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ABSTRACT

Encoder-free architectures have been preliminarily explored in the 2D Large Mul-
timodal Models (LMMs), yet it remains an open question whether they can be
effectively applied to 3D understanding scenarios. In this paper, we present the first
comprehensive investigation into the potential of encoder-free architectures to alle-
viate the challenges of encoder-based 3D LMMs. These long-standing challenges
include the failure to adapt to varying point cloud resolutions during inference
and the point features from the encoder not meeting the semantic needs of Large
Language Models (LLMs). We identify key aspects for 3D LMMs to remove the
pre-trained encoder and enable the LLM to assume the role of the 3D encoder: 1)
We propose the LLM-embedded Semantic Encoding strategy in the pre-training
stage, exploring the effects of various point cloud self-supervised losses. And we
present the Hybrid Semantic Loss to extract high-level semantics. 2) We introduce
the Hierarchical Geometry Aggregation strategy in the instruction tuning stage.
This incorporates inductive bias into the LLM layers to focus on the local details
of the point clouds. To the end, we present the first Encoder-free 3D LMM, ENEL.
Our 7B model rivals the state-of-the-art model, PointLLM-PiSA-13B, achieving
57.91%, 61.0%, and 55.20% on the classification, captioning, and VQA tasks, re-
spectively. Our results show that the encoder-free architecture is highly promising
for replacing encoder-based architectures in the field of 3D understanding.

1 INTRODUCTION

Large Language Models (LLMs) Touvron et al. (2023); Bai et al. (2023) have gained unprecedented
attention for their proficiency in understanding and generating complex language scenarios. Building
upon these advances, many recent efforts have been made to develop Large Multimodal Models
(LMMs), empowering LLMs with the capability to interpret multimodal information, such as 2D
images Li et al. (2024), 3D point clouds Chen et al. (2025); Guo et al. (2023); Xu et al. (2025); Wang
et al. (2025) and visual generation Tong et al. (2025); Jiang et al. (2025); Guo et al. (2025b).

Mainstream LMMs are typically encoder-based, relying on heavyweight yet powerful pre-trained
encoders (e.g., CLIP Radford et al. (2021) for 2D and I2P-MAE Zhang et al. (2023a) for 3D). While
these pre-trained encoders offer robust multimodal embeddings enriched with pre-existing knowledge,
they also introduce challenges that could limit the future advancement of multimodal understanding.
To mitigate the limitations introduced by visual encoders in VLMs—such as resolution, aspect ratio,
and semantic priors—many encoder-free LMM studies Li et al. (2025); Diao et al. (2024a; 2025); Lei
et al. (2025); Luo et al. (2025) have explored the possibility of training without pre-trained encoders.

Specifically for 3D LMMs, the encoder-based architecture has the following potential drawbacks:
(1) Point Cloud Resolution Limitation. 3D encoders are often pre-trained on point cloud data at a
fixed resolution, such as 8,192 points for Point-BERT Yu et al. (2022) in PointLLM Xu et al. (2025).
However, during inference, the resolution of point clouds may vary (e.g., 12,000 or 4,000 points).
This difference between training and inference resolutions can result in the loss of spatial information
when extracting 3D embeddings, leading to difficulties for LLMs to comprehend, as showcased in
Figure 1 (a). (2) Embedding Semantic Discrepancy. 3D encoders are typically pre-trained using self-
supervised methods like MAE Pang et al. (2022); Tang et al. (2024a;b) and contrastive learning Xie
et al. (2020); Qi et al. (2023), but these training objectives may not align with the specific semantic
needs of LLMs. In other words, they may not capture the most relevant semantics for LLMs to
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Figure 1: Issues of encoder-based 3D LMMs. (a) Point Cloud Resolution Limitation. During
training, the point cloud size (P.C. Size) and point token size (P.T. Size) are fixed at 8192 and 512,
respectively. And we adjust these two sizes during inference, point cloud size from 2K to 16K and
the corresponding point token size from 128 to 2048. We evaluate them on the captioning task of
the Objaverse benchmark using GPT-4 score as the evaluation metric. (b) Embedding Semantic
Discrepancy. We visualize the attention scores of the average text token to the point tokens, where
red indicates higher values. The point tokens in the encoder-free architecture exhibit stronger
textual semantic relevance needed for the LLM.
understand 3D objects, as visualized in Figure 1 (b). Even when a projection layer is used to connect
3D encoders with LLMs, simple MLPs are often insufficient for a complete semantic transformation.
Given these issues, we ask: Is it possible to explore an encoder-free architecture for 3D LMMs,
eliminating the 3D encoder and instead integrating its functionality directly within the LLM itself?

In this paper, we present the first systematic investigation into the potential of an encoder-free
architecture for 3D LMMs. To minimize external influences and ensure clarity, we use the pioneering
and sufficiently concise PointLLM Xu et al. (2025) as our encoder-based baseline, which consists of
two progressive training stages: pre-training and instruction tuning. We evaluate the performance on
3D classification Deitke et al. (2023), 3D captioning Deitke et al. (2023) and 3D VQA Deitke et al.
(2023) tasks. Specifically, to remove the encoder while mitigating any performance degradation, we
explore solutions to the following two key questions:

(1) How can we compensate for the high-level 3D semantics originally extracted by the 3D encoder?
In 3D LMMs, the raw point cloud input is first passed through a token embedding module for low-
level tokenization, before being processed by the main 3D encoder, usually a Transformer Vaswani
(2017), to generate high-level embeddings. Skipping the encoder entirely poses a challenge in
capturing the complex spatial structures of 3D point clouds. To address this, we propose a strategy
called LLM-embedded Semantic Encoding in the pre-training stage. First, we adopt a simple yet
effective token embedding module that captures as much informative semantic content as possible.
These 3D tokens are then directly fed into the LLM. Next, we aim to shift the responsibility of
capturing high-level 3D semantics to the LLM itself. To guide this process, we explore various 3D
self-supervised loss functions, such as masked modeling loss and distillation loss, and ultimately
propose the Hybrid Semantic Loss as the most effective choice. Further, we make the early layers of
the LLM to be learnable, allowing them to specialize in multimodal alignment.

(2) How can we integrate inductive bias into LLMs for better perception of 3D geometric struc-
tures? Pre-trained 3D encoders typically embed explicit inductive bias into their architectures to
progressively capture multi-level 3D geometries. For instance, models like Point-M2AE Zhang et al.
(2022) use a local-to-global hierarchy, which is a concept also common in convolutional layers for
2D image processing He et al. (2016). In contrast, LLMs employ standard Transformer architectures,
where each layer processes the same number of tokens, representing the same semantic level across
the network. In the absence of the encoder, we introduce the approach of Hierarchical Geometry
Aggregation during the fine-tuning stage. In the early layers of the LLM, we aggregate 3D tokens
based on their geometric distribution using Dynamic Grid Sampling. This approach enables the LLM
to gradually integrate detailed 3D semantics and develop a more holistic understanding of the 3D
object. In the later layers, we reverse this aggregation, propagating the tokens back to their original
distribution to maintain the fine-grained representation necessary for complex tasks.

Through a series of experimental investigations, we have uncovered the strong potential of applying
encoder-free architecture to the 3D LMM domain. Building on our insights, we introduce ENEL, an
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ENcoder-freE 3D LMM evolved from Vicuna-7B Chiang et al. (2023) using the same training dataset
from PointLLM. Notably, without any 3D encoders, ENEL-7B achieves comparable performance
to the state-of-the-art PointLLM-PiSA-13B Guo et al. (2025a). We hope ENEL may provide the
community with an effective path for adapting the encoder-free architecture to 3D scenarios.

Our main contributions are summarized as follows:

• We present the first comprehensive empirical study of applying encoder-free architectures to the 3D
LMM domain, offering valuable insights for the field.

• We aim to transfer the original roles of 3D encoders to the LLM itself, and propose the LLM-
embedded Semantic Encoding and Hierarchical Geometry Aggregation strategy, both of which have
been validated as effective.

• We further introduce ENEL, a concise and well-performed encoder-free 3D LMM, which, at the 7B
parameter scale, achieves 57.91%, 61.0%, and 55.20% on 3D captioning, classification, and 3D VQA
tasks, respectively, on par with existing encoder-based models.

2 RELATED WORK

3D LMM. Recent advancements in integrating large language models (LLMs) with 3D data have
led to significant progress in both object-level and scene-level understanding. At the object level,
early approaches like Hong et al. (2024) utilize 2D rendering to leverage 2D LLMs, but this sacrifices
geometric details. More recent models, including Point-Bind LLM Guo et al. (2023), PointLLM Xu
et al. (2023b) and ShapeLLM Qi et al. (2024), directly encode point clouds and align them with
LLMs, by combining the 3D encoder with a powerful language model, effectively fusing geometric,
appearance, and linguistic information. MiniGPT-3D Tang et al. (2024c) is introduced, which
efficiently aligns 3D point clouds with LLMs by leveraging 2D priors from 2D-LLMs. It employes a
four-stage cascaded training strategy along with a Mixture of Query Experts (MoQE) module. Zeng
et al. propose GreenPLM Tang et al. (2025), an energy-efficient framework that directly translates
monolingual pre-trained language models into other languages using bilingual lexicons. At the scene
level, models like Chat-3D Wang et al. (2023) and Scene-LLM Fu et al. (2024) focus on understanding
complex spatial relationships through dialogue and tasks like captioning. Scene-LLM Fu et al. (2024)
enhances embodied agents’ abilities in interactive 3D indoor environments by integrating both scene-
level and egocentric 3D information. Grounded 3D-LLM Chen et al. (2024d) utilizes referent tokens
to reference specific objects within 3D scenes, enabling tasks such as object detection and language
grounding. However, conventional encoder-based 3D LMMs commonly suffer from limitations,
specifically Point Cloud Resolution Limitation and Embedding Semantic Discrepancy, which stem
from the inductive bias inherent in the 3D pre-trained encoder. Our ENEL alleviates these restrictions
by removing the encoder and utilizes a lightweight architecture to significantly boost performance.

Encoder-free Vision-Language Models. Traditional vision-language models (VLMs) often rely on
vision encoders to extract visual features before processing them with language models, integrating
image encoders like CLIP Radford et al. (2021) and DINO V2 Oquab et al. (2023). However, recent
efforts have explored encoder-free VLMs for their simplicity. Approaches like ChameleonTeam
(2024); Xie et al. (2024) use VQ tokenizers Esser et al. (2021) or linear projection layers Diao et al.
(2024a); Chen et al. (2024c) to represent images. Fuyu-8B Bavishi et al. (2023), a pure decoder-only
model, directly processes image patches through linear projections, handling high-resolution images
but showing only average performance. The EVE series Diao et al. (2024b; 2025) eliminates the need
for a separate vision encoder by bridging vision-language representation within a unified decoder and
enhancing visual recognition capabilities through additional supervision. Mono-InternVL series Luo
et al. (2024; 2025) leverage visual experts and progressive visual pre-training (EViP/EViP++) to
achieve stable optimization and competitive performance. SAIL series Lei et al. (2025) directly
encode raw pixels and decodes language within a single architecture, achieving competitive vision-
language performance without pre-trained vision encoders. The key idea behind ENEL is enabling
the LLM to assume the functionality of the encoder by effective and efficient methods. This approach
diverges from 2D encoder-free LMMs, which tend to focus on larger datasets and more complex
structures for better results.
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Table 1: Token Embedding. Performance
on Objaverse with PointLLM-7B as the base-
line. ‘Cls’/‘Cap’: classification/captioning
tasks. ‘Avg’: accuracy under prompts “What
is this?" and “This is an object of." ‘S-BERT’:
Sentence-BERT. ‘T.E.’: our designed token
embedding module.

Method Cls (Avg) Cap
GPT-4 GPT-4 S-BERT

PointLLM-7B 53.00 44.85 47.47

- Encoder 35.50 33.37 41.19

+ 2-layer T.E. 40.60 38.85 43.25
+ 3-layer T.E. 45.55 41.36 44.82
+ 4-layer T.E. 43.00 40.47 43.50

Table 2: Learnable Layers. We set the LLM early
layers to be learnable. ‘LR’ represents the learning
rate during the pre-training stage, with the original
learning rate set to 2e-3.

Method LR Cls (Avg) Cap
GPT-4 GPT-4 S-BERT

PointLLM-7B 2e-3 53.00 44.85 47.47

+ 2 learnable layers 2e-3 40.00 40.20 44.82
4e-4 44.00 42.62 46.30

+ 4 learnable layers 2e-3 43.75 40.13 45.76
4e-4 47.90 43.50 46.70

+ 8 learnable layers 2e-3 42.35 37.91 41.28
4e-4 46.70 42.80 46.14

+ 12 learnable layers 2e-3 41.55 40.05 41.40
4e-4 46.15 42.39 46.00

3 INVESTIGATION OF ENCODER-FREE 3D LMM

3.1 PRELIMINARY

Encoder-free in 2D LMMs. ELVA Li et al. (2025) is an encoder-free Video-LLM that directly models
nuanced video-language interactions without relying on a vision encoder. EVE Diao et al. (2024a)
and its successor EVEv2 Diao et al. (2025) are designed as efficient encoder-free vision-language
models. SAIL Lei et al. (2025) serves as a unified transformer for vision and language, while Mono-
InternVL Luo et al. (2025) represents a monolithic multimodal LLM. In parallel, Fuyu-8B Bavishi
et al. (2023), a decoder-only transformer developed by Adept AI, has gained substantial community
adoption. A common characteristic across these works is the adoption of a lightweight, randomly
initialized token embedding layer to convert inputs into tokens for the LLM. This design eliminates
the need for a dedicated vision encoder and enables end-to-end training and inference.

Pre-trained Encoders in 3D LMMs. Traditionally, 3D pre-trained encoders are characterized by two
properties: (1) independent pretraining on point cloud tasks (e.g., reconstruction), and (2) structural
decoupling, where they are connected to the language model through projection layers. In 3D LMMs,
commonly adopted encoders refer to pre-trained models such as PointMAE Pang et al. (2022),
PointBERT Yu et al. (2022), and Uni3D Zhou et al. (2023). Related work is in Appendix A.1.

Overall Architecture. We select PointLLM as the baseline model for the exploration and evaluate the
performance of different strategies on the Objaverse dataset Deitke et al. (2023), using GPT-4 scores
combined with traditional metrics as our evaluation metrics. Point Embedding Layer. As shown in
Figure 2, we first remove the encoder of PointLLM and adopt the original token embedding Yu et al.
(2022). However, the coarse structural design results in a significant performance degradation, as
observed in Table 1, where the GPT-4 scores for the classification and captioning tasks decrease by
17.5% and 10.48%, respectively. To mitigate excessive information loss and provide refined local
features to the LLM, we adopt a small network with a limited number of parameters, which is a
lightweight variant of Point-PN Zhang et al. (2023b). Specifically, for the input {Pi}Ni=1, we apply
Farthest Point Sampling (FPS) for downsampling the number of points, k-Nearest Neighbors (k-NN)
with group size k for local aggregation, and learnable linear layers for feature encoding. After a series
of repetitive operations and the projection layer, we transform the point clouds into high-dimensional
vectors {Fi}Mi=1 ∈ RM×D1 . In Table 1, we experiment with token embedding at different depths
and find that three layers yield the best performance. 3D Encoding & Alignment. We discover that
the absence of the encoder results in a lack of context modeling in point cloud feature processing.
Therefore, we attempt to have the early layers of the LLM take on the encoder’s role in capturing
global interactions of features, further encoding the point cloud features. In the pre-training stage,
we set the first K layers of the frozen LLM to be learnable. Within the shared semantic space, 3D
tokens and text tokens interact and align naturally. Early Fusion provides a more practical way to
achieve modality alignment between 3D and textual semantic spaces. Meanwhile, we experiment
with different learning rates. As shown in Table 2, a smaller learning rate yields better results by
stabilizing early layer optimization. Based on the designed token embedding module, setting the first
four layers to be learnable yields the best results.
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Figure 2: Overall Pipeline of ENEL. The training is divided into two stages: the pre-training stage
and the instruction tuning stage. In the first stage, we set the first K layers to be learnable and apply
the proposed Hybrid Semantic Loss to embed high-level semantics into the LLM. In the second stage,
we adopt the Hierarchical Geometric Aggregation strategy to capture local structures of point clouds.

3.2 LLM-EMBEDDED SEMANTIC ENCODING

The lack of the 3D encoder results in insufficient encoding of point cloud semantic information,
which greatly hinders the LLM to understand the structural details of point clouds. Most existing
3D encoders use self-supervised losses to embed the high-level semantics of point clouds into the
transformer, primarily categorized into four types: Masked Modeling Loss Pang et al. (2022), Recon-
struction Loss Qi et al. (2023), Contrastive Loss Khosla et al. (2020), and Knowledge Distillation
Loss Zhang et al. (2023a). Based on the proposed token embedding module and LLM learnable early
layers, we implement and evaluate the effects of these losses on the encoder-free 3D LMM in the
pre-training stage, as described in Figure 3. Finally, we propose the Hybrid Semantic Loss, which
assists the LLM to learn the relationship between local spatial information in the point clouds and
grasp the high-level 3D semantics.

Masked Modeling Loss. In the pre-training stage, we apply the Masked Modeling Loss to the point
tokens processed by the LLM, as shown in Figure 3 (a). Through the token embedding module,
the point clouds {Pi}Ni=1 are divided into point patches {Gi}Mi=1 ∈ RM×k×3 and the corresponding
point tokens {Fi}Mi=1. We randomly mask the point tokens with a masking ratio r, and replace them
with learnable tokens. The masked feature tokens can be denoted as {Fgti}

M∗r
i=1 , which serve as the

ground truth for the loss computation. After the masked tokens are replaced with learnable tokens and
processed by the LLM, a linear layer is applied to predict the point tokens {Fprei}

M∗r
i=1 ∈ RM∗r×D1 ,

and the Mean Squared Error (MSE) is computed between Fpre and Fgt. The optimization is:

Lmask =
1

M ∗ r

M∗r∑
i=1

(
∥Fprei − Fgt i

∥22
)
. (1)

The specific process of applying Masked Modeling to point patches G is detailed in Appendix A.3.1.

Reconstruction Loss. After the point feature tokens {Fi}Mi=1 are encoded by the LLM, the tokens
are transformed to the point patches {Gprei}

M
i=1 ∈ RM×k×3 through a linear layer. We utilize the

l2 chamfer distance to align the predicted Gpre with the ground truth G, reconstructing the original
spatial information, as illustrated in Figure 3 (b). This approach encourages the LLM to learn the
high-level semantics of the point cloud while preserving the critical structure and key features of the
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Figure 3: Point Cloud Self-Supervised Learning Losses. In the pre-training stage, we explore
common self-supervised learning losses for the encoder-free 3D LMM: (a) Masked Modeling Loss,
(b) Reconstruction Loss, (c) Contrastive Loss, and (d) Knowledge Distillation Loss. The (e) represents
our proposed Hybrid Semantic Loss, specifically designed for the encoder-free architecture.

point cloud input. The optimization target Lrecon can be written as

1

M

M∑
i=1

(
min
j

∥ai − bj∥22 +min
j

∥bi − aj∥22
)
, (2)

where a = Gpre, b = G. The procedure for reconstructing feature F is detailed in Appendix A.3.1.

Contrastive Loss. We conduct contrastive learning Khosla et al. (2020) at the point cloud level,
where we contrast two transformed versions of the point cloud in the Figure 3 (c). Given a sampled
point cloud {Pi}Ni=1, we apply two random geometric transformations T1 and T2, including rotation
and translation, to obtain PT1 and PT2. The two augmented point clouds are separately paired with
the original text query and processed through the LLM to obtain their respective feature tokens
FT1 ∈ RM×D1 and FT2 ∈ RM×D1 . Within the mini-batch, the two feature tokens derived from the
same point cloud serve as positive pairs, while they are considered negative pairs with other point
clouds. Using NCESoftmaxLoss, we aim to maximize the similarity of positive pairs and minimize
the similarity of negative pairs, encouraging the LLM to learn geometric equivariance of point clouds.
The Lcontrast is shown as below, where B stands for the training batch size.

1

B

B∑
i=1

(
− log

exp(FT1i · FT2i/τ)∑B
j=1 exp(FT1i · FT2j/τ)

)
. (3)

Knowledge Distillation Loss. We select the powerful Uni3D-L Zhou et al. (2023) as the teacher
encoder, input the point cloud into the 3D encoder, and obtain the output feature Fteacher ∈ RM×D2 .
The Mean Squared Error (MSE) between the LLM output tokens Fstudent and Fteacher is computed to
align Fstudent as closely as possible to Fteacher, thereby transferring the knowledge embedded in the 3D
encoder to the LLM. By obtaining additional supervision from the Uni3D, the LLM better captures
the complex structures in the point cloud data, as displayed in Figure 3 (d). The objective function is:

LKD =
1

M

M∑
i=1

(
∥Fstudenti − Fteacheri∥22

)
. (4)

Experiments and Insights. As shown in Table 3, we compare the effects of common self-supervised
learning losses in the pre-training stage, where they are summed with the LLM cross-entropy
loss Touvron et al. (2023), each with a coefficient of 1. The observations are summarized as below:

• The point cloud self-supervised losses generally benefit the encoder-free 3D LMM. Compared
to previous experimental results, where the GPT scores for the classification and captioning tasks
are 47.90% and 43.50%, the self-supervised losses bring about the significant improvements. This
is because the self-supervised learning loss forces transformations on the complex point clouds
through certain task design. This encourages the LLM to not simply memorize specific point cloud
data but to learn the underlying geometric relationships and high-level semantic information.
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Table 3: LLM-embedded Semantic Encoding. In pre-training, we explore the effects of different
self-supervised learning losses targeting point tokens. Ψ and Φ denote mask ratios of 60% and
30%, respectively. Subscripts patch and feat indicate loss targets. For Hybrid Semantic Loss, the
subscripts patch and feat refer to the masked modeling target, with reconstruction targeting the
corresponding feat and patch.

Method Cls (Avg) Cap

GPT-4 GPT-4 S-BERT

PointLLM-7B 53.00 44.85 47.47

Masked Modeling LossΨpatch 47.00 43.64 45.36
Masked Modeling LossΦpatch 49.00 45.20 46.29
Masked Modeling LossfeatΨ 48.50 43.90 45.30
Masked Modeling LossfeatΦ 48.50 45.85 46.93

Reconstruction Losspatch 48.00 45.56 46.33
Reconstruction Lossfeat 47.50 44.05 46.18

Contrastive Loss 42.50 41.21 43.77
Knowledge Distillation Loss 48.00 43.87 46.09

Hybrid Semantic Losspatch 50.00 45.24 46.59
Hybrid Semantic Lossfeat 52.00 47.65 47.30

• Among the self-supervised learning losses, the Masked Modeling Loss demonstrates the
strongest performance improvement. It achieves GPT-4 scores of 48.5% and 45.85% for
classification and captioning tasks, respectively. The application of the masked modeling to the
point features facilitates the embedding of high-level semantics from point clouds into the LLM.
However, a higher mask ratio increases training difficulty, with 60% performing worse than 30%. In
addition, explicitly reconstructing point patches helps capture complex structures and critical details
in point clouds. Knowledge Distillation Loss falls short compared to the first two losses. Finally,
Contrastive Loss, which fails to extract the detailed semantics, achieves the lowest performance.

Hybrid Semantic Loss. Based on the experimental results above, we propose the self-supervised
learning loss specifically designed for the encoder-free 3D LMM—Hybrid Semantic Loss, as show-
cased in Figure 3 (e). We apply a masking ratio r to randomly mask point tokens from the token
embedding. The masked tokens and the corresponding patches are referred to as {Fmaski}M∗r

i=1 and
{Gmaski}M∗r

i=1 , respectively. The remaining tokens are denoted as{Fvisi}
M∗(1−r)
i=1 and {Gvisi}

M∗(1−r)
i=1 .

Considering the autoregressive nature of the LLM and the unordered attribute of point clouds, we
directly concatenate learnable tokens {Flearni}M∗r

i=1 to the end of Fvis, replacing the masked tokens. For
the masked portion, we adopt masked modeling, and for the visible portion, we use the reconstruction
strategy. After passing point tokens through the LLM, we compute the MSE between Flearn and
Fmask. The visible features Fvis are transformed into Gpred, and the L2 Chamfer distance is computed
between Gpred and Gvis. These two are added to the original cross-entropy loss with coefficients
all equal to 1. This approach not only embeds high-level semantics into the LLM but also ensures
geometric consistency throughout the point cloud learning process. With a 30% mask ratio and
per-layer positional encoding of point tokens, it achieves 52.00% and 47.65% on the classification
and captioning tasks, respectively. The inverse modeling process is described in Appendix A.3.1.

Our motivation arises from the observation that complex objectives, such as KD and contrastive
learning, impose significant computational overhead yet often yield marginal gains compared to
intrinsic data modeling losses like masked modeling. To address this, we propose the Hybrid Semantic
Loss, which resolves the structural mismatch between 3D data and LLMs by exploiting two key
properties: (1) the permutation invariance of point clouds, allowing learnable tokens to be appended
after visible tokens without positional restoration; and (2) the encoder-free architecture, where 3D
tokens are integrated into a causally-masked LLM instead of a bidirectionally-masked 3D encoder,
fundamentally altering information flow between visible and masked tokens, enabling visible tokens
to learn harder objectives while learnable tokens focus on lightweight reconstruction.

3.3 HIERARCHICAL GEOMETRY AGGREGATION

3D encoders are designed with specific structures tailored for point clouds, such as local-to-global
hierarchy Zhang et al. (2022) for exploring the geometric structure of the point cloud. However, in
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Transformer Layer L

…

Geometric Propagation

…

…

…

Transformer Layer 1

Gated Self-Attention

MeanPooling

Dynamic Grid  
Sampling

tanh(α) ×

Geometric Aggregation

Figure 4: Hierarchical Geometry Aggre-
gation Strategy. In the instruction tuning
stage, we apply aggregation and propaga-
tion operations to the point tokens to cap-
ture the local structural details.

Table 4: Hierarchical Geometry Aggregation. In
the instruction tuning stage, we conduct the experi-
ments of Hierarchical Geometry Aggregation strat-
egy. l represents the number of aggregation and
propagation operations. H refers to the LLM layers
between l aggregation and l propagation operations.
+ Self-Attn. represents the incorporation of the gated
self-attention in the aggregation.

Method Cls (Avg) Cap

GPT-4 GPT-4 S-BERT

PointLLM-7B 53.00 44.85 47.47

l=1 52.50 48.70 48.07
l=2 51.00 46.67 48.12
l=3 53.00 48.93 48.06
l=4 45.00 45.48 46.90

H=2 54.25 49.56 48.52
H=4 52.50 48.61 47.81
H=8 52.25 48.95 47.90

+ Self-Attn. 55.55 51.03 48.79

encoder-free architectures, the LLM itself does not have an explicit local modeling module. The
self-attention mechanism is intended for modeling global interactions. Therefore, building upon the
proposed Hybrid Semantic Loss, we explore in the instruction tuning stage how to enable the LLM
to actively perceive 3D local details and complement the learned global semantics. To this end, we
propose the Hierarchical Geometry Aggregation strategy.

Implementation Details. As depicted in Figure 4, from the LLM second layer, the input point tokens
{Finputi}

M
i=1, based on their corresponding coordinates {Pinputi}

M
i=1, are grouped by Dynamic Grid

Sampling. The grid size follows a cumulative scaling strategy across aggregation layers. At the i-th
aggregation layer, the grid size is:

si = α · e
∑i

j=1 βj , βj = γ · tanh(θj) + βctr, (5)

where α = 0.02m and si ∈ [smin, smax] = [0.02, 1]m. To ensure the cumulative scaling stays within
bounds across l aggregation layers, we set:

γ =
ln
(
smax

α

)
− ln

(
smin

α

)
2l

, βctr =
ln
(
smax

α

)
+ ln

(
smin

α

)
2l

, (6)

where l is the total number of aggregation layers. Each θj is randomly initialized from a standard
normal distribution. Points within the same grid cell form local neighbors, with the set of all
neighbors denoted as Gi having cardinality Mi. The neighborhood features Fn

input ∈ RMi×k×D1 are
then collected, where k denotes the maximum number of points across all cells. To handle varying
point numbers across grid cells, we employ a padding strategy: for cells with fewer than k points, we
compute the mean-pooled feature of existing points and concatenate it repeatedly until reaching k
points per cell. For Fn

input, we employ the gated self-attention mechanism for intra-group interactions,
grasping the local geometric structure. We multiply the self-attention output by a learnable parameter
initialized from zero to adaptively adjust the required knowledge. We formulate it as

Fn
input

′ = tanh(α) ∗ Self-Attn.(Fn
input) + Fn

input. (7)

On top of this, we apply pooling to fuse the features Fn
input

′ within each neighbor, yielding aggregated
tokens {F i

aggj
}Mi
j=1, formulated as

F i
agg = MeanPooling(Fn

input
′). (8)

We perform l iterations of geometry aggregation, resulting in {F l
aggi

}Ml
i=1. To ensure that the LLM

fully extracts the local information, we choose to perform further semantic modeling using H LLM

8
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Table 5: Comparison of different models on various 3D understanding tasks. A primary focus
is placed on GPT-4 evaluation, along with data-driven metrics (Sentence-BERT). The * indicates
the Qwen2.5-7B LLM base and the ShapeLLM training data. The α denotes reproduced results. †

denotes the model is implemented based on the ShapeLLM baseline.
Model Cap Cls (Avg) QA

GPT-4 Sentence-BERT SimCSE BLEU-1 ROUGE-L METEOR GPT-4 GPT-4

InstructBLIP-7BDai et al. (2023) 45.34 47.41 48.48 4.27 8.28 12.99 43.50 –
InstructBLIP-13BDai et al. (2023) 44.97 45.90 48.86 4.65 8.85 13.23 34.25 –
LLaVA-7BLiu et al. (2024) 46.71 45.61 47.10 3.64 7.70 12.14 50.00 –
LLaVA-13BLiu et al. (2024) 38.28 46.37 45.90 4.02 8.15 12.58 51.75 47.90

PointGPTChen et al. (2023) – – – – – – 11.60 –
Uni3DZhou et al. (2023) – – – – – – 47.20 –

3D-LLMHong et al. (2023) 33.42 44.48 43.68 16.91 19.48 19.73 45.25 –
PointLLM-7BXu et al. (2023b) 44.85 47.47 48.55 3.87 7.30 11.92 53.00 41.20
PointLLM-13BXu et al. (2023b) 48.15 47.91 49.12 3.83 7.23 12.26 54.00 46.60
ShapeLLM-7BQi et al. (2024) 46.92 48.20 49.23 – – – 54.50 47.40
ShapeLLM-13BQi et al. (2024) 48.94 48.52 49.98 – – – 54.00 53.10
MiniGPT-3Dα Tang et al. (2024c) 52.49 48.73 49.26 – – – 54.50 43.60
PointLLM-PiSA-7BGuo et al. (2025a) 48.63 48.47 49.08 3.80 7.25 12.38 54.50 42.90
PointLLM-PiSA-13BGuo et al. (2025a) 50.52 48.60 49.64 3.75 7.84 12.56 55.00 46.80
ENEL-7B 51.03 48.79 49.52 3.91 7.20 12.68 55.55 43.80
ENEL-7B† 53.26 48.75 49.94 - - - 56.00 48.90
ENEL-13B 53.24 48.92 50.17 3.72 7.89 12.31 56.00 48.50
ENEL-13B† 54.78 49.37 50.69 - - - 56.00 54.80
ENEL-7B∗ 57.91 49.90 51.84 5.32 8.58 13.98 61.00 55.20

layers after aggregation operations. This allows the model to learn the interactions between local
information while preventing the loss of fine-grained geometric details. Subsequently, from the Lth
layer, we perform l iterations of geometry propagation. Following the grid unpooling strategy, we
use the point-to-grid mappings to propagate the aggregated features F l

agg from each grid cell back to
its corresponding set of points, generating {F 1

proi
}Ml−1

i=1 . After l iterations, we obtain point tokens
of length M , which are then processed by the remaining LLM layers. After processing through H
additional LLM layers, the geometry aggregation and propagation process is repeated.

Experiments and Insights. We conduct step-by-step experiments on the Hierarchical Geometry
Aggregation strategy, sequentially evaluating the impacts of the number of aggregation and propaga-
tion operations (l), the number of LLM layers between aggregation and propagation (H), and the
incorporation of the gated self-attention mechanism.

• The best performance is achieved when l is set to 3. As shown in Table 4, performing three
aggregation and propagation operations achieves 48.93% and 53.00% performance on captioning
and classification tasks, respectively. Fewer aggregation layers limit the capture of local geometric
information, while too many layers oversimplify spatial relationships. Setting l = 3 achieves
balanced modeling of local and global structures and realizes sampling ratio of approximately 1/8.

• Compared to setting H to 4 or 8, the highest performance is achieved when H is set to 2. It
reaches 54.25% and 49.56% on the classification and captioning tasks, respectively. The excessive
number of LLM layers between aggregation and propagation can lead to the oversmoothing of the
aggregated local information, resulting in the loss of local structural details.

• The gated self-attention mechanism effectively improves performance, reaching 55.55% and
51.03% on classification and captioning tasks, respectively. The adaptive control of attention output
ensures that global contextual information is utilized only when necessary, preventing it from
disrupting local geometric structures. Additionally, it allows the model to adjust to different tasks.

4 RESULTS AND VISUALIZATION

Results. In Table 5, on the Objaverse benchmark Deitke et al. (2023), ENEL-7B achieves a GPT score
of 51.03% for 3D object captioning, setting a new SOTA. In traditional metrics, Sentence-BERT
and SimCSE reach 48.79% and 49.52%, respectively, comparable to PointLLM-PiSA-13B. For 3D
object classification, ENEL-7B outperformes prior encoder-based 3D LMMs with a GPT score of
55.55%. Given the same training dataset as PointLLM, these results validate the effectiveness of our
proposed LLM-embedded Semantic Encoding and Hierarchical Geometry Aggregation strategies
for the encoder-free architecture. Additionally, on the 3D-VQA task of the 3D MM-Vet dataset Qi
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PointLLM

ENEL (Ours)

(a) (b) (c)

Figure 5: Difference in Semantic Encoding. By visualizing the attention scores of the average text
token to the point tokens on the Objaverse dataset, we compare the semantic encoding potential of
encoder-based and encoder-free architectures, where red indicates higher values. And (a) represents
chairs, (b) represents airplanes, and (c) represents lamps.

How many pillars is this 3D model 
made up of?

The 3D model is made up of four pillars.

Which number is the opposite of 
the number 1 on this object?

The opposite of the number 1 on this object is 6.

The 3D model is a representation of a cricket. It is 
structured with multiple legs and has a color 
scheme of black and brown. The different colors 
possibly mimic the cricket's natural coloration or 
a way to highlight its details. This 3D model may 
be used for various purposes such as education, 
research, animation, or video game design.

Caption this 3D model in detail.

This 3D model represents a vibrant orange colored, single-seater vehicle specifically 
designed for racing purposes. It is noticeable for its aggressive front bumper that adds an 
additional layer of safety during collisions. Its side windows and roof are made of 
transparent material, providing an insight into the vehicle's interior and enhancing 
visibility. The car is equipped with four large wheels ensuring durability during high-speed 
races. Overall, this vehicle symbolizes high-speed performance and competitive spirit in 
motorsport events.

Caption this 3D model in detail.

Figure 6: ENEL Response Examples. We demonstrate that ENEL is capable of providing accurate
responses across different types of tasks, such as captioning and question answering, by effectively
addressing a wide range of objects, including race cars, buildings, insects, and others.

et al. (2024), despite the lack of spatial and embodied interaction-related data in the training set,
ENEL achieves the GPT score of 43.8%, surpassing PointLLM-7B by 2.6%. Replacing 7B Vicuna
with 13B Vicuna, ENEL-13B achieves substantial performance gains across tasks. When replacing
the Vicuna-7B with Qwen2.5-7B and using ShapeLLM training data, ENEL-7B achieves over 6%
improvements across benchmarks. Details of the evaluation metric and classification performance on
the ModelNet dataset are provided in Appendix A.3.2 and A.3.3, respectively.

Visualization. In the Figure 5, we visualize the attention scores between the average text token and
the point tokens in the last layer of both PointLLM and ENEL. Three object categories, including the
chair, the airplane, and the desk lamp, are selected from the Objaverse dataset Deitke et al. (2023). In
the Figure 5, red indicates higher values. We observe that in encoder-based 3D LMMs, the semantic
relevance between the text tokens and the processed point tokens is relatively low. In contrast, ENEL,
with its encoder-free architecture, achieves a high correlation between the features of the two different
modalities, with the average text token focusing on key geometric structures of the objects, such as
the backrest of the chair, the wings of the airplane, and the lampshade of the desk lamp.

Response Visualization. In the Figure 6, we present a visualization of ENEL’s responses for both
captioning and question answering (QA) formats. We observe that in the captioning task, ENEL
can even accurately identify fine-grained categories such as a cricket. Moreover, in the QA task,
ENEL effectively handles visual challenges such as general object recognition (e.g., reasoning about
numbers on dice) and spatial reasoning (e.g., accurately interpreting building structures).

5 CONCLUSION

In this study, we investigate the potential of the encoder-free architecture in 3D understanding.
Through a systematic analysis, we demonstrate that transferring the functionality of the 3D encoder
to the LLM itself can effectively compensate for the performance degradation caused by the removal
of the 3D encoder. To achieve this, we introduce the LLM-embedded Semantic Encoding strategy
and the Hierarchical Geometry Aggregation strategy in the pre-training and instruction tuning stages.
These strategies enable the encoding of high-level point cloud semantics while capturing critical local
information. Our experiments highlight the promising prospects of the encoder-free architecture.
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A APPENDIX

A.1 RELATED WORK

3D LMM. Recent advancements in integrating large language models (LLMs) with 3D data have
led to significant progress in both object-level and scene-level understanding. At the object level,
early approaches like Hong et al. (2024) utilize 2D rendering to leverage 2D LLMs, but this sacrifices
geometric details. More recent models, including Point-Bind LLM Guo et al. (2023), PointLLM Xu
et al. (2023b) and ShapeLLM Qi et al. (2024), directly encode point clouds and align them with
LLMs, by combining the 3D encoder with a powerful language model, effectively fusing geometric,
appearance, and linguistic information. At the scene level, models like Chat-3D Wang et al. (2023)
and Scene-LLM Fu et al. (2024) focus on understanding complex spatial relationships through
dialogue and tasks like captioning. Scene-LLM Fu et al. (2024) enhances embodied agents’ abilities
in interactive 3D indoor environments by integrating both scene-level and egocentric 3D information.
Grounded 3D-LLM Chen et al. (2024d) utilizes referent tokens to reference specific objects within
3D scenes, enabling tasks such as object detection and language grounding.

Encoder-free Vision-Language Models. Traditional vision-language models (VLMs) often rely on
vision encoders to extract visual features before processing them with language models, integrating
image encoders like CLIP Radford et al. (2021) and DINO V2 Oquab et al. (2023). However, recent
efforts have explored encoder-free VLMs for their simplicity. Approaches like ChameleonTeam
(2024); Xie et al. (2024) use VQ tokenizers Esser et al. (2021) or linear projection layers Diao et al.
(2024a); Chen et al. (2024c) to represent images. Fuyu-8B Bavishi et al. (2023), a pure decoder-only
model, directly processes image patches through linear projections, handling high-resolution images
but showing only average performance. The EVE series Diao et al. (2024b; 2025) eliminates the need
for a separate vision encoder by bridging vision-language representation within a unified decoder and
enhancing visual recognition capabilities through additional supervision. Mono-InternVL series Luo
et al. (2024; 2025) leverage visual experts and progressive visual pre-training (EViP/EViP++) to
achieve stable optimization and competitive performance. SAIL series Lei et al. (2025) directly
encode raw pixels and decodes language within a single architecture, achieving competitive vision-
language performance without pre-trained vision encoders.

Figure 7: Variants of Point Cloud Self-Supervised Learning Losses. (a) The Variant of Masked
Modeling Loss, (b) The Variant of Reconstruction Loss, (c) The Variant of Hybrid Semantic Loss.

A.2 EXPERIMENTAL SETTINGS

Implementation Details. We use the LLaMA model Touvron et al. (2023) as our LLM backbone,
with the 7B Vicuna-v1.1 Chiang et al. (2023) checkpoint as the default setting. In the token embedding
layer, the point cloud is first processed by a linear layer to expand its dimension from 6 to 288. The
input point cloud initially consists of 8192 points, followed by three iterations of farthest point
sampling (FPS), reducing the size to 512, 256, and 128, respectively. After each FPS operation,
k-Nearest Neighbors (k-NN) is applied with a cluster size of 81. And geometric features are extracted
using triangular encoding, followed by linear layers that progressively increase the dimension to
576, 1152, and 2304. Finally, the projection layer maps the features to the LLM dimension of
4096. In the pre-training stage, we unfreeze the first four LLM layers. Within the LLM-embedded
Semantic Encoding strategy, Hybrid Semantic Loss applies masked modeling to 30% of the tokens and
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Table 6: Ablation Experiments. We begin the ablation experiments by changing the single con-
figuration of the module from ENEL. Ψ and Φ denote mask ratios of 60% and 30%, respectively.
For Hybrid Semantic Loss, the subscripts patch and feat refer to the masked modeling target, with
reconstruction targeting the corresponding feat and patch. l represents the number of aggregation
and propagation operations. H refers to the LLM layers between l aggregation and l propagation
operations. O refers to the LLM layer between two individual aggregation or propagation operations.

Model Cap Cls (Avg)

GPT-4 Sentence-BERT SimCSE BLEU-1 ROUGE-L METEOR GPT-4

ENEL-7B 51.03 48.79 49.52 3.91 7.20 12.68 55.55

–Hybrid Semantic Loss 47.15 48.06 48.31 3.40 7.43 11.84 50.50

Hybrid Semantic LossΦpatch 49.13 48.80 49.20 3.99 7.20 12.38 52.30
Hybrid Semantic LosspatchΨ 48.79 48.30 49.00 3.65 6.90 11.98 52.10
Hybrid Semantic Lossfeat Ψ 49.62 48.00 48.67 3.78 6.82 12.33 51.50

–gate mechanism 49.61 48.41 48.97 3.79 7.12 12.48 53.60

l=2,H=2,O=0 48.83 48.20 48.53 3.72 6.89 12.01 51.50
l=2,H=4,O=0 49.05 48.47 48.62 3.65 7.10 12.31 52.20
l=2,H=2,O=2 48.96 47.95 48.88 3.80 7.05 12.55 52.00
l=2,H=4,O=2 49.68 48.70 48.85 3.84 7.56 12.76 53.10

reconstructs the patches for the remaining 70% visible tokens. During instruction tuning, geometric
aggregation is applied at the end of the 1st, 2nd, and 3rd LLM layers to reduce point tokens. MaxMean
pooling is used to retain more information. After two LLM layers, geometric propagation is applied
at the end of the 6th, 7th, and 8th layers to restore the number of point cloud to 128. After two LLM
layers, geometric aggregation is applied at the 11th–13th layers, followed by geometric propagation
at the 16th–18th layers.

Training and Evaluation Details. During the two-stage training, each stage utilizes the same dataset
and preprocessing method as PointLLM. All training are conducted on 4 × 80G A100 GPUs in
BF16 precision, utilizing FlashAttention, the AdamW optimizer, and a cosine learning rate schedule.
During the pre-training stage, the model is trained for three epochs with a batch size of 128 and a
learning rate of 4e-4. In the instruction tuning stage, it is conducted for three epochs with batch size
of 32 and a learning rate of 2e-5. The GPT-4 model Achiam et al. (2023) used for classification
and captioning tasks evaluation refers to “gpt-4-0613” version consistent with PointLLM Xu et al.
(2023b). In contrast, the GPT-4 model employed for QA performance evaluation corresponds to
“gpt-4-0125” version aligning with ShapeLLM Qi et al. (2024). Additionally, the GPT evaluation
prompts for classification and captioning are identical to those used in PointLLM, while the prompts
for QA follow those in ShapeLLM.

A.3 MORE EXPERIMENTS

A.3.1 VARIANTS OF POINT CLOUD SELF-SUPERVISED LEARNING LOSSES.

In the Figure 7, we exhibit the other variants of Masked Modeling Loss, Reconstruction Loss and
Hybrid Semantic Loss.

As seen in Figure 7 (a), in the Masked Modeling Loss, after the learnable tokens are processed by
the LLM, the tokens are transformed to the point patches {Gprei}

M∗r
i=1 ∈ RM∗r×k×3 through a linear

layer. We utilize the l2 chamfer distance to align the predicted Gpre with the point patches Gmask

corresponding to the masked tokens, reconstructing the spatial information. The optimization is:

1

M ∗ r

M∗r∑
i=1

(
min
j

∥ai − bj∥22 +min
j

∥bi − aj∥22
)
, (9)

where a = Gpre and b = Gmask.

As shown in Figure 7 (b), after the point feature tokens {Fi}Mi=1 are encoded by the LLM, the
Mean Squared Error (MSE) is computed between the predicted Fpre and the ground truth F . The
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Table 7: Comparison of computational complexity between PointLLM-7B and ENEL-7B. S1 and S2
refer to the pre-training and instruction tuning stages, respectively. Conv. Steps indicates the number
of steps required for loss convergence.

Method Time (H) Memory (S1/S2) FLOPs Conv. Steps (S1/S2)

PointLLM-7B 31.6 67G / 57G 2.0× 1018 10100 / 4300
ENEL-7B 22.2 56G / 42G 1.59× 1018 9790 / 3700
Improvement 29.7% 16.4% / 26.3% 20.5% 2.9% / 14.0%

optimization can be written as

Lmask =
1

M

M∑
i=1

(
∥Fprei − F

i
∥22
)
. (10)

Finally, in the Figure 7 (c) Hybrid Semantic Loss, the masked tokens and the corresponding patches
are referred to as {Fmaski}M∗r

i=1 and {Gmaski}M∗r
i=1 , respectively. The remaining tokens are denoted

as{Fvisi}
M∗(1−r)
i=1 and {Gvisi}

M∗(1−r)
i=1 . After passing point tokens through the LLM, we compute

the MSE between Fpre and Fvis. The learnable tokens Flearn are transformed into Gpred, and the
L2 Chamfer distance is computed between Gpred and Gmask. These two are added to the original
cross-entropy loss with coefficients all equal to 1.

A.3.2 METRIC ANALYSIS

GPT-4 Evaluation is a LLM-as-a-judge framework based on custom prompts. Given a model-
generated description and human reference, GPT-4 identifies key attributes from the reference,
measures how many are accurately or partially matched in the model output, and returns a score from
0 to 100 with a brief explanation. It offers more comprehensive and human-aligned evaluation.

Traditional metrics like BLEU measure n-gram precision, ROUGE-L uses longest common sub-
sequence, and METEOR combines unigram precision and recall with lemmatization and synonym
matching. However, these metrics struggle with semantic similarity and tend to favor shorter outputs.

Reasons for low traditional metrics: 3D-LLM with high traditional metric scores generates captions
averaging 20 words—much shorter than ENEL and other methods. However, this does not indicate
better output quality and performs worse in human evaluations. Traditional metrics often fail to
assess the quality of detailed LLM outputs, as they favor shorter responses and struggle to capture
semantic similarity. The GPT-4 score offers stronger semantic understanding, greater diversity, and
better generalization.

Examples: Here is a typical example where GPT-4 gives high scores but traditional metrics give low
scores. Given a point cloud of an airplane, the model outputs:

“The 3D model portrays a white cartoon airplane, styled in a simplistic and charm-
ing fashion. . . This model can be inferred to be used in animated children’s media
or as a playful element in a game or learning application design.”

The ground truth:

“This 3D object is an airplane with distinct wings and a tail. It has a long fuselage
with glass windows at the front and sides. The round-shaped wings are located in
the middle.”

The model correctly identifies the object as an airplane and captures key style features like simplicity,
cartoon form, and whiteness. It also reasonably infers use in children’s media, showing strong
understanding. However, traditional metrics rely on n-gram overlaps. Phrases like “airplane body
and wings” differ from the ground truth “fuselage with glass windows,” leading to mismatches. The
output is also longer and more descriptive, while the ground truth is concise and factual, and includes
extra details like “white cartoon airplane,” all contributing to low traditional scores.
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Table 8: ModelNet40 classification results under instruction-typed and completion-typed prompts.
The instruction-typed (I) prompt is “What is this?” and the completion-typed (C) prompt is “This is
an object of.”

Model ModelNet (I) ModelNet (C) ModelNet-Avg
PointLLM-7B 53.44 51.82 52.63
PointLLM-13B 53.00 52.55 52.78
ShapeLLM-7B – – 53.08
ShapeLLM-13B – – 52.96
PointLLM-PiSA-7B 54.58 52.60 53.59
PointLLM-PiSA-13B 55.03 53.81 54.42
ENEL-7B 54.82 53.69 54.26
ENEL-13B 55.59 54.38 55.00
ENEL-7B* 61.25 60.47 60.86

A.3.3 MODELNET CLASSIFICATION TASK

As shown in Table 8, ENEL-7B achieves an average accuracy of 54.26%, surpassing PointLLM-
7B (52.63%), ShapeLLM-7B (53.08%) and PointLLM-PiSA-7B (53.59%). Similarly, ENEL-13B
reaches 55.00%, outperforming both ShapeLLM-13B (52.96%) and PointLLM-PiSA-13B (54.42%).
These results demonstrate the effectiveness of the encoder-free design in 3D object understanding.

A.3.4 COMPLEXITY ANALYSIS

In Table 7, compared to PointLLM-7B, ENEL-7B demonstrates significant improvements while
using the same training dataset. It achieves 29.7% faster training time, reduces GPU memory usage
by 16.4% and 26.3% in Stage 1 and Stage 2, respectively, lowers training FLOPs by 20.5%, and
accelerates convergence speed by 2.9% (Stage 1) and 14.0% (Stage 2).

A.3.5 ENCODER-FREE ARCHITECTURE CLAIM.

Following the consensus in recent Large Multimodal Model (LMM) literature, we strictly define
an architecture as “encoder-free” based on two criteria: (1) the absence of a heavy, independently
pretrained visual backbone, and (2) the utilization of end-to-end training from scratch. Unlike
traditional 3D LMMs that rely on decoupled, pretrained encoders (e.g., Point-BERT Yu et al. (2022))
for semantic extraction, our design integrates a lightweight, randomly initialized embedding layer
trained jointly with the LLM.

Alignment with Community Standards. This design philosophy parallels established encoder-free
paradigms in the 2D image and video domains. For instance, EVE Diao et al. (2024a) utilizes a token
embedding layer based on convolution and cross-attention (∼16M parameters), while ELVA Li et al.
(2025) employs a spatio-temporal attention layer (∼9M parameters) for video framing. Similarly,
Mono-InternVL Luo et al. (2024) relies on a lightweight stack of convolutions (∼10M parameters).
As detailed in Table 9, our proposed point embedding layer comprises only 3M parameters. This is
not only significantly more lightweight than its 2D counterparts but also orders of magnitude smaller
than typical 3D encoders (e.g., ∼88M for PointBERT used in PointLLM). Our module functions
strictly as a tokenizer rather than a visual encoder.

Table 9: Comparison of Tokenizer Parameters across Domains.
Method Domain Tokenizer Structure Tokenizer Params Ratio (Tok./Total)
EVE / EVEv2 Diao et al. (2024a; 2025) Image Conv + Cross-Attn 16 M ∼0.23%
Mono-InternVL Luo et al. (2024) Image Stacked Conv 10 M ∼0.14%
ELVA Li et al. (2025) Video Spatio-temporal Attn 9 M ∼0.13%

PointLLM Xu et al. (2023a) 3D PointBERT Encoder ∼88 M ∼1.24%
Ours 3D Point Embedding 3 M ∼0.04%

Structural Formatting vs. Semantic Encoding. We explicitly distinguish the structural operations
used in our embedding layer—specifically Farthest Point Sampling (FPS) and k-Nearest Neighbors
(k-NN)—from semantic encoding. Due to the data irregularity of unstructured 3D point clouds, FPS
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and k-NN serve as the mathematically necessary equivalents of the “patchify” or “stride” operations
used in 2D Vision Transformers. They are required to group raw data points into processable tokens.
Crucially, these operations are parameter-free. The subsequent learnable MLPs serve only to project
these local geometric groupings into the feature dimension required by the LLM.

A.3.6 MORE ABLATION EXPERIMENTS

We begin the ablation experiments starting from the ENEL-7B, which is the reverse order compared
to the experiments in the main text, as showcased in Table 6

The Effects of LLM-embedded Semantic Encoding Strategy. In the Table 6, on the basis of ENEL,
removing the Hybrid Semantic Loss during the pre-training stage significantly degrades performance.
The GPT-4 score for the captioning task drops from 51.03% to 47.15%, and the GPT-4 score for
the classification task decreases to 50.50%. This is because the proposed self-supervised learning
function for point clouds effectively captures the detailed structures and high-level semantics.

Based on ENEL-7B, we find that setting the mask ratio in the Hybrid Semantic Loss to 30% con-
sistently yields better results than 60%. Additionally, the configuration where the masked token
part predicts features while the visible token part reconstructs patches outperforms the reverse set-
ting—where the masked token part predicts patches and the visible token part reconstructs features.
This phenomenon can be explained as follows: a mask ratio of 30% retains critical information while
facilitating the model to effectively utilize the visible tokens to derive the masked parts. When the
mask ratio is set too high, the model fails to learn the global context knowledge adequately. Moreover,
when the masked token part is tasked with predicting features, the model focuses on learning the
high-level context semantics, while the patch reconstruction aids in accurately capturing low-level
details. In contrast, when the masked token part predicts patches, the model becomes excessively
dependent on local features during the process of semantic reconstruction.

The Effects of Hierarchical Geometry Aggregation Strategy. After removing the gating mechanism
in the self-attention of the aggregation operation, the performance drops to 49.61% and 53.60%
on the captioning and classification tasks, respectively. The gating mechanism helps the model
to adaptively filter information, allowing it to focus on more discriminative features. Without the
dynamic adjustment to focus on different parts of the input, the generated text from the LLM lacks
accuracy and coherence, leading to a decrease in performance.

As the number of aggregation and propagation operations decreases, overall performance declines,
mainly due to insufficient layers failing to adequately model complex spatial relationships in point
clouds. We observe that increasing the number of LLM layers between the final aggregation operation
and the first propagation operation leads to improved performance. This suggests that fewer cascaded
aggregation operations require deeper network architectures for high-level feature abstraction; other-
wise, insufficient depth may lead to degraded hierarchical representations. Furthermore, the presence
of LLM layers between each aggregation or propagation operation enhances performance by allowing
the model to process and transform compressed information. Through self-attention mechanisms,
these intermediate layers can recapture and restore details lost during the aggregation process.

Table 10: Ablation on general lan-
guage capabilities (MMLU).

Method MMLU (5-shot)
Vicuna-7B 47.1
ENEL-7B 46.4
w/o HGA 46.5
+ Text Data 47.3

General Language Capabilities. We investigate whether 3D
instruction tuning compromises the LLM inherent text gener-
alization. As observed in 2D LMMs (e.g., LLaVA), training
exclusively on multimodal data often leads to catastrophic for-
getting. As shown in Table 10, ENEL-7B achieves 46.4% on the
MMLU benchmark Hendrycks et al. (2020), showing a slight
decline compared to the original Vicuna-7B (47.1%). To isolate
the cause, we first removed the Hierarchical Geometry Aggre-
gation (HGA) strategy. The marginal difference (46.5% vs.
46.4%) indicates that the architectural design is not the primary factor in this degradation. However,
by incorporating 12K pure text samples sampled from Evol-Instruct-GPT4-Turbo-143K Chen et al.
(2024a) during the SFT stage, the performance rebounds to 47.3%, surpassing the original baseline.
This confirms that mixing pure text data effectively mitigates catastrophic forgetting and preserves
the general reasoning capabilities.

Generalizability across Baselines. To demonstrate that the effectiveness of our encoder-free
architecture is not limited to a specific framework (i.e., PointLLM), we extend our evaluation to
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Table 11: Generalization analysis on the ShapeLLM baseline. † denotes the model is implemented
based on the ShapeLLM baseline.

Model Cap Cls QA
GPT-4 S-BERT GPT-4 GPT-4

PointLLM-7B 44.85 47.47 53.00 41.20
PointLLM-13B 48.15 47.91 54.00 46.60
ShapeLLM-7B 46.92 48.20 54.50 47.40
ShapeLLM-13B 48.94 48.52 54.00 53.10

ENEL-7B 51.03 48.79 55.55 43.80
ENEL-7B† 53.26 48.75 56.00 48.90
ENEL-13B 53.24 48.92 56.00 48.50
ENEL-13B† 54.78 49.37 56.00 54.80

the ShapeLLM baseline. We replace the encoder-based design in ShapeLLM with our proposed
ENEL architecture while strictly maintaining the original Vicuna-based LLM backbone, training
data, and hyper-parameter settings for a fair comparison. As presented in Table 11, ENEL-7B†

achieves a GPT-4 score of 53.26% on the captioning task, significantly outperforming the original
ShapeLLM-7B. Similar consistent improvements are observed at the 13B scale across diverse tasks.

Table 12: Ablation on HGA structural design.

Model Cap Cls QA
GPT-4 S-BERT GPT-4 GPT-4

ENEL-7B 51.03 48.79 55.55 43.80
l = 0 47.65 47.30 52.00 41.20
H = 0 49.83 48.34 53.50 42.00

Impact of Hierarchical Aggregation Design. We further investigate the structural design of the
Hierarchical Geometry Aggregation (HGA) strategy by comparing the default model with two
variants: (1) l = 0, which completely removes the HGA strategy to validate its overall contribution;
and (2) H = 0, which performs all geometric aggregation and propagation operations in a single
continuous step. As shown in Table 12, removing HGA (l = 0) leads to a significant performance
drop across all tasks, confirming the necessity of explicit local structure modeling. Furthermore, the
H = 0 variant also consistently underperforms the default interleaved design. This indicates that
interleaving LLM layers after geometric aggregation layers is crucial, as it enables the model to refine
semantic understanding alongside compression.

Table 13: Robustness to varying inference resolutions. We evaluate models on the Objaverse
Captioning task using GPT-4 scores across different point cloud densities (2K to 16K).

Method 2K/128 4K/256 8K/512 12K/1024 16K/2048 Avg.
PointLLM-7B 33.7 41.4 44.0 41.7 32.8 38.7
ENEL-7B 44.6 49.0 51.0 50.0 46.3 48.2
ENEL-Mix-7B 46.5 50.4 51.9 50.8 47.7 49.5

Robustness to Resolution Variations. A significant limitation of encoder-based 3D LMMs is
their sensitivity to input resolution discrepancies between training and inference. To evaluate the
adaptability of our encoder-free architecture, we introduce a variant named ENEL-Mix, which is
pre-trained by randomly sampling point clouds ranging from 2K to 16K points per batch. We
evaluate performance consistency across varying inference resolutions (2K–16K) on the Objaverse
Captioning task. As detailed in Table 13, the standard ENEL-7B already demonstrates superior
robustness compared to PointLLM-7B, increasing the average GPT-4 score from 38.72 to 48.18
(+9.46) and significantly reducing performance variance. This indicates that the encoder-free design
is inherently less brittle to density changes. Furthermore, ENEL-Mix-7B enhances stability, achieving
the lowest relative performance drop (10.40%) between the best and worst resolutions. Beyond
robustness, mixed-resolution training serves as an effective data augmentation strategy. As shown in
Table 14, ENEL-Mix-7B yields consistent improvements across Captioning, Classification, and QA
benchmarks, demonstrating that exposing the model to varying geometric densities facilitates a more
generalized 3D understanding.

Extension to Scene-Level Understanding. While ENEL is primarily optimized for object-level tasks,
its encoder-free architecture inherently supports flexible token concatenation, enabling extension to
scene-level scenarios. We evaluate this capability in two settings:
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Table 14: Impact of mixed-resolution training on general tasks. Comparing ENEL-Mix against
standard baselines on Captioning, Classification, and QA tasks.

Model Cap Cls QA
GPT-4 S-BERT GPT-4 GPT-4

PointLLM-7B 44.85 47.47 53.00 41.20
ShapeLLM-7B 46.92 48.20 54.50 47.40
ENEL-7B 51.03 48.79 55.55 43.80
ENEL-Mix-7B 51.92 49.06 56.00 44.40

Table 15: Zero-shot scene-level evaluation. Comparison on ScanQA and Scan2Cap (IoU@0.25)
against object-centric baselines without scene-level training.

Method ScanQA Scan2Cap@0.25
METEOR ROUGE CIDER METEOR ROUGE CIDER

Qwen2VL-7B 11.4 29.3 53.9 16.7 24.7 0.0
PointLLM-7B 10.2 23.9 43.5 13.1 28.8 30.9
ShapeLLM-7B 12.3 26.8 49.0 16.0 32.2 33.4

ENEL-7B 13.5 31.2 52.7 18.4 34.5 35.6

(1) Zero-Shot Adaptation: Without further training, we employ a parameter-free relational structure
to organize segmented object tokens from the scene as input to the LLM. As shown in Table 15,
ENEL-7B significantly outperforms prior object-centric baselines (e.g., PointLLM and ShapeLLM)
on ScanQA Azuma et al. (2022) and Scan2Cap Chen et al. (2021) benchmarks, demonstrating strong
intrinsic generalization.
Table 16: Fine-tuned scene-level evaluation. Comparison on ScanQA and Scan2Cap (IoU@0.25)
against specialized scene-level 3D LMMs. ENEL-Scene is fine-tuned on LEO-Instruct data.

Method ScanQA Scan2Cap@0.25
METEOR ROUGE CIDER METEOR ROUGE CIDER

LL3DA Chen et al. (2024b) 15.9 37.3 76.8 26.0 55.1 65.2
ChatScene Huang et al. (2024) 18.0 41.6 87.7 28.0 58.1 77.2
3D-LLaVA Deng et al. (2025) 18.4 43.1 92.6 27.1 57.7 78.8
ENEL-Scene-7B 17.8 44.2 95.0 27.4 56.9 72.4

(2) Scene-Level Fine-tuning: To further unlock scene understanding capabilities, we introduce
ENEL-Scene, which incorporates a third training stage using 110K instruction samples (3D captioning
and QA) from the LEO-Instruct dataset Huang et al. (2023). As presented in Table 16, ENEL-Scene
achieves competitive performance against specialized scene-level 3D LMMs (e.g., ChatScene),
achieving 95.0 CIDER on ScanQA. This validates that the encoder-free design is scalable to complex
spatial reasoning tasks given appropriate instruction tuning.

Ablation Study on Tokenizer Architecture. To investigate the efficacy of our proposed point
embedding design, we conducted a progressive ablation study isolating the tokenizer architecture.
We compared three distinct configurations: (1) pure projection without geometric sampling (A0–A1),
(2) geometric preprocessing (FPS and k-NN) combined with simple projectors (B0–B2), and (3) our
proposed Hierarchical Point Embedding with varying depths (C0–C2). Table 17 summarizes the
results. The ablation results confirm two key findings. First, geometric grouping is indispensable:
introducing FPS and k-NN (Group B) yields immediate gains over random sampling baselines (Group
A), proving these operations are necessary for structuring 3D data. Second, hierarchical aggregation
drives efficiency: our shallowest 2-layer model (C0) surpasses the heavier Mini-PointNet baseline
(B2) with ∼82% fewer parameters (0.833M vs. 4.818M), while the 3-layer configuration (C1)
achieves optimal performance before saturation.

Hyperparameter Sensitivity Analysis. We evaluate the robustness to variations in loss weighting
and auxiliary hyperparameters, with results summarized in Table 18. We perform a grid search for
the auxiliary loss weights within the range {0.1, 0.5, 1.0, 2.0} while fixing λLLM = 1. The model
demonstrates high stability, with performance fluctuations restricted to within 1.0 point across the
[0.5, 2.0] interval. Extreme reductions (e.g., 0.1) lead to noticeable drops, validating the necessity of
these semantic guidance components. Although λmask = 0.5 yields marginal gains, we adopt unit
weighting (λ = 1.0) as the default for its simplicity and generalizability.

We further investigate the configuration of the alignment modules. For the contrastive objective, a low
temperature (τ = 0.07) proves critical for effective discriminative learning; increasing τ significantly
degrades performance. Regarding Knowledge Distillation (KD), applying L2 normalization to both
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Table 17: Ablation study of tokenizer architectures.

Tokenizer Configuration Params (M) Cap Cls
GPT-4 S-BERT SimCSE GPT-4

A0: Linear 0.887 26.98 36.95 38.12 30.00
A1: 1-MLP 1.551 27.49 37.28 38.05 30.25

B0: FPS+kNN + Linear 0.887 29.34 39.06 39.71 31.50
B1: FPS+kNN + 1-MLP 1.551 30.66 39.42 40.10 32.00
B2: Mini-PointNet (Original) 4.818 33.37 41.19 41.68 35.50

C0: Point Embedding (2 layers) 0.833 38.85 43.25 44.16 40.60
C1: Point Embedding (3 layers) 3.490 41.36 44.82 45.59 45.55
C2: Point Embedding (4 layers) 8.800 40.47 43.50 43.91 43.00

student and teacher features prior to calculating the MSE loss results in better convergence compared
to using raw feature magnitudes.

Table 18: Hyperparameter Sensitivity Analysis.
Ablation Target Setting Cap Cls

GPT-4 S-BERT SimCSE GPT-4
Part I: Hybrid Semantic Loss Coefficients

Vary λmask

λmask = 0.1 49.29 48.30 48.92 54.00
λmask = 0.5 51.64 48.92 49.70 56.00

λmask = 1.0 (Default) 51.03 48.79 49.52 55.55
λmask = 2.0 50.71 48.55 49.17 55.50

Vary λrecon

λrecon = 0.1 49.87 48.12 48.85 54.00
λrecon = 0.5 50.85 48.61 49.37 55.50

λrecon = 1.0 (Default) 51.03 48.79 49.52 55.55
λrecon = 2.0 50.80 48.45 49.20 55.00

Part II: Contrastive & KD Hyperparameters

Contrastive (τ )
τ = 0.07 45.57 45.16 45.82 47.00
τ = 0.2 45.23 44.92 45.29 46.00
τ = 0.5 44.81 44.68 45.20 46.50

KD (MSE) w/o Normalization 47.60 47.56 48.02 51.50
w/ Normalization 47.98 48.10 48.63 52.50

A.3.7 RESOLUTION ROBUSTNESS AND FAILURE ANALYSIS

To evaluate the scalability of our encoder-free architecture, we conduct a systematic resolution sweep
on the Objaverse dataset with inputs ranging from 2K to 16K points. To ensure a fair comparison,
a fixed token budget was maintained across all resolutions by adjusting the pooling ratios. We
compared the baseline PointLLM, our standard ENEL, and ENEL-Mix (a variant trained with dynamic
sampling between 2K–16K points). As shown in Table 19, our encoder-free approach consistently
outperforms the encoder-based PointLLM across all resolutions. Performance generally peaks at
8K. Notably, ENEL-Mix-7B demonstrates superior stability, mitigating performance degradation at
extreme resolutions (2K and 16K) effectively.

Failure Modes. As shown in Figure 8, we identify distinct failure mechanisms at the extremes in the
captioning task. (1) Geometric Aliasing (Low Res): At 2K, fine-grained details (e.g., thin handles)
are lost during discretization, leading to generic misclassifications. (2) Feature Dilution (High Res):
At 16K, under a fixed token budget, the forced aggregation of spatially distant features dilutes local
semantics and increases noise sensitivity, occasionally triggering hallucinations in captioning tasks.

Table 19: Resolution Sweep on Objaverse. We compare performance across 2K–16K input
resolutions. ENEL-Mix (trained with dynamic sampling) achieves the best robustness.

Resolution Captioning (GPT-4) Classification (GPT-4) QA (GPT-4)
PointLLM ENEL Mix PointLLM ENEL Mix PointLLM ENEL Mix

2K 35.3 45.1 46.9 46.25 52.00 53.75 32.10 39.80 41.30
4K 42.1 49.5 50.6 51.00 55.00 55.50 39.30 42.50 43.60
8K 44.0 51.0 51.9 53.00 55.55 56.00 41.20 43.80 44.40
12K 41.6 50.0 50.7 51.25 55.50 56.00 39.00 42.90 43.50
16K 32.5 46.2 47.7 45.50 51.75 54.00 33.60 40.00 41.20
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Low-resolution 
Failure

High-resolution 
Failure

Original
3D Cloud Point

Model Output:  The object appears to be a 
simple, hollow cylinder or tube-like structure. 
The point cloud is sparse, forming a basic 
circular shape with an open top. There are no 
distinct attachments or handles visible on the 
side, making it resemble a generic container or 
a section of pipe.

Model Output: A 3D model of a common 
coffee mug. The object has a well-defined 
structure, featuring a solid cylindrical base 
and a circular rim. The handle on the side 
is clearly formed and connects smoothly to 
the body, indicating a standard design for 
holding beverages.

Model Output: This 3D model depicts a coffee 
mug with a distinctively rough, granular texture. 
Rather than a smooth ceramic finish, the surface 
appears to be made of a coarse, porous material 
resembling weathered stone or concrete. The 
cup features a curved handle on the side, though 
its edges appear irregular and fuzzy. The rim of 
the vessel is jagged and uneven, contributing to 
an overall unpolished appearance

Figure 8: Resolution Failure Modes.

A.3.8 ABLATION STUDY ON ARCHITECTURAL DESIGN

In the domain of encoder-free LMMs, particularly for 2D and video tasks, architectural strategies
vary significantly. Methods such as EVEv2 (Diao et al., 2025) and Mono-InternVL (Luo et al.,
2024) often decouple visual processing by duplicating specific LLM weights (e.g., Attention or FFN)
to create a dedicated vision branch. Conversely, architectures like EVE (Diao et al., 2024a) and
ELVA (Li et al., 2025) integrate visual processing directly into the LLM backbone via sophisticated
patch embeddings or token merging modules. To validate the efficacy of our proposed Hierarchical
Geometry Aggregation (HGA) strategy—specifically the placement of the gated self-attention
mechanism—we investigate the impact of architectural placement on model performance. We
compare our default design against three variants that decouple the gated attention layer from the
LLM backbone:

• Integration into Token Embedding (Visual Part): We remove the gated attention layer from the
LLM backbone and relocate it to the initial token embedding layer. We explore two configurations:

• (a) Interleaved: The gated attention layer is inserted into each stage of the point embedding
layer.

• (b) Sequential: The gated attention layers are stacked sequentially after the point embedding
layer, functioning as a standalone visual feature extractor before the LLM.

• Decoupled Attention Strategy: Inspired by the paradigm of EVEv2 and Mono-InternVL, we
modify the LLM architecture such that visual and text tokens share the FFN layers but utilize
decoupled Attention layers. Here, the gated attention layer is deployed specifically as the attention
mechanism for point cloud tokens.

Table 20: Ablation study on the architectural placement of the Gated Attention mechanism.

Model / Configuration Captioning Classification QA
GPT-4 S-BERT GPT-4 GPT-4

PointLLM-7B 44.85 47.47 53.00 41.20
ENEL-7B (Ours) 51.03 48.79 55.55 43.80
Integration into Token Embedding
+ Interleaved 49.32 49.16 54.00 42.90
+ Sequential 49.61 49.32 54.00 42.70

Decoupled Strategy
+ Decoupled Attention 48.17 48.24 52.00 42.00

As shown in Table 20, moving the gated attention layer to the "Visual Part" (Token Embedding
layer) results in a noticeable performance drop compared to the default ENEL, regardless of whether
the layers are interleaved or sequential. For instance, the GPT-4 Captioning score decreases from
51.03% to 49.32% and 49.61%, respectively. These results suggest that placing the gated attention
layer within the LLM backbone is crucial. The deep fusion approach allows the aggregation module
to leverage the high-level semantic context extracted by preceding LLM layers to guide geometric
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feature aggregation. Restricting this process to the shallow vision part limits the semantic depth of
the visual tokens before they participate in reasoning.

Adopting the decoupled Attention design yields the lowest performance across most metrics, with
Classification accuracy dropping to 52.00%. While decoupled architectures have proven effective
for dense 2D data where heavy, pre-trained vision weights are available, this approach appears less
suitable for sparse 3D point clouds in an encoder-free setting. Our findings demonstrate that enabling
full interaction between visual and textual information within shared Attention layers facilitates a
more coherent alignment of geometry and language, which is essential for understanding complex
3D structures.

A.4 USE OF LLM

In this paper, the Large Language Model (LLM) is mainly used for grammar checking and spelling
error detection.

A.5 MODEL OUTPUT

In Figure 9, we showcase more model output, where our ENEL provides precise and diverse responses
with multi-modal 3D instruction input.

Figure 9: ENEL Output Examples. We demonstrate that ENEL provides precise and diverse
responses when addressing different problems.
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