Mondal, Jacob Anderson, Kirby
Kuznia, Krima Doshi, Maitreya Patel, Kuntal Kumar
Pal, M. Moradshahi, Mihir Parmar, Mirali Purohit,
Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma,
Ravsehaj Singh Puri, Rushang Karia, Shailaja Keyur
Sampat, Savan Doshi, Siddharth Deepak Mishra, Su-
jan Reddy, Sumanta Patro, Tanay Dixit, Xudong
Shen, Chitta Baral, Yejin Choi, Noah A. Smith,
Hanna Hajishirzi, and Daniel Khashabi. 2022. Super-
naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks. In Conference on
Empirical Methods in Natural Language Processing.

Omry Yadan. 2019. Hydra - a framework for elegantly
configuring complex applications. Github.

https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://api.semanticscholar.org/CorpusID:211096588
https://api.semanticscholar.org/CorpusID:211096588
https://api.semanticscholar.org/CorpusID:12462234
https://api.semanticscholar.org/CorpusID:12462234
https://api.semanticscholar.org/CorpusID:12462234
https://api.semanticscholar.org/CorpusID:4786918
https://api.semanticscholar.org/CorpusID:4786918
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://api.semanticscholar.org/CorpusID:252780443
https://api.semanticscholar.org/CorpusID:252780443
https://api.semanticscholar.org/CorpusID:259360592
https://api.semanticscholar.org/CorpusID:259360592
https://api.semanticscholar.org/CorpusID:253098274
https://api.semanticscholar.org/CorpusID:253098274
https://api.semanticscholar.org/CorpusID:253098274
https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra

