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ABSTRACT

Causal representation learning aims to take some entangled observation, x, and
recover the latent causal variables z from which the observation was generated
using a generative function g(·) : Z → X . While this problem is impossible in its
full generality, there has been considerable recent progress in showing a variety
of conditions in which the latents are identifiable. All of these approaches share
the assumption that g(·) is injective: i.e. for any two observations x1 and x2, if
x1 = x2 then the corresponding latent variables, z1 and z2 are equal. This as-
sumption is restrictive but dropping it entirely would allow pathological examples
that we could never hope to identify, so in order to make progress beyond injectiv-
ity, we need to make explicit the important classes of non-injective functions. In
this paper we present a formal hierarchy over generative functions that includes in-
jective functions and two non-trivial classes of non-injective functions—occluded
observables and observable effects—that we argue are important for causal rep-
resentation learning to consider. We demonstrate that the injective assumption is
not necessary, by proving the first identifiability results in settings with occluded
variables.

1 INTRODUCTION

Causal representation learning aims to take some entangled observations, x—such as images or
videos—that were generated via some generative function g(·) : Z → X , and recover for each x the
latent causal variables z used to generate it. As a running example, think of z as the latent variables
describing the properties of objects in a scene and g(.) as a camera or rendering engine that projects
these variables to an image; our task is to “invert” this rendering function to recover the original
variables up to some reasonable transformation. This task is impossible without further assumptions
(Hyvärinen & Pajunen, 1999; Locatello et al., 2019), but there has been significant recent progress
in proving identification by leveraging a large variety of assumptions on the distribution of z and / or
constraints on g. For example, one can leverage independent zi and auxiliary variables (Hyvarinen
& Morioka, 2016; 2017; Hyvarinen et al., 2019; Khemakhem et al., 2020a;b), (sparse) temporal
dependencies (Locatello et al., 2020; Lachapelle et al., 2022; Lippe et al., 2022; Ahuja et al., 2022b),
mechanism knowledge (Ahuja et al., 2022a), data augmentations (Von Kügelgen et al., 2021) or
multiple views (Gresele et al., 2020).

All of these approaches share the assumption that g(·) is injective: i.e. for any two observations x1

and x2, if x1 = x2 then the corresponding latent variables, z1 and z2 are equal.1 This assumption is
obviously restrictive—e.g. objects of interest may be occluded, or we may want to make inferences
about properties like the force exerted on an object which is not directly observable—but dropping
this assumption entirely would allow pathological examples that we could never hope to identify.
So in order to relax this injective assumption, we first need to define the classes of problems that we
might hope to solve.

In this paper, we take inspiration from Pearl’s Causal Hierarchy (Pearl & Mackenzie, 2018) over
causal queries, to define an analogous hierarchy over latent variables that an inference algorithm
may need to address. We propose a hierarchy with four levels: the first is the familiar injective

1Some papers allow for observation noise such that x = g(z) + ϵ, in which case these point-wise compar-
isons refer to the the output of g before the noise is applied.
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setting that we describe above. The second level considers variables which are occluded in the
images. We define occlusion broadly to be any setting where the variable of interest is in principle
observable under some view but remains ambiguous under other views. For example, a sphere that
rolls behind a tree could have been observed from a different camera angle, but is not observed in
the current view. Analogously, if a biologist is interested in both the shape of a cell—which can be
viewed under a microscope—and the genes that the same cell is expressing—which can be observed
with RNA sequencing techniques—then some the variables of interest are “occluded” if we can
either use a microscope or sequence the cell.

The third level of our hierarchy are variables with observable effects: they cannot be inferred un-
ambiguously with any available view, but their effect is apparent in the statistical behaviour of the
observable variables. When learning from simulated data, a simple example of these variables is the
parameters of the underlying physics engine used to model the environment’s dynamics. For exam-
ple one might want to infer the masses of the objects in a scene or the gravity constants. Explicit
inference over these parameters is typically not necessary to predict the dynamics of a system, but
if we want to be able to predict how the system would behave under interventions on these vari-
ables and explain their effects, modelling them explicitly becomes important. Indeed, many of the
most interesting discoveries from the sciences—atoms and subatomic particles, heritable traits from
genes, etc.—involved explaining observable features of the world as the result of variables that we
cannot directly observe.

Finally, latent variables from the fourth level of our hierarchy are not constrained by any data that we
could observe, and hence it is impossible to have any identifiability guarantees over the underlying
variables. The most popular recent example of this problem is in “out-painting”2 (Ramesh et al.,
2022), where a model attempts to infer what was outside the field of view in a photograph or famous
painting. In this setting there are no hard constraints on the variables that can be inferred far away
from the original image, and hence we do not expect injectivity to hold.

In principle there may be many ways of partitioning non-injective problems so it is worth noting the
two main benefits of this hierarchy. First, if a practitioner is in control of the data collection process,
then by separating sources of non-injectivity into problems that result from the choice of view—
Level 2 problems—and that which results from a latent state that can never be observed under any
view but could be the subject of interventions—Level 3 problems—this hierarchy shows how the
collected data needs to change if the practitioner wants to leverage known disentanglement results
(i.e. Level 1 injective results). For example, adding more views in the training data will not change
how much of the latent state we can observe in a Level 3 problem, but a richer set of available views
may make a Level 2 problem solvable with current disentanglement techniques.

The second benefit is in defining settings for new theoretical results that show when disentanglement
is possible without the injective assumption. We demonstrate this by showing how the mechanism-
based disentanglement results of Ahuja et al. (2022a) can be extended to the occluded case. We
show that one can partition the latent space into an occluded region and an observable region, and
that mechanism knowledge can be used to disentangle the latter, while predictions on the former are
constant. If we additionally leverage paths of mechanisms it is possible to infer the occluded latents.

Related work. This paper connects most closely to the recent literature on disentangled repre-
sentation learning in nonlinear models. Several papers have shown that with inductive biases or
auxiliary information, it is possible to identify representations (up to transformations such as scaling
or permutations) in nonlinear independent component analysis (Gresele et al., 2020; Hyvarinen &
Morioka, 2017; Hyvarinen et al., 2019; Lachapelle et al., 2022; Ahuja et al., 2022c; Von Kügelgen
et al., 2021), autoencoders (Ahuja et al., 2022a;b), and deep generative models (Lippe et al., 2022;
Khemakhem et al., 2020a;b; Locatello et al., 2020; Moran et al., 2022; Klindt et al., 2021; Brehmer
et al., 2022; Yao et al., 2021; Xi & Bloem-Reddy, 2022). However, the starting point in all these
papers is an injective mapping from latents variables to observations. In this paper, we study and
characterize generative functions from latents to observations that do not satisfy injectivity. We
establish a hierarchy of latent variable inference problems that violate injectivity but leave other
implications in the observed data.

2There also exist out-painting examples from level 2 (occluded variables) in settings where it is in principle
possible to view the out-painted part of the image. But this is clearly not the case for popular out-painting
applications such as extending historical artworks.
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Figure 1: A image illustrat-
ing Example 1. If all the
spheres and their properties
are visible, then injectivity
with respect to the set of la-
tent variables holds.

We also draw connections to structural causal models (Pearl, 2009) to better interpret the vari-
ables in each level of the inference hierarchy, and is inspired by Pearl’s Causal Hierarchy (Pearl
& Mackenzie, 2018; Bareinboim et al., 2022). For example, the variables differ in their relationship
to the observed variables as well as in the manipulations required to obtain observable implications.
Moreover, level three of the hierarchy features inference problems about the causal mechanisms that
govern latent variables. This connects to the work of Schölkopf et al. (2021), who discuss the open
problem of learning causal models of latent variables.

The question of the relationship between observable and unobservable quantities has been stud-
ied extensively in the philosphy of science literature, particularly in the logical empiricist tradition
(Boyd & Bogen, 2021). These distinctions have largely been abandoned in explaining the practice
of human scientists, but they are more useful in causal representation learning where we ultimately
aim to automate parts of scientific discovery. Our distinction between observable and unobservable,
is related to the distinction between observational and theoretical language (Godfrey-Smith, 2021,
page 28), but we do not place any restrictions on the apparatus used to collect observations.

2 OBSERVATION HIERARCHY

We consider unsupervised representation learning, where we have access to observations x in some
data manifold X . Each observation is generated by a set of K latent variables z = {z1, · · · , zK} ∈
Z . We’ll use uppercase Z or X to denote random variables and lowercase to refer to their realiza-
tions. We follow the nonlinear independent component analysis (ICA) literature but add the notion
of view and propose the generative model,

z ∼ P (Z); x = g(z, V ). (1)

In this paper we make explicit the fact that g(·) is also parameterized by a view variable V that
controls our view of the data, i.e. how Z is mapped to X . The view variable V takes on values in a
set, V , that indexes the set of views that are possible in the data collection process. Our definition of
views is deliberately general in order to capture both literal view movements—where V is the cross-
product of all translations, rotations, pans, orbits, etc. that could be applied to a camera—and more
abstract views, where V includes the set of different experimental apparatus (e.g. microscopes,
telescopes, gene sequencing, particle detectors, etc.) that are feasibly available for a scientist to
observe their system.

From a causal perspective, g(Z, V ) is just the structural equation that produces X as a function of
the latent variables, Z, and the view V . We can equivalently interpret v as indexing a particular
set of observation-specific interventions, each corresponding to a change in the mechanism, gv , that
produces X from Z,

X = gv(Z), v ∈ V.
Note that in general, both the output space,X , and the domain of gv andZ , may change as a function
of v, as different views may entail different observation types or data modalities.
Example 1. Each observation X depicts a 3d scene of spheres (see Figure 1). The latent variable
Z encodes the position of each sphere. The set of views V might include different camera angles
that could be used to capture the scene.

With the setup in place, we will introduce the hierarchy of representation learning settings. First, we
connect the proposed generative model to the standard setting in which disentangled representation
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Figure 2: Example of occlusion. In the view on the left, the position of the small pink sphere is not
injective, but there exists a counterfactual view in which injectivity holds.

learning is possible (with additional assumptions). Then, we use the generative model parameterized
by views to define three new settings that are not addressed by existing disentanglement results.

2.1 LEVEL 1: ALWAYS OBSERVABLE

The base case corresponds to the standard setting where the injective assumption holds for all latents.
Let Vobs ⊆ V , denote the subset of views available to collect the observations, then,
Definition 1. The latent variables are always observable if the generative function, g(·, V ) is in-
jective for all v ∈ Vobs, such that g(zi, v) = g(zj , v) implies zi = zj .

In most existing work, Vobs, is just a singleton. Implicitly, Vobs being a singleton means that one
does not have access to any additional views of the system. In this case, we can ignore the parameter
V and write x = g(z) which recovers the standard nonlinear ICA model.

It is important emphasize that we use the term, “observable” to refer latent variables that are injec-
tive with respect to our observations, x, but we still need an inference step to infer the realization
of these variables from x (i.e. observable latent variables are not directly observed). The injective
assumption, put simply, says that any change in the latent space must be observable in the observa-
tion space. In Example 1, this implies that any change to the positions of the spheres, Z, is reflected
in a pixel-space change in how the spheres are rendered. This seems simple enough, but it is worth
noting that in scenes with multiple objects (such as those shown in Example 1), even the question of
whether or not the injective assumption holds is subtle, because it depends on the space, Z , in which
z is represented. If we use the common assumption that z ∈ Rk where k is the product of the three
dimensions required to represent the (x, y, z) locations for each sphere and the number of spheres,
then we can apply a permutation to z that swaps the positions of the spheres without changing how
the image is rendered, and hence g(·) is not injective; this is no longer a problem if Z is represented
as a set instead of a vector, but that requires different inference techniques (Anonymous, 2022).

Now, consider the spheres from Example 1. Suppose there are two spheres and one is bigger than the
other. Then, the smaller might move behind the larger sphere from the perspective of some camera
angle, v, such that small changes to the occluded sphere’s position will not be observable. These
images now violate the injective assumption, and as such, existing disentanglement results cannot
be leveraged in this setting.

2.2 LEVEL 2: OCCLUDED OBSERVABLES

The most natural extension from injectivity is to occluded latents that could, in principle, be ob-
served. Consider Figure 2 (left) where the small pink sphere is occluded by the larger green sphere
and as such, it could move a small amount without changing how the scene is rendered. This image
is not injective because there exist v and z1 ̸= z2 such that,

g(z1, v) = g(z2, v).

That is, the dimension of z1 that encodes the position of the pink sphere can change (z1 ̸= z2)
but from a particular camera angle, encoded by v, the image is exactly the same. Clearly, if we
had looked behind the green sphere (Figure 2, right), then the pink sphere would no longer be
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occluded. This example illustrates how we define occluded observables: a latent variable is an
occluded observable if injectivity fails under the view that rendered x, but there exists an alternative
view under which injectivity holds. Or put differently, g(·, v) is not injective in the factual view, v,
but there exists a counterfactual view, v′, for which g(·, v′) is injective.

One subtlety is that, in the worst case, each latent variable Zk ∈ Z may have needed to be viewed
from a different counterfactual view, v′k, to render it injective. To accommodate this, Level 2 is
formally characterized in terms of each zk as the existence of a view under which different latents
imply different images (the contrapositive of the standard injective assumption),
Definition 2. An observation pair g(z1, v) = g(z2, v) with z1 ̸= z2 has occluded observables if,

∃v′k ∈ V such that z1k ̸= z2k =⇒ g(z1k, z1k̄, v
′
k) ̸= g(z2k, z2k̄, v

′
k) for all k = 1, . . . ,K,

where zik̄ are the values of all but latent variable k in the realized vector zi.

Put more plainly, in Level 2, there may exist latent variables that are not observable in the views we
have available, but every latent variable could be made observable from a view that the modeler is
willing to obtain.

Level 2 has a causal interpretation. Consider the causal graph for a view v that defines the mecha-
nism X = gv(Zobs), where only a strict subset Zobs ⊊ Z of the latents are observable causal parents
of X , then any variables in Z \ Zobs that are causal parents of X in some other view v′ can be
regarded as occluded observables. This is because, by definition of missing causal arrows, we can
perturb any latent in Z \ Zobs without changing our observations of X – this corresponds to non-
injectivity. A typical example where this would occur is in a sequential setting where we receive
infrequent observations, {X1, XT }. The latents from the intervening time steps, {Z2, . . . , ZT−1},
are not observable in the current view, but may be observable if it is possible change the view by
collecting observations at the required times.

This graphical criterion is not sufficient, however, to define occluded observables. To see this,
consider a sequence of images from Example 1. The position of each sphere is clearly a causal
parent of the sequence of images because interventions on the distribution positions would change
the distribution of observations. However, for most views, there exist particular realizations of these
positions where where some spheres are occluded by others, thereby violating injectivity. This
example illustrates that injectivity is a stronger requirement than requiring causal arrows from Z to
X because it is a condition on point-wise dependence between z and x, rather than a distributional
dependence.

2.3 LEVEL 3: OBSERVABLE EFFECTS

In the figure, although the pink sphere is occluded by the larger green sphere, there is a camera angle
that makes the pink sphere visible. That is, there is a view (specified by a particular camera angle)
where changes to the pink sphere’s position is observable. Unfortunately, not all latent variables
leave pointwise observable implications, even in a counterfactual view.

Instead of the positions of the spheres in the image, consider the downward force that each sphere
exerts. The relationship between force—a latent variable—and images is non-injective: manipulat-
ing a sphere’s downward force (e.g., by changing its mass) does not change the image. Moreover,
it’s uncommon for a modeler to have access to a view where the implications of changing a sphere’s
force is observed. There are, of course, exceptions: if a weigh-scale is introduced into the scene, or
the spheres are viewed immediately before and after collisions with each other. If such views exist,
we have an inference problem characterized by Level 2.

To differentiate Level 3 from Level 2, we first formally define these latent variables,
Definition 3. A latent variable U is unobservable if the generative function, g(·, V ) is non-injective
for all v ∈ V , such that there exists zi ̸= zj for which g(zi, v) = g(zj , v).

On its own, this definition is far too broad to be useful: virtually everything in the universe is
an unobservable latent variable, and we have no hope of inferring their unobservable values. The
unobservables that are important, are those variables that we can use to explain the dynamics of
our local environment as a function of their effects. We typically achieve this by experimentally
perturbing these latents (e.g. applying forces) and inferring their effects indirectly via their effect on
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observable latents, such as the positions, velocities and accelerations of the object in our view. To
formalize this intuition, consider the distribution over observations, P (X).
Definition 4. An unobservable latent variable U has an observable effect, if there exists an inter-
vention do(U = u) such that,

P (X) ̸= P (X; do(U = u)). (2)

That is, when we intervene and fix value of U to u and sample observations x′ from the corre-
sponding intervened causal model, the distribution over the original observations, P (X) and the
distribution P (X ′), are not equal. For example, imagine intervening on downward force by chang-
ing the gravity constant i.e., imagine spheres on the moon. The distribution of original images and
lunar images would be distinct; on the moon, the spheres would bounce higher and be slowed less
by friction. One subtlety is that to observe the causal effects of manipulating U , we may also need
to render the observations x with a different view v ̸∈ Vobs, so there may exist scenarios where we
also have to account for occlusions.

As with occluded observables, latents that are unobservable have a causal interpretation. Consider
the expanded structural causal model (SCM) that describes full system of variables,

u← fu(ϵu); z ← fz(u, ϵz), x← gv(z), (3)
where the noise variables ϵu and ϵz are jointly independent. The latent variables U govern the
distribution of Z, which capture factors like the positions of spheres in images. For many standard
models of fz(·), e.g., an additive noise model, fz = u + ϵz , the resulting mapping between U
and X is not injective, because g(u1 + ϵz,1) = g(u2 + ϵz,2) could occur either because u1 = u2 or
u1 ̸= u2 and realizations of ϵz offset their differences. In these cases, the latents U are unobservable.
However, the SCM tells us that intervening on U changes the distribution of X . From the SCM
perspective, the distinction between Level 2 and Level 3 is that while Level 2 corresponds to direct
interventions on X by changing the view mechanism gv(Z), Level 3 involves manipulating the
latent distribution P (Z) by intervening on U .

Unobservable latents and science. At this point, a reader might be asking a good question: when
do we care about inferring unobservable latents, given that they are once removed from the obser-
vations themselves? These variables, like force, capture dynamics in the world but can only be
viewed via experiments (i.e., interventions). However, many of the most important scientific dis-
coveries, from the discovery of atoms to planetary motion, involves inferences about unobservables
latents. Indeed, a key role of the physical sciences is explaining observable phenomena in terms
of unobservable variables. This connection is intentional: our definition of the distinction between
observables and unobservables is inspired by the distinction between scientific theories and observa-
tions in philosophers of science (Boyd & Bogen, 2021), where theories correspond to unobservables
that explain observable data.

Although this level is defined by the observable effects of interventions, Level 3 inferences do not
strictly require intervening on U . For example, we cannot manipulate latents like the gravity con-
stant or the mass of a planet. Instead we explain observations in the context of a specific theory
(mechanism) that describes how the dynamics of a system should evolve. We believe an important
open problem for causal representation learning is understanding how to formalize this procedure to
posit mechanisms that explain high dimensional observations, and use them to infer Level 3 latents.

Level 4: Unconstrained latents Consider extrapolating beyond the boundaries of a scene, or a
painting (i.e., out-painting). These extrapolations require inferences about latent variables that leave
no observable implications on the scene or painting. What characterizes this setting is that we want
to infer latent variables Ũ such that,

P (X) = P (X; do(Ũ = u)).

That is, unlike in Level 3, intervening on Ũ does not change the distribution of X .

Of course, if we never have anything observable or testable, then there is no hope of identifiability.
It is worth noting, however, that this “impossible” case is not completely without structure: any
extrapolation still needs to be consistent with what we observe. For example, if we ask a modern
generative model to guess parts of an image that are outside the field of view, we see parts of the
image that we can never observe (so not identifiable) but the results are still image-like.

6



Under review as a conference paper at ICLR 2023

3 IDENTIFICATION RESULTS

The goal in this section is to characterize the identification of representations learned from Level
2 observations. The feature of Level 2 observations is that there there exists a counterfactual view
with which the generative function would be injective. If the modeler could gather observations
using that view, they could appeal to existing results on disentangled representation learning. We
instead consider the case where the modeler cannot access observations from the counterfactual,
or wants to use the existing observations, which contain occluded latents. To this end, we develop
identification results using temporal observations, following Ahuja et al. (2022a).

3.1 PRELIMINARIES

For simplicity, we assume that the modeler only has access to a single view v and the generative
function gv(Z) is non-injective. Because of the absence of other views, we drop the explicit de-
pendence on V from the generative function and write g(Z). The data generating process (DGP)
follows from Ahuja et al. (2022a) which studies equation 1 in a temporal setting, where the latents
that generate observations evolve according to a mechanism m such that,

xt ← g(zt); zt+1 ← m(zt). (4)

In Ahuja et al. (2022a), the true generative function g is bijective with respect to the data manifold,
and as a result, their generative process and theoretical results correspond to Level 1 in the hierarchy.
As a first step to generalizing their results to Level 2, we first need to relax the bijective requirement
and re-derive their main result under a weaker set of assumptions.

Our hypothesis class is the set of all encoder / decoder pairs, (f̃ , g̃) over which we can search for
solutions to the representation learning problem. We want to know whether the true encoder, f ,
is identifiable—i.e. we ask if f is the unique solution to our learning problem—so we can restrict
this hypothesis class to only those encoder / decoder pairs that can both perfectly reconstruct the
observations and reconstruct temporal pairs after applying a known mechanism, m, such that,

xt+1 = g̃ ◦m ◦ f̃ ◦ xt; x = g̃ ◦ f̃ ◦ x. (5)

Instead of considering the set of bijective functions from Z to X as our hypothesis class, we relax
the bijectivity requirement and consider functions g̃ (f̃) that have a right inverse (left inverse). The
significance of this change is that now two different realizations of latents could be decoded to the
same image, which is a defining property of non-injective observations.

Before moving to non-injective generative functions, we first need to show that right (left) inverses
suffice to re-derive Theorem 1 of Ahuja et al.. Although we consider encoders and decoders that
permit different latent values to decode to the same observation, if the true generative function is in
fact bijective, the constraints on the hypothesis class from equation 5 suffice to recover representa-
tions up to “equivariances” of the mechanism, which are any invertible functions, a, that commute
with the mechanism such that m ◦ a(z) = a ◦m(z). The caveat is this result now only holds on a
restricted domain defined by the encoder. Consider the set Z ′ = f̃(X ) that contains all the points in
the image of the encoder. We can define a new mechanism m′ : Z ′ → Z such that m′(z) = m(z)
for each z ∈ Z ′. That is, the mechanism m′ is same as m but has its domain restricted to Z ′.
Theorem 1. Define E as the set of equivariances of m′. If the data generating process in equation 4
holds and the true generative function g is bijective, then the encoders that satisfy equation 5 identify
the true latent up to the equivariances of m′.

Remarks. The proof is in the appendix. The significance of this result is, if parts of the observation
space are in fact injective, then this hypothesis class of solutions can match the known identifiability
results. In the next part, we establish that indeed, some observations satisfy injectivity, and use this
theorem and mechanisms to constrain the values of latents during occlusion.

3.2 LEVEL 2 IDENTIFICATION

What makes identifying representations challenging from non-injective observations is that at some
time points, latents can become occluded and from the observations at these points the image appears
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static as the occluded latents change. To develop identification results, first we establish that just
before and after the non-injective time points, the observations are injective, and the corresponding
latent variables are identified up to some transformation at these points. Then, we use mechanisms
to constrain the set of values that the latents can take on during the occlusion.

Setup. We modify the DGP in Eqn. 4 so that now, the true generative function g is surjective. A
tuple (x, x′) ∈ X ×X is realizable under this DGP if ∃z ∈ Z for which x = g(z) and x′ = g◦m(z).
The set of all realizable tuples is X r.

A key observation is that we can divide the image of g, i.e., X , into two parts. Xin consists of all the
points in the image for which there exists exactly one z such that x = g(z) and Xnin = X \ Xin. We
can further define Zin as the preimage of Xin under g and Znin = Z \ Zin as the preimage of Xnin

under g̃.

Consider the points in the set Xin. If we restrict g̃’s domain to Zin, then g̃ is invertible. For each
point x ∈ Xin the subsequent point that is generated is x′ = g ◦m◦g−1(x). We denote the set of the
tuples generated from Xin as X r

in ⊆ X r. Following the previous section, we define Z ′
in = f̃(X̃in) to

be the set of all the points in the image of the encoder. Define a new mechanism min : Z ′
in → Z as

follows for each z ∈ Z ′
in,min(z) = m(z). Thus min is same as m but has domain restricted to Z ′

in.

Theorem 2. If the data generating process in equation 4 holds and the true generative function g is
surjective, then the encoders that satisfy the equation 5 identify the true latents associated with data
in Xin up to the equivariances of min.

The proof of the above theorem is exactly the same as the previous theorem. Denote the set of
equivariances of min as Ein. The identity in equation 5 enforces constraint on data on entire X while
the above theorem only describes the identification guarantees for the latents associated with the
points in Xin.

The discussion above exploits points only in Xin and thus only speaks to the identification of the
corresponding latents. We now consider a particular case where the mechanism consists of offsets
to the latent variables which lets us derive identification results up to permutations and scaling on
the injective region and describe the output of the encoder on the non-injective region.

3.2.1 ANALYZING KNOWN OFFSETS CASE

Define the latent space as a d−dimensional hypercube Z = [0, 1]d and for simplicity, suppose that
corner of the cube is occluded such that, Znin = [v, 1]d, where v > 0 is parameterizes the view
that defines which subset of Z is occluded. The remainder of the space is observable, such that
Zin = Z \ Znin. As before, let x ← g(z), but restrict g : Z → X to be a piece-wise analytic
function defined as follows: g1 : Zin → Xin, is an injective, analytic rendering function defined on
the visible subset ofZ; we can think of the output of g1 as rendering non-occluded images of the full
scene—indeed with v = 1, this is just the standard injective setting. Suppose g2 : Znin is a constant
function, since the image x is unchanged while the latents are occluded. We then define g as,

gv(z) =

{
g1(z) if z ∈ Zin(v)

g2(z) if z ∈ Znin(v)

Under this data generating process, we show that by assuming access to the same mechanisms as
those used in Ahuja et al. (2022a), we can derive analogous results without requiring injectivity. The
“mechanism” that acts on z is m(z) = z + δi for a set of d offsets, ∆ = {δi}di=1 such that,

g̃ ◦m ◦ f̃(x) = x′ ⇒ g̃(f̃(x) + δ′) = x′ (6)

We need these pertubations to be diverse enough that they span the latent space.

Assumption 1. The dimension of the span of the true and estimated perturbations ∆ and ∆′ is d,
i.e., dim (span(∆)) = d.

Like Ahuja et al., we need a regularity condition on a(·), but we differ slightly in that a(·) is con-
strained to the restricted space Z ′,

8
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Assumption 2. a : Z ′ → Z ′ is an analytic function. For each component i ∈ {1, · · · , d} of a(z)
and each component j ∈ {1, · · · , d} of z, define the set Sij = {θ | ∇jai(z + b) = ∇jai(z) +
∇2

jai(θ)b, z ∈ Rd}, where b is a fixed vector in Rd. Each set Sij has a non-zero Lebesgue measure
in Rd.

With these assumptions, we can show an analogous result to Theorem 2 of Ahuja et al. (2022a).

Proposition 1. If Assumptions 1, and 2 hold, and the data is generated according to equation 4
then the encoder that solves equation 6 identifies true latents on the restricted space up to offsets,
i.e. ẑ = z + c for all z ∈ Z ′

in, where c ∈ Rd is an offset. For all z ∈ Znin, the encoder outputs a
constant.

Proof. From Theorem 2, we know that we can achieve identification up to equivariance of m with
a restricted domain. For z ∈ Z ′

in we have,

m ◦ a = a ◦m⇒ a(z) + δ = a(z′) (7)

We now can use the same steps that are used in Ahuja et al. (2022b) and show that a is offset
function. The key difference between the setup in Ahuja et al. (2022b) and this is that in that work
the identity holds on the entire support of the latent Z and not a subset Z ′

in defined by the encoder.

Now, for all z ∈ Znin, since x is constant, ẑ = f̃(x) is also a constant. Hence, we get a is offset
function of Zin and a constant function on Znin.

Beyond known mechanisms We can relax the assumption of full knowledge of the offsets, to
instead assuming that the learner knows that either some set of (unknown) dense offsets or sparse
offsets were applied. Under the same diversity assumptions on the span of the set of offsets, we
would have have recovered identification up to either linear or a diagonal / scaling factor respectively,
analogous to those in Ahuja et al. (2022b) on the restricted support.

From an algorithmic perspective is, we can understand these results as showing that next frame
prediction through mechanism knowledge (g̃ ◦m ◦ f(x) = x′) and reconstruction g̃ ◦ f̃ is sufficient
to achieve standard identification results in the injective regions of the function and constant value
in other regions. In order to make non-trivial inferences over the latents in the non-injective region,
we can leverage constraints that mechanism-induced paths through the occluded region provide.

3.2.2 PATH BASED CONSTRAINTS

Finally, we observe that knowledge of the mechanisms makes it possible to go beyond a constant
prediction and bound the latents for z ∈ Znin. First note that in Propsition 1, we show that for Zin,
the latents are identified up to a constant, such that ẑ = z + c. On Znin, our predictions are just
a constant, ẑ = b, because the images are constant for all occluded latents z ∈ Znin. But, for any
path that includes a point in Zin before arriving in the non-injective region, Znin, we can estimate
the occluded latent using the fact that the path consists of repeated applications of some mechanism
from an observable point.

In particular, when the mechanisms are known offsets we can get offset identification for any point
in Znin up to a constant offset by leveraging these paths. With know offsets, a path amounts to a
sequence of offsets of length k, such that δ(k) =

∑k
t=1 δt,i(t) where each δt,i(t) ∈ ∆ is the offset

applied after t steps. But then for any zk ∈ Znin, given a path δ(k) from z0 ∈ Zin to zk, we can
recover zk up to an offset, by letting ẑk = ẑ0 + δ(k) = z0 + c+ δ(k) = zk + c.

4 DISCUSSION

This paper presented a hierarchy of problems that relax the injective assumption, which are char-
acterized by the effect of views and the observable effects of experiments. We demonstrated that
it is possible to make non-trivial identification claims by extending Ahuja et al. (2022a)’s approach
to the occluded case. An important future direction is characterizing Level 3 of the hierarchy and
expand the occluded results.
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A PROOF OF THEOREM 1

Proof. Define the set of all encoders that solve the identity in equation 5 as Gid.

We first make an observation about the right inverses below. For all x ∈ X we have

g̃ ◦ f̃(x) = x (8)

Suppose we take a z ∈ Z ′. By definition of Z ′, we can find an x ∈ X such that z = f̃(x). We
exploit this in the simplifcation below.

f̃ ◦ g̃(z) = f̃ ◦ g̃ ◦ f̃(x) = f̃(x) = z (9)

Therefore, f̃ ◦ g̃ = I, where I : Z ′ → Z ′ is the identity map on the image of the encoder.

From equation 8, we know that for each x ∈ X , there exists a z = f̃(x) ∈ Z ′ such that g̃(z) = x.

For all x ∈ X because f̃ and g̃ satisfy equation 5, we know,

g̃ ◦m ◦ f̃(x) = g ◦m ◦ g−1(x)

g−1 ◦ g̃ ◦m ◦ f̃(x) = m ◦ g−1(x)

a ◦m ◦ f̃(x) = m ◦ g−1(x)

(10)
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In the above, we use the fact that for each x ∈ X , there exists exactly one z ∈ Z ′ such that g̃(z) = x
and get

a ◦m ◦ f̃ ◦ g̃(z) = m ◦ g−1 ◦ g̃(z) (11)

We showed above that for each z ∈ Z ′, f̃ ◦ g̃(z) = z. Therefore, we finally get for all z ∈ Z ′

a ◦m(z) = m ◦ a(z) (12)

Therefore, the equivariance identity has to hold but over a subset of the domain. In other words, we
can identify the true latents up to equivariances of m′ defined only on this restricted domain.
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