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Abstract

Large language models (LLMs) excel at complex tasks thanks to advances in their
reasoning abilities. However, existing methods overlook the trade-off between
reasoning effectiveness and efficiency, often encouraging unnecessarily long rea-
soning chains and wasting tokens. To address this, we propose Learning to Think
(L2T) Pl an information-theoretic reinforcement fine-tuning framework for LLMs
to make the models achieve optimal reasoning with fewer tokens. Specifically, L2T
treats each query-response interaction as a hierarchical session of multiple episodes
and proposes a universal dense process reward, i.e., quantifies the episode-wise
information gain in parameters, requiring no extra annotations or task-specific
evaluators. We propose a method to quickly estimate this reward based on PAC-
Bayes bounds and the Fisher information matrix. Theoretical analyses show that
it significantly reduces computational complexity with high estimation accuracy.
By immediately rewarding each episode’s contribution and penalizing excessive
updates, L2T optimizes the model via reinforcement learning to maximize the
use of each episode and achieve effective updates. Empirical results on various
reasoning benchmarks and base models demonstrate the advantage of L2T across
different tasks, boosting both reasoning effectiveness and efficiency.

1 Introduction

Large Language Models (LLMs) have progressed from handling basic natural language processing
tasks to tackling complex problems, such as writing and maintaining code bases [23} 167, 138, 48],
navigating the web and controling devices [[66, 154} (17, 4]], and acting as personal assistants [21} 30,
22| [7]], thanks to the advances in their reasoning abilities. Recent results [24} |19} 156} 143]] in LLM
reasoning show that scaling test-time compute can substantially improve reasoning capabilities, e.g.,
[35,15] demonstrated that generating more tokens during inference yields logarithmic-linear gains.
Based on this, a new class of reasoning models [43153,19,149] has coupled test-time compute scaling
with reinforcement learning (RL), achieving state-of-the-art (SOTA) results on various challenging
benchmarks [[15, 161} [16]. These models employ chain-of-thought (CoT) tokens to guide multi-step
reasoning and maintain logical consistency throughout the solution process [50, 52, 58]); by extending
and optimizing CoT paths to produce trajectories longer than typical correct solutions, they more
thoroughly explore the solution space and thereby boost final answer accuracy [43 35} 20].

Despite existing methods having demonstrated great performance, they still struggle to balance
reasoning effectiveness and efficiency. Specifically, existing approaches typically rely on final
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outcome rewards for policy optimization, providing no feedback on intermediate reasoning steps.
Under such delayed feedback, extending the reasoning chain does not incur any cost, and even a tiny
accuracy gain from a large amount of extra reasoning steps is treated as a positive signal [59} 55]].
Consequently, the models favor a “one more thought” and continually lengthen their CoTs, resulting
in redundant computation and thus reducing reasoning efficiency. Our experiments in Subsection 3.2]
further demonstrate this (Figure[I): existing outcome-reward-based RL methods often lead LLMs
to consume more than twice the tokens actually needed for the correct answer. Furthermore, by
evaluating across different reasoning tasks, we find that this redundancy not only wastes resources
but sometimes degrades reasoning effectiveness. For example, on difficult questions (e.g., Tier 4
multi-stage math questions [13]]), moderate chain extensions improve coverage of critical steps;
whereas on simple tasks (e.g., Tier 1 question “12 + 5”), overly long reasoning chains may reduce
overall accuracy. Since real-world tasks vary, no fixed chain length is optimal for all cases. Therefore,
designing effective dense process rewards to assess the contribution of each reasoning step is
both necessary and valuable. Such rewards help the model to generate tokens that most benefit
the answer, ensuring reasoning effectiveness with minimal token budget and efficient learning.

To this end, we propose Learning to Think (L2T), an information-theoretic reinforcement fine-tuning
framework for LLMs. At its core, L2T proposes a universal information-theoretic dense process
reward, which quantifies the information gain in model parameters. The proposed reward consists of
(1) a fitting information gain term that drives the model to capture correctness-critical information in
each update; and (ii) a compression penalty that discourages overly optimization, further preserving
efficiency. By treating each question-answer pair as a session of multiple episodes and immediately
rewarding each episode, it makes the model focuses on the process progress, thus curbing redundant
reasoning steps and the resulting computational waste. This reward is independent of input format,
label type, or task domain, and no extra annotations are needed. We leverage this reward to train the
LLM (also the policy) via reinforcement learning to make it generate the tokens that best contribute
to the answer correctness at each reasoning step. Specifically, L2T includes three stages: (i) Problem
reformulation (Subsection[d.1): we treat each question-answer interaction as a hierarchical session
of multiple episodes, where each episode represents a segment of the reasoning chain that underpins
dense reward calculation and optimization; (ii) Reward design (Subsection #.2): upon episode
completion, we calculate the information-theoretic reward via PAC-Bayes bounds and the Fisher
information matrix. Based on this, we halt unproductive reasoning and thus balance effectiveness and
efficiency; (iii) LLM fine-tuning (Subsection[4.3): we optimize the LLMs by maximizing cumulative
reward across tasks via reinforcement learning, ensuring reasoning effectiveness and efficiency.

Empirically, across challenging reasoning benchmarks (e.g., AIME, AMC, HumanEval) and base
models (e.g., DeepScaleR-1.5B-Preview, DeepSeek-R1-Distill-Qwen-1.5B, DeepSeekR1-Distill-
Qwen-7B), L2T consistently achieves comparable performance and stable improvements (Section [3).
Compared to standard outcome-reward approaches (e.g., GRPO), it boosts performance by about
3.7% and doubles token efficiency; compared to process-reward baselines (e.g., ReST-MCTS, MRT),
it raises accuracy by about 2% and increases efficiency by about 1.3x. In multi-task evaluations,
L2T delivers an average accuracy gain of nearly 3% across tasks of varying difficulty and maintains
stable improvements under different token budgets. These results demonstrate the advantages of L2T,
which effectively balances reasoning effectiveness and efficiency across diverse reasoning scenarios.

The main contributions are as follows: (i) We explore the trade-off between reasoning effectiveness
and efficiency and propose Learning to Think (L2T), an information-theoretic reinforcement fine-
tuning framework for LLMs. L2T decomposes each interaction into successive episodes and proposes
a dense process reward to quantify each episode’s performance gain; by optimizing LLM via episodic
RL, it adaptively allocates reasoning depth across different tasks, enabling effective reasoning with
limited but sufficient token budgets. (ii) We propose a universal information-theoretic process reward
based on internal model signals, i.e., the information gain in model parameters, eliminating the need
for external annotations or specialized evaluators. Leveraging PAC-Bayes bounds and the Fisher
information matrix, we derive a scalable approximation of the intractable information gain with
theoretical guarantees. (iii) Across diverse complex reasoning benchmarks and base models, L2T
consistently achieves great performance, delivering boosts in both effectiveness and efficiency.



2 Related Work

Reasoning of LLMs Complex reasoning has long been recognized as one of the most challenging
capabilities for LLMs [23} 167, 19,156l 43]]. To enhance inference, several works [43,153} 49, 57] have
incorporated outcome-reward RL during fine-tuning. RL paradigm mainly extends and optimizes
CoT paths based on test-time compute scaling to more thoroughly explore the solution space [35} 5]
However, recent studies [59} 9, |55, |5] show that reasoning length and accuracy are not strictly
positively correlated. Excessively long CoTs not only consume undue tokens but also degrade
performance (also demonstrated in Subsection [3.2). The wasting token budget reduces the efficiency
of unit tokens under a limited budget due to problems such as attention dilution and context truncation,
so that the final accuracy may decline [31}!44]]. Some methods attempt to reduce reasoning depth via
process rewards [63\ 136, heuristic scoring [[11} 20|, or length penalties [57}[1}133]]. These approaches,
however, require task-specific evaluators, incurring prohibitive annotation costs with poor cross-task
reuse (with more comparison in Appendices [D]and [G). To address these limitations, we propose
a universal information-theoretic dense process reward and leverage reinforcement fine-tuning to
adaptively recognize reasoning depth across diverse tasks. This design achieves the trade-off between
reasoning effectiveness and efficiency without additional annotations or specialized evaluators.

Process Reward Models Unlike outcome rewards that assess the final answer, a PRM evaluates
the correctness of each intermediate reasoning step [29}47]. PRMs can be trained via automated
supervision without costly human-annotated process labels [34}39,160]. Once learned, a PRM can
both guide test-time search by allocating additional compute and accelerate exploration in RL using
the policy’s own trajectories [43, 135} 60]. Recent works [42, 65 163\ 10, 164] have applied process
rewards to fine-tune LLMs with RL, for example, [65] uses relative progress estimation to generate
high-quality intermediate supervision labels; [57] derives exploration bonuses from length penalties or
an LLM-based judge; and [36] introduces a regret-minimization process reward to optimize test-time
compute. However, these methods depend on external annotations or task-specific evaluators, which
are expensive to produce and difficult to reuse when task requirements change. In contrast, our
approach uses internal model signals, i.e., information gain, as intermediate rewards to optimize the
policy without additional interaction data. By constructing a universal dense process reward, our
framework applies seamlessly across diverse tasks and promotes efficient, step-wise reasoning.

3 Problem Settings and Analysis

3.1 Problem Settings

Our goal is to fine-tune an LLM so that it can answer arbitrary questions z within a fixed token
budget Bioken, enforcing efficient reasoning. We treat the LLM as a stochastic policy 7y (- | «)
parameterized by 6. Each question x is drawn from an underlying distribution P,. Under the token
budget Bioken, the model may generate up to 7,,, tokens at test time, and yields an output sequence
zo0.r = (20, 21,--.,2r) for each x. The generation process can be formulated as a finite-horizon
Markov decision process (MDP): at each time step ¢, the “state” s, consists of the question x together
with the partial prefix (zo, ..., 2¢—1), and the “action” a; is the choice of next token z;. To guide
learning toward correct answers, the MDP is equipped with a reward function r(s¢, a;). It is typically
defined as a binary outcome reward [16| 20] to determine whether the generated answer is correct.

According to existing RL-based fine-tuning paradigm [41} 43 |[16]], we are given a training dataset
Dirain = {(x4,y]) fV: 1» where each ¥ is an oracle reasoning trace that leads to the correct answer.
During fine-tuning, we use these traces both to calculate the reward and to guide learning. For each
question z;, we first generate candidate token sequences zo.p ~ mg(- | ;). Then, we compute the
reward 7 (z;, zo.1 ), Which equals 1 if zo.7 matches the oracle trace y;. By maximizing the empirical
sum of these rewards with the constraint of test-time budget Byoxen, We update my. The objective is:

Hl;),X ]Ewanain ]EZ();TN‘ITQ('IZ) [T(JE, ZO:T)] s.t. Ezg;TNTrg(-\a;) |Z‘ < Bioken €))

Through Eq[T]} we train the LLM 7y to capture both the need to produce correct answers (maximize
the rewards) and the requirement of using limited token budgets (under a fixed compute budget).
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Figure 1: Results of DeepScaleR-1.5B-Preview across different tasks on Omni-MATH. We partition
the generated reasoning chain into episodes, measuring accuracy Acc(k) and average token consump-

tion 7(k) at different episode depths. More details and results are shown in Appendix

3.2 Empirical Evidence

To ensure reasoning effectiveness, existing methods [43} (9} 53] [15, 49]] mainly leverage test-time
compute scaling to lengthen reasoning chains beyond what is minimally required for a correct answer,
thereby more thoroughly exploring the solution space and improving final answer accuracy. These
approaches typically use a sparse outcome reward for policy optimization, without feedback on
intermediate reasoning steps [59}155]. Using this framework, extending the chain carries no penalty,
and even minimal accuracy gains from extra steps yield a positive signal. Thus, models resort to
consuming additional tokens to secure the correctness of the final answer [3 1} 135]]. However, under the
fixed token budget By, k., considered in this paper, this extension may deplete the budget prematurely,
undermining efficient reasoning in subsequent steps. To validate this argument, in this subsection, we
conduct a series of experiments to analyze the token-utilization abilities of existing methods.

Specifically, in this experiment, we use the Omni-MATH benchmark [13] for evaluation, which
comprises 4,428 questions across more than 33 domains, including algebra, discrete mathematics,
geometry, number theory, etc. The questions are organized by human experts into four difficulty
tiers (Tier 1-4) to assess model performance on tasks of varying complexity. We evaluate two base
models [16], i.e., DeepScaleR-1.5B-Preview and DeepSeek-R1-Distill-Qwen-1.5B, running on the
A100 GPU clusters with greedy decoding (temperature = 0) and a maximum generation length of
16,384 tokens. To probe different reasoning depths, we configure the prompt to wrap each logical
step with ‘<think>’... ‘</think>’ tags, segmenting the generated chain into up to K = 30 episodes.
For each test question and each truncation point £ = 1, .. ., 30, we force-stop generation at the k-th
‘</think>’ tag, append the prompt “Please output the final answer directly based on the above steps”,
and then use Omni-Judge to determine correctness. This yields the accuracy Acc(k) at episode depth
k and the average token consumption 7'(k) from the initial prompt to the truncation. Considering the
impact of randomness, we introduce a maj@4(k) baseline: for each truncated context, we sample
four continuations, take the majority-vote result as the final answer, and record its accuracy maj@4(k)
and token cost. By plotting “accuracy vs. episode number” and “token consumption vs. episode
number”, we can visualize how performance evolves with reasoning depth across tasks of differing
difficulty and compare sequential generation against majority-vote under the same compute budget.

From Figures[I|and [6] we can observe that: (i) Existing methods may fail to use test-time compute
budgets efficiently, leading to wasted resources: both models have on average used more than
twice the minimum tokens required. For example, £ = 16 achieves accuracy comparable to or
exceeding sequential generation at k = 24 with fewer tokens. (ii) The additional episodes add no new
information and instead degrade performance due to context redundancy: for both models, Acc(k)
peaks around k£ =~ 16 — 20 and then declines as k increases. (iii) The questions of different difficulty
tiers prefer different chain lengths: Tier 4 questions tend to benefit from longer chains, whereas Tier 1
questions can achieve correct results with short chains, where excessive reasoning depth may causes
a marked accuracy drop (e.g., falls by over 5% at k = 20). These findings underscore the limitations
of existing methods, which ignore the balance between reasoning effectiveness and efficiency.



3.3 Motivation Analysis

For obtaining a powerful LLM to address the above limitations under the settings in Subsection
[.1] in this subsection, we discuss the solutions that need to be incorporated to address the realistic
challenges of existing methods. Based on these analyses, we design our framework (Section d).

As illustrated in Section [I] and Subsection @ we discuss and demonstrate that, although outcome
rewards can boost reasoning effectiveness by increasing the token budget, it sacrifices efficiency,
i.e., many reasoning steps are invalid for the answer correctness; much longer CoTs are used than
the correct answer really needed. To balance reasoning effectiveness and efficiency, we aim for an
algorithm that yields positive gains at every reasoning step, enabling the model to achieve comparable
reasoning performance within a constrained yet sufficient token budget. This requires augmenting the
learning objective with dense, step-wise process rewards that immediately quantify each reasoning
step’s contribution to overall performance. By maximizing the cumulative reward across all reasoning
steps, we encourage the model to generate tokens that most benefit the answer correctness. Therefore,
the algorithm requires an effective dense process reward to ensure both effectiveness and efficiency:
by maximizing total reward across all reasoning steps, we guarantee the reasoning effectiveness; by
maximizing each token’s contribution and preventing useless tokens, we ensure efficiency. Notably,
some concurrent approaches attempt to reduce reasoning depth using task-specific process rewards
[62,167] and length penalties [5733]]; however, they require manually designing high-quality process
labels and task-specific evaluators, which is an expensive endeavor that may not generalize across
tasks. Therefore, we must also address the second challenge of algorithmic generality.

Generality demands that the algorithm adapt to varied task requirements and remain effective. To
achieve this, one would ideally define evaluation metrics that apply uniformly across all scenarios to
construct reward functions. However, the heterogeneity of tasks makes it impractical to identify a
single, fixed metric suitable for every case. Accordingly, we propose leveraging an internal model
signal, e.g., the change in parameters, to quantify the contribution of intermediate reasoning steps.
This measure directly reflects the amount of new knowledge the model acquires on the current task
and is agnostic to input formats, task types, etc. Consequently, it enables sustained, reliable reward
feedback without requiring additional annotations or retraining when new tasks are introduced.

In summary, the above analyses motivate us to design dense process rewards derived from internal
model signals to jointly address both algorithmic efficiency and generality. By optimizing LLMs with
these rewards, we consider both reasoning effectiveness and efficiency across different tasks.

4 Learning To Think

Based on the above analyses, we propose Learning to Think (L2T), an information-theoretic rein-
forcement fine-tuning framework for LLMs (with pseudo-code in Appendix[C). The key is proposing
a universal dense process reward for LLM optimization to adaptively allocate reasoning depth across
tasks and prevent token waste. It recasts LLM optimization as an episodic learning problem to
support episode-wise process reward calculation and optimizes LLM to maximize the contribution of
tokens generated in each episode, ensuring reasoning effectiveness and efficiency. Specifically, in
L2T, each query-response pair is segmented into successive reasoning episodes (Subsection 4.1)),
within which the model performs an adaptation update to increase the likelihood of a correct answer.
To ensure the effectiveness of each adaptation and curb excessive reasoning, we then propose an
information-theoretic dense process reward that immediately quantifies the progress of each episode
with universal information gain to support policy optimization (Subsection[d.2). It can be efficiently
estimated leveraging PAC-Bayes bounds and the Fisher information matrix with theoretical guar-
antees (Theorem [4.2). Finally, we optimize the LLMs by maximizing cumulative reward via RL
(Subsection[d.3), ensuring both high reasoning effectiveness and efficiency across different tasks.

4.1 Problem Reformulation

In practice, reasoning questions vary widely, e.g., from simple arithmetic to complex mathematical
proofs. Existing RL-based fine-tuning paradigm [51}45] mainly treats the reasoning process of each
question as a single episode and updates the policy via the final outcome reward. Under this setting,
it is difficult to implement dense process rewards. To address this issue, we reformulate the problem
mentioned in Subsection [3.1]as an episodic RL problem. We treat each question as a task sampled



from a broader distribution and decompose the reasoning process into successive episodes. This
decomposition allows us to assign process rewards at every intermediate episode, with each episode’s
reward reflecting its contribution to the answer correctness. Based on this dense reward, we can
optimize the policy incrementally to maximize the performance gain of each episode.

Specifically, each question z is viewed as a reasoning task x ~ Pi,qc. For a given x, the LLM
carries out an internal inference procedure and emits a sequence of tokens zo.;r = (zo,...,27),
as its final answer. To inject dense feedback, we insert ‘<think>...</think>" markers to break the
full token stream into K consecutive reasoning episodes. Each episode shares the accumulated
context but serves as a natural checkpoint at which we can evaluate intermediate progress and assign
episode-wise rewards. We treat the entire reasoning process as a length-K MDP: at episode k, the
state is s, = (, z1.5k—1); the action 2z ~ 7o (- | sk) produces a token sequence zx = (zk, e ).
The reward consists of (i) a dense process reward 7}, & which measures the increase in the answer
correctness probability after eplsode k, and (ii) a sparse outcome reward ro‘lt = r(m z1.x) € {0,1}
that reflects the final answer’s correctness (Eq' Note that we evaluate 7} ® at the episode level
rather than per token to (i) reduce variance: individual tokens rarely determine final correctness and
are easily corrupted by stopwords, sampling noise, etc.; (ii) lower cost: episode-level evaluation
reduces expensive calls to the reward function. During fine-tuning, given the training set Dyyain =
{(z:, )} ,, we optimize the policy Ty by maximizing the rewards across all the z;, with objective:

meax EznDirain Ezl;K~W9(~|Sk)[ o+ Zk 1" prg]v .t Euy g (o) |2| < Bioken @)

where Bioer is the fixed test-time compute budget. Through Eq[2] the learned policy allocates its
limited token budget (Byokern) Where it yields the greatest incremental benefit, expanding promising
lines with higher process reward rP'® and maximize overall task success r°". In practice, however,
the crux is the design of the newly introduced dense process reward "¢, which need to satisfy
following desiderata: (i) Relevance: faithfully measure the progress that episode k contributes toward
a correct solution; (ii) Efficiency: be cheap to compute; (iii) Generality: apply uniformly across
tasks without bespoke engineering for each new domain. Recently proposed process-reward models
(63,136, 162] 167] predominantly focus on (i); however, they remain task-specific and depend on high-
quality annotations, failing to satisfy (ii) and (iii). Therefore, designing such a dense, per-episode
reward remains an open challenge, also the key to unlocking truly efficient reasoning in LLMs.

4.2 Learning Information-Theoretic Dense Process Reward

To address the above challenge, we propose a novel information-theoretic dense process reward. It is
inspired by the information theory [3[25] and consists of two constraints for reasoning effectiveness
and efficiency: (i) a fitting information gain, which encourages the model to acquire key information
about correctness in each episode; and (ii) a parameter compression penalty, which penalizes redun-
dant information absorbed at each episode to maintain efficiency. This reward is agnostic to input
format or task domain, which can be applied in various scenarios. In this subsection, we begin by
explaining the meaning of the above two constraints with the proposed reward. Then, we provide the
formal definition of this reward (Definition [d.I). Next, we explain how to efficiently compute it in
practice: to handle the large parameter scale of LLMs, we develop an efficient approximation of this
reward using PAC-Bayes theory and Fisher information matrix (Theorem [4.2)). Finally, we illustrate
why the proposed reward is effective, i.e., satisfying the three criteria mentioned in Subsection {.1]

Firstly, we explain what the two components of the proposed reward are. Specifically, the fitting
information gain measures the reduction in uncertainty about Y given X provided by parameters
0 after each episode; formally, it is defined as the conditional mutual information I(6;Y|X) =
H(Y|X) - H(Y|X,0), where H(Y|X) = — >, p(y|X) log p(y|X) denotes the uncertainty of ¥’
given X alone and H (Y| X, 0) the residual uncertainty after observing 6. The fitting gain for episode
k, in which parameters update from 0y _1 to 0y, is Al = I(0k;Y|X) — I(0x—1;Y | X). Since direct
computation is costly in LLMs, we approximate A}, by the increase in the predicted correctness
probability of the models, i.e., Al ~ J,.(mg(:|sk, 2))—Jr(mo(:|sk)), which aligns with the direction
of AT}, (Appendix [D.1). It entails just two forward passes of my without the need of gradient updates
to estimate Ay, reducing computational overhead. The parameter compression penalty constrains
redundant information captured from each episode, preventing excessive updates. It is defined as the
mutual information between 6 and the context s, denoted as I(6; si) = Eg[KL(p(0|sx) || p(9))]. It
quantifies the task-specific idiosyncrasies stored in 6 [14]], where larger mutual information implies



greater overfitting risk and unnecessary computational overhead. Thus, these terms align with our
objective of evaluating reasoning effectiveness and efficiency in dense process reward design. More
discussions, theoretical analyses, and the intuition behind are further illustrated in Appendix [D}

Based on the above analyses, we then present the formal definition of the proposed reward.

Definition 4.1 Let the context before episode k be s, = (x,z1.5—1), and the model generate the
token sequence zy, ~ o (- | si). The dense process reward for episode k can be expressed as:

P = J(mol- | s, 20) = Jo(mol- | 5i) =B 10k s0) = 10k-risn-n)] . )

Fitting Information Gain

Parameter Compression Penalty

where J.(-) denotes the correctness probability and 8 > 0 is a hyperparameter.

Eq indicates that the larger }'®, the update of this episode is more effective: the larger the first
term, the greater improvement to predict the correct answer, increasing effectiveness; the smaller the
second term, the less redundant information is absorbed, ensuring efficient and sufficient updates.

Obtaining Definition 4.1 we illustrate how to calculate it in practice. In the LLM setting, fitting
information gain measures the contribution of each optimization episode to reasoning capability by
tracking the change in the predicted correctness probability, i.e., the output distributions of 7g. In
contrast, computing the parameter-compression penalty is more involved: it requires quantifying the
mutual information increment between the parameters 6 and the historical context sy, where direct
estimation in the large parameter space of LLMs is intractable. To address this, we introduce an
efficient approximation that uses the low-rank parameter proxy 6 with singular value decomposition
(SVD) [6]] and the Fisher information matrix [[12} 37]] to estimate the penalty term. We get:

Theorem 4.2 Given the low-rank parameter proxy ék and 9~k_1 for parameters 0, and 0,1, assume

that 0y, and 0,1 follow Gaussian distribution, e.g., p(ék) = N(§k|uk, Yk) where py, is the mean
vector of the parameters and Yy, is the covariance matrix of the parameters, we get:

I(ék;sk) - I(ékfl;skfl) >~ (ék — ék-,l)—r V@. logwa(zk\sk)Vg logﬂ'g(zk|sk)T (ék - ék-fl) (4)
K k

Theorem 4.2| presents a method to estimate the intractable compression penalty (with proof in
Appendix Ej It simplifies the parameter space using SVD and assumes 6 follows a Gaussian
distribution based on [26]], a common and mild assumption. Note that the low-rank approximation
of 6 € RY, ie., obtaining 6 € R" (r < d), is to avoid direct computation of the Fisher matrix in
high-dimensional space. We use SVD to extract the principal directions of variation in # and retain
the top r components (with r/d ~ 1%-10% for 1.5B models and r/d ~ 0.1%—1% for 7B models),
resulting in a low-rank surrogate . Then, by computing the second derivative of the log-likelihood
of A, we obtain the Fisher information matrix, which captures the effect of 6 updates on the output
and approximates the covariance calculation (Lemma [B.1). The mutual information increment is
then approximated using the second-order term of the Taylor expansion. This method significantly
reduces the computational complexity (Theorem [D.2) with limited approximation error (Theorem
to support the computation of our proposed reward Definition d.1]in practice.

Finally, we explain why the proposed reward is effective. It satisfies the three criteria mentioned in
Subsection 4.1} (i) for relevance: the fitting gain term measures how much episode k improves the
reasoning correctness, which is tightly aligned with task progress; (ii) for efficiency: it requires only
one call for estimation per episode with Theoremd.2] and the cost scales linearly with the number of
episodes; (iii) for generality: neither term depends on task-specific models, just on the model’s own
correctness scores and parameter information gain, so the reward applies uniformly across tasks.

4.3 Optimizing LLM with Reinforcement Fine-Tuning

Based on the above-defined problem settings (Subsection 4.1)) and proposed reward (Subsection
[.2)), in this subsection, we introduce the optimization process of policy g (i.e., the LLM).

Specifically, based on the reformulation in Subsection under the RL framework relied upon
by L2T, the optimization objective of the LLM can be decomposed into two parts: (i) for answer



correctness: maximizing the cumulative outcome reward 7°"* obtained after a sequence of reasoning
episodes to ensure the correctness of the answer; and (ii) for process progress: using the dense process
reward to evaluate the improvement in correctness probability and the increase in model parameter
information gain after each reasoning episode. This term is designed to capture the progress made at
each episode of reasoning and optimize the model to maximize the incremental gain at each reasoning
step. Among them, (i) corresponds to the standard fine-tuning objective in Eq[I] while (ii) depends
on the process reward defined in Subsectiond.2] Therefore, the objective can be expressed as:

K
mGaX EanDyrain By e momo ([51) [7“(.1:’ 21.K) + Zk:l rgrg}

sty ® = Jp(mo (- | sks 21)) — Jr(mo(- | k) — ﬂ[f(ek; si) — I(Ok—1; Sk—l)}a
where « is the importance weight (set to 1 for simplicity), and the ;" is calculated through Theorem
[M.2] Through Eq[5] L2T optimizes the policy 7y to achieve our goal of boosting effectiveness and
efficiency in two parts: (i) The first part ensures the correctness of the final answer through the
outcome reward r(x, zo.x ). (ii) The second part introduces the dense process reward rirg , leveraging
information-theoretic internal signals to assess the progress of each episode update. It encourages
the model to maximize correctness at each step while avoiding redundant information accumulation.
Thus, this optimization enables the model to efficiently utilize the limited token budget, progressively
improving reasoning effectiveness, and ultimately achieving high-accuracy reasoning outputs.

&)

Practical Implementation with GRPO In practice, L2T is instantiated on top of GRPO to realize
stable and efficient reinforcement optimization. Specifically, for each sampled question z, the old
policy mp,,, generates N reasoning rollouts, where each is automatically split into consecutive episodes
based on the prompt designed with ‘<think>’...‘</think>" delimiters (Appendix [G.4] provides an
exampele). This segmentation enables us to assign both the sparse outcome reward and the dense
process reward at the episode level. Concretely, for episode k in rollout ¢, the reward is defined
as R = K%r;’“‘ + ar?f,%, where the outcome reward is 7" = 1[z1.x leads to correct *], and
the dense process reward is 7 = Al — SCy, with fitting information gain AT, = J,(ma(- |
Sky2k)) — Jr(mo(- | sx)) and compression penalty Cy, = I(0y; sg) — I(0x—1; sk—1) (see Section
@. Following GRPO, the episodic reward R; j, is further distributed to tokens using log-probability
surprise as weights, i.e., w; ¢ X —logpg,,(zi.¢ | $i,t), giving per-token rewards r; ;. The truncated
mean of these token-level rewards (95%) yields 7;, which is then normalized into a group-level

advantage, i.e., A; = ? This group-level advantage is rescaled to tokens according to their

relative contribution, i.e., 4,; = A; T;;t. Finally, the advantages A, ; are used in the clipped
policy gradient objective of GRPO with an additional KL penalty to stabilize training. Through this
implementation, L2T maintains the advantages of GRPO while extending it with explicit episodic
decomposition and the integration of the proposed information-theoretic dense process reward,

thereby achieving both effective and efficient reasoning optimization.

5 Experiments

In this section, we conduct extensive experiments on multiple reasoning benchmarks to verify the
effectiveness and efficiency of L2T. More details and experiments are provided in Appendix [EHG]

5.1 Experimental Settings

We evaluate on multiple reasoning benchmarks, including AIME24-25, AMC, MATHS500 [18]],
MinervaMATH [27], and Omni-MATH [13] (see Appendices E] and [g for more benchmarks, e.g.,
code generation). We use DeepScaleR-1.5B-Preview and DeepSeek-R1-Distill-Qwen-1.5B as base
models, which already generate reasoning traces marked with ‘<think>’. We compare L2T against (i)
outcome reward-based RL methods (e.g., GRPO [41] for deepseek-model family, more in appendices)
and (ii) test-time-compute-focused methods, e.g., length penalty [2] and process-reward approaches
such as ReST-MCTS [62] and MRT [36]. Since DeepScaleR-1.5B-Preview has already undergone one
round of fine-tuning on 40k math question-answer pairs, we fine-tune it on the 919 AIME questions
(from 1989 to 2023); for DeepSeek-R1-Distill-Qwen-1.5B, we fine-tune on a random sample of 4,000
question-answer pairs from NuminaMath [28]]. Both fine-tuning and evaluation use a maximum token
budget of 16,384. For optimization, we set the learning rate to 1e~%, weight decay to 0.01, and batch



Table 1: Pass@1 performance on various math reasoning benchmarks. We compare base models
trained with different fine-tuning approaches. The best results are highlighted in bold.

Base model + Method | AIME 2024 | AIME 2025 | AMC 2023 | MATH500 | MinervaMATH | Avg.

DeepScaleR-1.5B-Preview 42.8 36.7 83.0 85.2 24.6 54.5
+outcome-reward RL (GRPO) 445 (+1.7) | 39.3(+2.6) | 81.5(-1.5) | 84.9(-0.3) 24.7 (+0.1) 55.0 (+0.5)
+length penalty 40.3 (-2.5) 303 (-6.4) | 77.3(-5.7) | 83.2(-2.0) 23.0 (-1.6) 50.8 (-3.7)
+ReST-MCTS 455 (+2.7) | 39.5(+2.8) | 83.4(+0.4) | 84.8(-0.4) 23.9 (-0.7) 55.4 (+0.9)
+MRT 47.2 (+4.4) | 39.7 (+3.0) | 83.1(+0.1) | 85.1(-0.1) 242 (-0.4) 559 (+1.4)
+Ours 48.5 (+5.7) | 40.2 (+3.5) | 854 (+2.4) | 88.1 (+2.9) 26.5 (+1.9) 57.8 (+3.3)

DeepSeek-R1-Distill-Qwen-1.5B 28.7 26.0 69.9 80.1 19.8 44.9
+outcome-reward RL (GRPO) 29.8 (+1.1) | 27.3(+1.3) | 70.5(+0.6) | 80.3 (+0.2) 22.1 (+2.3) 46.0 (+1.1)
+length penalty 27.5(-1.2) 22.6(-34) | 644(-55) | 77.1(-3.0) 18.8 (-1.0) 42.0 (-2.9)
+ReST-MCTS 30.5 (+1.8) | 28.6(+2.6) | 72.1(+1.2) | 80.4 (+0.3) 20.3 (+0.5) 46.4 (+1.5)
+MRT 30.3 (+1.6) | 29.3(+3.3) | 72.9(+3.0) | 80.4 (+0.3) 22.5 (+2.7) 47.1 (+2.2)
+Ours 329 (+4.2) | 30.1(+4.1) | 73.5(+3.6) | 84.7 (+4.6) 24.5 (+4.7) 49.2 (+4.3)

~1.41 mm outcome-reward RL ~1.41 mm outcome-reward RL
; 12 length penalty ; 12 length penalty
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~ 1.6/ ™= outcome-reward RL ~ | == outcome-reward RL
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Figure 2: Efficiency comparison across different benchmarks. We compute the token budget required
for each benchmark and treat the budget of the base model w/o fine-tuning as reference (1x).

size to 256. To approximate the parameter-compression penalty, we employ a one-layer MLP with a
Fisher information-matrix damping coefficient of 1 x 10~°. The hyperparameters o (Eq and 3
(Eq[3) are set to 0.8 and 0.6, respectively. All experiments are run on the A100 GPU clusters. More
details of implementation and hyperparameters are provided in Appendix [F|

5.2 Effectiveness and Efficiency Analysis

Achieve better reasoning with higher efficiency We compare L2T with the baselines across all
the benchmarks and base models, recording both pass@1 accuracy and the required token budget. To
reduce variance from limited samples, we use 20 outputs per question. Table[T|and Figure[2]show that
L2T attains SOTA performance, achieving the highest reasoning effectiveness with the smallest token
budget. For example, compared to outcome-reward-based methods, L2T delivers over a 3.7% gain in
pass@1 and roughly doubles token efficiency; compared to methods focused on test-time compute, it
achieves more than a 2% accuracy improvement while reducing the token budget by 20%. Moreover,
L2T consistently outperforms baselines on multiple datasets with distributions different from the
training data, further demonstrating its effectiveness across diverse tasks. Besides, we also assess the
performance of L2T on more base models with different scales, e.g., DeepSeek-R1-Distill-Qwen-7B
and Qwen2-7B-Instruct, and more reasoning tasks, e.g., code generation tasks. Notably, mathematical
reasoning and code generation serve as classic benchmarks for testing an LLM’s complex reasoning
ability [43 (16} 132]]. The results in Appendix demonstrate the advantage of L2T. These results
confirm the superiority of our approach, which achieves effective reasoning with higher efficiency.

More efficient use of test-time compute Based on Subsection we sample reasoning trajectories
across various benchmarks with a fixed token context window. We truncate these trajectories at
different token budgets and evaluate performance. Figure [3shows the success rate against token
consumption. We observe that (i) under the same token budget, L2T achieves higher reasoning
accuracy; (ii) L2T consumes only 18% of the tokens required by the base model, 50% of those used
by outcome-reward fine-tuning, and approximately 20% fewer tokens than process-reward models.
These results demonstrate that L2T more effectively leverages test-time compute.
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Figure 3: Pass@1 vs. token budget of different methods on AIME. We record the model reasoning
accuracy under different maximum token budgets to evaluate the ability of using test-time compute.
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5.3 Ablation study

We conduct a series of ablation studies to evaluate the contribution of each component within L2T,
the best parameterization and implementation choices, etc. See Appendix [G]for more results.

The effect of different components. We evaluate three alternative configurations: (i) replacing the
fitting information gain with a task-specific reward model; (ii) removing the parameter-compression
penalty; and (iii) substituting the low-rank approximation with random sampling of 30% layers.
Notably, the overall contribution of our reward has already been demonstrated in Subsection [5.2]
From Figured|and Appendix|G.3] we observe that both the fitting information gain and the parameter-
compression penalty are critical for LLM reasoning; although random sampling is faster than low-rank
approximation, it introduces additional error. These findings underscore the advantages of our design.

Parameter sensitivity. We determine the hyperparameters of L2T by evaluating reasoning perfor-
mance across benchmarks. Both « and 3 are swept over [0.3, 0.9]. We first use grid search to screen
the parameters with a difference of 0.05, then refine it with 0.01, recording the average outcome. As
shown in Figure[5] the optimal setting is v = 0.8 and 8 = 0.6, also our choices.

6 Conclusion

In this paper, we propose Learning to Think (L2T), an information-theoretic reinforcement fine-
tuning framework for LLMs. It reformulates LLM optimization as an episodic RL problem and
proposes a universal information-theoretic dense process reward to support policy optimization,
i.e., incentivizing the model to focus on progress in each episode, thus achieving great reasoning
performance under a minimal token budget. Extensive experiments on multiple complex reasoning
benchmarks demonstrate the advantages of L2T in both reasoning effectiveness and efficiency.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contribution of this paper is to propose an information-theoretic
reinforcement fine-tuning framework to boost both reasoning effectiveness and efficiency.
This has been discussed in the abstract and introduction.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We’ve stated the limitations and future directions to improve this work in the
discussion section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We state the assumption of each theorem and proposition in the corresponding
location. All the proofs are provided in Appendix |Bl We also highlight the locations of
corresponding proofs in the main text.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: We have provided the code, data, and instructions in the supplemental material.
We have also provided all the implementation details, the type of resources, and all the
results in Section[5] Appendix [E] Appendix|[F and Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We have provided the main code in the supplemental material.
Guidelines:

e The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided the experimental setting/details in Section[5} Appendix [E]
and Appendix [F]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The details and results are listed in the Section [5|and Appendices, where all
experimental results are obtained on the basis of five rounds of experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: They are specified in Section [5]and Appendix [F}
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: This work conforms, in every respect, with the NeurIPS Code of Ethics, e.g.,
anonymity.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts in the discussion section.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We will provide the usage guidelines or restrictions to access the model or
implementing safety filters when make our model public.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, we’ve properly cite all used data and provided the licenses.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, we’ve properly cite all used data in Appendix. We’ve also submitted our
own code in supplemental material.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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14.

15.

16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The LLM is used only for editing or formatting purposes and does not impact
the core methodology, scientific rigorousness, or originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

The appendix is organized as follows:

Appendix [A] provides the list of notations.

Appendix [B| provides proofs of the theorem in the main text.

Appendix [C| provides the pseudo-code of our method.

Appendix [D|provides more discussions and further theoretical analysis about our work.
Appendix [E] provides the additional details of the benchmark datasets.

Appendix [F] provides the additional details of the implementation details.

Appendix [G] provides the full results and additional experiments.

A List of Notations

We list the definitions of all notations from the main text as follows:

O

O

O

O

O

Symbols of Problem Settings

Dirain = {(z4,y}) ¥, : training dataset.

x;: i-th question.

y;: the oracle reasoning trace that leads to the correct answer.

mp: the LLM (treated as a stochastic policy).

zo.r ~ mo(- | x;): the output sequence for z;.

Bioken: the token budget.

r(x;, zo.7): the reward, which equals 1 if zp.7 matches the oracle trace y;.

Symbols of Problem Reformulation

Divain = {(z4,y})}¥,: training dataset.

mp: the LLM (treated as a stochastic policy).
zo.r ~ mo(- | x;): the output sequence for z;.
Bioken: the token budget.

K: the number of episodes.

sk = (x, 21.x—1): the state of k-th episode.

2, ~ (- | s1): the token sequence 2 = (z},,.. .,z *) for the k-th episode of ;.
Ny the number of tokens in zj.

ro = r(z,21.x) € {0, 1}: the outcome reward indicating final correctness.

r8: the dense process reward at episode k (Eq[3).

e J.(-): the predicted correctness probability.

Information-Theoretic Quantities
e H(Y|X): conditional entropy of Y given X (uncertainty without parameters).
H(Y|X,0): residual uncertainty of Y given X and parameters 6.
1(9;Y|X): conditional mutual information between 6 and Y given X.
Alj: fitting information gain contributed by episode k.
1(0; si,): mutual information between parameters and context.

Parameters, Proxies, and Updates
e 0, 01, 0: model parameters before/after episode k.
° é, ék_l, ék: low-rank proxies of # via SVD (retain top  components).

e p(6x) = N(0y | pix, X1): Gaussian assumption for the low-rank proxy.
e r/d: retained-rank ratio (e.g., 1%~ 10% for 1.5B; 0.1% ~ 1% for 7B).
GRPO Integration and Token-Level Credit
o Ry = K%rf”t + ar}}: per-episode reward for rollout i (with process-weight ).
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w;¢ X —1og pg,,(zie | $i,1): token weights by log-probability surprise.
r;,¢: token-level rewards obtained by distributing R; , using w; ;.
7;: 95% truncated mean of token rewards for rollout .

A; = (7; — 7)o group-level advantage (standardized).

T . . .
o A=A . token-level advantage rescaled by relative contribution.
Ti

B Proofs

In this section, we provide the proofs of Theoremd.2]in the main text. The theoretical analyses of
the proposed dense process reward are provided in Appendix [D.1]

Proof. Our proof comprises three parts: (i) Part I, Information-gain derivation: Beginning with
the fundamental definition of mutual information and assuming a Gaussian form, we derive the

information gain AT = I(0;sg) — I(0k—1;Sk—1), which under the Gaussian assumption admits
the approximation and get AT = (0, —0;,_1) " 25" (0x —0%_1). (ii) Part I, Laplace approximation for
variance estimation: We then employ the Laplace approximation to estimate the intractable posterior
covariance in A7 by way of the Fisher information matrix. (iii) Part ITI, Derivation of the compression
penalty: Finally, we use the Fisher information matrix to derive the parameter-compression penalty

that regularizes redundant information accumulation.

PartI We begin by giving the concept of the mutual information in which the information is stored
in the weights. It can be expressed as:

1(555) =B s (00 | 5) || p(6))] (©)
Assume that both the prior and the posterior are Gaussian distributions, we get:
p(é):N(élé(ﬁEO), p(é|s):N(é‘és;Es)v @)
then the mutual information in which the information is stored in the weights becomes:
- - ~ det X ~ 1,5 7 —
10:5) = prcr (000 | ) | p(8)) = §[1n Go5* —d+ (B —0) 755 (0= B0) +42(25"5,) | ®)

where det(-) and tr(-) are the determinant and trace, d is the dimension of parameter 6 and is a
constant for a specific NN architecture. If we assume >3 ~ ¥, following [3l], then the logarithmic
determinant and the trace term are constants, and the mutual information simplifies to:

1(0;5) ~ L E, [(9; —0) 256, — éo)}, ©)
where IV represents the number of trajectories for LLM optimization.

Why a Gaussian distribution is a common and mild assumption under this context. During LLM
training, parameter updates 6 can be viewed as the accumulation of numerous small stochastic gradient
steps. Each step introduces a small, random perturbation in parameter space, effectively acting as the
sum of many independent random variables. When these perturbations are sufficiently numerous and
diverse, the overall distribution of parameter changes tends toward a Gaussian distribution, as implied
by the Central Limit Theorem. Therefore, when estimating the compression term, we model the
low-rank surrogate 6 (obtained via SVD) using a Gaussian distribution. This assumption aligns with
covariance approximation techniques in the PAC-Bayes framework and Fisher information-based
methods, allowing us to derive a closed-form expression for mutual information and significantly
reduce computational cost.

Next, recalling our proposed parameter compression penalty, we care about the increase in mutual
information between two adjacent proxy parameters, that is:

AT = I(0;s1) — I(Or_1;56-1). (10)
Consider that the agents at step k and step (k — 1) be centered on the same prior 6o, then we get:

I(0y; 51) = + (B — 60) "S5 (85 — o), (11)
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and

I(Op—1585-1) = + (01 — 00) "5 (O—1 — ). (12)
Based on the above formula, we can directly subtract and obtain:
17 - - L - - - o -
AT~ [(9k —G0) TS5 (O, — o) — (Br—r — 00) TS5 (G — 90)] (13)

Using the quadratic increment identity, i.e., v Ar —yT Ay = (z — )TA(LL' +v),, and for small step
updates O — 01, discarding the constant factor, we have Al ~ (Gk — 0y 1) 2y (Gk — 0y 1)-

Part I However, it is difficult to calculate the covariance matrix for AI. To address this, we use
the Laplace approximation X, x Fj and the matrix representation of Fisher information. We get:

Lemma B.1 Under the Gaussian-constant covariance assumption, the prior covariance matrix g
can be approximated by the inverse of the Fisher information matrix:

Yo = Fgl, 5.0 Fg =K, ony(|sn) [V(;k log mp(2 | sk) Vg, logmo(z | sp) | (14)

Proof. For a given state sy, the posterior distribution p(6 | si) o< p(sk | 0x) p(fy), take the
logarithm to get the unstandardized posterior L(6,) = log p(sk | 0x) + log p(fx). Among them,

log p(sy | Ox) Zlogm zi | sk), logp(O) = —1 (0 — 00) TS, (0 — 00).  (15)

Take the partial derivative of the mth component of 0, we get:

N

~ 0
logp(sk | k) = Y,

k,m i=1 k,m

N
logmo(2i | s6) = Y Giom, (16)

where ;. = Om logmg(z; | si). Continue to take the partial derivative of the nth component.
Taking the partial derivative of the component, we get:

2 N 92
—— logp(s 9 = —— logmg(z; | sk), 17)
D D gp(sk | Ok) ; ; D O g (2 | s1) (
h'i,rnn
Therefore, the Hessian matrix of the log-likelihood is:
H(f) =V2 L [Z log (2 | k) (—%(ék — 00) T3 (0 — éo))}
- log (),
log p(sk | Ok) o7 (6)
N ~ ~ ~ ~
= Z ng log mo(2i | sk) + V;k [—%(Gk —00) TS, (0, — 00)} (18)
i=1
Hprior
Hiix
N 82 d
= —— log (2 | s +3t
2. [aek,m o, 20 ’“)Ln_l v

Let 6 = arg maxg L(9~) be the MAP (maximum a posteriori) estimate point of the posterior, and
perform a second-order Taylor expansion of L(6 ) at  to obtain:

L(0k) ~ LO) + 50k — 0) " H(Or) (O — O%). (19)
then the Gaussian approximation is obtained as p(0y | sz) = N (ék | Oy, (—H (ék))_l) and the

prior covariance should be ¢ = Cov [p(ék | sx)] ~ (—H ()™t
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Next, we discuss the relationship between Hessian and Fisher information. First, the observed Fisher
of log-likelihood is defined as — ) _, V%k log ma (2ilsk) = >_; Vi, log mo(2i|sk) V5, log m (zilsk) "
When the third-order and higher derivatives are ignored, it can be approximated by:

N
*Hlik(ek) ~ ZV@R logm(zi | Sk) v0~k 10g ’/Tg(Zi ‘ Sk)T. (20)
i=1

Further take the expectation of the policy distribution and define:
o = Eomg(lsi) [V@k log m(2 | s1) Vg, logmp(2 | sk) '] (21)

For a flat prior or an oracle prior of ¥, > Hli_kl, we have || Hprior|| < || Hiix|, so the effect of Hpior
on the population Hessian can be ignored in the large sample limit. Combining the above, we get:

—H(0y) = — (Hix + Hprior) ~ Fy, Yom (-H() ' = Fefkl, (22)

Thus, we complete the proof of the Lemma|B.1

Part III  Bring the above results back to Theorem Al =~ (ék - ék_l)TEal(ék - 9~k_1) can
be derived as:

Al ~ (ék — ékfl)T(Vé'k logwe(zk | Sk) Vé‘k logﬂg(zk | Sk)T>(ék - ékfl), (23)
Thus, we get:
I(ék, Sk) — I(ékfl; Skfl) ~ (ék — ékfl)—r (Vék log7r9(zk|sk)v(;k logmg(zk|sk)—r> (ék — ékfl)

(24)
We complete the proof of Theorem [4.2]

C Pseudo-Code

The pseudo-code of L2T is shown in Algorithm 1] providing the main steps of L2T with GRPO.

Algorithm 1 Pseudo-Code of L2T (GRPO Version)
Require: Initial policy 7y; prompt distribution D; hyperparameters « and
1: for step=1to N do

2:  Sample a batch D, from D
3:  Setold policy 7y, < 7o
4:  for each query z; € Dy do
5: Sample N rollouts {yo, Y1, ,UN—1} ~ To, (- | 4)
6: for each rollout y; do
7: Compute 1% via Definition|4.1|and Theorem for each episode k
8: Compute 791" following [16]
9: Compute per-episode reward R; , = 779" + ariy
10: Set surprise weights w; ; o< —log pg,,, (zi¢ | Sit)
. Wi,
11: Assign per-token rewards 7; ¢ <— m - R
12: end for
13: Compute truncated mean 7; < TruncMeangsg, ({myt}t)
14: Compute group-level advantage A; = ha—_f
15: Rescale to token-level advantages A; ; = Ai . Tf—l’
16:  end for
17:  Update 7y via the GRPO objective
18: end for

19: return my
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D More Discussion

D.1 Theoretical Analyses about the Proposed Reward

In this subsection, we present the theoretical analysis for the proposed information-theoretic dense
process reward. Specifically, we first explain why the increment in model prediction accuracy can be
used to approximate Ay, (Proposition[D.I). Next, we provide a theoretical analysis demonstrating
that, under the current approximation, the computation method in Theorem {4.2]significantly reduces
computational complexity (Theorem [D.2)), while the approximation error (Theorem [D.3) remains
bounded, thereby supporting the practical computation of the proposed reward.

As mentioned in Subsectiond.2] the fitting information gain quantifies the reduction in uncertainty
about Y provided by the model parameters 6 after each episode. Formally, it is defined as the
conditional mutual information I(0;Y | X) = H(Y | X) — H(Y | X,0), where H(Y | X) =
—>_,P(y | X)logp(y | X) represents the uncertainty of Y given X alone, and H (Y | X, 0) is the
residual uncertainty after observing . The fitting gain for episode &, during which the parameters
update from 6y, _1 to Oy, is given by Al = I(0y;Y | X)—I(0x—1;Y | X). Given the computational
expense of directly calculating mutual information in large models, we approximate Al by the
increase in the model’s predicted correctness probability. Specifically, we use the approximation
ATy =~ Jo(mo(- | Sky21)) — Jr(mo(- | sk)), which captures the direction of AT, and requires only
two evaluations of the distribution per episode. Then, we get:

Proposition D.1 Given an episode k, where the model parameters are updated from 0y,_1 to 0y, the
fit gain for this episode is defined as Al, = I(0;Y | X) — I(0x—1;Y | X), where I(0;Y | X)
represents the mutual information between the model parameters 6 and the labels Y, conditioned on
the input X. We have:

Aly = Jp (mo(- | sk, 21)) — Jr (o (- | sk)) (25)

where J.(mg) denotes the reward function under the policy mg, and 7o (- | Sk, zr) and 7o (- | sk)
represent the updated policy and the policy prior to the update, respectively. This approximation
aligns with the direction of the mutual information increment.

Proof. We start by expressing the mutual information I(0; Y | X) between model parameters 6 and
output labels Y conditioned on input X. This is formally defined as:

10;Y | X) = H(Y | X) - HY | X,0)
== ply| X)logp(y | X)+>_ply | X,0)logp(y | X,0)
Y y (26)

p(y | X)
Zplelog oy [ X0

where H(Y | X) is the entropy of Y given X (uncertainty of the labels given the input), H(Y | X, 0)
is the conditional entropy of Y given both X and 6, p(y | X) is the conditional probability distribution
of label Y given input X, and p(y | X, 6) is the conditional probability distribution of label Y~ given
input X and model parameters 6.

The change in mutual information between two episodes (from ;1 to 6y) is given by Al =
I(0x;Y | X) — I(0k—1;Y | X). This represents the gain in the model’s ability to predict Y given X,
as the parameters are updated from 6j_ to 6.

In RL-based LLM optimization, the reward function J,.(mg) can be interpreted as the expected
accuracy of the model, which evaluates how well the model’s predictions align with the correct
answer. For a given policy g, the reward function is defined as .J,-(mg) = E...r,(|s,) [r(2)] where 2
denotes the model’s output and 7(-) measures how correctly the model generate the answer. In this
case, the difference between the model’s output probability (i.e., p(y | X, 0)) and the label Y directly
affects the model’s reasoning accuracy.

From the perspective of information theory [3,25], the model’s fitting information gain AT reflects
the change in the difference between the model’s inference answer and the standard answer (label)
before and after the parameter update. High mutual information means that the relationship between
the model’s inference and the standard answer is stronger, in other words, given X and 6, the model
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is able to predict Y more accurately. The reward function also reflects this by measuring the accuracy
of the model in its predictions. In other words, increasing mutual information actually improves
the accuracy of the model, and accuracy can be quantified by the reward function. Therefore, the
reward function can reflect the information gain obtained by the model in label prediction, or in other
words, the reward function can reflect the improvement in the accuracy of the model’s predictions.
The accuracy improvement and mutual information increment have similar directions: both reflect
the improvement in the ability to capture label information. Recall the problem settings, the model
updates the policy 7y through the parameter 6, which affects the prediction accuracy of the model.
The updated policy my(- | sk, zx) and the pre-update policy my(- | si) will lead to changes in
prediction accuracy, thereby affecting the value of the reward function. Since accuracy is related
to mutual information, we can approximate the mutual information increment by the difference in
reward function. Therefore, we have:

Alk ~ Jr (71'9(' ‘ sk,zk,)) — Jr (7‘(’9(‘ | Sk)) (27)
This shows that the difference in reward function is consistent with the direction of the increase

in mutual information, both reflecting the increase in the amount of information when the model
predicts the label Y (correct answer).

In the context of LLMs, the fitting information gain quantifies the contribution of each optimization
episode to the reasoning ability by tracking changes in the predicted correctness probability, i.e.,
the output distributions of 7g. In contrast, calculating the parameter-compression penalty is more
complex: it involves estimating the mutual information increment between the model parameters
0 and the historical context s;. Direct computation of this increment is intractable in the large
parameter space of LLMs. To overcome this challenge, we propose an efficient approximation in
Theorem [4.2] to estimate the penalty term. Next, we demonstrate that this method significantly
reduces the computational complexity (Theorem [D.2) with limited approximation error (Theorem
to support the computation of our proposed reward.

First, we prove that in Theorem computing the parameter-compression penalty via low-rank
approximation and Fisher matrix estimation achieves speedups of several orders of magnitude.

Theorem D.2 Let the parameter dimension be d and the rank cutoff value be r (r < d). Compared
to the original full non-approximate computation, estimating the parameter-compression penalty via
Theorem reduces the complexity of quadratic-form evaluations by a factor of © ((r / d)2).

Proof. First, we construct and store the complete Fisher matrix F'(6) € R9*4 which itself needs
to store d? scalars, so it is @(dQ). Then, evaluate the quadratic form AATF, A6, which can be
completed in two steps: first, calculate u = F, A#, involving d inner product operations of length d,
totaling ©(d?), and second, calculate the scalar Af ", which requires an additional ©(d), and the
total is still ©(d?). If it is further necessary to solve F'~! or perform eigendecomposition, the time
complexity of the corresponding classic algorithm is ©(d?).

Next, in the low-rank method, the original vector # € R is first mapped to an r-dimensional subspace
using truncated SVD (or randomized SVD). The main computation comes from the multiplication
and addition of the p x r matrix, so the complexity is ©(d,r?). Then, in this subspace, the gradient
Jacobian J = Vlog 7y is calculated and an approximate Fisher matrix F = J7J is formed. Each
entry requires d multiplications and additions, and the overall complexity is still ©(d, r2). Finally,
evaluating the quadratic form (A8)T F, (Af) only requires multiplication and addition of the r x r
matrix and the length r vector, with a complexity of ©(r2); if F needs to be further decomposed, it
will be ©(r?). Therefore, the overall complexity of the approximate method can be expressed as

Capprox = C'SVD + Cgrad + C;g)prox = @(p TZ + TB)' (28)

Dividing the complexity of the above two methods can get the speedup ratio. On the one hand, the
original method C’éfi)g = O(d?), on the other hand, the approximate method C’éf))pmx = O(r?). Thus,
we get:
(eig)
Corig @(p?,)

o~ O(pr2 177 — ((p/r)?/(1 +7/p)) = ©((p/r)?). (29)

Next, we prove that the approximation error caused by the above approximation is limited and
controllable.
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Theorem D.3 Assume that in each episode update, the parameter increment Aék = ék — ék,l
satisfies | AOy|| < B, and has a uniform bound M on the third-order derivative of any 0. Let
A\Ik = (Aék)T F(ék) Afy, and AT, = I(ék; Sk) — I(ék_l; Sg—1) and estimate the Fisher matrix
through N independent sampling trajectories, and then take K episodes for joint statistics. Then for
any confidence level § € (0, 1), with probability at least 1 — § we have:

— . d
max |Al, — Al | < Mg B2

1<k<K 6 N, K (30)

where d = dim(é) is the parameter dimension, the first term %BS comes from the third-order
remainder of the second-order Taylor expansion, and the second term is derived from the matrix
Hoeffding inequality or Bernstein inequality following Matrix-Concentration theory [46]].

Proof. We decompose the potential error into two parts: (i) Taylor expansion remainder: approximate
the true mutual information increment with a second-order Taylor expansion, and the remaining third-
order term gives the %Bg’ upper bound. (ii) Sampling/statistical error: use the matrix condensation
inequality to give the spectral norm level upper bound on the deviation between the empirical Fisher
and the true Fisher, and then get the second term from the quadratic property. Next, we discuss and
analyze these two items in turn.

For the function f(0) = log mg(2x | si), at point 0y, do a second-order Taylor expansion along the
direction h = A6y, and we have

FOr—1) = f(Or) — V f(0r) TR+ 3 h'V2f(0r) h — Rs, (3D
Among the remainders Rs, for a certain £ is between ), _1 and ). From || V3 f|| < M and ||h|| < B,
we get

1 M M
Ry = ShT[VEf(O[hR] B < £ |B]* = - B (32)
Thus, we have:
- . M
|AL; — (AGy)TF (Af)| < EB3. (33)

Next, we turn to discuss the empirical Fisher’s condensation error. Assume there are K episodes in
total, and each episode collects N independent trajectories. Let g;, = V, log 7, (z,(f ) | sk) €
R?, j=1,...,N;, k=1,..., K., then the true Fisher information matrix can be expressed as

F = E[g gT], g i {9;.x}, and the empirical Fisher is F= NI—K Zle Zjvzfl Gk g]Tk note

Let the matrix corresponding to the ¢th sample be (flatten the double subscript to a single subscript)
Xi = gjk g;':k — F where i = 1,...,n, obviously E[X;] = 0 and F-F = %Z?:l X;.
Applying matrix Hoeffding inequality, we obtain that: If { X;} is an independent symmetric matrix
and E[X;] = 0,]|X;|| < R, then for all u > 0 we have Pr(HZ?:l Xi|| > u) < 2dexp<—%).

Apply thisto ). X; = n(F — F), we have:
2

Pr(]| n(F - F)|| > u) < 2dexp(—8;:dw) (34)
Letu = nt, we get
N N 2t2 t2
Pr(|F - F|| > t) = Pr(|n(F — F)| > nt) < 2d exp(—h) =2d exp(—gﬁ) (35)

If we assume that each gradient norm is restricted: ||g; x| < 1, then ||gj7kg;':k|| <land|F| <1,s0
(1X:] < ng,kg;fk || + ||F|| <2, where R = 2. In order to be effective for both positive and negative
sides, it is often multiplied by 2 before the above formula, and we get:
Pr(|F = F|| 2 t) = Pr(|n(F - F)| = nt)
242 2

§2dexp<—#) =2d€XP<—%) (36)
§4dexp(—;l—1t;2):5 = t=R %lnt—d,
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Replace n = N, K, R = 2, and remember d — 2¢ (according to the parameter dimension, we get

8 In(4-24/5)

t=2 ﬁ ln(%) = \| — - - Under the above event (with probability > 1 — 6), for

any vector h, we have |hT(ﬁ — F)h| <||h]|* ||F — F|| < ||h][%t, which is the typical property of
controlling quadratic forms using the spectral norm.

Superimposing the Taylor remainder with the empirical Fisher statistical error, we get for each
episode:

-~ M
|AL — by, F hy| < < B+ B

<~
SN—— sampling/statistics
Tayl ind error
aylor remainder (37)
M 8 In(24/4)
=—B3 B? | ——1—=.
6 + N K
If the update amount is normalized (or assumed B < 1), it can be simplified to ¢ = %B3 +

£/ %2;(/6). Thus, we complete the proof of Theorem |D.3

Therefore, we can conclude that the computation method in Theorem [4.2] significantly reduces
computational complexity (Theorem [D.2), while the approximation error (Theorem [D.3) remains
bounded, thereby supporting the practical computation of the proposed reward.

D.2 Intuition behind the Proposed Reward

D.2.1 Intuition behind the Fitting Information Gain

How to interpret LLM reasoning from an information-theoretic perspective (fitting gain vs.
uncertainty) The reasoning process of an LLM can be viewed as inferring the correct answer Y’
from input X. The more certain the model’s prediction is, the better it “understands” the answer.
Based on classical information theory [37, [3] [14], we can use conditional entropy H(Y'|X) to
characterize the model’s uncertainty about the output Y. If the model is sufficiently confident, its
H(Y|X) should be low; conversely, if it is uncertain or making a blind guess, H(Y|X) should
be high. Within this framework, the goal of inference is to gradually reduce H(Y'|X) until the
correct answer is output. Importantly, while H (Y| X) represents the relationship between the input
and output, this process is controlled by the LLM (determined by the parameter ¢). Therefore, a
more reasonable metric is: Given €, what is the model’s uncertainty about Y'? That is, we want
6 to not only capture the input X but also provide strong discrimination of the correct answer Y.
Therefore, we use conditional mutual information I(6;Y|X) = H(Y|X) — H(Y|X, 6) to measure
how much the known model parameters 6 reduce the uncertainty about Y given X. This ties rewards
to meaningful reasoning progress, i.e., the reward for each episode depends on how much it helps the
model understand the correct answer. Therefore, we define “fitting information gain as the reduction
in uncertainty”.

How to characterize the gradual improvement of inference (introducing episode gain with 6,
and 0;,_,) Ineach episode k, the model updates its parameter state from 6;_; to 65 by observing
the new reasoning step zi. The key question is: Does this episode help the model better "understand"
the answer? Therefore, we define fitting information gain of this episode as Al = I(0x;Y|X) —
I(0;—1;Y|X). If this incremental gain is significant, it indicates that this episode has helped the
model become more certain and effective. Here, 0, and 01 represent the posterior model parameters
before and after learning the knowledge from episode k, estimated by the change in log-probability
during the forward prediction process.

Why the proposed metric corresponds to reducing uncertainty (approximating information
gain with J,) Because directly calculating mutual information is too complex, we introduce an
approximate metric J,.(+) to represent the model’s predicted probability of the correct answer. This
metric improves as the model’s “confidence” increases. Therefore, the fitting gain is approximated
as A, ~ J.(mo(- | sk, 2k)) — Jr(ma(- | si)), with theoretical guarantees in Appendix [D.1} This
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difference measures whether episode k£ improves the model’s ability to predict the correct answer,
reflecting the reduction process, i.e., the increasing reliability of reasoning.

D.2.2 Intuition behind the Compression Penalty

Why introducing compression penalty In LLM reasoning, if each episode’s information causes a
significant change, while that episode may provide information gain, it may also capture unnecessary
details within that episode, leading to overfitting or redundant computation. We want the model
to only learn information that contributes to the answer within the episode. Therefore, inspired by
the information bottleneck theory, we introduce a compression penalty based on the fitting term to
further improve efficiency. It measures the “information overhead” incurred by each episode from an
information-theoretic perspective.

How is it measured (intuition behind the design) If 6, differs significantly from 6;_1, but the
model’s prediction performance (i.e., fitting gain) improves only slightly, this step may “absorb redun-
dant information”. Therefore, we use the mutual information increment I(0y; si) — I(0k—1; Sk—1)
between them with the fitting term to measure whether the information in episode & introduces
unnecessary overhead.

Why this is called compression The term compression comes from the idea that a model should
retain only the minimal amount of information sufficient to perform accurate reasoning. In our
setting, the mutual information I(6; s;) quantifies how much the information of this episode is
encoded into the model parameters §. A larger value implies that the model has to “store” more
bits to fit that episode, akin to using more storage in a compressed file. By penalizing the increase
I(0k; sk) — I(0k—1;sk—1), we explicitly discourage storing redundant information, promoting a
more compact (i.e., compressed) internal representation. This aligns with principles from MDL and
PAC-Bayes, where generalization is favored when the hypothesis (here, 6) is simple and concise.

D.3 More Comparison

Our framework advances prior and concurrent works in three key dimensions, i.e., efficiency, general-
ity, and robustness, which we briefly illustrate below.

Firstly, previous methods [43} [16} |53| 9] |49]] mainly optimize via outcome rewards, which drives
models to over-extend reasoning chains and waste test-time compute. In contrast, our dense process
rewards immediately quantify each episode’s contribution to performance, enabling the model to
learn when to stop reasoning and thus achieve equal or better accuracy with a minimal token budget.

Secondly, some concurrent works [57, 11133} 136, 20] propose task-specific process rewards, heuristic
scorers, and length penalties to reduce the length of the reasoning chains, helping save test-time
compute. However, these methods require costly manual labeling and do not transfer across tasks
since they rely on task-specific settings, and there is no one-size-fits-all solution. We instead measure
the parameter-update signal inspired by information theory, i.e., the intrinsic change in the model’s
weights after each optimization, as a task-agnostic proxy for learning progress. This internal metric
requires no additional annotations or retraining and applies uniformly across diverse reasoning tasks.

Thirdly, existing reward-based updates to optimize test-time compute [36} 157, 1, 140, [64] may embed
noise or task-specific artifacts into model weights, leading to overfitting and drastic performance drops
under slight input shifts. In contrast, we introduce a parameter compression penalty that quantifies
and negatively rewards the absorption of redundant information at each update. Only updates yielding
true information gain are amplified; small or harmful directions are suppressed, ensuring stability
under noisy, ambiguous, or adversarial inputs. Moreover, by recasting LLM fine-tuning as a episodic
RL problem, combining a task distribution with dense per-step feedback, we enable the policy to
maintain robust performance from simple arithmetic to complex proofs, without redesigning rewards
or retuning hyperparameters for each new task.

Thus, by combining these three advantages into a unified RL objective, our L2T simultaneously
maximizes reasoning effectiveness and computational efficiency across tasks of varying complexity,
unlike prior approaches that trade off one for the other or rely on bespoke reward designs.
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D.4 Broader Impacts and Limitations

In this subsection, we briefly illustrate the broader impacts and limitations of this work.

Broader Impacts. This work explores how to simultaneously maximize inference effectiveness and
efficiency across tasks of varying complexity to meet real-world demands. It reformulates LLM
reasoning through a episodic reinforcement-learning and information-theoretic lens, and introduces
a general dense process reward to track reasoning progress, enabling optimal performance under a
minimal token budget. Extensive theoretical and empirical analyses validate its effectiveness and
robustness. This work also opens up exciting new avenues for future research, e.g., provides a way for
more explicit and automated dynamic budget allocation in the future, especially in scenarios sensitive
to token costs (e.g., mobile deployment or real-time QA).

Limitations. This study evaluates general LLM reasoning tasks, such as mathematical proofs and
code generation, which are commonly used to verify the reasoning capability of LLMs; some newly
proposed benchmarks, such as web design, were not used. Our current experiments use mainly the
open-source DeepSeek base models, including the scales of 1.5B, 3B, and 7B, while the scale of 72B
and even above 100B is not used due to resource limitations and not being open source. We will
investigate additional case studies and more base models to extend this work in the future.

E Benchmark Datasets

In this section, we briefly introduce all datasets used in our experiments. In summary, the benchmark
datasets can be divided into two categories: (i) reasoning tasks for mathematical derivation, including
AIME24-25, AMC, MATHS500 [18]], MinervaMATH [27], and Omni-MATH [13]]; and (ii) reasoning
tasks for code generation via HumanEval [8] The compositions of these benchmarks are as follows:

* AIME24-25 comprises 30 questions from the 2024 and 2025 American Invitational Mathe-
matics Examination, with 15 fill-in-the-blank questions per exam. These questions are more
difficult than AMC, spanning number theory, combinatorics, geometry, and algebra.

* AMCI10/12 consists of 25 multiple-choice questions each for the AMCI10 (up to 10th
grade) and AMCI12 (up to 12th grade). Each competition consists of 25 multiple-choice
questions, totaling 975 questions across 39 tests. Questions progress from basic algebra
and geometry to introductory probability and counting, covering various tasks for LLM
reasoning evaluation.

* MATHS00 is a 500-question subset randomly sampled from MATH, covering seven top-
ics—prealgebra, algebra, number theory, geometry, intermediate algebra, precalculus, etc.
Each question includes a step-by-step solution and a difficulty label from 1 to 5, enabling
evaluation of an LLM’s mathematical question-solving across diverse domains.

* MinervaMATH comprises 12,500 high-school-level contest questions. Each includes de-
tailed solution steps and spans prealgebra through precalculus.

* Omni-MATH is an Olympiad-level benchmark of 4,428 competition questions across 33
subdomains (e.g., number theory, combinatorics, geometry, algebra), stratified into over 10
difficulty levels (divided into 4 tiers following [5]]).

* HumanEval consists of 164 Python programming tasks designed to evaluate the correctness
of code generated by models. Each task includes a standard function signature, and the
model must generate the corresponding code implementation based on the description. The
evaluation metric is primarily Pass @k, which measures the proportion of times the generated
code passes the test cases at least once within k attempts.

F Implementation Details

For model training, we directly load the base models from Hugging Face, including DeepScaleR-1.5B-
Preview, DeepSeek-R1-Distill-Qwen-1.5B, DeepSeekR 1-Distill-Qwen-7B, and Qwen2-7B-Instruct.
For different reasoning tasks, we introduce the experimental settings in the corresponding sections of
Section[5|and Appendix[G] Unless otherwise specified, we follow the protocol of each benchmark
and record the maj@4 results across different models. The training configuration is: the learning
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Figure 6: Results of DeepScaleR-1.5B-Preview (a,b) and DeepSeek-R1-Distill-Qwen-1.5B (c,d)
across different tasks on Omni-MATH. We partition the generated reasoning chain into episodes,
measuring accuracy Acc(k) and average token consumption 7'(k) at different episode depths.

rate is set to 1.0 x 1075, with a cosine learning rate scheduler, and a warm-up ratio of 0.1. We use
a batch size of 256, with a maximum prompt length of 4,096 tokens and a maximum completion
length of 16,384 tokens. The model is trained for 1 epoch, up to 10 epochs. Additionally, we set the
‘use_vllm’ flag to True to enable VLLM acceleration, with a GPU memory utilization of 0.8. We
also utilize mixed precision training with BF16 enabled. The parameters for compression penalty
approximation are handled by a single-layer MLP, with a Fisher information matrix damping factor
set to 10~°. The regularization hyperparameters « and 3 are set to 0.8 and 0.6 according to grid
search results, respectively. Also, a can be set to 1 for simplicity, with the performance drop less
than 1%. More evaluation of implementation is provided in Appendix|[G] e.g., parameter sensitivity,
prompt configuration, etc. The entire training is conducted on A100 GPU clusters, ensuring scalability
and high computational efficiency.

G Additional Experiments and Full Results

In this section, we present the full results and additional experiments of this work, including extended
settings, datasets, and base models, which are provided in the appendix due to space limitations.

G.1 More Details and Results of the Motivating Experiments

In Subsection [3.2] we evaluate how efficiently existing methods use tokens. We benchmark two
base models, DeepScaleR-1.5B-Preview and DeepSeek-R1-Distill-Qwen-1.5B, on Omni-MATH
(4,428 questions across 33+ subfields, split into Tiers 1-4 by expert difficulty labels). Both models
have been fine-tuned with outcome-based RL. To study performance at varying reasoning depths, we
split each generated reasoning chain into up to K = 20 episodes using ‘<think>. .. </think>’, then
record the sequential-generation accuracy Acc(k) and the average token usage T'(k) at each episode
k. For comparison, we also include a Maj4 baseline: under the same truncated context, we sample
four answers and take a majority vote, measuring Maj@4(k) and its token cost. Plotting “accuracy
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Table 2: Pass@1 performance on various math reasoning benchmarks. We compare base models
trained with different fine-tuning approaches. The best results are highlighted in bold.

Base model + Method ‘ AIME 2024 ‘ AIME 2025 ‘ AMC 2023 ‘ MATHS500 ‘ MinervaMATH ‘ Avg.
DeepScaleR-1.5B-Preview 42.8 36.7 83.0 85.2 24.6 54.5
+outcome-reward RL (GRPO) 44.5 (+1.7) | 393 (+2.6) | 81.5(-1.5) | 84.9(-0.3) 24.7 (+0.1) 55.0 (+0.5)
+length penalty 40.3 (-2.5) 30.3 (-6.4) 773 (-5.7) | 83.2(-2.0) 23.0 (-1.6) 50.8 (-3.7)
+ReST-MCTS 455 (+2.7) | 39.5(+2.8) | 83.4(+0.4) | 84.8 (-0.4) 23.9 (-0.7) 55.4 (+0.9)
+MRT 472 (+4.4) 39.7 (+3.0) 83.1 (+0.1) 85.1 (-0.1) 24.2 (-0.4) 55.9 (+1.4)
+Ours 48.5 (+5.7) | 40.2 (+3.5) | 854 (+2.4) | 88.1 (+2.9) 26.5 (+1.9) 57.8 (+3.3)
DeepSeek-R1-Distill-Qwen-1.5B 28.7 26.0 69.9 80.1 19.8 44.9
+outcome-reward RL (GRPO) 29.8 (+1.1) | 27.3(+1.3) | 70.5(+0.6) | 80.3 (+0.2) 22.1 (+2.3) 46.0 (+1.1)
+length penalty 27.5(-1.2) 22.6 (-3.4) 64.4 (-5.5) | 77.1(-3.0) 18.8 (-1.0) 42.0 (-2.9)
+ReST-MCTS 30.5 (+1.8) | 28.6(+2.6) | 72.1(+1.2) | 80.4 (+0.3) 20.3 (+0.5) 46.4 (+1.5)
+MRT 303 (+1.6) | 293 (+3.3) | 72.9 (+3.0) | 80.4 (+0.3) 22.5 (+2.7) 47.1 (+2.2)
+Ours 329 (+4.2) | 30.1 (+4.1) | 73.5(+3.6) | 84.7 (+4.6) 24.5 (+4.7) 49.2 (+4.3)
DeepSeek-R1-Distill-Qwen-7B 55.5 50.2 85.1 87.4 42.1 64.1
+outcome-reward RL (GRPO) 56.9 (+1.4) 51.7 (+1.5) | 85.5(+0.4) | 87.7 (+0.3) 435 (+1.4) 65.1 (+1.0)
+length penalty 53.8 (-1.7) 46.9 (-3.3) 81.2(-3.9) | 83.7(-3.7) 39.5 (-2.6) 61.0 (-3.1)
+MRT-Reproduct 57.0 (+1.5) | 52.4(+2.2) | 86.0(+0.9) | 88.4 (+1.0) 44.3 (+2.2) 65.6 (+1.5)
+Ours 58.4 (+2.9) | 53.6 (+3.4) | 87.5(+2.4) | 89.2 (+1.8) 45.0 (+2.9) 66.8 (+2.7)
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Figure 7: Efficiency comparison on DeepScaleR-1.5B-Preview (a-d), DeepSeek-R 1-Distill-Qwen-
1.5B (e-h), and DeepSeek-R1-Distill-Qwen-7B (i-1). We compute the token budget required for each
benchmark and treat the budget of the base model w/o fine-tuning as reference (1x).

vs. episodes” and “token cost vs. episodes” reveals how model performance varies with question
difficulty and compute budget, and highlights the relative merits of sequential decoding versus voting.

Due to space constraints, we previously showed only DeepScaleR-1.5B-Preview. Figure [6| now
presents both base models, demonstrating the same trends: (i) Acc(k) peaks and then declines as k
increases, indicating extra episodes add no new information and may hurt performance via context
redundancy; (ii) token usage rises rapidly with k, exceeding twice the minimal budget before peak
accuracy, underscoring that existing methods may not efficiently use test-time compute; and (iii)
the optimal k depends on difficulty—Tier 4 questions benefit from longer chains, whereas Tier 1
questions achieve strong results with very few episodes. These findings motivate L2T’s dense process
reward, which adaptively adjusts reasoning depth.
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Figure 9: The effects of different components within L2T across different tasks.

G.2 Full Results of Effectiveness and Efficiency Analysis

To evaluate the proposed L2T, we conduct experiments on various benchmarks, including mathemati-
cal and code-related tasks, and across base models of different scales. In the main text, we report the
performance of L2T on mathematical reasoning tasks of varying complexity. Table[I] Figure2] and
Figure [3| show that, compared to prior outcome-reward or process-reward methods, L2T delivers
superior reasoning with less test-time compute. In this subsection, we assess its performance on more
base models and more reasoning tasks, e.g., code generation tasks. Notably, mathematical reasoning
and code generation serve as classic benchmarks for testing an LLM’s complex reasoning ability
[43.116,132]]. First, we report performance across additional model scales. The results for inference
accuracy and compute efficiency are shown in Table[2]and Figure[7} We observe the same conclusion:
L2T achieves state-of-the-art performance, attaining the highest inference accuracy with the smallest
token budget. These findings demonstrate the broad effectiveness of our approach across models
of varying scales. Secondly, we provide the performance of the proposed framework on the code
generation task, and we evaluate the improvement of L2T on the LLM reasoning performance on the
code generation task. Specifically, we run the GRPO/L2T fine-tuning pipeline on Qwen2-7B-Instruct
and evaluate it using the standard HumanEval protocol. We set the temperature to 0.6 and top-p to
0.95 and generate 64 solutions per question, with a 1s timeout per attempt. We report the proportion
of questions that pass all unit tests at least once. From the results in Figure[8] we can observe that
compared with the outcome-reward-based RL method, L2T achieves better reasoning performance
with less token budget. This proves the superiority of our proposed L2T and dense process rewards.

To further validate the versatility of our approach, we conduct two complementary studies. First,
since L2T improves reasoning efficiency by adaptively allocating token budgets, we examine whether
additional test-time search (e.g., MCTS) provides further gains. We apply MCTS to models fine-
tuned with GRPO and L2T, and evaluate pass@1 accuracy on AIME and MinervaMATE. The results
in Table 3] show that GRPO benefits noticeably from MCTS, while L2T already achieves strong
reasoning performance and gains only marginally, confirming that L2T effectively reduces reliance
on large-scale search. Second, as our dense process reward is defined in a task-agnostic form, we also
apply it to inference-only methods as a reranking signal. We evaluate DeepSeek-R1-Distill-Qwen-
7B under a best-of-16 setting on MinervaMATH, comparing log-likelihood reranking, PRM-based
reranking, and L2T reranking. The results in Table 4] demonstrate that L2T achieves the highest
accuracy, outperforming both likelihood-based and PRM baselines. Together, these findings indicate
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Question: What is 12 + 5? Question: Compute 3/4 plus 5/6.

a=0.9 12 plus 5 equals 17. a=0.9 The common denominator is 12. 3/4 is 9/12, 5/6 is
Answer: 17 =] 10/12. Adding gives 19/12.
O Answer: 19/12
To solve this, I first recall the addition operation. ‘We are asked to add 3/4 and 5/6. To do this, we need
Addition is combining two numbers into a total. a d i The d i s are 4 and
Let’s start with 12 and add 5. 6, and their least common multiple is 12.

12 plus 5 equals 17. a=0.2 Convert: 3/4 = 9/12, 5/6 = 10/12. Now add: 9/12 + a=0.2

I double-check: 10 +5=15,50 12 +5=17. 10/12 =19/12.

The final result should be 17. ‘We can check: 19/12 = 1 and 7/12. Looks consistent.
/

Answer: 17 Answer: 19/12 /

(a) Simple Arithmetic (b) Fraction Addition
Question: A right triangle has legs of length 5 and 12. Question: In a right triangle, the legs are 6 and 8. What is
Find the hypotenuse. the radius of the inscribed circle?

a=0.9 a=0.9

5 squared plus 12 squared is 25 plus 144 = 169. The Hypotenuse = 10. Area = 24, semiperimeter = (6 + 8 + 10)/2 = 12.

& square root of 169 is 13. &) Radius = area / semiperimeter =24/ 12=2.
O Answer: 13 C) Answer: 2

We want the hypotenuse of a right triangle with legs We are asked for the inradius of a right triangle with legs 6

5 and 12. By the Pythag theorem, hyp and 8. First, compute the hypotenuse: 6*6 + 8*8 = 36 + 64 =

squared = 5 squared + 12 squared. ]'\loo'_s‘;"“’“'ei“ﬁ; N ;‘1 _—

That is 25 + 144 = 169. So the hypotenuse squared is a=0.2 T;:s;;i;:“r’i‘";m G A= PP, a=0.2

Lok itiesquaTetontaTyesyis: = The inradius formula is r = area /s. Sor=24/12=2. =

Double-check: 13 *13 = 169, which is correct. Let’s confirm: area = rs. If r = 2, then rs = 24, matching area.

Answer: 13 / Answer: 2 /

(c) Geometry (d) Geometry
Figure 10: Examples of qualitative analysis about c.

Method AIME 2024 MinervaMATE Method MinervaMATH
GRPO 44.5 247 Best-of-16 + log-likelihood 42.6
GRPO+MCTS 46.8 253 Best-of-16 + Qwen2.5-Math-PRM 433
L2T 48.5 26.5 Best-of-16 + Skywork-PRM 43.0
L2T+MCTS 48.9 26.7 Best-of-16 + L2T rerank 439
Table 3: Effect of combining with MCTS. Table 4: Applying to inference-only reranking.

that L2T not only enables efficient reasoning during fine-tuning but also serves as an effective scoring
mechanism in inference-time pipelines.

G.3 Full Results of Ablation Studies

In Subsection [5.3] we conduct ablation studies to evaluate the optimal configuration and parameter
settings. Considering questions of varying complexity, we perform evaluation on multiple bench-
marks. We conduct an ablation study on the three core components of L2T, evaluating the contribution
of each one by constructing alternative configurations: (i) Replacing information gain (config 1):
replacing the proposed process reward with a task-aligned pre-trained reward model; (ii) Removing
parameter compression penalty (config 2): completely removing the parameter compression penalty
driven by the Fisher information matrix; (iii) Replacing low-rank approximation (config 3): using
random sampling of 30% of network layers to approximate the Fisher information matrix, instead of
the original low-rank approximation method. All ablation configurations follow the same hyperpa-
rameters and test protocols as the main experiment, each Tier is repeated five times to report average
accuracy and average token consumption. The results in Figure 9] confirm similar conclusions as in
the main text: replacing information gain with task-specific reward leads to an average accuracy drop
of about 1.9%, with a slight increase in token consumption; removing the parameter compression
penalty results in about a 12% increase in consumption and a drop in accuracy; while random layer
sampling reduces approximation overhead, the accuracy drops significantly, and the fluctuations
increase substantially. These results validate the crucial role of each proposed component within L2T.
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G.4 Visualization

G.4.1 Qualitative Analysis of o

In this subsection, we construct qualitative experiments to illustrate how to eliminate redundant
inferences at low and high alpha values. The coefficient o denotes the weight of our proposed process
reward (Eq.5). When « is small, the model relies more on the outcome reward, which provides high
rewards only when the correct answer is found. Without guidance and given that correct answers are
sparse in the output space, the model may consume a large number of tokens in exploration, reducing
efficiency. In contrast, when « is large, the model is driven by the process reward, which assigns high
rewards only if the current reasoning step has a high contribution to the accuracy of the answer, i.e.,
the correct answer is reached within a short token sequence. This encourages the model to generate
informative tokens at each step, thereby improving efficiency. The qualitative results are shown in
Figure (10} which demonstrate the above analyses. Take the Tier-1 Omni-MATH problem “What is
12 + 577 as an example, the qualitative analysis shows that with o = 0.9, the model may answer
within 2-3 steps, whereas with a = 0.2, it may take more than 7 steps.

G.4.2 Prompt Configuration for Episode Segmentation

For episode segmentation, we automatically segment the chains by designing specific prompts.

Taking mathematical reasoning tasks as an example, to segment the reasoning chain into fixed
episodes (e.g., “segment up to 30”), we add the following instruction to the prompt file:

<think>
In this section, show your detailed reasoning process. Break down your
reasoning into at most 30 logically coherent segments.

Each segment must be clearly marked with numbered tags in the format <episode_1>
. </episode_1>, <episode_2> ... </episode_2>, ..., up to <episode_30>.

Ensure each <episode_i> should contain only a single complete logical move, such
as a definition, a formula derivation, a transformation, or a case split.

</think>
For adaptive segmentation (e.g., “break the reasoning chains into K segments”), we add:

<think>

In this section, show your detailed reasoning process. Break down your reasoning
into logically coheret segments.

Each segment should be enclosed in <episode_k> ... </episode_k> tags, such as:

<episode_1>...</episode_1>

<episode_2>...</episode_2>

<episode_K>...</episode_K>

Ensure each <episode_i> should contain only a single complete logical move,

such as a definition, a formula derivation, a transformation, or a case
split. Avoid grouping multiple logical steps into one.

;}éhink>
G.4.3 Visualization of Episodes and Dense Reward
In practice, episode segmentation is guided by semantic completeness and logical separability. It is

automatically handled by the model during generation and sampling via prompt instructions, rather
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than based on a fixed token count. As a result, episode lengths are variable. For example, each

episode may correspond to a distinct reasoning action, such as “defining variables”, “substituting into
equations”, or “structural inference”. We provide a brief example below:

Q: Let x + y + z = 100, where x, y, z are positive integers such that gcd(x, vy,
z) = 1. How many such ordered triples (x, y, z) are there?

<think>

<episode_1>

We are given a positive integer equation x + y + z = 100 with the constraint
that gcd(x, y, z) = 1. Our goal is to count the number of positive integer
triples satisfying both conditioms.

[Dense Reward: 0.03]

</episode_1>

<episode_2>

To simplify the counting, we observe that the total number of positive integer
solutions to x + y + z = 100 is given by the standard stars-and-bars
formula C(99, 2).

[Dense Reward: 0.08]

</episode_2>

<episode_3>
Now we need to subtract from this count the number of triples where gcd(x, y, z)
> 1. To do this, we use the Mobius inversion principle to count only the
primitive triples with gecd = 1.
[Dense Reward: 0.15]
</episode_3>

<episode_4>

Let d = gcd(x, y, z). Then we write x = da, y = db, z = dc so that a + b + ¢ =
100/d, and gcd(a, b, c) = 1.

[Dense Reward: 0.17]

</episode_4>

<episode_5>

We now compute the number of such primitive triples using the formula: sum over
all d that divide 100 of mu(d) * C(100 / d - 1, 2), where mu(d) is the
Mobius function. This ensures that we only count the triples with gcd = 1.

[Dense Reward: 0.23]

</episode_5>

<episode_8>

Therefore, the total number of ordered triples (x, y, z) such that x + y + z =
100 and gcd(x, y, z) = 1 is 2960.

[Dense Reward: 0.12]

</episode_8>

<episode_9>

We briefly confirm the result by noting that the Mobius-based inclusion-
exclusion method is standard and sound for counting primitive compositions.

[Dense Reward: 0.02]

</episode_9> </think>

To accommodate tasks with varying reasoning granularity: for problems with long reasoning chains
(e.g., mathematical proofs or code generation), a single episode may span multiple tokens; in
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contrast, for shorter or more fragmented tasks (e.g., factual questions), episodes may be automatically
compressed into short logical units without forced segmentation. Below, we provide two examples.

A question with a short reasoning chain:

Q: Lily has 7 pencils. She buys 5 more and gives 3 to her friend. How many
pencils does she have now?

<episode_1> Lily starts with 7 pencils. </episode_1>
<episode_2> She buys 5 more, so now she has 7 + 5 = 12 pencils. </episode_2>
<episode_3> She gives away 3 pencils, so 12 - 3 = 9 pencils remain. </episode_3>

A question with (relatively) long reasoning chains:

Q: Let a, b, and c be real numbers such that
a+b+c=6,

ab + bc + ca = 9,

abc = 2.

Find a~3 + b~3 + c~3.

<episode_1> We are given a + b + ¢ = 6, ab + bc + ca = 9, and abc = 2. </
episode_1>

<episode_2> Recall the identity: a3 + b3 + ¢c”3 = (a + b + ¢c)"3 - 3(a + b + c)(
ab + bc + ca) + 3abc. </episode_2>

<episode_3> Compute (a + b + ¢c)~3 = 673 = 216. </episode_3>

<episode_4> Compute 3(a + b + c)(ab + bc + ca) = 3 *x 6 * 9 = 162. </episode_4>

<episode_5> Compute 3abc = 3 * 2 = 6. </episode_5>

<episode_6> Substitute into the identity: 216 - 162 + 6 = 60. </episode_6>
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