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ABSTRACT

Large Language Models (LLMs) hold the potential to revolutionize autoformaliza-
tion. The introduction of Lean4, a mathematical programming language, presents
an unprecedented opportunity to rigorously assess the autoformalization capabil-
ities of LLMs. This paper introduces a novel evaluation benchmark designed for
Lean4, applying it to test the abilities of state-of-the-art LLMs, including GPT-
3.5, GPT-4, and Gemini Pro. Our comprehensive analysis reveals that, despite
recent advancements, these LLMs still exhibit limitations in autoformalization,
particularly in more complex areas of mathematics. These findings underscore
the need for further development in LLMs to fully harness their potential in sci-
entific research and development. This study not only benchmarks current LLM
capabilities but also sets the stage for future enhancements in autoformalization.

Benchmark Page: HuggingFace

1 INTRODUCTION

Generating formal statements is tedious, but the impressive advances in LLMs’ capabilities show a
promising future for autoformalized, verifiable systems (Klein et al., 2018). Computer-formalized
mathematics has seen advances in many directions, including the rapid development of new
computer-interpretable mathematical languages. One such language is Lean4, the non backwards-
compatible successor to Lean3. Given the differences between the two languages, a benchmark that
evaluates a LLM’s ability to autoformalize into Lean4 has become increasingly important.

Contribution: In this paper, we propose a benchmark of 101 pairs of mathematical formal-informal
statements across 17 different topics in math. Then, we manually evaluated three different state of
the art LLMs (GPT-3.5, GPT-4, and Gemini Pro) on the benchmark.

Many benchmarks have used the perplexity metric to evaluate autoformalizations (OpenAI; Azer-
bayev et al., 2023). However, this relies on string/pattern matching, which is not a very robust
measure of autoformalization, given the fact that LMs may generate correct formalizations that dif-
fer in structure or wording. In our paper, we evaluate autoformalizations on a 0-4 scale based on
correction effort, as proposed in (Jiang et al., 2023). Correction effort refers to the amount of nec-
essary adjustments or modifications required to transform the generated formalization output of a
LLM into an accurate and fully correct Lean4 formalization. Additionally, we split the statements
into math topics, which lets our evaluation extend beyond an accuracy metric, providing a more
fine-grained understanding of how LLMs autoformalize, and where more work is still needed.

2 METHODOLOGY AND RESULTS

To assess the autoformalization capabilities of contemporary LLMs, we selected a dataset of 101
theorem statements from mathlib4, a comprehensive library of mathematical theorems formulated
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Figure 1: Average Correction Efforts Across Topics

in Lean4. The dataset included a wide array of mathematical subjects (Appendix B) ensuring a
diverse and representative sample for our analysis. The dataset includes formal statements, their
corresponding natural language informalizations, and the specific mathematical topic.

We employed a zero-shot prompting approach with three advanced LLMs: GPT-3.5, GPT-4, and
Gemini Pro. This approach involved presenting each model with natural language statements from
our dataset and analyzing the formalized outputs they generated (Appendix C). We also streamlined
the evaluation process by trimming outputs to only include formal Lean statements.

Our evaluation methodology drew inspiration from (Jiang et al., 2023), employing a grading scale
ranging from 0 to 4. On this scale, a score of 0 indicates a flawless autoformalization, while a score
of 4 signifies an output requiring as much correction effort as formalizing a statement from scratch.

Our analysis revealed that the correction efforts for autoformalizations were similar among GPT-3.5
and GPT-4, averaging 2.238. Gemini Pro showed a slightly higher average effort of 2.248. Gemini
Pro boasts the most number of autoformalizations with scores of 0s and 1s. However despite this,
GPT-4 and Gemini Pro produced more instances with the maximum correction effort of 4 (Appendix
D). This is likely because as discussed in (Pichai & Hassabis, 2023), Gemini, with its natively multi-
modal design and recent training incorporating Lean4 data, performs better in reasoning tasks. This
is a step forward from GPT-4’s Mixture of Experts (MoE) design and earlier training phase, which
may have had less exposure to Lean4 (as evident from GPT-4’s misinterpretation of Lean4 capabili-
ties in Appendix C). Both models surpass GPT-3.5, which relies on a monolithic architecture.

Figure 1 reveals performance disparities among LLMs across mathematical subjects, which suggests
that the LLMs’ performance is subject-dependent. For instance, all LLMs excelled in Information
Theory and Logic, but had trouble with category and model theory. We hypothesize that the fre-
quency of these subjects on the internet is related to the performance of the LLM. Another potential
reason for the discrepancy between subjects might be attributed to the difficulties of autoformaliza-
tion. Problems in category theory and model theory are harder to describe even in natural language,
so translating it to formal language is a more difficult task in itself. To improve our dataset, we
could label the difficulty of each problem statement to correct for correlation between problem- and
autoformalization-difficulty. The overall variance suggests that the LLMs’ performance is influ-
enced by the subject matter of the theorem, pointing to potential avenues for future research.

3 CONCLUSION

Our research underscores the potential of LLMs in revolutionizing the field of formalization, with
implications extending across mathematics, computer science, and engineering. While LLMs can
substantially expedite research and development, our findings indicate that even the most sophisti-
cated models currently fall short in achieving accurate autoformalization. This gap highlights the
unique opportunity presented by the development of Lean4, serving as a crucial testing ground for
enhancing LLM performance in autoformalization and automated theorem proving.
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A DATASET

The evaluation benchmark can be accessed via HuggingFace here.

B INSIDE THE DATASET

Topic Number of problems
Algebra 9
Analysis 8

Category Theory 6
Combinatorics 6
Computability 4
Field Theory 9

Geometry 8
Group Theory 6
Info. Theory 5

Linear Algebra 5
Logic 5

Model Theory 6
Number Theory 5

Probability 6
Rep. Theory 3
Set Theory 5
Topology 5

Table 1: The Number of Problems in the Dataset, Based on Topic

C SAMPLE PROMPTS AND OUTPUTS

Prompt:
"I am providing you with a mathematical statement
in natural language. I want you to formalize it in the Lean4
language. \n" + natural_language_statement
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Output:
{
"id": 8,
"subject": "Information Theory",
"natural_language_statement": "The Hamming distance of an

element to itself is always 0.",
"ground_truth_formalization": "theorem hammingDist_self (x : ∀

i, β i) : hammingDist x x = 0 := by%n rw [hammingDist,
card_eq_zero, filter_eq_empty_iff]%n exact fun _ _ H => H
rfl%n#align hamming_dist_self hammingDist_self",

"gpt_3.5_turbo_response": "import data.list.basic%n%nopen list
%n%n-- Define the Hamming distance function%ndef
hamming_distance {α : Type} [decidable_eq α] (xs ys : list
α) : N :=%n (xs.zip ys).count (λ xy, xy.fst \neq xy.snd)%

n%n-- Formalize the statement%ntheorem
hamming_distance_self_zero {α : Type} [decidable_eq \alpha
] (x : α) :%n hamming_distance [x] [x] = 0 :=%nbegin%n --
Apply the definition of hamming_distance%n unfold
hamming_distance,%n -- Simplify the expression%n simp,%
nend",

"gpt_4_response": "In Lean4, the Hamming distance of an
element to itself being always 0 can be formalized as
follows:%n%n‘‘‘lean%nimport data.nat.basic -- import
necessary library%n%ndef hamming_distance (x y : N) : N
:=%n nat.popcount (x lxor y) -- definition of Hamming
distance%n%ntheorem hamming_self (n : N) :
hamming_distance n n = 0 :=%nbegin%n rw hamming_distance,%
n rw nat.lxor_self,%n exact nat.popcount_zero,%nend%n‘‘‘%n
%n. This code first imports the necessary library for
natural numbers. Then it defines the Hamming distance as
the population count (number of 1’s) in the binary
representation of the bitwise exclusive or (lxor) of two
numbers. The theorem ‘hamming_self‘ states that the
Hamming distance of a number to itself is always 0. The
proof is straightforward: the bitwise exclusive or of a
number with itself is always 0, and the population count
of 0 is 0.",

"gemini_pro_response": "theorem
hamming_distance_to_self_is_zero (α : Type) [decidable_eq
\alpha] (x : α) :%n hamming_distance x x = 0 :%n by refl"

}

Scores given to Problem 8: GPT-3.5 - 1. GPT-4 - 1. Gemini Pro
- 1. All autoformalizations were near perfect with minor
changes necessary, which led us to giving scores of 1 for
all models.

Output:
{

"id": 99,
"subject": "Category Theory",
"natural_language_statement": "An object is injective if its

preadditive Yoneda functor preserves finite colimits.",
"ground_truth_formalization": "theorem

injective_of_preservesFiniteColimits_preadditiveYonedaObj
(J : C)%n [hP : PreservesFiniteColimits (

preadditiveYonedaObj J)] : Injective J :=",
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"gpt_3.5_turbo_response": "import category_theory.category%
nimport category_theory.functor%nimport category_theory.
limits%n%nopen category_theory%n%nuniverses v u%n%
nvariables (C : Type u) [category.{v} C]%n%nstructure
injective_object (X : C) : Prop :=%n(
preadditive_yoneda_functor_preserves_colimits :%n ∀ (J
: Type v) [small_category J] (F : J → C),%n limits.
preserves_colimits_of_shape (discrete.functor F) (yoneda
.obj X))%n%nNote: This formalization assumes that Lean4
has already imported the necessary libraries for
category theory. The statement is formalized using the ‘
injective_object‘ structure, which takes an object ‘X‘
in category ‘C‘ as a parameter. The structure contains a
property ‘preadditive_yoneda_functor_preserves_colimits

‘, which asserts that for any small category ‘J‘ and
functor ‘F : J → C‘, the preadditive Yoneda functor
preserves finite colimits. The ‘limits.
preserves_colimits_of_shape‘ function is used to express
this preservation property.",

"gpt_4_response": "Formalizing this statement in Lean4
requires a deep understanding of category theory and the
Lean4 language. Unfortunately, Lean4’s standard library
does not currently support category theory to the

extent required to formalize this statement. %n%nHowever
, here is a rough sketch of how you might start to
define these concepts in Lean4:%n%n‘‘‘lean%n-- First, we
need to define what a category is%nstructure Category

:=%n (Obj : Type)%n (Hom : Obj → Obj → Type)%n (comp
: Π {X Y Z : Obj}, Hom X Y → Hom Y Z → Hom X Z)%n (id :
Π X : Obj, Hom X X)%n (assoc : Π {W X Y Z : Obj} (f :

Hom W X) (g : Hom X Y) (h : Hom Y Z),%n comp (comp f g)
h = comp f (comp g h))%n (id_left : Π {X Y : Obj} (f :
Hom X Y), comp (id X) f = f)%n (id_right : Π {X Y : Obj}
(f : Hom X Y), comp f (id Y) = f)%n%n-- Then, we need

to define what a functor is%nstructure Functor (C D :
Category) :=%n (onObj : C.Obj → D.Obj)%n (onHom : Π {X
Y : C.Obj}, C.Hom X Y → D.Hom (onObj X) (onObj Y))%n (
functor_id : Π {X : C.Obj}, onHom (C.id X) = D.id (onObj
X))%n (functor_comp : Π {X Y Z : C.Obj} (f : C.Hom X Y)
(g : C.Hom Y Z),%n onHom (C.comp f g) = D.comp (onHom f

) (onHom g))%n%n-- Then, we need to define what a
preadditive category is%nstructure Preadditive (C :
Category) :=%n (add : Π {X Y : C.Obj}, C.Hom X Y → C.
Hom X Y → C.Hom X Y)%n (zero : Π {X Y : C.Obj}, C.Hom X
Y)%n (neg : Π {X Y : C.Obj}, C.Hom X Y → C.Hom X Y)%n

(sub : Π {X Y : C.Obj}, C.Hom X Y → C.Hom X Y → C.Hom X
Y)%n -- plus the axioms for an additive group...%n%n--

Then, we need to define what a Yoneda functor is%ndef
Yoneda (C : Category) (X : C.Obj) : Functor C (
Preadditive C) := sorry%n%n-- Then, we need to define
what a colimit is%ndef Colimit (F : Functor C D) : D.Obj
:= sorry%n%n-- Then, we need to define what it means

for a functor to preserve colimits%ndef
PreservesColimits (F : Functor C D) : Prop :=%n ∀ (G :
Functor C D) (c : Colimit G), Colimit (Functor.comp F G)
= F.onObj c%n%n-- Finally, we can define what it means

for an object to be injective%ndef Injective (C :
Category) (X : C.Obj) : Prop :=%n PreservesColimits (
Yoneda C X)%n‘‘‘%n%nPlease note that this is a very
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rough sketch and is not complete or correct Lean4 code.
The definitions of ‘Yoneda‘, ‘Colimit‘, and ‘
PreservesColimits‘ are particularly difficult and would
require a lot of additional code.",

"gemini_pro_response": "def injective [additive] (C :
Category) : Prop := ∀ (F : Functor Cˆ{op} → Ab) (X : C),
preserves_finite_colimits F ↔ preserves_finite_colimits
(Yoneda.obj C X) ∼= F"

}

Scores given to Problem 99: GPT-3.5 - 2. GPT-4 - 3. Gemini Pro
- 2. GPT 4 avoided a direct autoformalization and

proceeded to define other concepts in category theory
giving it a score of 3. GPT 3.5 however, attempted a
direct autoformalization with Lean4 syntax and provided
partially sound logic warranting a score of 2. Bard,
similar to GPT 3.5, provided a partially correct direct
autoformalization with Lean4 syntax warranting a score of
2.

D GRAPHING THE CORRECTION EFFORT FOR SEPARATE MODELS
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