

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CHEMDFM-R: A CHEMICAL REASONING LLM EN- HANCED WITH ATOMIZED CHEMICAL KNOWLEDGE

Anonymous authors

Paper under double-blind review

ABSTRACT

While large language models (LLMs) have achieved impressive progress, their application in scientific domains such as chemistry remains hindered by shallow domain understanding and limited reasoning capabilities. In this work, we focus on the specific field of chemistry and develop a Chemical Reasoning LLM, **ChemDFM-R**¹. We first construct a comprehensive dataset of atomized chemical knowledge, *ChemFG*, annotating the presence of functional groups in molecules and the changes of functional groups during chemical reactions, to enhance the model’s understanding of the fundamental principles and internal logic of chemistry. Then, we propose a *mixed-source distillation* method that integrates expertise in atomized knowledge with general reasoning skills, followed by domain-specific reinforcement learning to enhance chemical reasoning. Experiments on diverse chemical benchmarks demonstrate that ChemDFM-R achieves cutting-edge performance while providing interpretable, rationale-driven outputs. Further case studies illustrate how explicit reasoning chains significantly improve the model’s reliability, transparency, and practicality in real-world human-AI collaboration scenarios.

1 INTRODUCTION

With the remarkable capabilities and performance demonstrated by large language models (LLMs) (Brown et al., 2020; Achiam et al., 2023; Team et al., 2023), the development of domain-specialized LLMs has emerged as a popular approach to addressing complex problems (Hendrycks et al., 2020; Chen et al., 2021; Wang et al., 2024). Specifically, many efforts focus on specializing LLMs into scientific domains to build general-purpose scientific assistants (Zhao et al., 2025b; Zhang et al., 2024a; Zhao et al., 2024; Zhang et al., 2025c; Tan et al., 2025) which could assist scientists during their research through conversational human-AI interactions. However, given the inherent complexity and high demand for reliability in the scientific domain, current models often struggle with inadequate performance and limited interpretability, which significantly hinders their practicality.

Recently, great success has been achieved in constructing reasoning LLMs in the general domain (Jaech et al., 2024; Guo et al., 2025a; Team et al., 2025; Comanici et al., 2025). Beyond enhancing overall model performance, the reasoning-before-answering pattern directly demonstrates how and why the LLM arrives at the answer, thereby markedly improving the reliability and interpretability of the LLM’s response. Through the generated rationale, people can confirm the correctness of the answer or identify why the model makes mistakes. Therefore, reasoning-augmented LLMs offer a new promising approach to addressing the aforementioned challenges in scientific-domain LLMs, potentially enhancing their practical utility.

Currently, the research on reasoning LLMs has predominantly focused on general domains, such as mathematics (Yang et al., 2024b; Shao et al., 2024) and programming (Zhu et al., 2024; Hui et al., 2024). In contrast, the reasoning capability of existing LLMs remains highly limited in scientific domains. There are two reasons that hinder current LLMs from excelling in scientific-domain reasoning. 1) The understanding of domain knowledge remains superficial owing to the shortage of in-depth enough training data. The advanced domain knowledge is typically insufficient in general-purpose corpora, while even in current domain-specific corpora, the domain knowledge is still shallow. Current domain-specific corpora (Taylor et al., 2022; Xie et al., 2023; Zhao et al.,

¹The inference code, training datasets, and the model parameters will be open-sourced.

054 2025b; Zhang et al., 2024a; Yu et al., 2024) often focus on literature text and high-level phenomena
 055 and fail to conduct a proper breakdown into internal mechanisms and atomized knowledge points.
 056 For example, in the field of chemistry, the types and positions of *functional groups*² within molecules
 057 fundamentally determine molecules' properties and reactivities. However, instead of training on
 058 functional-group-level knowledge, current chemical LLMs usually directly learn molecule-level
 059 knowledge about properties and reactivities. The lack of atomized knowledge significantly constrains
 060 the capacity of these models for providing high-quality rationales. 2) The intrinsic reasoning logic in
 061 these domains differs significantly from that in mathematics and programming, making it difficult
 062 for models to generalize relevant reasoning skills through training in general domains. This not
 063 only prevents general-domain LLMs from performing high-quality reasoning in scientific domains,
 064 but also introduces additional challenges for building domain-specific reasoning models, which
 065 usually involve distillation before reinforcement learning. The common distillation method involves
 066 gathering rationales from advanced reasoning LLMs, such as DeepSeek-R1 (Guo et al., 2025a) and
 067 o3-mini (OpenAI, 2025b), and training student models using supervised finetuning. This process
 068 assumes that the teacher LLM is capable of generating sufficiently reasonable rationales. However,
 069 this assumption often fails to hold in the scientific fields, such as chemistry. Owing to the limited
 070 understanding of atomized knowledge and chemical logic, even powerful general-domain reasoning
 071 models will highly probably fail to generate accurate and in-depth reasoning for chemical problems.

072 In this work, we focus on addressing the two aforementioned challenges in the chemistry domain
 073 and develop a chemical reasoning LLM, ChemDFM-R. Specifically, we consider the presence of
 074 functional groups in molecules and the changes of functional groups during reactions to be atomized
 075 knowledge points. We develop a toolkit to identify these features from molecules and reactions
 076 and incorporate them into the domain pretraining corpus. The resulting corpus contains over 101
 077 billion tokens from 12 million literature, 30 million molecules, and 7 million reactions. To equip the
 078 model with the capability of chemistry-specific reasoning, we develop a mixed-source distillation
 079 process that can take advantage of both the expertise in the carefully curated knowledge points and the
 080 advanced reasoning capabilities of general LLMs. Domain-specific reinforcement learning is applied
 081 after the distillation process to integrate different capabilities the model learned from corresponding
 082 sources and further enhance the reasoning capability. The resulting model, ChemDFM-R, shows
 083 promising reasoning capabilities as well as advanced performance in multiple chemical benchmarks
 084 and can provide high-quality rationale, helping researchers deeply understand and verify its answer.
 In short, the contributions of this work are threefold:

- 085 • We developed a toolkit to identify the functional groups of molecules and the changes of
 086 functional groups during reactions. Using this toolkit, we built a 101-billion-token domain
 087 pretraining corpus, ChemFG, which encodes atomized **functional-group**–level chemical
 088 knowledge.
- 089 • **We proposed a mixed-source distillation method to effectively initialize the model's rea-**
 090 **soning ability under limited resources by incorporating both expertise in functional-group**
 091 **knowledge and distilled rationales.** With subsequent reinforcement learning, we achieve a
 092 chemical reasoning LLM, ChemDFM-R.
- 093 • Extensive experiments demonstrate the promising chemical reasoning capability of
 094 ChemDFM-R. The created model achieves outstanding performance and manages to gener-
 095 ate clear and rational rationales, which significantly boost the reliability and interpretability
 096 of the final answer.

098 2 CHEMFG

100 In the field of chemistry, functional groups serve as the bridge between molecular structures, proper-
 101 ties, and reactivities, making them one of the most critical intermediate reasoning steps in chemical
 102 reasoning. As demonstrated in Figure 1, functional groups directly influence the properties of
 103 molecules and determine the types of reactions that can take place. However, existing training
 104 corpora of LLMs often lack detailed information on molecular functional groups, preventing models
 105 from directly and precisely learning this atomized chemical knowledge. Therefore, we collect a

106
 107 ²A group of atoms in a molecule with distinctive chemical properties. Please refer to https://en.wikipedia.org/wiki/Functional_group for more details.

Figure 1: The influence of functional groups

Table 1: Data composition of ChemFG.

Type	Sources	#Entries	#Tokens
Literature	Internet	12M	79B
Molecules	PubChem & PubChemQC	30M	22B
Reactions	USPTO-FULL	7M	0.6B

functional-group-centered domain pretraining corpus, ChemFG, which consists of data from three sources: literature, molecules, and reactions. The basic statistics of ChemFG are shown in Table 1 with details provided in Appendix A.1.

2.1 FUNCTIONAL GROUP IDENTIFICATION

Despite the Internet-scale publicly available molecule and reaction corpora, there are no existing databases that describe the correspondence between functional groups and molecules or reactions. To tackle this issue, we develop a functional group identification toolkit based on `thermo` library³ by extending its embedded SMARTS⁴ list from 83 types of functional groups to 241 and improving its algorithms. With the help of the developed toolkit, we annotate the functional groups of all our domain-pretraining *molecule* data. Further details are provided in Appendix A.2.

As for *reactions*, we annotate the changes of functional groups during reactions with the following process. First, with the help of atom mapping annotations provided by the USPTO-FULL dataset, we identify the reaction centers as the atoms that are involved in bond changes during reactions. Based on these reaction centers and our functional group identification toolkit, we identify the functional groups of the reactants that directly participate in the reaction and those of the product that directly result from the reaction. Finally, the reaction can be described as a functional group transformation, where reacting functional groups are converted into product functional groups. Besides functional groups, there are other structural changes during reactions that are equally important, including ring breaking, ring forming, and bond changes outside functional groups. Therefore, we also construct tools to identify these changes in a similar manner.

2.2 QUALITY CONTROL

To ensure the annotation quality of functional groups, we hire three *graduate-level* chemical experts to conduct manual inspections. Firstly, all the experts agree that the extended SMARTS list has already covered the most common functional groups. For molecules, our tool’s annotation accuracy of 100 random samples reaches 98%, with errors primarily due to corner cases such as rare functional groups or complex interactions between functional groups and aromatic rings. For the annotation of reactions, our tool achieves 89% accuracy when tested with 100 random samples. The errors mainly arise from invalid reactions or wrong atom mapping annotations. Examples and analyses of the error are demonstrated in Appendix A.3.

3 CHEMDFM-R

As outlined in Figure 2, the training pipeline of ChemDFM-R can be divided into two parts: 1) Domain Pretraining and Instruction Tuning (§ 3.1), where the basic general LLM is trained with atomized chemical knowledge; 2) Distillation and Reinforcement Learning (§ 3.2), where the model’s chemical reasoning capability is enhanced.

³<https://thermo.readthedocs.io/>

⁴<https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html>, SMiles ARbitrary Target Specification, a normalized form of SMILES.

Figure 2: The overview of the training pipeline of ChemDFM-R.

3.1 ATOMIZED CHEMICAL KNOWLEDGE ENHANCEMENT

In this stage, our model mainly learns the atomized chemical knowledge to prepare itself with “ingredients” to “cook” the chemical rationales. Specifically, we achieve that through domain pretraining and instruction tuning.

Domain Pretraining. In domain pretraining, we leverage the 101-billion-token ChemFG corpus introduced in Section 2 to familiarize our model with the knowledge related to functional groups. We train our model from one of the most advanced general LLMs, Qwen2.5-14B (Yang et al., 2024a). Considering that general knowledge is also vital for Chemical LLMs, we also incorporate a substantial amount of general-domain pretraining data into our domain pretraining corpus to ensure that the model retains its general capabilities as much as possible.

Instruction Tuning. The primary goal of instruction tuning is to teach the model how to analyze the purpose and requirements of a given task and make proper use of the knowledge learned in the pretraining phase. However, existing instruction tuning datasets in the field of chemistry are typically derived from well-studied chemistry tasks and suffer from a severe lack of diversity of both task varieties and instruction expressions. Therefore, we construct a new instruction tuning dataset for ChemDFM-R based on the instruction tuning dataset of ChemDFM (Zhao et al., 2025b). To improve the overall task and instruction diversity, we introduce numerous new chemistry-related tasks, such as scientific paper QA, chemical property ordering, and reaction step prediction, and perform instruction-rewriting to achieve an average instruction-entry ratio of 1:50. For detailed information on the construction and composition of the instruction tuning dataset, please refer to Appendix B. To maintain the general capabilities of our model, we mixed our chemical instruction tuning data with general instruction tuning data in a 1:2 ratio. The Qwen2.5-14B model is finetuned for 2 epochs on this mixed dataset after domain pretraining, resulting in the ChemDFM-I model.

3.2 CHEMICAL RATIONALE LEARNING

The primary goal of this stage is to teach the model how to reason with the atomized knowledge it has acquired. Chemical reasoning requires a deep understanding of chemical principles and logic, as well as the capability to apply them for analysis. These capabilities can not be learned or induced from general-domain reasoning training. Therefore, we propose a chemical rationale learning pipeline to specifically enhance the chemical reasoning capabilities of LLMs based on distillation and reinforcement learning.

Mixed-Source Distillation. We leverage distillation to prevent the early unstable cold start phase of reinforcement learning. It could illustrate the reasoning patterns to the model and build up its basic reasoning capabilities.

Specifically, the entries in the distillation dataset come from three sources, each of which corresponds to part of the abilities required for chemical reasoning: 1) the instruction tuning dataset of ChemDFM-R (~70%) to maintain basic chemical knowledge and prevent catastrophic forgetting; 2) pseudo-reasoning data describing the functional groups of involved molecules or reactions (~22%) and highlighting vital intermediate reasoning steps and functional group analyses; 3) teachers' rationales from DeepSeek-R1 and o3-mini (~8%) which introduce general reasoning pat-

To improve the quality and efficiency of the teacher’s rationales in the chemical domain, instead of asking teacher models to generate rationales from scratch, we provide them with rich additional information. Specifically, the teacher models are provided with the question instruction, the ground truth answer, and the functional group information of the molecules and reactions in the question. Comparison of the rationales generated by DeepSeek-R1 with and without the additional information is illustrated in Figure 3. The rationales generated with full additional information are significantly more valid and in-depth than the other two. More examples with detailed analysis of the rationale generation are given in Appendix C.1. **Moreover, to comprehensively assess the quality of our distilled rationales, we sampled a small subset of them and conducted a quantitative human assessment. The results are illustrated in Appendix C.2.**

Similar to instruction tuning, we mix our mixed-source distillation dataset with general data in a 1:2 ratio. The general data are also sampled from multiple sources, where ~92% of the entries are sampled from the general data for instruction tuning of ChemDFM-R and ~8% are from AM-Deepseek-R1-Distill-1.4M (Zhao et al., 2025a). The ChemDFM-I model is finetuned for one epoch on this mixed dataset.

Reinforcement Learning. After distillation, reinforcement learning (RL) is leveraged to further enhance the reasoning capabilities of our model. The composition of the RL dataset is illustrated in Figure 2, while more details of our reinforcement learning process are illustrated in Appendix D and E.

4 EXPERIMENTAL RESULTS

We first evaluate ChemDFM-R with multiple baselines on benchmarks specifically designed for assessing the chemical capabilities of LLMs (§ 4.1). Then, we validate the effectiveness of our methods by ablation studies (§ 4.2). Finally, to highlight the importance and effectiveness of chemical reasoning, we demonstrate its capability in facilitating reliable human-AI collaboration (§ 4.3).

4.1 BENCHMARK EVALUATION

We evaluate ChemDFM-R and the baseline models on two of the most popular and comprehensive benchmarks specifically designed for assessing the chemical capabilities of LLMs: SciKnowEval (Feng et al., 2024) and ChemEval (Huang et al., 2024). Given the large number of tasks included

Figure 3: Comparison of rationales generated by o3-mini with and without additional input information. We mark the correct analyses in the rationale as **green**, while the wrong ones as **red**. For more examples and detailed analyses, please refer to Appendix C.1.

270
 271 Table 2: Benchmark results on SciKnowEval and ChemEval. “mol.” stands for “molecule” and
 272 “react.” stands for “reaction”. **Qwen-2.5-14B** represent Qwen2.5-14B-Instruct. The numbers in the
 273 table represent the average performance over five inference runs, with the values in parentheses
 274 indicating the standard deviation. The best performance for each task is indicated using **boldface**. *
 275 We use RPS (Peng et al., 2025) to balance the different scales of the scores on different tasks in the
 276 ChemEval benchmark.

Model	SciKnowEval				ChemEval*			
	text	mol.	react.	all	text	mol.	react.	all
Qwen2.5-14B	77.0(0.11)	35.7(0.23)	72.1(0.24)	61.3(0.12)	79.6(1.43)	24.8(0.63)	46.8(1.81)	57.7(0.72)
ChemDFM-I	78.8 (0.38)	50.6(0.40)	91.1(0.70)	69.7 (0.23)	81.2 (2.48)	68.4(3.56)	54.6(5.19)	70.7(1.10)
ChemDFM-R	76.7(0.18)	51.1 (0.56)	93.8 (0.37)	69.1(0.27)	78.3(2.38)	83.5 (1.89)	58.5 (2.61)	73.8 (1.83)

283
 284 in SciKnowEval (19 tasks) and ChemEval (36 tasks), to facilitate fair and clear comparison, we
 285 categorized the tasks into three groups: text-centric, molecule-centric, and reaction-centric tasks.
 286 Details of the task categorization are provided in the Appendix G.

288 4.1.1 PERFORMANCE COMPARISON WITH BASELINES

291 First, we show the effectiveness of our training pipeline by comparing the performances
 292 of ChemDFM-R with those of 1) Qwen2.5-14B-Instruct (Yang et al., 2024a), which is
 293 the general-domain instruction tuning model of Qwen2.5-14B, and 2) ChemDFM-I, which
 294 incorporates atomized chemical knowledge enhancement but precedes the stage of chemical
 295 rationale learning. The quantitative results are
 296 illustrated in Table 2, while examples of the
 297 ChemDFM-R’s rationales are analyzed in Appendix F.

303 As showcased in Table 2, ChemDFM-R con-
 304 sistently outperforms Qwen2.5-14B-Instruct on
 305 both SciKnowEval and ChemEval, demon-
 306 strating that our specialization pipeline has suc-
 307 cessfully improved the model’s chemical capa-
 308 bilities. Specifically, the performances on
 309 text-centric tasks remain almost intact while those on
 310 molecule-centric and reaction-centric tasks in-
 311 crease significantly. This proves that our method
 312 manages to improve the chemical capabilities of
 313 LLM while largely maintaining its abilities in
 314 understanding natural language.

315 Moreover, we also evaluated ChemDFM-I to il-
 316 lustrate the contributions of the different stages
 317 in our training pipeline. Results show that
 318 **the atomized chemical knowledge enhance-
 319 ment stage consistently improves perfor-
 320 mance across all task categories, while the chemical rationale learning stage further strengthens
 321 performance on molecule- and reaction-centric tasks.** We attribute this phenomenon to two factors.
 322 *First*, the molecule- and reaction-centric tasks typically demand more domain-specific chemical
 323 reasoning, such as molecular property prediction or retrosynthesis analysis. In contrast, text-centric
 324 tasks rely more on natural language understanding, such as chemical named entity recognition and
 325 literature question-answering. As a result, learning chemical reasoning over molecules and reactions

326
 327 Figure 4: The performance change for all the in-
 328 dividual tasks in SciKnowEval and ChemEval be-
 329 tween Qwen2.5-14B-Instruct, ChemDFM-I, and
 330 ChemDFM-R.

324
 325 Table 3: Benchmark results on SciKnowEval and ChemEval. “mol.” stands for “molecule” and
 326 “react.” stands for “reaction”. The best performance for each task is indicated using **boldface**, while
 327 the second-best is indicated using underline. * We use RPS (Peng et al., 2025) to balance the different
 328 scales of the scores on different tasks in the ChemEval benchmark.

Model	SciKnowEval				ChemEval*			
	text	mol.	react.	all	text	mol.	react.	all
MolInst	69.4	38.4	41.7	55.0	47.3	15.6	8.9	29.1
ChemLLM-20B-DPO	73.6	38.4	88.1	62.1	64.5	25.4	17.5	42.2
ChemDFM-13B-v1.0	70.2	42.6	85.0	61.6	61.5	42.3	34.0	49.2
ChemDFM-8B-v1.5	72.2	45.6	86.9	63.9	26.7	12.6	18.3	21.1
ether0	38.7	33.7	66.0	39.8	9.4	14.3	11.2	11.0
GPT-4o	76.1	44.6	44.6	61.2	82.7	35.0	52.9	63.3
Qwen3-14B (no think)	76.5	34.5	80.2	61.4	<u>81.5</u>	25.4	26.9	53.1
DeepSeek-R1	80.1	30.8	83.0	62.2	81.2	19.7	47.9	57.6
Qwen3-14B (think)	86.6	40.8	88.5	<u>69.9</u>	79.0	24.7	40.7	55.7
o4-mini	<u>81.3</u>	57.0	97.3	74.0	78.4	<u>60.7</u>	<u>53.6</u>	<u>67.3</u>
ChemDFM-R	76.7	<u>51.1</u>	<u>93.8</u>	69.1	78.3	83.5	58.5	73.8

344
 345
 346 provides limited benefit to these text-focused tasks. *Second*, for the sake of answer verifiability, the
 347 reinforcement learning tasks do not include purely text-based tasks, which may adversely affect the
 348 model’s text reasoning ability. Incorporating text-related tasks into the RL stage through joint training
 349 might help preserve performance on text-based tasks.

350 Furthermore, Figure 4 illustrates the performance changes across individual tasks. The results
 351 clearly show that most tasks benefit from our training pipeline, especially the molecule-centric
 352 tasks and reaction-centric tasks. Moreover, the two training stages provide complementary gains
 353 across different tasks, enabling the final model to achieve superior results on a broader range of
 354 tasks. Notably, among the tasks where ChemDFM-R does not surpass Qwen2.5-14B-Instruct, a
 355 substantial proportion involves numerical prediction, such as Yield Extraction, Molecular Property
 356 Calculation, and Product Yield Prediction. In fact, almost all the molecule-centric and reaction-
 357 centric tasks where ChemDFM-R falls short of Qwen2.5-14B-Instruct are those involving numerical
 358 reasoning and prediction. This pattern suggests that the numerical calculation and prediction abilities
 359 of ChemDFM-R are relatively weak, highlighting a potential direction for further improvements.

362 4.1.2 PERFORMANCE COMPARISON WITH ADVANCED LLMs

363
 364 To further demonstrate the prowess of ChemDFM-R, we compare it with three sets of models: 1)
 365 existing chemical LLMs, including MolInst (Fang et al., 2024), ChemLLM (Zhang et al., 2024a),
 366 ChemDFM (Zhao et al., 2025b), and ether0 (Narayanan et al., 2025); 2) advanced non reasoning
 367 LLMs in the general domain, including GPT-4o (Hurst et al., 2024) and Qwen3-14B (no think) (Yang
 368 et al., 2025); 3) advanced reasoning LLMs in the general domain, including DeepSeek-R1 (Guo et al.,
 369 2025a), Qwen3-14B (think) (Yang et al., 2025), and o4-mini (OpenAI, 2025a). The experimental
 370 results are illustrated in Table 3. For detailed performances of individual tasks and more evaluations
 371 on FGBench (Liu et al., 2025b) and ChemCOTBench (Li et al., 2025b), please refer to Appendix G.

372 As shown in Table 3, ChemDFM-R significantly outperforms both the general-domain LLMs and
 373 domain-specific LLMs of similar size, especially in the molecule-centric and reaction-centric tasks.
 374 Specifically, on ChemEval, it even considerably surpasses Qwen3-14B, the next-generation model in
 375 the same series as our base model Qwen2.5-14B. When compared to cutting-edge LLMs, ChemDFM-
 376 R achieves better performance than GPT-4o and DeepSeek-R1, while demonstrating competitive
 377 results relative to o4-mini on SciKnowEval. Considering the tiny size of our model, this result strongly
 378 demonstrates the prowess of ChemDFM-R and the effectiveness of our specialization process.

378 Table 4: Ablation study results on SciKnowEval and ChemEval. “No Thinking” denotes the data
 379 source of the instruction-tuning dataset, “Pseudo” denotes the pseudo-reasoning data source, and
 380 “Distilled” denotes the teacher’s rationale data source. The best performance for each task is indicated
 381 using **boldface**. * We use RPS (Peng et al., 2025) to balance the different scales of the scores on
 382 different tasks in the ChemEval benchmark.

Data Source for Distillation			SciKnowEval				ChemEval*			
No Thinking	Pseudo	Distilled	text	mol.	react.	all	text	mol.	react.	all
✗	✗	✗	77.7	49.9	94.2	69.2	76.4	70.9	59.9	70.4
✗	✗	✓	75.5	49.6	87.9	67.2	72.0	68.8	63.6	68.9
✓	✗	✓	77.4	50.6	92.4	69.1	78.0	83.1	61.8	74.5
✓	✓	✓	76.8	52.0	94.5	69.5	80.3	84.5	61.3	75.8

4.2 ABLATION STUDY

We conducted two sets of ablation studies, which verify the two key components of ChemDFM-R’s training pipeline, respectively: 1) atomized chemical knowledge enhanced domain pretraining (demonstrated in Appendix H); 2) mixed-source distillation (demonstrated below).

To validate the effectiveness of our newly designed mixed-source distillation method, we conduct an ablation study by gradually simplifying the composition of the distillation dataset. The results are shown in Table 4. The results prove that the traditional distillation method (Row 2) struggles to achieve positive impacts on performance in the chemical domain. It even underperforms the “zero” method (Row 1) proposed by Deepseek-R1, where there is no distillation stage before reinforcement learning. With the help of data sampled from the instruction-tuning dataset to maintain chemical capabilities and knowledge (Row 3), the model’s performance gets boosted significantly. Moreover, the pseudo-reasoning data further help the model to achieve higher performance (Row 4), which corresponds to the final setting of our proposed mixed-source distillation method.

4.3 RELIABLE HUMAN-AI COLLABORATION

Another important advantage of ChemDFM-R’s reasoning capability is that it allows humans to verify the correctness of answers, identify and correct errors, and discover new insights or perspectives. This enables more practical, reliable, and flexible human-AI collaboration. In this section, we first present human evaluation scores of the rationales generated by different reasoning models, which highlight the advantages of ChemDFM-R in facilitating more practical, reliable, and user-friendly human–AI interaction. We then demonstrate the prowess of ChemDFM-R in enabling reliable human–AI collaboration through illustrative examples. Specifically, an example is showcased in Figure 5, while more examples are illustrated in Appendix J.

4.3.1 HUMAN ASSESSMENT OF RATIONALE QUALITY

To assess the quality of rationales under practical situations, we constructed ten graduate-level questions based on recent publications from several influential chemistry journals. The questions cover different major subfields of chemistry, including organic chemistry, inorganic chemistry, materials chemistry, analytical chemistry, and polymer chemistry. Then, different reasoning LLMs are leveraged to solve these questions through human-AI interactions. Five graduate-level chemistry experts were hired to evaluate these interactions across five dimensions. The evaluation results are demonstrated in Table 5, while the questions and metrics are introduced in Appendix I. From these results, we draw three main conclusions:

First, our model outperforms all baselines, including DeepSeek-R1, in both chemical correctness and answer accuracy, indicating that it possesses a stronger grasp of chemical knowledge. In particular, our model shows a clearer advantage on SMILES-related tasks, demonstrating a more precise understanding of molecular structures.

Second, our model achieves significantly higher scores in effective information density. Unlike models such as Qwen3-14B and DeepSeek-R1, which often generate extremely lengthy reasoning chains

432 Table 5: Human assessment of the quality of rationales from different reasoning LLMs. Please
 433 refer to Appendix I for the introduction of the five metrics and the detailed questions used in this
 434 assessment. As the rationales of o4-mini are not accessible, we only use the answer provided by
 435 o4-mini. All metrics are higher-is-better.

437 Models	438 Chemical 439 Correctness	440 Answer 441 Accuracy	442 Analytical 443 Coverage	444 Reasoning 445 Coherence	446 Effective 447 Information Density
439 ether0	4.56	4.60	4.40	4.76	4.56
440 DeepSeek-R1	4.10	3.88	4.34	4.42	3.62
441 Qwen3-14B (think)	3.56	3.92	4.24	3.98	3.00
442 o4-mini	3.94	3.96	3.84	4.16	4.12
443 ChemDFM-R	4.52	4.28	3.94	4.62	4.70

444
 445 exceeding 1,000 tokens, our model produces concise yet informative reasoning. This considerably
 446 reduces the burden on human users when verifying correctness or identifying errors.

447 Finally, our model performs slightly lower than Qwen3-14B and DeepSeek-R1 on analytical coverage.
 448 This is partially because their extremely lengthy reasoning chains allow them to enumerate many
 449 possible considerations. It is also true that our model commonly focuses on one or a few major
 450 possibilities rather than adequately enumerating all potential factors. This highlights a productive
 451 direction for future enhancement of our model’s analytical breadth.

453 4.3.2 PRACTICAL CASES OF HUMAN-AI COLLABORATION

455 To make our example more realistic,
 456 we design our conversation topic ac-
 457 cording to a newly published chemi-
 458 cal research paper, Li et al. (2025a).
 459 It is worth noticing that this paper
 460 was published in 2025, so it is impos-
 461 sible for ChemDFM-R to encounter
 462 this paper during either the pretrain-
 463 ing of the base model, Qwen2.5-
 464 14B, or our domain-pretraining
 465 process. To demonstrate the potential of
 466 ChemDFM-R, we assume the role of
 467 a researcher seeking a new research
 468 inspiration and engage the model in a
 469 dialogue about the subfield to which
 470 this paper belongs.

471 First, as a researcher seeking inspi-
 472 ration, we ask ChemDFM-R to in-
 473 troduce the oxygen evolution reac-
 474 tion (OER) briefly, including the defi-
 475 nition and mechanism of it. Although
 476 the answer itself is a relatively rigid re-
 477 sponse to the question, the model’s ra-
 478 rationale reveals interesting insights. In
 479 its rationale, ChemDFM-R mentions
 480 that OER requires a transition metal
 481 oxide catalyst, which often presents
 482 valuable opportunities for further re-
 483 search. Therefore, we further ask it
 484 to give more detailed recom-
 485 mendations for the catalysts. As a response,
 486 ChemDFM-R proposes multiple dif-
 487 ferent oxides, which is a wide range
 488 for us to dig into. However, in its rationale, ChemDFM-R itself says that “iridium oxide (IrO₂) is

489
 490 **Turn1:** What is oxygen evolution reaction (OER)? Please propose a reasonable mechanism of heterogeneous OER under acidic conditions.
 491 <think>
 492 To derive the answer, one starts by defining the oxygen evolution reaction (OER) as the electrochemical process that converts water into molecular oxygen, which is a critical step in water splitting. Recognizing that OER can occur under both acidic and basic conditions, the focus is on the mechanism under acidic conditions, where the reaction involves protons (H⁺) and water molecules. The process is typically facilitated by a catalyst, often a transition metal oxide, which provides active sites for the reaction. The mechanism is then broken down into several steps: first, the addition of transition metal oxides to a catalyst surface, followed by the formation of intermediate species such as an adsorbed hydroxyl group (OH⁻) or a water-derived species. Subsequent steps involve the transfer of protons and electrons, leading to the formation of an oxygen-oxygen bond, which is a key step in the reaction. Finally, the desorption of molecular oxygen (O₂) from the catalyst completes the cycle. This sequence of adsorption, intermediate formation, bond formation, and desorption is consistent with the known electrochemical steps in OER under acidic conditions, and it is supported by experimental observations and theoretical models.
 493 </think>
 494 <answer>
 495 The oxygen evolution reaction (OER) is an electrochemical process that involves the conversion of water into molecular oxygen (O₂) and protons (H⁺). In heterogeneous OER under acidic conditions, the reaction typically occurs on a solid catalyst surface. The mechanism can be described as follows:
 496 1. **Water adsorption**^{**}: Water molecules (H₂O) adsorb onto the catalyst surface.
 497 2. **Proton transfer**^{**}: Protons (H⁺) are transferred from the adsorbed water molecules to the catalyst surface, forming hydroxyl (OH⁻) groups.
 498 3. **Oxygen adsorption**^{**}: The hydroxyl groups further react to form adsorbed oxygen species (O[•]), which are intermediates in the reaction.
 499 4. **Oxygen evolution**^{**}: The adsorbed oxygen species combine to form molecular oxygen (O₂), which desorbs from the catalyst surface and enters the solution.
 500 The overall reaction can be represented as:
 501
$$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$$

 502 </answer>
 503 **Turn2:** Since you mentioned that some transition metal oxides possess catalytic properties, can you recommend some specific metal oxides in detail?
 504 <think>
 505 To determine which transition metal oxides exhibit catalytic properties for the oxygen evolution reaction (OER), one considers the electronic structure and surface reactivity of these materials. The oxides of metals such as iridium (Ir), ruthenium (Ru), and cobalt (Co) are known to be effective catalysts due to their favorable electronic properties for the oxygen evolution reaction (OER). Iridium oxide (IrO₂) is particularly notable for its high cost and stability under acidic conditions. It is a well-known catalyst in OER applications. Ruthenium oxide (RuO₂) also demonstrates high catalytic performance, while cobalt oxide (Co₃O₄) has been explored for its cost-effectiveness and moderate activity. These metal oxides are incorporated into electrochemical cells, where they facilitate the adsorption of water molecules, the formation of oxygen-containing intermediates, and the subsequent bond formation leading to O₂ evolution. The selection of these materials is supported by extensive experimental data and theoretical calculations that highlight their ability to enhance the efficiency of the OER process.
 506 </think>
 507 <answer>
 508 Some transition metal oxides that possess catalytic properties for the oxygen evolution reaction (OER) include iridium oxide (IrO₂), ruthenium oxide (RuO₂), and cobalt oxide (Co₃O₄). These metal oxides are commonly used as catalysts in electrochemical cells for water splitting and other applications. They exhibit high catalytic activity under acidic conditions, making them suitable for OER. The catalytic activity of these metal oxides is attributed to their electronic structure and ability to stabilize reaction intermediates during the OER process.
 509 </answer>
 510 **Turn3:** I noticed that you mentioned iridium oxide (IrO₂) is particularly notable, but iridium, as a noble metal, is relatively expensive. Can you devise a plan to reduce the cost while still maintaining good catalytic activity?
 511 <think>
 512 To address the high cost of noble metal catalysts like iridium oxide while maintaining catalytic activity, one can explore strategies that reduce their usage or enhance their efficiency. One approach involves incorporating these metals into composite materials, where they are combined with cheaper transition metal oxides such as cobalt or nickel. By forming mixed metal oxides or heterostructures, the expensive metals can be distributed more effectively, leveraging their catalytic properties while minimizing their overall amount. Additionally, optimizing the morphology and surface area of the catalyst, such as by creating nanoscale structures or thin films, can increase the active sites available for the reaction, thereby enhancing performance without requiring larger quantities of the noble metals. Furthermore, doping or alloying these metals with other elements can modify their electronic properties, improving their catalytic activity and reducing the necessary loading. These strategies collectively aim to balance cost-effectiveness with catalytic efficiency in the oxygen evolution reaction.
 513 </think>
 514 <answer>
 515 To reduce the cost of iridium oxide (IrO₂) while maintaining good catalytic activity, one approach is to incorporate it into a composite material with a less expensive transition metal oxide (Co₃O₄) or a mixed metal oxide (Ir_xCo_{1-x}O₂). This can help distribute the cost of the noble metal and take advantage of the synergistic effects between the two metal oxides. Another strategy is to optimize the morphology and surface area of the catalyst, which can improve its activity and reduce the amount of IrO₂ required. Additionally, doping IrO₂ with other metal ions, such as iron (Fe) or manganese (Mn), can modify its electronic properties and enhance its catalytic performance. These approaches can help reduce the cost of IrO₂ while still achieving good catalytic activity for the oxygen evolution reaction (OER).
 516 </answer>

Figure 5: An example of reliable human-AI collaboration using ChemDFM-R. This conversation is inspired by Li et al. (2025a). This example illustrates a process of research inspiration seeking with the help of ChemDFM-R.

486 *particularly notable* for its ...”, which is very inspiring. Since it is well known that iridium-based
487 compounds are often very expensive, a natural follow-up question arises: how can we optimize this
488 catalyst to reduce its cost while maintaining its catalytic performance? Surprisingly, ChemDFM-R
489 manages to propose the initial ideas that align closely with the ideas presented in Li et al. (2025a),
490 “forming mixed metal oxides or heterostructures” and “optimizing the morphology and surface area
491 of the catalysts”. At this point, a broad research direction has taken shape.

492 It is worth noticing that nearly all the inspirations are drawn from the rationale of ChemDFM-R,
493 which demonstrates the significance and value of ChemDFM-R’s ability to generate reasoning.
494 This example shows that, with the enhanced chemical knowledge and strong chemical reasoning
495 capabilities, ChemDFM-R has the potential to facilitate reliable human-AI collaboration, thereby
496 advancing AI-driven research and applications. More examples involving error correction and answer
497 improvement with the help of rationales are demonstrated in Appendix J.

5 RELATED WORK

501 **General Domain Reasoning LLMs.** Shortly after the emergence of LLMs, their remarkable
502 reasoning capabilities were discovered by Kojima et al. (2022) and explored by works such as
503 ToT (Yao et al., 2023) and PAL (Gao et al., 2023). Recently, OpenAI-01 (Jaech et al., 2024) followed
504 by DeepSeek-R1 (Guo et al., 2025a) and Kimi K1.5 (Team et al., 2025) demonstrated the prowess
505 of reasoning models and the method to enhance LLMs’ reasoning capabilities using reinforcement
506 learning-based pipelines. Subsequently, many studies have focused on improving the reasoning
507 capabilities of models in various general domains, primarily in mathematics and coding. For example,
508 Shao et al. (2024) and Zhang et al. (2024b) have further proven and discussed the effectiveness of
509 reinforcement learning in terms of enhancing models’ reasoning capabilities, while Dou et al. (2024)
510 and Zhang et al. (2025d) have explored better reward functions in mathematics and coding.

512 **Chemical LLMs.** The specialization of LLMs has become one of the most popular research
513 areas after the emergence of general-use LLMs, including the development of chemical LLMs.
514 LlaSMol (Yu et al., 2024) and Mol-Instruct (Fang et al., 2024) construct a chemical instruction
515 tuning dataset and develop models that could excel in multiple chemical tasks, while extensive
516 training with only chemical tasks has led to a substantive loss of natural language capabilities and
517 task generalization ability in these models. Shortly after, Zhang et al. (2024a) leveraged high-quality
518 instruction tuning and developed ChemLLM, which has acquired advanced chemical capabilities
519 while retaining a considerable level of general language abilities. Furthermore, ChemDFM (Zhao
520 et al., 2025b) achieved stronger chemical and generalization capabilities through domain pretraining
521 and instruction tuning with both chemical data and general-domain data. It is worth noticing that the
522 data used in previous work overlooks the intrinsic chemical essence, which is crucial for LLMs to
523 master reasoning with chemical intuition and principles. To tackle this issue, we construct a function-
524 group-centric domain pretraining corpus to introduce such atomized chemical knowledge to LLMs.
525 Recently, there has been pioneering work building chemical reasoning models for specific tasks, such
526 as RetroDFM (Zhang et al., 2025b) for retrosynthesis and multi-task specialist ether0 (Narayanan
527 et al., 2025). Although their models exhibit strong reasoning capabilities and favorable performance
528 on the training tasks, they often lack generalization ability. Consequently, they cannot accommodate
529 the complex scenarios and demands that arise in real human-AI interactions, making it difficult for
530 them to meet the requirements of a practical chemistry research assistant.

531 6 CONCLUSION

532 In this work, we have developed a chemical reasoning LLM, ChemDFM-R, by tackling both the
533 limitations in understanding atomized chemical knowledge and the domain-specific reasoning logic.
534 By incorporating atomized knowledge about molecular functional groups and their changes during
535 reactions into the pretraining corpus, and applying a mixed-source distillation approach before
536 reinforcement learning, we have enhanced the model’s ability to reason efficiently and effectively
537 in chemistry. Our extensive experiments demonstrate that ChemDFM-R significantly improves
538 chemical problem-solving and reasoning capabilities, making it a valuable tool for facilitating reliable
539 human-AI collaboration in chemistry and advancing AI-driven research and applications.

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
543 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
544 *arXiv preprint arXiv:2303.08774*, 2023.

545 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
546 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
547 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

548

549 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
550 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
551 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

552 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
553 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
554 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
555 *arXiv preprint arXiv:2507.06261*, 2025.

556

557 Hanjun Dai, Chengtao Li, Connor Coley, Bo Dai, and Le Song. Retrosynthesis prediction with
558 conditional graph logic network. *Advances in Neural Information Processing Systems*, 32, 2019.

559

560 Shihao Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang
561 Huang, Xiao Wang, Xiaoran Fan, et al. Stepcode: Improve code generation with reinforcement
562 learning from compiler feedback. *arXiv preprint arXiv:2402.01391*, 2024.

563

564 Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei Liu, Rui Huang, Zhuo Chen, Xiaohui Fan,
565 and Huajun Chen. Mol-instructions: A large-scale biomolecular instruction dataset for large
566 language models. In *ICLR*. OpenReview.net, 2024. URL <https://openreview.net/pdf?id=Tlsdsb619n>.

567

568 Kehua Feng, Keyan Ding, Weijie Wang, Xiang Zhuang, Zeyuan Wang, Ming Qin, Yu Zhao, Jianhua
569 Yao, Qiang Zhang, and Huajun Chen. Sciknoweval: Evaluating multi-level scientific knowledge of
570 large language models. *arXiv preprint arXiv:2406.09098*, 2024.

571

572 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
573 Graham Neubig. Pal: Program-aided language models. In *International Conference on Machine
Learning*, pp. 10764–10799. PMLR, 2023.

574

575 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
576 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
577 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.

578

579 Junfeng Guo, Geetha Bolla, Jinlong Zhu, Jie Liu, Zijun Zhang, Wenjing Chen, Qing Liao, Wenping
580 Hu, and Yonggang Zhen. Acid-responsive two-photon absorption switch via cocrystal-to-salt-to-
581 cocrystal conversion. *Angewandte Chemie*, 137(45):e202517598, 2025b.

582

583 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
584 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint
arXiv:2009.03300*, 2020.

585

586 Yuqing Huang, Rongyang Zhang, Xuesong He, Xuyang Zhi, Hao Wang, Xin Li, Feiyang Xu, Deguang
587 Liu, Huadong Liang, Yi Li, et al. Chemeval: a comprehensive multi-level chemical evaluation for
large language models. *arXiv preprint arXiv:2409.13989*, 2024.

588

589 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
590 Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*,
591 2024.

592

593 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
arXiv:2410.21276*, 2024.

594 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 595 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 596 *arXiv:2412.16720*, 2024.

597 Wengong Jin, Connor Coley, Regina Barzilay, and Tommi Jaakkola. Predicting organic reaction
 598 outcomes with weisfeiler-lehman network. *Advances in neural information processing systems*, 30,
 599 2017.

600 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 601 language models are zero-shot reasoners. *Advances in neural information processing systems*, 35:
 602 22199–22213, 2022.

603 Gengnan Li, Adyasa Priyadarsini, Zhenhua Xie, Sinwoo Kang, Yuzi Liu, Xiaobo Chen, Shyam
 604 Kattel, and Jingguang G Chen. Achieving higher activity of acidic oxygen evolution reaction using
 605 an atomically thin layer of iro x over co3o4. *Journal of the American Chemical Society*, 147(8):
 606 7008–7016, 2025a.

607 Hao Li, He Cao, Bin Feng, Yanjun Shao, Xiangru Tang, Zhiyuan Yan, Li Yuan, Yonghong Tian,
 608 and Yu Li. Beyond chemical qa: Evaluating llm’s chemical reasoning with modular chemical
 609 operations. *arXiv preprint arXiv:2505.21318*, 2025b.

610 Ruoyang Liu, Dan Zhao, Sailun Ji, Haipei Shao, Yongzhi Chen, Minjun Feng, Tie Wang, Juan Li,
 611 Ming Lin, Tze Chien Sum, et al. Harvesting singlet and triplet excitation energies in covalent
 612 organic frameworks for highly efficient photocatalysis. *Nature Materials*, 24(8):1245–1257, 2025a.

613 Xuan Liu, Siru Ouyang, Xianrui Zhong, Jiawei Han, and Huimin Zhao. Fgbench: A dataset and
 614 benchmark for molecular property reasoning at functional group-level in large language models.
 615 *Advances in Neural Information Processing Systems*, 2025b.

616 Ryo Mandai, Takanori Iwasaki, and Kyoko Nozaki. Stable yet strongly lewis-acidic anions enabling
 617 cooperative catalysis with cationic transition-metal complexes. *Angewandte Chemie International
 618 Edition*, 64(37):e202503322, 2025.

619 Maho Nakata and Tomomi Shimazaki. Pubchemqc project: a large-scale first-principles electronic
 620 structure database for data-driven chemistry. *Journal of chemical information and modeling*, 57(6):
 621 1300–1308, 2017.

622 Siddharth M. Narayanan, James D. Braza, Ryan-Rhys Griffiths, Albert Bou, Geemi P. Wellawatte,
 623 Mayk Caldas Ramos, Ludovico Mitchener, Samuel G. Rodrigues, and Andrew D. White. Training
 624 a scientific reasoning model for chemistry. *arXiv preprint arXiv:2506.17238*, 2025.

625 OpenAI. Introducing openai o3 and o4-mini, 2025a. URL <https://openai.com/index/introducing-o3-and-o4-mini>.

626 OpenAI. Openai o3-mini, jan 2025b. URL <https://openai.com/index/introducing-o3-and-o4-mini>.

627 Jing Peng, Yucheng Wang, Bohan Li, Yiwei Guo, Hankun Wang, Yangui Fang, Yu Xi, Haoyu Li,
 628 Xu Li, Ke Zhang, Shuai Wang, and Kai Yu. A survey on speech large language models for
 629 understanding, 2025. URL <https://arxiv.org/abs/2410.18908>.

630 Haley J Rugh, Jaeyong Lee, Chenyue Sun, Emily E Abdo, Juliana N Bem, Nitash P Balsara, and
 631 Geoffrey W Coates. Polysilaketals: High-performance polyether-based electrolytes with tunable
 632 disubstituted silane linkers. *Angewandte Chemie*, 137(2):e202415069, 2025.

633 Nadine Schneider, Nikolaus Stiefl, and Gregory A Landrum. What’s what: The (nearly) definitive
 634 guide to reaction role assignment. *Journal of chemical information and modeling*, 56(12):2336–
 635 2346, 2016.

636 Johannes Schwarzmann, Tamina Z Kirsch, Benedikt Narz, and Crispin Lichtenberg. The methyl-
 637 bismuth dication: Pentagonal pyramidal coordination and ligand-induced lewis superacidity.
 638 *Angewandte Chemie International Edition*, pp. e16140, 2025.

648 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 649 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
 650 ical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

651

652 Qian Tan, Dongzhan Zhou, Peng Xia, Wanhao Liu, Wanli Ouyang, Lei Bai, Yuqiang Li, and Tianfan
 653 Fu. Chemmlm: Chemical multimodal large language model. *arXiv preprint arXiv:2505.16326*,
 654 2025.

655

656 Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
 657 Andrew Poult, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for science.
 658 *arXiv preprint arXiv:2211.09085*, 2022.

659

660 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 661 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 662 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

663

664 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 665 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 666 llms. *arXiv preprint arXiv:2501.12599*, 2025.

667

668 Yuwei Wan, Yixuan Liu, Aswathy Ajith, Clara Grazian, Bram Hoex, Wenjie Zhang, Chunyu Kit,
 669 Tong Xie, and Ian Foster. Sciqag: A framework for auto-generated science question answering
 670 dataset with fine-grained evaluation, 2024. URL <https://arxiv.org/abs/2405.09939>.

671

672 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 673 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 674 task language understanding benchmark. *Advances in Neural Information Processing Systems*, 37:
 675 95266–95290, 2024.

676

677 Yimin Wu, Shengqiu Zhai, Yayin Deng, Xingliang Wang, Zhengyang Bin, and Jingsong You.
 678 Engineering localized aromaticity in amine-embedded polycyclic aromatic hydrocarbons for
 679 narrowband fluorescence emitter. *Angewandte Chemie International Edition*, 64(46):e202518763,
 680 2025.

681

682 Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
 683 Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
 684 *Chemical science*, 9(2):513–530, 2018.

685

686 Tong Xie, Yuwei Wan, Wei Huang, Zhenyu Yin, Yixuan Liu, Shaozhou Wang, Qingyuan Linghu,
 687 Chunyu Kit, Clara Grazian, Wenjie Zhang, et al. Darwin series: Domain specific large language
 688 models for natural science. *arXiv preprint arXiv:2308.13565*, 2023.

689

690 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 691 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 692 arXiv:2412.15115*, 2024a.

693

694 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 695 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
 696 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024b.

697

698 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 699 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 700 2025.

701

702 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
 703 Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural
 704 information processing systems*, 36:11809–11822, 2023.

705

706 Weidong Yao, Ziqi Liu, Hao Ling, Hongyu Wang, Hufeng Zheng, Shao-Hua Wang, Dao-Yong Zhu,
 707 Sheng-Yong Zhang, and Xiaoming Chen. Convergent total synthesis of (-)-calidostene. *Journal
 708 of the American Chemical Society*, 147(19):15963–15969, 2025.

702 Botao Yu, Frazier N Baker, Ziqi Chen, Xia Ning, and Huan Sun. Llasmol: Advancing large language
 703 models for chemistry with a large-scale, comprehensive, high-quality instruction tuning dataset.
 704 *arXiv preprint arXiv:2402.09391*, 2024.

705 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 706 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
 707 scale. *arXiv preprint arXiv:2503.14476*, 2025.

708 Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang Yan, Yuliang Yan, Jiatong Li, Weiran Huang,
 709 Xiangyu Yue, Wanli Ouyang, et al. Chemllm: A chemical large language model. *arXiv preprint
 710 arXiv:2402.06852*, 2024a.

711 Qingsong Zhang, Zhipeng Pei, Ah-Young Song, Miao Qi, Rebecca Shu Hui Khoo, Chongqing Yang,
 712 Tao Xia, Chen Zhou, Haiyan Mao, Zhiyuan Huang, et al. Manipulating aromaticity to redirect
 713 topochemical polymerization pathways. *Journal of the American Chemical Society*, 147(17):
 714 14715–14724, 2025a.

715 Situo Zhang, Hanqi Li, Lu Chen, Zihan Zhao, Xuanze Lin, Zichen Zhu, Bo Chen, Xin Chen, and
 716 Kai Yu. Reasoning-driven retrosynthesis prediction with large language models via reinforcement
 717 learning, 2025b. URL <https://arxiv.org/abs/2507.17448>.

718 Yu Zhang, Yang Han, Shuai Chen, Ruijie Yu, Xin Zhao, Xianbin Liu, Kaipeng Zeng, Mengdi Yu,
 719 Jidong Tian, Feng Zhu, et al. Large language models to accelerate organic chemistry synthesis.
 720 *Nature Machine Intelligence*, pp. 1–13, 2025c.

721 Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiangming Shu, Jinlin Xiao, Chao Kong, and Jitao Sang.
 722 o1-coder: an o1 replication for coding. *arXiv preprint arXiv:2412.00154*, 2024b.

723 Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
 724 Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
 725 reasoning. *arXiv preprint arXiv:2501.07301*, 2025d.

726 Han Zhao, Haotian Wang, Yiping Peng, Sitong Zhao, Xiaoyu Tian, Shuaiting Chen, Yunjie Ji, and
 727 Xiangang Li. 1.4 million open-source distilled reasoning dataset to empower large language model
 728 training. *arXiv preprint arXiv:2503.19633*, 2025a.

729 Zihan Zhao, Bo Chen, Jingpiao Li, Lu Chen, Liyang Wen, Pengyu Wang, Zichen Zhu, Danyang
 730 Zhang, Yansi Li, Zhongyang Dai, et al. Chemdfm-x: towards large multimodal model for chemistry.
 731 *Science China Information Sciences*, 67(12):220109, 2024.

732 Zihan Zhao, Da Ma, Lu Chen, Liangtai Sun, Zihao Li, Yi Xia, Bo Chen, Hongshen Xu, Zichen Zhu,
 733 Su Zhu, et al. Developing chemdfm as a large language foundation model for chemistry. *Cell
 734 Reports Physical Science*, 6(4), 2025b.

735 Zipeng Zhong, Jie Song, Zunlei Feng, Tiantao Liu, Lingxiang Jia, Shaolun Yao, Min Wu, Tingjun
 736 Hou, and Mingli Song. Root-aligned smiles: a tight representation for chemical reaction prediction.
 737 *Chemical Science*, 13(31):9023–9034, 2022.

738 Jingya Zhou, Longhui Chen, Ziang Miao, Jinjin Li, Yu-Xin Luan, Li Chen, and Pingping Tang.
 739 Photocatalyst-regulated trifluoromethoxylation of aryl halides under silver promotion. *Journal of
 740 the American Chemical Society*, 2025.

741 Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
 742 Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
 743 in code intelligence. *arXiv preprint arXiv:2406.11931*, 2024.

750 751 DISCLOSING OF LLM USAGE

752
 753 LLMs are leveraged exclusively as an assist tool for paper writing. We only use them to help us polish
 754 the language and improve readability. They do not contribute to any of the creative work involved
 755 in this paper, such as research ideation, experiment design, data analysis, and result interpretation.
 Therefore, they should not be regarded as authorship or substantive contribution.

756 A DETAILS ABOUT CHEMFG
757758 A.1 RAW DATA COLLECTION
759760 **Literature.** Literature, including papers and textbooks, contains not only the widely accepted
761 chemical knowledge and principles, but also the cutting-edge research in the field of chemistry.
762 Therefore, to take full advantage of chemical literature, we collected over 12 million literature from
763 the open Internet dated prior to January 2022. After further cleaning and deduplication, 79B tokens
764 are obtained from it.
765766 **Molecules.** Molecules are the fundamental participants in various chemical processes. Therefore,
767 it is crucial for Chemical LLMs to understand molecular structures and properties. We manage to
768 acquire large-scale molecule datasets from PubChem⁵, one of the biggest open accessible chemical
769 databases with more than 100M compounds. We include 30 million molecules along with their
770 notations, descriptions (if applicable), and properties. Besides PubChem, we also leverage the
771 PubChemQC (Nakata & Shimazaki, 2017) dataset, which contains the quantum chemical calculation
772 results of 86M molecules from PubChem, to supplement the quantum chemical properties of these
773 molecules, such as dipole moment and orbital energy. To diversify the final data entry, we randomize
774 the order of the properties and use three different formats: markdown list, markdown table, and JSON
775 dictionary to formulate the molecule data.
776777 **Reactions.** Reactions are the major process in the chemical world. In ChemFG, we use the reactions
778 from USPTO-FULL (Dai et al., 2019), one of the most comprehensive open-sourced chemical reaction
779 databases. To avoid data leakage, we exclude the test set of USPTO-FULL, USPTO-MIT (Jin et al.,
780 2017), and USPTO-50K (Schneider et al., 2016) according to the products of reactions. Moreover, to
781 further enhance the data diversity, we leverage the SMILES (Simplified Molecular Input Line Entry
782 System) augmentation method introduced in R-SMILES (Zhong et al., 2022) and achieve a total of
783 10 times augmentation of data. Finally, a corpus of 7 million reactions is obtained.
784785 A.2 FUNCTIONAL GROUPS COVERAGE
786787 The functional groups that can be recognized by our toolkit are categorized based on the heteroatoms
788 and listed as follows:
789790

- **Hydrocarbon Groups (7):** alkene, alkyne, allene, cumulene, carbocation, carbanion,
791 carbene.
- **Boron Groups (6):** borane, boronic acid, boronic ester, borinic acid, borinic ester, borate
792 ester.
- **Oxygen Groups (36):** alcohol, alkoxide, ether, phenol, phenolate, enol, enolate, enol ether,
793 alkynol, alkynolate, alkynol ether, ketone, ketene, aldehyde, hemiketal, hemiacetal, ketal,
794 acetal, carboxylic acid, carboxylate, ester, organic acid anhydride, carboxylic anhydride,
795 organic carbonate, organic hydroperoxide, organic peroxide, peroxyacid, ortho ester, ortho-
796 carbonate ester, methylenedioxy, ethylenedioxy, oxonium ion, oxocarbenium ion, carbonyl
797 ylide, oxonium ylide, epoxy.
- **Nitrogen Groups (62):** primary amine, secondary amine, tertiary amine, ammonium cation,
798 quat, amine oxide, enamine, hydroxylamine, hemiaminal, hemiaminal ether, thioaminal,
799 thioaminal ether, aminal, primary ketimine, secondary ketimine, primary aldimine, sec-
800 ondary aldimine, amidine, guanidine, ketoxime, aldoxime, hydrazone, organic amide, ami-
801 date anion, imide, carbamic acid, carbamate ester, carbamate anion, azide, azo, hydrazine,
802 acylhydrazine, amidrazone, cyanate, isocyanate, nitrile, isonitrile, cyanamide, carbodiimide,
803 nitrate ester, nitrite ester, nitro, nitroso, nitrosamine, iminium cation, nitrone, nitronic
804 acid, imidic acid, imidate anion, imidate, imidocarbonate, imidocarbamate, urea, azoxy,
805 N-oxoammonium, hydroxamic acid, hydroxamate, azanide, azomethine ylide, nitrile ylide,
806 isodiazene, nitronate.

807

808 ⁵<https://pubchem.ncbi.nlm.nih.gov/>
809

Figure 6: The distribution of the functional groups in the domain-pretraining corpus.

- **Sulfur Groups (85):** mercaptan, thiolate anion, organic sulfide, thioenol, enedithiol, thioenolate, thioenol ether, persulfide anion, organic disulfide, sulfenic acid, sulfenic ester, sulfenamide, sulfoxide, sulfone, sulfine, sulfene, sulfanylamine, sulfur diimide, sulfinic acid, sulfonic acid, sulfinate ester, sulfonate ester, sulfinate anion, sulfonate anion, thiosulfinate, thiosulfonate, thiosulfurous ester, dithiosulfurous ester, thiosulfuric ester, organosulfite, organosulfate, dialkylsulfates, sulfonamide, sulfamic acid, sulfamate, sulfamide, thiocyanate, isothiocyanate, thioketone, thioketene, thial, thioamide, thiourea, hemithioketal, hemithioacetal, dithiohemiketal, dithiohemiacetal, monothioketal, monothioacetal, dithioketal, dithioacetal, carbothioic S-acid, carbothioic O-acid, thiol form thiocarboxylate, thione form thiocarboxylate, thiolester, thionoester, carbodithioic acid, carbodithioic anion, carbodithioic ester, monothiocarbonate, xanthic acid, xanthate, xanthate anion, dithiocarbonate, trithiocarbonate, O-thiocarbamic acid, S-thiocarbamic acid, O-thiocarbamate, S-thiocarbamate, O-thiocarbamate anion, S-thiocarbamate anion, thioimidic acid, thioimidate anion, thioimidate, dithiocarbamic acid, dithiocarbamate, dithiocarbamate anion, imidothiocarbonate, imidodithiocarbonate, imidothiocarbamate, sulfonium ion, sulfonium ylide, sulfoxonium ylide.
- **Silicon Groups (5):** silane, siloxane, silyl ether, silyl enol ether, silyl alkynol ether.
- **Phosphorus Groups (17):** phosphine, phosphonium, aminophosphine, phosphine oxide, phosphinic acid, phosphinate, phosphonic acid, phosphonate, phosphite ester, phosphinite, phosphonite, phosphodiester, phosphate mono-ester, phosphate tri-ester, phosphoramide, thiophosphate, phosphonium ylide.
- **Halogen Groups (14):** fluoro, chloro, bromo, iodo, halamine, sulfenyl halide, sulfenyl halide, sulfonyl halide, halosulfate, phosphoryl halide, phosphorus halide, acyl halide, imidoyl halide, thioacyl halide.
- **Organometallic Groups (5):** organolithium, organomagnesium, organoaluminium, organozinc, organomercury.
- **Aromatic (4):** pyrrolic N, pyridinic N, aromatic O, aromatic S.

The occurrence of these functional groups in the domain-pretraining corpus is shown in Figure 6.

A.3 QUALITY CONTROL

To validate the correctness of our functional group identification toolkit, we hired three graduate-level chemical experts to conduct manual inspections. Specifically, we sampled 100 annotated molecules and reactions, respectively, and asked the experts to determine whether the annotations were correct. Results show that our functional group identification toolkit achieves 98% accuracy rate on molecules and 89% on reactions. Examples of the errors are demonstrated in Figure 7.

B INSTRUCTION TUNING DATASET

B.1 RAW DATA COLLECTION

Our instruction tuning dataset is constructed of three parts corresponding to the three main information carriers in chemistry: molecule-centric tasks, reaction-centric tasks, and knowledge-centric tasks. The distribution of instruction tuning data is shown in Figure 8.

B.1.1 MOLECULE-CENTRIC TASKS

- **Name Translation:** The name translation between SMILES, IUPAC name, and molecular formula. The data is constructed from PubChem⁶.
- **Description Generation:** The molecule description task is to describe the molecule given its SMILES. The data is constructed from PubChem. We only use the high-quality descriptions that contain more than two sentences.

⁶<https://pubchem.ncbi.nlm.nih.gov/>

Figure 7: Examples of the error annotations of our functional group identification toolkits.

- **Molecule Design:** The molecule design task is the reverse task of molecule description. It requires the model to predict the SMILES given the molecule description. We use the same high-quality description data from PubChem to construct this task.
- **Property Classification:** These tasks require models to predict the value of molecular properties from a list of candidates (usually yes and no). The data is constructed from 5 of the most popular property classification datasets in MoleculeNet (Wu et al., 2018), namely BACE, BBBP, ClinTox, HIV, and Tox21.
- **Property Regression:** These tasks require the models to predict the value of molecular properties, which is a real number. Data are also from MoleculeNet, namely FreeSolv, Lipo, and QM9.
- **Property Ordering:** Provided a list of molecules, models are asked to rank them in ascending or descending order of some specific property. Raw data comes from the same source as property regression.
- **Property Selection:** Provided a list of molecules, models are asked to select the one with the highest or lowest value of some specific property. Raw data comes from the same source as property regression.

B.1.2 REACTION-CENTRIC TASKS

- **Reaction Completion:** Given an incomplete reaction, models need to complete the missing reactants, reagents, or products. Raw data comes from USPTO-Full (Dai et al., 2019), USPTO-MIT (Jin et al., 2017), and USPTO-50K (Schneider et al., 2016).
- **Step Prediction:** Given a reaction, models are required to predict the experimental procedure to conduct it in the laboratory. Raw data comes from USPTO (Dai et al., 2019).
- **Yield Prediction:** In this task, models are required to predict the yield of the given reactions. The data is constructed from the USPTO dataset.
- **Temperature Prediction:** In this task, models are required to predict the temperature that is suitable for the given reactions to conduct. The data is constructed from the USPTO dataset.
- **Reaction Component Selection:** In this task, a series of reactants and reagents is given with a list of candidate molecules. Models need to pick from the candidates the molecules that could participate in the reaction and lead to the highest yield. The data is constructed from the USPTO dataset.

972 B.1.3 KNOWLEDGE-CENTRIC TASKS
973

974 • **Exam Questions:** This task is composed of questions from the exams in middle school and
975 high school. Raw data comes from the Open Internet.

976 • **Literature QA:** In this task, models are required to answer questions based on the given para-
977 graph. The data is extracted from the long paragraph following the method in SciQAG (Wan
978 et al., 2024). The raw data comes from the articles in the domain-pertaining. The articles
979 are split into sections and then truncated into paragraphs within 2k to 3k tokens. We ask
980 GPT-4o-mini to extract 15 keywords from each paragraph, then generate 10 question-answer
981 pairs according to them. We adopt another LLM, Qwen2.5-14B-Instruct, to evaluate the
982 quality of the QA pair in 4 dimensions: completeness, accuracy, reasonableness, and agnos-
983 ticism. The LLM will score the QA pair from 1 to 5 using the designed prompts. QA pairs
984 with any scores below 5 are discarded. If there are more than 1 QA pair left, the questions
985 are asked in conversation turns.

986 • **Literature Summarization:** In this task, models are required to give a summarization of the
987 paragraph. The summarization is generated from GPT-4o-mini from the paragraph sample.

988 • **Literature Translation:** In this task, models are required to translate the English paragraph
989 into Chinese. The translation is generated from GPT-4o-mini from the paragraph sample.
990 Since the source data consists of OCR text extracted from English articles, which is inher-
991 ently noisy, we decided to discard the reverse task of translating Chinese paragraphs into
992 English.

1015 Figure 8: The distribution of instruction tuning data.
10161017 B.2 INSTRUCTION GENERATION
1018

1019 To acquire a higher generalization capability, we adopt a two-stage process to obtain as diverse a set
1020 of instructions as possible for each task. Specifically, based on the number of data entries for each
1021 task, we first manually write 5-20 seed task descriptions accordingly. Then, we ask three different
1022 models, Qwen2.5-72B-Instruct, Llama-3.1-70B-Instruct, and GPT-4o-mini, to diversify these task
1023 descriptions. Specifically, during each request, we sample 5 descriptions from all the generated
1024 descriptions and ask the model to generate 10 new descriptions using 5 different prompts one by
1025 one. Following this, we append to each of the descriptions the instructions that introduce the input of
each data entry by a formatted string of Python and ask GPT-4o-mini to further diversify them. As

Figure 9: Comparison of rationales generated by o3-mini with and without additional input information. We mark the correct analyses in the rationale as **green**, while the wrong ones as **red**.

a result of the above diversification process, we constructed a number of instructions equivalent to approximately 2% of its total data volume for each task. In other words, each instruction appears around 50 times in the instruction-tuning dataset.

C QUALITY CONTROL OF THE DISTILLATION RATIONALE GENERATION

C.1 COMPARISON OF RATIONALES GENERATED BY TEACHER MODELS

As shown in Figure 3, 9, and 10, the rationales generated using our method exhibit distinct advantages in terms of accuracy, completeness, and logicality.

The advantage in accuracy is mainly reflected in Figure 3. In Figure 3, o3-mini completely misunderstands the chemical reaction that occurs between the given molecules. This might result from its incorrect identification of the reagents and the structure of the complex reactants (these errors are also reflected in the rationales). When given the correct answer, o3-mini still mistakenly identified chloro-ketone as acyl chloride and consistently adhered to this error throughout the reasoning process, resulting in a series of related structural inaccuracies. On the contrary, when the functional group information is provided, o3-mini manages to generate a near-perfect rationale with zero error.

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Question:

Please use your knowledge of molecular properties in chemistry to answer the following question. Identify the molecule with the lowest octanol/water distribution coefficient from the given SMILES strings based solely on their structures. Only submit the corresponding SMILES of that molecule, without including any other information.

Options:

CN1CCN(CC1)C(=O)c2cc3cccc3n2C
C.Oc1nnc(Cc2cccc(c2)C(=O)N3CC(O)C3)C(=O)c5cc3n3c2c1
OCC3)c4cccc(c4)C.c1cc2c(C)c3nnc(SCC(=O)N4CCN(CC4)C(=O)c5oc5c)n3c2c1

Answer:

CN1CCN(CC1)C(=O)c2cc3cccc3n2C

FG Information:

A tertiary amine, an amide, and a pyrrolic N.
 An ether, an amide, two pyridinic Ns, and a phenol.
 An aromatic O, two amides, an thioether, three pyridinic Ns.

Traditional Distillation

Input: Question

Generated Rationale:

The molecule with the lowest octanol/water distribution coefficient (log D) is the most hydrophilic. The second SMILES string contains a phenol group (O), which is highly polar due to its hydroxyl group capable of hydrogen bonding, and an amide group (C(=O)N) that enhances water solubility through hydrogen bonding. Additionally, the presence of an ether group (CCOC) contributes to polarity. The other options feature more hydrophobic substituents like methyl groups (Cc), thioether (SCC), and fewer hydrogen-bonding groups, increasing their log D values. The combination of phenol, amide, and ether in the second molecule maximizes hydrophilicity, leading to the lowest log D.

cAnswer:

Oc1nnc(Cc2cccc(c2)C(=O)N3CCOCC3)c4cccc(c4)C

Traditional Distillation with Answer

Input: Question + Answer

Generated Rationale:

To determine the molecule with the lowest octanol/water distribution coefficient (log D), the hydrophilicity and structural features of each option are analyzed. The first SMILES (CN1CCN(CC1)C(=O)c2cc3cccc3n2C) contains a piperazine ring with a secondary amide group (C=O) capable of hydrogen bonding, enhancing water solubility. The fused aromatic system (c2cc3cccc3n2c) introduces moderate hydrophobicity, but the amide's polarity dominates. The second SMILES (Oc1nnc(Cc2cccc(c2)C(=O)N3CCOCC3)c4cccc(c4)C) includes a hydroxyl group (O) and an amide, but its extended aromatic systems (c4cccc(c4) and alkyl chains (Cc2..) increase hydrophobicity. The third SMILES incorporates thioether (S) and multiple methyl groups (Cc..), which are highly hydrophobic, along with bulky aromatic systems. Comparing these, the first molecule's combination of a polar amide and limited hydrophobic regions results in the highest hydrophilicity, leading to the lowest log D.

Traditional Distillation with Answer and Functional Group (Ours)

Input: Question + Answer + Functional Group Information

Generated Rationale:

The octanol/water distribution coefficient (logD) reflects a molecule's hydrophilicity and hydrophobicity. Lower logD values correspond to higher hydrophilicity. The first SMILES (CN1CCN(CC1)C(=O)c2cc3cccc3n2C) contains a tertiary amine and carboxamide. The tertiary amine can become protonated at physiological pH, increasing water solubility. The carboxamide group is polar, further enhancing hydrophilicity. The second SMILES (Oc1nnc(Cc2cccc(c2)C(=O)N3CCOCC3)c4cccc(c4)C) includes a phenolic hydroxyl group (pKa ~10), which may partially ionize at pH 7.4, but its lower ionization extent compared to the tertiary amine reduces its hydrophilicity. The third SMILES contains thioether/sulfide groups and multiple hydrophobic methyl substituents, increasing hydrophobicity. The first molecule's combination of ionizable tertiary amine and polar carboxamide gives it the lowest logD.

Figure 10: Comparison of rationales generated by DeepSeek-R1 with and without additional input information. We mark the correct analyses in the rationale as **green**, while the wrong ones as **red**.

1134
 1135 **The advantage in completeness is mainly reflected in Figure 9.** In Figure 9, given only the
 1136 question, DeepSeek-R1 only generates a brief analysis on the second option while dismissing the
 1137 other three options with a single sentence in total. This overly simple analysis leads to a wrong
 1138 prediction. With the help of the ground truth answer, the generated rationale analyzes all options
 1139 individually. However, due to its lack of chemical knowledge, the analysis still exhibits errors
 1140 in functional group recognition or overlooks key influencing factors. After enhancing chemical
 1141 knowledge with the functional group information, DeepSeek-R1 finally manages to generate a more
 1142 comprehensive analysis with few errors.

1143
 1144 **The advantage in logicality is mainly reflected in Figure 10.** In Figure 10, with only the question,
 1145 o3-mini can hardly generate any useful rational. The rational merely repeats the IUPAC components
 1146 mentioned in the question before rushing to a highly inaccurate conclusion without substantive
 1147 analysis. When given the ground truth answer, o3-mini can construct a reasonably good rationale with
 1148 minimal factual error. However, the rationale still contains non-negligible issues in terms of logical
 1149 coherence. A sound reasoning process should follow the approach exemplified by the reasoning chain
 1150 generated by o3-mini using our method: analyzing in the order of molecular skeleton, functional
 1151 groups, heteroatoms, and chiral centers. This sequence reflects a step-by-step refinement from the
 1152 fundamental molecular structure to more intricate structural details. However, with only the question
 1153 and answer, the generated rationale mixes these analytical steps and lacks critical details, such as the
 1154 precise position of the nitrogen atom, resulting in a disorganized and incomplete reasoning process.

1154 C.2 QUALITY CONTROL

1155
 1156 To quantitatively validate the quality of the
 1157 teachers’ rationales generated by our method,
 1158 we hired three [graduate-level](#) chemical experts
 1159 to perform manual assessments. Results in Fig-
 1160 ure 11 show that among the sampled 264 ratio-
 1161 nales, 177 of them (67%) exhibit sufficiently
 1162 high quality, 60 of them (23%) have minor, ac-
 1163 ceptable flaws such as reasoning step skipping
 1164 or missing possibilities, and 27 of them (10%)
 1165 contain substantive issues such as logic errors
 1166 or nonsense reasoning. [Two examples of dis-](#)
 1167 [tilled rationales with minor flaws are shown in](#)
 1168 [Figure 12, and two examples of distilled ratio-](#)
 1169 [nals with substantive issues are shown in Fig-](#)
 1170 [ure 13.](#) Considering that reinforcement learning
 1171 will be used after distillation to correct errors
 1172 and improve performance, and that it is difficult
 1173 to systematically distinguish these problems in
 1174 the rationales, we used all the data during the
 1175 distillation process.

1176 D DETAILS OF REINFORCEMENT LEARNING

1177
 1178 To construct the reinforcement learning dataset, a subset of tasks that have verifiable answers is
 1179 selected from our instruction-tuning dataset. We sampled data from the same sources used to build
 1180 the instruction-tuning dataset, while minimizing overlap between the specific instances contained in
 1181 the two datasets. These tasks are mixed together and uniformly sampled during training. We use the
 1182 DAPO (Yu et al., 2025) algorithm for reinforcement learning. As for the reward system, we follow
 1183 the method recommended by DeepSeek-R1 (Guo et al., 2025a), where the reward system consists of
 1184 format rewards and accuracy rewards. The format rewards evaluate whether a response strictly follows
 1185 the reasoning format, and the accuracy rewards evaluate whether a response is correct. Specifically,
 1186 considering the redundancy of the casual SMILES notations (one molecule could correspond to
 1187 multiple SMILES), we first canonicalize all the SMILES in the response before calculating the
 1188 accuracy rewards.

1179 Figure 11: Human validation result of teachers’
 1180 rationales. “Minor Flaw” represents acceptable
 1181 flaws, such as skipping reasoning steps or missing
 1182 possibilities. “Substantive Issue” means severe
 1183 logic errors or nonsense reasoning.

1188

1189

1190

1191

Example 1 of Distilled Rationales with Minor Flaws: Overly simplify description of the reaction process

1192

Instruction: Predict the product of the reaction using the given reactants and reagents, and express it in SMILES notation.

1193

Given:

Reactants: Cc1cc2c3cccc3ccc2cccc12.O=C(CCC(=O)N1Br

Reagents: ClC1=CC=CC=1.CO.C(OOC(=O)C1=CC=CC1)(=O)C1C=CC=CC=1

1194

Provide the resulting product and its SMILES notation.

1195

Rationale:

The reactants are a methyl-substituted polycyclic aromatic compound (SMILES: Cc1cc2c3cccc3ccc2cccc12.O=C(CCC(=O)N1Br) and a brominated imide halamine (SMILES: O=C(CCC(=O)N1Br). The halamine contains an N-Br bond, which is reactive. The aliphatic methyl group (CH₃) attached to the aromatic system undergoes bromination via radical substitution. The N-Br bond in the halamine cleaves homolytically, generating a bromine radical (Br·). This abstracts a hydrogen atom from the methyl group, forming a methyl radical (CH₂·). **The bromine radical then combines with the methyl radical, resulting in a bromomethyl group (CH₂Br) and a new Br-C bond.** The aromatic system remains intact, and the imide group (O=C(CCC(=O)N1) from the halamine loses Br to form a secondary amine (NH) as a byproduct.

1196

1197

1198

1199

1200

1201

1202

1203

1204

Example 2 of Distilled Rationales with Minor Flaws: Inappropriate naming

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Figure 12: Examples of the distilled rationales with minor flaws.

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Example 1 of Distilled Rationales with Substantive Issue: Incorrect identification of the key components

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Example 2 of Distilled Rationales with Substantive Issue: Multiple logic errors

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Figure 13: Examples of the distilled rationales with substantive issues.

Instruction: Predict the product of the reaction using the given reactants and reagents, and express it in SMILES notation.

Given:

Reactants: Cc1cc2c3cccc3ccc2cccc12.O=C(CCC(=O)N1Br

Reagents: ClC1=CC=CC=1.CO.C(OOC(=O)C1=CC=CC1)(=O)C1C=CC=CC=1

Provide the resulting product and its SMILES notation.

Rationale:

The reactants are a methyl-substituted polycyclic aromatic compound (SMILES: Cc1cc2c3cccc3ccc2cccc12.O=C(CCC(=O)N1Br) and a brominated imide halamine (SMILES: O=C(CCC(=O)N1Br). The halamine contains an N-Br bond, which is reactive. The aliphatic methyl group (CH₃) attached to the aromatic system undergoes bromination via radical substitution. The N-Br bond in the halamine cleaves homolytically, generating a bromine radical (Br·). This abstracts a hydrogen atom from the methyl group, forming a methyl radical (CH₂·). **The bromine radical then combines with the methyl radical, resulting in a bromomethyl group (CH₂Br) and a new Br-C bond.** The aromatic system remains intact, and the imide group (O=C(CCC(=O)N1) from the halamine loses Br to form a secondary amine (NH) as a byproduct.

Rationale:

Starting with the reaction details, we first note that the mechanism likely involves nucleophilic attack by an amine on an electrophilic center generated from the **acyl bromide** species. Since all options supply a primary amine functionality, attention turns to the aromatic framework that supports it. By examining the aromatic heteroatoms and substituent patterns, one assesses how each molecule's electronic properties might stabilize the intermediate and facilitate the reaction. In this case, the extended aromatic system and the presence of pyridinic nitrogen—with its electron-withdrawing nature—helpfully modulate reactivity and lower steric hindrance. Additionally, comparing specific substituents such as ether or additional alkyl groups, one finds that the option offering a conjugated biphenyl structure with optimized resonance stabilization is predicted to provide the highest yield by enhancing nucleophilicity while accommodating the transition state effectively. Given these considerations, the reasoning supports selecting the molecule with the most extended conjugated system featuring a primary amine attached to a pyridinic framework, as it best meets the criteria for high-yield synthesis under the reaction conditions.

Rationale:

Starting with the reaction details, we first note that the mechanism likely involves nucleophilic attack by an amine on an electrophilic center generated from the **acyl bromide** species. Since all options supply a primary amine functionality, attention turns to the aromatic framework that supports it. By examining the aromatic heteroatoms and substituent patterns, one assesses how each molecule's electronic properties might stabilize the intermediate and facilitate the reaction. In this case, the extended aromatic system and the presence of pyridinic nitrogen—with its electron-withdrawing nature—helpfully modulate reactivity and lower steric hindrance. Additionally, comparing specific substituents such as ether or additional alkyl groups, one finds that the option offering a conjugated biphenyl structure with optimized resonance stabilization is predicted to provide the highest yield by enhancing nucleophilicity while accommodating the transition state effectively. Given these considerations, the reasoning supports selecting the molecule with the most extended conjugated system featuring a primary amine attached to a pyridinic framework, as it best meets the criteria for high-yield synthesis under the reaction conditions.

Instruction: Can you please rank these molecules, given in SMILES format, according to their internal energy at 0 K from highest to lowest?

SMILES List:

[H]OC([H])([H])C([H])([H])[C@]([H])[O]C@([2]([H])C([H])([H])[C@]([2]([H]))O1,[H]C(C([H])([H])[C@H]2[CH]([H])C([H])([H])[C@]2[CH]O1,[H]OC([H])([H])C1[NH2+][C@]([2]([H])C([H])([H])[C]([H])([H])[C@]([2]([H]))O1,[H]OC([H])([H])[C]([H])([H])[C1[NH2+][C@]([2]([H])C([H])([H])[C]([H])([H])[C@]([2]([H]))O1

Order of internal energy at 0 K:

Rationale:

At 0 K, internal energy is determined by molecular potential energy, which depends on bond strength, ring strain, and functional group stability. **The first SMILES contains a six-membered acetal ring (low ring strain) and hydroxy groups. The second SMILES has an alkyne (high bond energy due to sp-hybridized carbons) and a five-membered hemiaminal ether ring (moderate ring strain). The third SMILES includes a six-membered hemiaminal ether ring (lower strain than five-membered) with an alcohol group and a charged NH2+ group (higher electrostatic potential energy). The fourth SMILES contains a five-membered hemiaminal ether ring (higher strain than six-membered) with an alcohol group and NH2+ charge. Alkyne > charged groups > five-membered ring strain > six-membered ring stability dictates the ranking: third (six-membered charged), second (alkyne + five-membered), fourth (five-membered charged), first (six-membered uncharged).**

Example 2 of Distilled Rationales with Substantive Issue: Multiple logic errors

Instruction: For chemical analysis, select the molecule with the highest dipole moment by comparing the SMILES of the given options: [H]/N=C/NC(=O)C([H])/N=N/NC(=O)C(C)(C)C([H])/N=N=C/[C](=O)/C(=N/[H])N,N([H])N=N=C/[C](=O)N/C=N/[H]N. Provide the SMILES of the chosen molecule.

Rationale:

To determine which molecule has the highest dipole moment, analyze the polarity and symmetry of the functional groups. Dipole moments increase with greater electronegativity differences and additive polar bond vectors. The first molecule contains urea (two amide groups) and imide (two carbonyl groups), which are polar, but symmetry may reduce the net dipole. The second molecule has an amidine and a single amide, but **bulky tert-butyl substituents (C(C)(C)C) introduce steric hindrance, potentially reducing polarity.** The third molecule features a ketone (C=O) and amidine, but conjugated resonance between the ketone and amidine groups (C(=O)/C(=N/[H])) may delocalize electron density, opposing dipole contributions. The fourth molecule includes a carboxamide (C(=O)N) and two amidine groups (N=N-C-N), arranged asymmetrically. **The carboxamide's carbonyl (C=O) and N-H bonds create strong dipoles**, while the amidine groups (with protonated N atoms and adjacent C=N) contribute additional polarity. The lack of symmetry in the fourth molecule allows these dipoles to align constructively, resulting in the highest net dipole moment.

1242 **E TRAINING DETAILS OF CHEMDFM-R**
12431244 **E.1 MITIGATING DATA LEAKAGE**
12451246 Data leakage is a crucial problem for the evaluation of LLMs. During the training of ChemDFM-R,
1247 measures have been taken to reduce the risk of data leakage. For the domain pretraining corpus, we
1248 avoid using the same molecules and reactions as those presented in SciKnowEval (Feng et al., 2024)
1249 and ChemEval (Huang et al., 2024) benchmarks. For instruction tuning and mixed-source distillation,
1250 the same molecules and reactions are deliberately excluded from a task if they appear in relative tasks
1251 in SciKnowEval and ChemEval. We use canonicalized SMILES to determine whether two molecules
1252 are the same. Reactions are considered the same if they share the same product.
12531254 **E.2 STATISTICS ABOUT COMPUTATION AND DATA**
12551256 We trained ChemDFM-R on NVIDIA A800 Tensor Core GPUs for a total of 30840 GPU hours.
1257 Specifically:
12581259

1. for domain pretraining, the model was trained on the 101-billion ChemFG corpus A for
24728 GPU hours;
2. for instruction tuning, the model was trained on over 7.5 million instructions B, which
consist of 2.5 million chemical instructions and 5 million general instructions, for 3785
GPU hours;
3. for mixed-sourced distillation, the model was trained on the mixed-sourced distillation
dataset, which is of the same scale as the instruction-tuning dataset, for 2059 GPU hours;
4. for reinforcement learning, the model was trained on 121,811 samples for 268 GPU hours.

1260 **E.3 HYPERPARAMETERS AND SYSTEM PROMPTS**
12611262 **Training Hyperparameters.** The hyperparameters used during the training of ChemDFM-R are
1263 listed in Table 6.
12641265 **Inference Setting.** During the inference of ChemDFM-R, we set the temperature to 0.6, topK to 1,
1266 and topP to 1 with no other penalties.
12671268 **System Prompts.** During the training of ChemDFM-R, three different system prompts are used.
1269 Specifically:
12701271

- 1. For all samples in the instruction-tuning dataset and the non-reasoning samples in the
mixed-source distillation dataset, we use: "You are a helpful assistant."
- 2. For the pseudo-reasoning data in the mixed-source distillation dataset, we use: "You
are a helpful assistant that is good at answer chemical questions. You will analyze the
presence of functional groups in molecules and the changes in functional groups during
reactions before giving response. These analyses will help you solve the problem
better. The analyses and answer are enclosed within <think> </think> and <answer> </answer>
tags, respectively.\n.e.,\n<think>\nanalyses here\n</think>\n<answer>\nanswer
here\n</answer>"
- 3. For the distilled data and the training of reinforcement learning, we use "You are
a helpful assistant that is good at reasoning. You always reason thoroughly before
giving a response. The reasoning process and answer are enclosed within <think>
</think> and <answer> </answer> tags, respectively.\n.e.,\n<think>\nreasoning process
here\n</think>\n<answer>\nanswer here\n</answer>"

1272 **F THE ANALYSIS OF CHEMDFM-R'S RATIONALE**
12731274 In Figure 14, ChemDFM-R is asked to pick a correct product for the given reaction. Instead of
1275 wasting time (tokens) on analyzing the SMILES in great detail, which DeepSeek-R1 always does,
1276

1296

1297

1298

1299

Table 6: The training hyperparameters used during the training of ChemDFM-R.

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Question: Given a question and four options, please select the right answer. Your answer should be "A", "B", "C" or "D". Please directly give the answer without any explanation.

Given the reactants and reagents (in SMILES format) which are split by ":" as follows:

CC(C)(C)OC(=O)NCC1ccc(OCCC23CC4CC(CC(C4)C2)C3)cc1.CO.Cl

Which of the following candidate SMILES represents the correct product of this reaction?

<think>

To approach the problem, one first confirms that the starting material **incorporates a carbamate ester group** (defined as an ester of carbonic acid that links to an --NH_2 fragment, which is often used **for protecting amino groups during synthesis**) and then considers that converting this functional group into a primary amine requires a **deprotection step**. This analysis involves recognizing that such transformations typically occur via **acid-catalyzed mechanisms**, where the reagents provided (including a molecule containing CO and Cl, which can function as a source of activating agents like an HCl, a common reagent for removing carbamate protecting groups) promote the **cleavage of the tert-butyl protecting group, leading to the formation of the free amine**. By examining the set of options supplied, only the selection whose structure contains the primary amine functionality, identified by an --NH_2 attached directly to an aromatic ring substituted with an appropriate side chain (which matches the context provided in the reagent transformations), is consistent with this deprotection process. This methodical structural evaluation, considering both the reaction mechanism and the changes between the protecting group and the final product, leads to the selection of the correct molecule that exhibits the primary amine substitution pattern under the reaction conditions.

</think>

<answer>

D

</answer>

Figure 14: An example of the responses generated by ChemDFM-R on the reaction prediction task.

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Question: You are an expert chemist. Given the molecule SMILES, your task is to provide the detailed description of the molecule using your experienced chemical knowledge. Please strictly follow the format, no other information can be provided.

The Molecule SMILES is as follows:

CCCCC/C=C/C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP(=O)(O)OP(=O)(O)OC[C@H]1O[C@@H](N2C=N
C3=C(N)N=CN=C32)[C@H](O)[C@@H]1OP(=O)(O)O

<think>

To derive the molecular description, one first examines the SMILES notation to identify the structural components such as the **alkene**, **hydroxy**, **ether**, **anhydride**, **primary amine**, **carboxamide**, **thioester**, and **phosphate mono-ester groups**, as well as the aromatic heteroatoms like **pyrrolic N** and **pyridinic N**. Recognizing these functional groups and their connectivity, one then **correlates** the structure with known **biochemical molecules**, particularly those involved in **metabolic pathways**. By noting the presence of a **coenzyme A moiety** and a **deprotonated thioester linkage**, which are characteristic of acyl-CoA derivatives, one can infer that the molecule is an acyl-CoA compound. This structural analysis, combined with knowledge of metabolic roles in organisms such as *Escherichia coli* and mouse, leads to the conclusion that **the molecule is a metabolite with a specific acyl group attached to coenzyme A**.

</think>

<answer>

The molecule is a medium-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of trans-2-nonenioic acid. It is a trans-2-enoyl-CoA, a medium-chain fatty acyl-CoA and a monounsaturated fatty acyl-CoA. It is a conjugate acid of a trans-2-nonenoyl-CoA(4-).

</answer>

Figure 15: The overview of the training pipeline of ChemDFM-R on the molecule captioning task.

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Question: Please give the IUPAC name of the molecule given by SMILES: Cc1ccc(C)c2S(C)(=O)=O)c(C)c1

<think>

To derive the IUPAC name, one first examines the SMILES notation to identify the molecular structure, noting the presence of **an aromatic ring substituted with methyl groups**, **a secondary amine linkage**, and **a sulfonamide group attached to a benzene ring bearing a chloro substituent**. The next step involves **determining the connectivity and substituent positions on the aromatic system**, **ensuring that the substituents are numbered according to IUPAC rules to give the lowest possible locants**. The molecule is then divided into **its principal structural components**, with one part being the **substituted benzene ring** and **the other part being the acyl chain linked to the sulfonamide group**. The acyl chain is further **analyzed to determine its substituent pattern, including the N-substitution with the sulfonamide group**. By applying systematic nomenclature rules, including the priority of functional groups and the use of prefixes and suffixes to denote substituents and connectivity, the complete IUPAC name is constructed. This process integrates the identification of functional groups, the determination of substituent positions, and the systematic assembly of the name according to IUPAC guidelines.

</think>

<answer>

4-(3-chloro-N-methylsulfonylanilino)-N-[1-(2,4-dimethylphenyl)ethyl]butanamide

</answer>

Figure 16: The overview of the training pipeline of ChemDFM-R on the SMILES to IUPAC task.

ChemDFM-R1 goes directly into the key point of this question: the functional groups present in the reactants and the potential reactions between them. Specifically, ChemDFM-R successfully identifies the key functional group, the carbamate ester group. By recalling that the carbamate ester group is typically used to protect amino groups, ChemDFM-R infers that the reaction taking place is likely a deprotection reaction. Then, ChemDFM-R confirms its assumption by examining the provided reagents. Finally, ChemDFM-R predicts the feature of the possible product and picks the option that matches it. This example demonstrates the precision of ChemDFM-R in finding the key point of chemical questions, and the effectiveness and efficiency of ChemDFM-R’s rationales. Moreover, it is also worth noticing that, instead of using the “elimination-shortcut” which is commonly adopted by other cutting-edge reasoning LLMs, ChemDFM-R directly reasoned out the reaction mechanism and the features of the correct answer, thereby selecting the correct option.

As illustrated in Figure 15, when asked to describe a molecule given by SMILES, ChemDFM-R first analyzes the functional groups present in the molecule, such as the alkene group, the phosphate mono-ester group, and the pyrrolic N group. Then, ChemDFM-R successfully correlates the composition and connectivity of these functional groups with metabolic pathways and further manages to identify the molecule as a coenzyme A derivative. After that, it recognizes the deprotonated thioester linkage in the molecule and further narrows down the molecule to an acyl-CoA derivative. Finally, ChemDFM-R gives a relatively comprehensive description of the molecule. ChemDFM-R even provides the potential role of this molecule in metabolic processes in its rationale, further demonstrating its strong reasoning ability as well as the value of the rationale as a complement to the final answer.

Figure 16 showcases an example response of ChemDFM-R when asked to generate the IUPAC name of the given molecule. The IUPAC name is the standard name for a molecule, assigned according to the rules established by the International Union of Pure and Applied Chemistry (IUPAC). It can effectively reflect the functional groups present in the molecule and their connectivity. Therefore, ChemDFM-R starts its reasoning with a comprehensive analysis of the functional groups of the given molecule. Then, it emphasizes the importance of correctly labeling the atoms, which is precisely an area where large language models are particularly prone to errors. After this, ChemDFM-R follows the rule of IUPAC naming and divides the molecule into its principal structural components. It also specifically points out the N-substitution with the sulfonamide group. Finally, a complicated and correct IUPAC name is predicted by ChemDFM-R.

G DETAIL RESULTS OF BENCHMARK EVALUATION

G.1 CHEMEVAL

We consider the L1 and L2 level tasks in ChemEval (Huang et al., 2024) as text-centric tasks, the L3 level tasks as molecule-centric tasks, and the L4 level tasks as reaction-centric tasks. Moreover, there are tasks that we can not achieve a feasible grading in ChemEval. We temporarily skip these tasks. The raw results are demonstrated in Table 7.

As illustrated in Table 7, ChemDFM-R manages to achieve competitive performance in the text-centric tasks compared with the cutting-edge LLMs, while achieving SOTA performance across all the molecule-centric tasks and a large portion of the reaction-centric tasks. A detailed analysis of the task characteristics reveals that ChemDFM-R tends to perform less effectively on tasks involving numerical prediction, which will be a key focus of our future optimization efforts.

G.2 SCIKNOWEVAL

We group the tasks in SciKnowEval (Feng et al., 2024) based on their input and output. Specifically, the task is classified as a text-centric task if there is no SMILES appear in its input or output, as a reaction-centric task if there are reaction SMILES appear in its input or output, and as a molecule-centric task otherwise. Due to budget limit, we currently skip the tasks that require GPT-4o for grading. The raw results are demonstrated in Table 8.

As illustrated in Table 8, ChemDFM-R achieves competitive performance on SciKnowEval compared to cutting-edge LLMs. It is worth noting that ChemDFM-R’s performance advantage is less pronounced on SciKnowEval than on ChemEval. This is primarily because most tasks in SciKnowEval are formulated as multiple-choice questions, which substantially reduce the burden on the model’s

Tasks	Metric	MolInst	ChemLLM	ChemDFM	ChemDFM	ether0	GPT-4o	Qwen3-14B (no think)	DeekSeek -R1	Qwen3-14B (think)	o4-mini	ChemDFM-R
<i>Text-Centric Tasks</i>												
<i>MolInst</i>												
MCTask	Acc	40.0	35.0	50.0	0.0	10.0	75.0	90.0	80.0	65.0	64.0	
GBTask	Acc	0.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
TFTask	Acc	55.0	75.0	70.0	5.0	0.0	80.0	95.0	80.0	85.0	81.0	
SATask	BLEU	0.6	17.3	12.2	10.6	0.4	15.0	9.3	4.3	9.2	10.3	11.2
CNER	F1	0.0	44.1	59.0	22.8	19.2	66.7	69.6	67.1	57.1	63.1	
CERC	F1	4.5	0.0	12.3	0.0	0.0	20.3	24.1	37.7	20.2	25.5	24.9
AddE	F1	34.2	58.7	46.7	5.0	0.0	70.0	65.0	70.8	65.0	68.3	73.3
SolvE	F1	58.3	70.0	82.5	25.0	5.0	75.0	79.0	73.3	54.0	72.3	76.3
TempE	F1	70.0	75.0	20.2	25.0	10.0	75.0	95.0	90.0	95.0	95.0	95.0
TimeE	F1	95.0	40.0	95.0	5.0	95.0	95.0	95.0	95.0	95.0	95.0	95.0
CharME	F1	20.7	67.0	26.2	49.1	16.8	79.0	73.8	71.0	60.7	76.0	61.6
CatTE	F1	80.0	90.0	55.0	30.0	0.0	95.0	85.0	100.0	85.0	90.0	67.0
YieldE	F1	0.0	55.0	20.0	30.0	20.0	80.0	75.0	95.0	75.0	57.0	
AbsGen	BLEU	56.3	45.7	54.0	4.4	2.1	66.8	70.4	62.2	64.7	67.4	65.1
OLGen	BLEU	18.9	12.5	22.4	2.7	8.7	14.3	23.6	10.0	18.0	13.1	15.4
TopC	Acc	40.0	50.0	40.0	20.0	0.0	50.0	40.0	55.0	50.0	50.0	45.0
ReactTR	F1	20.0	13.3	15.0	5.0	5.0	35.0	30.0	25.0	30.0	20.0	28.5
<i>Molecule-Centric Tasks</i>												
MolNG	BLEU	3.6	45.5	75.9	34.6	46.7	59.9	43.1	9.9	41.7	68.6	83.3
IUPAC2MF	EM	0.0	0.0	25.0	0.0	0.0	40.0	0.0	5.0	0.0	60.0	73.0
SMILES2MF	EM	0.0	0.0	45.0	0.0	0.0	10.0	5.0	0.0	0.0	55.0	86.0
IUPAC2SMILES	EM	0.0	0.0	10.0	0.0	30.0	0.0	0.0	5.0	0.0	15.0	55.0
SMILES2IUPAC	EM	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	32.0
S2S	EM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0
Mol2PC	Acc	49.9	52.8	61.0	9.4	0.0	64.1	54.5	57.1	58.9	65.7	72.5
Mol2PC	BLEU	29.8	36.4	38.9	18.5	2.3	37.2	40.8	30.4	38.5	33.7	57.8
<i>Reaction-Centric Tasks</i>												
SubRec	Acc	0.0	3.3	8.2	2.0	0.0	7.5	0.0	5.0	0.0	18.3	23.5
IRec	Acc	0.0	0.0	20.1	0.0	0.0	10.0	5.0	10.0	35.0	0.0	42.0
RRec	Acc	0.0	0.0	19.0	0.0	5.0	10.0	15.0	5.0	25.0	30.0	34.0
SolvRec	Acc	0.0	0.0	5.0	0.0	0.0	35.0	2.0	25.0	35.0	30.0	31.0
TempRec	RMSE	76.5	27.1	71.5	22.2	∞	21.7	23.4	17.9	34.6	22.2	31.8
TimeRec	RMSE	20.5	18.7	17.8	9.4	∞	6.6	8.0	9.5	10.7	9.6	18.8
PPre	Acc	0.0	0.0	3.3	5.0	73.3	10.0	0.0	18.2	5.8	35.0	60.0
YPred	Acc	20.0	20.0	20.0	0.0	0.0	55.0	14.9	25.0	45.0	23.0	
RatePred	Overlap	3.0	13.8	4.7	9.0	0.0	18.2	14.9	31.0	9.9	7.2	14.1
IMDer	Acc	0.0	0.0	10.0	0.0	0.0	5.0	0.0	5.0	0.0	5.0	0.0

Table 7: The detailed benchmark results of different models on ChemEval (Huang et al., 2024).

1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

Tasks	MolInst	ChemLLM -20B-DPO	ChemDFM -13B-v1.0	ChemDFM -8B-v1.5	ether0	GPT-4o	Qwen3-14B (no think)	DeekSeek -R1	Qwen3-14B (think)	o4-mini	ChemDFM-R
<i>Text-Centric Tasks</i>											
Chem LiterQA	75.4	78.7	77.6	79.3	57.3	85.8	84.2	86.3	84.0	88.9	80.2
React Mech Infer.	96.3	98.5	98.1	97.8	77.7	100.0	98.5	96.7	98.1	97.8	98.4
Comp Iden. and Prop.	93.6	97.4	95.2	96.8	72.8	98.6	98.2	96.4	98.6	99.0	97.3
Chem DU	95.2	98.2	97.4	96.5	74.4	99.5	98.6	98.6	98.9	99.4	97.9
Chem HV	82.8	88.8	85.9	88.3	0.9	94.9	93.6	93.2	92.1	93.4	92.1
Chem RI	92.8	95.9	94.6	95.5	60.0	96.9	97.1	95.3	96.3	96.3	97.2
Balancing Eq.	0.6	16.3	12.3	21.7	0.0	10.5	7.7	11.2	7.25	10.5	27.4
Chem Cal.	34.9	32.7	36.8	35.3	22.7	52.4	53.9	78.8	91.4	92.2	52.3
Mol Tox. Pred	53.7	54.3	44.3	45.2	3.9	37.4	51.8	62.4	51.3	55.1	43.0
Chem Safe Test	68.7	74.8	59.5	65.3	17.5	85.2	81.2	81.7	83.1	80.4	81.5
<i>Molecule-Centric Tasks</i>											
Mol Name Conv.	60.3	70.8	69.7	81.0	35.1	86.7	71.5	41.8	83.7	95.7	89.9
Mol Prop. Pred	31.8	33.9	38.1	48.0	48.9	44.0	37.9	41.2	41.6	48.1	44.6
Mol Cap.	14.4	21.0	22.7	22.5	0.9	13.9	8.6	12.6	10.0	14.0	50.9
Mol Weight Cal.	25.7	25.9	16.9	22.9	22.4	25.9	17.0	4.4	31.1	62.8	35.4
Mol Prop. Cal.	38.9	33.2	31.1	29.3	27.2	34.7	37.2	39.1	38.1	45.4	18.7
Mol Stru. Pred	33.1	30.9	35.6	25.9	31.3	46.1	30.9	7.5	36.6	57.4	31.7
Mol Gen.	64.4	52.9	84.4	89.4	70.2	60.9	38.6	69.3	44.5	75.4	86.6
<i>Reaction-Centric Tasks</i>											
Reaction Pred	39.2	92.8	91.6	95.9	55.8	48.0	90.5	82.5	93.7	99.3	98.4
Retrosynthesis	44.3	83.4	78.5	77.8	76.2	41.2	70.0	83.4	83.2	95.2	89.4

Table 8: The detailed benchmark results of different models on SciKnowEval (Feng et al., 2024).

1566 comprehension and generation processes, allowing it to arrive at correct answers through “shortcuts”
1567 such as option comparison and elimination.
1568

1569 G.3 ANALYSIS OF GENERALIZABILITY 1570

1571 To further demonstrate the generalizability of our model, we separate the tasks in SciKnowEval and
1572 ChemEval based on whether the same target appears in the training dataset of ChemDFM-R. This
1573 results in two categories: 1) Same Task Different Instruction (DI), demonstrating the instruction-level
1574 generalizability of our model, 2) Different Task (DT), demonstrating the task-level generalizability
1575 of our model. The evaluation results are presented in Table 10, from which we draw three key
1576 observations.

1577 First, while enhancing the model’s chemical capabilities, our training procedure largely preserves
1578 strong generalization performance. Compared with our baseline model, Qwen2.5-14B-Instruct,
1579 ChemDFM-R not only achieves substantially better performance on DI tasks but also improves on
1580 DT tasks, demonstrating that the knowledge acquired through training can be generalized to new
1581 tasks.

1582 Second, our model performs significantly better on DI tasks than on DT tasks, indicating that it
1583 exhibits stronger instruction-level generalization than task-level generalization.

1584 Finally, our model underperforms o4-mini on molecule-centric DT tasks in ChemEval. Upon further
1585 inspection, we find that among the three tasks in this category, only the “SMILES-to-SELFIES and
1586 SELFIES-to-SMILES conversion” tasks show inferior performance compared with o4-mini. This
1587 outcome mainly arises from the fact that we used only SMILES as the molecular representation
1588 during training. Considering that SMILES and SELFIES can be deterministically converted into each
1589 other through rule-based transformations, we believe that this weaker performance, or the lack of
1590 explicit SELFIES understanding and generation capability, does not materially affect the model’s
1591 usefulness or effectiveness in practical chemistry applications.

1593 G.4 MORE EVALUATIONS ON FGBENCH AND CHEMCOTBENCH 1594

1595 In addition to ChemEval and SciKnowEval, we also evaluate ChemDFM-R along with our baseline
1596 models on two of the newly proposed benchmarks: FGBench (Liu et al., 2025b), which primarily
1597 focuses on evaluating LLMs’ capability to determine the property changes after functional-group-level
1598 molecular modification, and ChemCOTBench (Li et al., 2025b), which comprehensively evaluates
1599 LLMs’ capabilities in solving reasoning intensive chemical problems including molecular editing,
1600 molecular optimization, and reaction related. The experimental results are illustrated in Table 9, from
1601 which we draw three main observations:

1602 First, ChemDFM-R outperforms both traditional chemistry LLMs and Qwen2.5-14B-Instruct. This
1603 demonstrates that our model possesses stronger chemical knowledge and more advanced chemical
1604 reasoning capabilities, enabling superior performance on reasoning-intensive tasks. This also validates
1605 the effectiveness of our ChemDFM-R training pipeline.

1606 Second, compared with the more powerful Qwen3-14B, our model achieves better results only on
1607 ChemCOTBench. We believe this is due to the fundamental differences among the benchmarks:
1608 unlike ChemCOTBench and ChemEval, which primarily consist of open-ended generative tasks
1609 across multiple subfields, FGBench is composed exclusively of multiple-choice questions of property
1610 selection and numerical prediction problems of property prediction. For multiple-choice questions,
1611 as analyzed in the Appendix G.2, the required comprehension and generation ability is considerably
1612 lower than for free-form generation, allowing Qwen3 to circumvent its weaknesses and achieve
1613 strong results. For numerical prediction tasks, the performance gap aligns with our analysis in
1614 Section 4.1.1, further highlighting the limitations of ChemDFM-R on numerically intensive tasks and
1615 pointing toward directions for future improvement. Therefore, we believe that ChemDFM-R’s weaker
1616 performance on FGBench relative to Qwen3 primarily reflects its remaining room for improvement
1617 on tasks related to numerical reasoning and prediction, whereas its superior performance on the
1618 broader ChemCOTBench highlights its advantage in overall chemical capability.

1619 Finally, when compared with the 671B DeepSeek-R1 and the advanced closed-source model o4-mini,
ChemDFM-R generally shows lower performance on both datasets. Given the substantial differences

Table 9: Benchmark results on FGBench and ChemCOTBench. “MUE” stands for “Molecule Understanding and Editing”, “MO” stands for “Molecule Optimization”, and “CR” stands for “Chemical Reaction”. We use the recommended metrics of each task, except the MUE tasks. Considering that the tasks in MUE include metrics where either larger or smaller values are preferred, we use the RPS Peng et al. (2025) to obtain a unified measure of average performance. The best performance for each task is indicated using **boldface**.

Model	FGBench		ChemCOTBench				
	Boolean ACC \uparrow	Value RMSE \downarrow	MUE RPS \uparrow	MO		CR	
				$\Delta \uparrow$	SR \uparrow	ACC \uparrow	FTS \uparrow
MolInst	21.2	218.7	53.2	0.020	39.2	0.3	8.3
ChemLLM-20B-DPO	45.3	140.6	46.3	0.022	12.0	6.0	0.5
ChemDFM-13B-v1.0	13.7	162.9	38.2	0	0.8	1.8	0.5
ChemDFM-8B-v1.5	22.8	216.0	22.6	0.036	10.5	0.5	0.1
GPT-4o	59.0	63.5	67.9	0.105	51.5	15.0	40.0
Qwen2.5-14B-Instruct	63.0	68.1	57.1	0.013	43.2	4.7	16.7
Qwen3-14B (no think)	76.1	85.7	59.0	0.078	34.5	8.2	35.1
DeepSeek-R1	74.0	73.6	59.4	0.318	62.5	26.7	48.4
Qwen3-14B (think)	59.4	75.5	39.4	0.125	32.8	10.6	25.3
o4-mini	70.8	82.9	69.9	0.499	68.2	31.8	44.4
ChemDFM-R	65.0	90.1	69.1	0.184	48.7	24.4	49.2

Table 10: Benchmark results on SciKnowEval and ChemEval. “mol.” stands for “molecule”, “react.” stands for “reaction”, “DI” stands for “Different Instruction”, and “DT” stands for “Different Task”. The best performance for each task is indicated using **boldface**. * We use RPS (Peng et al., 2025) to balance the different scales of the scores on different tasks in the ChemEval benchmark.

Model	SciKnowEval				ChemEval*			
	DI mol.	text	DT mol.	react.	DI mol.	react.	text	DT mol.
MolInst	39.4	69.4	38.0	41.7	10.4	10.0	47.3	42.7
ChemLLM-20B-DPO	37.0	73.6	38.9	88.1	20.9	28.4	64.5	49.7
ChemDFM-13B-v1.0	53.6	70.2	38.3	85.0	44.9	13.0	61.5	50.4
ChemDFM-8B-v1.5	55.9	72.2	41.4	86.9	10.1	38.1	26.7	19.1
ether0	35.6	38.7	33.0	66.0	18.4	50.0	9.4	1.3
GPT-4o	37.4	76.1	47.5	44.6	33.8	42.2	82.7	52.3
Qwen2.5-14B-Instruct	23.9	77.2	40.5	71.9	17.3	50.0	77.5	53.8
Qwen3-14B (no think)	23.6	76.5	38.9	80.2	19.3	32.9	81.5	52.5
DeepSeek-R1	40.9	80.1	26.8	83.0	14.0	55.3	81.2	50.1
Qwen3-14B (think)	27.3	86.6	46.2	88.5	19.2	26.1	79.0	52.8
o4-mini	44.7	81.3	61.9	97.3	51.7	58.5	78.4	86.4
ChemDFM-R	68.9	76.8	45.2	94.5	95.5	66.3	80.4	62.0

in model scale, we consider this partially expected and acceptable. In future work, we plan to extend our methods to larger LLMs to provide stronger chemical generalist reasoning LLMs for the open-source community.

H ABLATION STUDY FOR ATOMIZED CHEMICAL KNOWLEDGE ENHANCEMENT

Directly verifying the effect of atomized knowledge enhancement would be extremely costly, since it requires repeatedly performing computationally expensive domain pretraining. Therefore, instead

1674
 1675 Table 11: Ablation study results on SciKnowEval and ChemEval. DP represents Domain Pretraining,
 1676 and Know. represent Knowledge. The best performance for each task is indicated using **boldface**. *
 1677 We use RPS (Peng et al., 2025) to balance the different scales of the scores on different tasks in the
 ChemEval benchmark.

DP Corpus Composition		SciKnowEval				ChemEval*			
Atomized Know.	Text-based Know.	text	mol.	react.	all	text	mol.	react.	all
✗	✗	66.9	30.0	34.5	49.9	44.6	25.5	25.4	34.8
✗	✓	67.1	30.6	36.5	50.4	43.6	25.6	28.5	35.2
✓	✗	65.7	31.8	37.8	50.3	51.9	25.9	33.8	40.8
✓	✓	66.2	31.7	37.4	50.5	53.7	26.9	31.0	41.1

1685
 1686 of training a model of the same size as ChemDFM-R on the full dataset for comparison, we used
 1687 Qwen2.5-1.5B as the base model and conducted the full training pipeline on a 10% subset of
 1688 ChemDFM-R’s data. By varying the data composition in the subset of the domain-pretraining
 1689 corpus, we trained different versions of models for comparison while keeping the computational cost
 1690 manageable. The results are presented in Table 11.

1691 Compared with the model without any domain pretraining (Row 1), models pretrained on either the
 1692 text-based-knowledge corpus (Row 2) or the atomized-knowledge corpus (Row 3) show improvements
 1693 on most tasks. This demonstrates the importance and necessity of domain pretraining for strengthening
 1694 domain knowledge, and indirectly supports our hypothesis that general domain LLMs generally
 1695 possess insufficient advanced chemical knowledge. Furthermore, the model pretrained solely on
 1696 the atomized-knowledge corpus outperforms the model pretrained on the traditional text-based-
 1697 knowledge corpus on many tasks, despite its corpus being only 20% of the latter. This provides
 1698 strong evidence that fine-grained atomized knowledge enables more efficient domain knowledge
 1699 enhancement. Finally, the model pretrained on the combined text-based- and atomized-knowledge
 1700 corpora (Row 4) achieves the best overall performance, reflecting the complementary strengths
 1701 of the two corpora and validating the effectiveness of our atomized-knowledge-enhanced domain
 1702 pretraining approach.

I DETAILS OF THE HUMAN ASSESSMENTS OF RATIONALE QUALITY

1706 We hired five graduate-level chemical experts to assess the interactions across the following five
 1707 dimensions, each of which is scored on a 5-point scale:

- 1709 • Chemical Correctness: The correctness of chemical knowledge and logic demonstrated
 1710 throughout the reasoning process.
- 1711 • Answer Accuracy: Whether the final answer is correct.
- 1712 • Analytical Coverage: The extent to which different plausible possibilities are explored
 1713 during reasoning.
- 1714 • Reasoning Coherence: Whether the reasoning remains focused, coherent, and aligned with
 1715 the problem.
- 1716 • Effective Information Density: The density of useful information in the reasoning chain,
 1717 reflecting the friendliness and efficiency of interaction.

1719 The ten original questions we used are listed as follows.

Organic Chemistry:

- 1723 • (Yao et al., 2025) I have used m-CPBA to convert the carbon-carbon double bond within the
 1724 [H][C@]12CC[C@@]3(CC[C@]1C(=O)C1=C[C@]4(C)CC[C@@]1(C(C)C)[C@]1([H])C[C@]1([H])[C@]23C into an epoxide, and obtained chiral epoxy products with
 1725 different ratios (d.r. = 5:1). Please propose possible reasons.
- 1726 • (Zhou et al., 2025) Clc1ccccc1 is difficult to react with [O-]C(F)(F)F under normal conditions, but it can be converted into a free radical cation under photocatalytic conditions and

1728 can react with $[O]C(F)F$ in the presence of $[Ag^+]$ to obtain the product in high yield.
 1729 Please provide the structure of the product.
 1730

1731 **Inorganic Chemistry:**

1732

- 1733 (Schwarzmann et al., 2025) $C[Bi+2](O)CCCC1(O)CCCC1(O)CCCC1(O)CCC$
 1734 $C1O)CCCC1$ is a newly reported strong Lewis acid. Please provide
 1735 the oxidation state, ligand, and coordination number of the metal ion in
 1736 $C[Bi+2](O)CCCC1(O)CCCC1(O)CCCC1(O)CCCC1$, and
 1737 explain the reason why it has strong Lewis acidity.
- 1738 (Mandai et al., 2025) $Fc1c(F)c([B-]c2c(F)c(F)c(B3Oc4cccc4O3)c(F)c2F)c2c(F)c(F)c(B3$
 1739 $Oc4cccc4O3)c(F)c2F)c2c(F)c(F)c(B3Oc4cccc4O3)c(F)c2F)c(F)c1B1Oc2cccc2O1$
 1740 is a newly reported stable Lewis acidic anion, which breaks the previous understanding that
 1741 anions are incompatible with Lewis acids. Please analyze its structure, explain why it can
 1742 act as a Lewis acid, and indicate its binding sites with Lewis bases.

1743 **Materials Chemistry:**

1744

- 1745 (Li et al., 2025a) What is oxygen evolution reaction (OER)? Please propose a reasonable
 1746 mechanism of heterogeneous OER under acidic conditions.
- 1747 (Liu et al., 2025a) $C1=Cc2cc3ccc(cc4nc(cc5ccc(cc1n2)[nH]5)C=C4)[nH]3$ and
 1748 $c1ccc2nsnc2c1$ can form covalent organic frameworks through covalent bonding under
 1749 certain conditions, which can utilize the excitation energy of singlet and triplet states
 1750 for photocatalysis. Please determine which is the electron donor and which is the
 1751 electron acceptor during the electron transfer process through the structural analysis of
 1752 $C1=Cc2cc3ccc(cc4nc(cc5ccc(cc1n2)[nH]5)C=C4)[nH]3$ and $c1ccc2nsnc2c1$.
 1753

1754 **Analytical Chemistry:**

1755

- 1756 (Wu et al., 2025) $CC(C)(C)c1cc2cc(C(C)(C)C)cc3c4cc(C(C)(C)C)cc5cc(C(C)(C)C)cc(c(c1)$
 1757 $c23)c54$ is a fluorescent material. Please explain the reason why it can emit light from the
 1758 perspective of molecular structure.
- 1759 (Guo et al., 2025b) $c1cc(-c2ccc3cc4cc(-c5ccncc5)ccc4cc3c2)ccn1$ and
 1760 $N#Cc1cc(C#N)c(C#N)cc1C#N$ can be co assembled into a eutectic and emit orange
 1761 light under photoluminescence. After the addition of $O=C(O)C(F)F$, the eutectic
 1762 will undergo a transformation, and the luminescence will change from orange light to yellow
 1763 light. Please explain the reason.

1764 **Polymer Chemistry:**

1765

- 1766 (Zhang et al., 2025a) $O=S(=O)(Oc1nc(=Cc2ccco2)c(OS(=O)(=O)C(F)F)F)nc1=Cc1ccco1)$
 1767 $C(F)F$ and $O=S(=O)(Oc1nc(=Cc2cccc2)c(OS(=O)(=O)C(F)F)F)nc1=Cc1cccc1)$
 1768 $C(F)F$ are monomers of two polymers that form polymers under
 1769 solid-state heating conditions. In addition, it was found that
 1770 $O=S(=O)(Oc1nc(=Cc2ccco2)c(OS(=O)(=O)C(F)F)F)nc1=Cc1ccco1)C(F)F$ is
 1771 relatively more prone to dimerization when heated in the solution. Please infer the reason by
 1772 comparing their structures.
- 1773 (Rugh et al., 2025) Under certain conditions, $C[Si]1(C)OCCOCCO1$ can undergo anionic
 1774 ring opening polymerization to obtain polymers, which exhibit extremely high ionic conduction
 1775 in lithium battery electrolytes, surpassing poly (ethylene oxide). Please analyze the
 1776 reasons from a structural perspective.

1777 **J MORE EXAMPLES OF RELIABLE HUMAN-AI COLLABORATION**

1778 Figure 17 illustrates a conversation starting from the same turn as that illustrated in the main text.
 1779 In this conversation, we focus on fully understanding the mechanism of the oxygen evolution
 1780

1782
 1783
 1784 **Turn1:** What is oxygen evolution reaction (OER)? Please propose a reasonable mechanism of heterogeneous OER under acidic conditions.
 1785 <think>
 1786 To derive the answer, one starts by defining the oxygen evolution reaction (OER) as the electrochemical process that converts water into molecular oxygen, which is a critical
 1787 step in water splitting. Recognizing that OER can occur under both acidic and basic conditions, the focus is on the mechanism under acidic conditions, where the reaction
 1788 involves protons (H^+) and water molecules. The process is typically facilitated by a catalyst, often a transition metal oxide, which provides active sites for the reaction. The
 1789 mechanism is then broken down into several steps: first, the adsorption of water molecules onto the catalyst surface, followed by the formation of an intermediate species
 1790 such as an adsorbed hydroxyl group (OH^-) or a water-derived species. Subsequent steps involve the transfer of protons and electrons, leading to the formation of an oxygen-
 1791 oxygen bond, which is a key step in the reaction. Finally, the desorption of molecular oxygen (O_2) from the catalyst completes the cycle. This sequence of adsorption,
 1792 intermediate formation, bond formation, and desorption is consistent with the known electrochemical steps in OER under acidic conditions, and it is supported by experimental
 1793 observations and theoretical models.
 1794 </think>
 1795 <answer>
 1796 The oxygen evolution reaction (OER) is an electrochemical process that involves the conversion of water into molecular oxygen (O_2) and protons (H^+). In heterogeneous OER
 1797 under acidic conditions, the reaction typically occurs on a solid catalyst surface. The mechanism can be described as follows:
 1798 1. **Water adsorption**: Water molecules (H_2O) adsorb onto the catalyst surface.
 1799 2. **Proton transfer**: Protons (H^+) are transferred from the adsorbed water molecules to the catalyst surface, forming hydroxyl (OH^-) groups.
 1800 3. **Oxygen adsorption**: The hydroxyl groups further react to form adsorbed oxygen species (O^*), which are intermediates in the reaction.
 1801 4. **Oxygen evolution**: The adsorbed oxygen species combine to form molecular oxygen (O_2), which desorbs from the catalyst surface and enters the solution.
 1802 The overall reaction can be represented as:
 1803 $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$
 1804 </answer>
 1805 **Turn2:** Since you mentioned in your thinking that the formation of oxygen-oxygen bond is the key to the reaction, please give an intermediate that reflect the formation of
 1806 oxygen-oxygen bond and improve the mechanism you provided.
 1807 <think>
 1808 To incorporate the formation of the oxygen-oxygen bond into the mechanism, one starts by recognizing that this bond formation is a critical step in the oxygen evolution
 1809 reaction (OER). The process involves the generation of an adsorbed oxygen species (O) on the catalyst surface, which then undergoes a transformation to form an
 1810 intermediate that contains the oxygen-oxygen bond. This intermediate is typically represented as a peroxide-like species (OOH) or a superoxide-like species (O_2^-), depending
 1811 on the specific reaction conditions and the electronic properties of the catalyst. The formation of this bond is facilitated by the transfer of protons and electrons, which are
 1812 provided by the acidic environment and the catalyst, respectively. The stabilization of the intermediate is crucial for the subsequent steps, including the final desorption of
 1813 molecular oxygen (O_2) from the catalyst surface. By integrating these specific intermediates and their roles in the mechanism, one can clearly illustrate how the oxygen-oxygen
 1814 bond is formed and how it contributes to the overall OER process under acidic conditions.
 1815 </think>
 1816 <answer>
 1817 In the mechanism of the oxygen evolution reaction (OER) under acidic conditions, the formation of the oxygen-oxygen bond is a critical step. This bond formation occurs
 1818 through the generation of an intermediate species that contains two oxygen atoms. The specific intermediate formed depends on the reaction conditions and the catalyst used.
 1819 One possible intermediate is the peroxide species (OOH), which is formed when two hydroxyl groups (OH^-) undergo a coupling reaction. This coupling reaction involves the
 1820 transfer of an electron and a proton, leading to the formation of the peroxide bond ($O-O$).
 1821 Another possible intermediate is the superoxide species (O_2^-), which is formed when an oxygen atom (O) undergoes a one-electron reduction. This reduction can occur
 1822 through the transfer of an electron from the catalyst surface or from another oxygen species.
 1823 The formation of these intermediates is essential for the subsequent steps in the OER mechanism, including the final desorption of molecular oxygen (O_2) from the catalyst
 1824 surface. The stability and reactivity of these intermediates are influenced by factors such as the electronic properties of the catalyst and the reaction conditions (e.g., pH,
 1825 temperature).
 1826 </answer>

Figure 17: An example of reliable human-AI collaboration using ChemDFM-R. We draw inspiration from this conversation from Li et al. (2025a). This example illustrates a process of error detection and correction with the help of rationales.

1827
 1828
 1829 **Turn1:** I have used m-CPBA to convert the carbon-carbon double bond within the [H][C@]12CC[C@]3(CC[C@]1C)C(=O)C1=C[C@]4(C)CC[C@]1(C)C
 1830 [C@]4([H])C[C@]1([H])C@2C into an epoxide, and obtained chiral epoxide products with different ratios (d.r. = 5:1). Please propose possible reasons.
 1831
 1832 <think>
 1833 The reaction involves m-CPBA (meta-chloroperbenzoic acid) oxidizing a carbon-carbon double bond in a complex cyclic structure to form an epoxide. m-CPBA acts as an
 1834 electrophilic oxidizing agent, where the peracid's oxygen attacks the double bond, forming a cyclic transition state. The stereochemical outcome is influenced by the complex
 1835 cyclic framework's rigidity and steric factors. The double bond's geometry and the spatial arrangement of substituents around the double bond determine which face of the
 1836 alkene is more accessible to the electrophilic oxygen from m-CPBA. The complex cyclic system imposes constraints that favor one diastereomeric pathway over another, leading
 1837 to a 5:1 diastereomeric ratio. The chiral centers in the complex cyclic structure further influence the transition state energies, with one pathway being thermodynamically
 1838 favored due to reduced steric strain or optimal orbital overlap during the epoxidation process.
 1839 </think>
 1840 <answer>
 1841 The complex cyclic framework of the molecule and the steric factors around the double bond lead to a preferential attack by the oxidant on one face of the double bond,
 1842 resulting in a diastereomeric ratio of 5:1.
 1843 </answer>
 1844 **Turn2:** Please explain in detail how double bond's geometry and spatial arrangement of substituents around the double bond determine which face of the alkene is more
 1845 accessible.
 1846 <think>
 1847 The spatial arrangement of substituents around the double bond in the complex cyclic structure creates steric hindrance, which influences the accessibility of the alkene face to
 1848 the oxidizing agent. The complex cyclic framework imposes rigidity, restricting the approach of m-CPBA to one face of the double bond. Substituents such as methyl group
 1849 create steric bulk, favoring the less hindered transition state during epoxidation. Additionally, electronic factors, including the electron-donating or electron-withdrawing
 1850 nature of substituents, further modulate the reactivity of the alkene face. The combination of steric and electronic effects results in a preferential attack on the less congested
 1851 face, leading to the observed diastereomeric ratio of 5:1 in the epoxide products.
 1852 </think>
 1853 <answer>
 1854 The complex cyclic structure imposes steric constraints that influence the accessibility of the double bond to the oxidizing agent. The arrangement of substituents around the
 1855 double bond creates a situation where one face is more sterically accessible than the other, leading to a preference for the oxidizing agent to attack from that side, which is
 1856 reflected in the diastereomeric ratio of the resulting epoxide products.
 1857 </answer>

Figure 18: An example of reliable human-AI collaboration using ChemDFM-R. We draw inspiration from this conversation from Yao et al. (2025). This example illustrates a process of information completion.

1836 reaction (OER). Suppose, as a newbie, we are unable to determine the correctness of the answer.
1837 With the help of ChemDFM-R’s rationale, we could easily discover that the key step of the reaction
1838 mentioned in the rationale, which is “the formation of an oxygen-oxygen bond”, is absent in the
1839 answer. This could serve as a reminder that the answer could be incorrect, and drive us to further
1840 request the model to clarify this inconsistency. After this follow-up inquiry, the model provided a
1841 better answer.

1842 Figure 18 is a conversation about a reaction proposed in Yao et al. (2025). We first ask ChemDFM-R
1843 to explain the reason for the different ratios of the chiral epoxy products. Although the model’s
1844 answer is relatively broad, ChemDFM-R thoroughly analyzes the influence factors in its rationale,
1845 including the bond’s geometry and the spatial arrangement of substituents around the double bond,
1846 which is not included in the answer. With this information, we can further pursue the follow-up
1847 question and obtain an improved answer.

K LIMITATION AND FUTURE WORK

1851 In this work, we developed a chemical generalist reasoning model using atomized chemical knowl-
1852 edge enhancement and mixed-source distillation-based chemical rationale learning. Through both
1853 benchmark evaluations and human assessments, we demonstrated the strong potential of ChemDFM-
1854 R in solving chemical problems and supporting human–AI collaboration. The evaluations also
1855 revealed several limitations of our model, which can be summarized in three aspects.

1856 First, as shown in Section 4.1.1, the chemical rationale learning phase substantially enhances per-
1857 formance on molecule- and reaction-centric tasks but weakens general language abilities, especially
1858 numerical prediction abilities. This is mainly because our RL stage relies on rule-based methods to
1859 calculate rewards, which restricts the types of tasks we can use. Designing reward mechanisms better
1860 suited to chemical contexts and allowing a broader range of RL tasks will be an important direction
1861 for the improvement of ChemDFM-R.

1862 Second, results in Table 5 indicate that although our model produces concise and informative
1863 reasoning chains, which greatly improve its usability and friendliness in human–AI interactions, this
1864 conciseness can compromise analytical coverage. Achieving a better balance between maintaining
1865 concise reasoning chains and providing sufficiently diverse analyses could further enhance ChemDFM-
1866 R’s practical value in interactive settings.

1867 Finally, similar to general reasoning models, ChemDFM-R occasionally exhibits inconsistencies
1868 between its reasoning process and final answers. In chemistry, this includes both mismatches between
1869 reasoning steps and conclusions, and the use of incorrect chemical knowledge within the reasoning.
1870 Enhancing reward design to enforce consistency and incorporating stronger chemical supervision
1871 will be another key area for future improvement.

1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889