
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CHEMDFM-R: A CHEMICAL REASONING LLM EN-
HANCED WITH ATOMIZED CHEMICAL KNOWLEDGE

Anonymous authors
Paper under double-blind review

ABSTRACT

While large language models (LLMs) have achieved impressive progress, their
application in scientific domains such as chemistry remains hindered by shallow
domain understanding and limited reasoning capabilities. In this work, we fo-
cus on the specific field of chemistry and develop a Chemical Reasoning LLM,
ChemDFM-R1. We first construct a comprehensive dataset of atomized chemical
knowledge, ChemFG, annotating the presence of functional groups in molecules
and the changes of functional groups during chemical reactions, to enhance the
model’s understanding of the fundamental principles and internal logic of chemistry.
Then, we propose a mixed-source distillation method that integrates expertise in
atomized knowledge with general reasoning skills, followed by domain-specific
reinforcement learning to enhance chemical reasoning. Experiments on diverse
chemical benchmarks demonstrate that ChemDFM-R achieves cutting-edge perfor-
mance while providing interpretable, rationale-driven outputs. Further case studies
illustrate how explicit reasoning chains significantly improve the model’s reliability,
transparency, and practicality in real-world human-AI collaboration scenarios.

1 INTRODUCTION

With the remarkable capabilities and performance demonstrated by large language models
(LLMs) (Brown et al., 2020; Achiam et al., 2023; Team et al., 2023), the development of domain-
specialized LLMs has emerged as a popular approach to addressing complex problems (Hendrycks
et al., 2020; Chen et al., 2021; Wang et al., 2024). Specifically, many efforts focus on specializing
LLMs into scientific domains to build general-purpose scientific assistants (Zhao et al., 2025b; Zhang
et al., 2024a; Zhao et al., 2024; Zhang et al., 2025c; Tan et al., 2025) which could assist scientists
during their research through conversational human-AI interactions. However, given the inherent
complexity and high demand for reliability in the scientific domain, current models often struggle
with inadequate performance and limited interpretability, which significantly hinders their practicality.

Recently, great success has been achieved in constructing reasoning LLMs in the general do-
main (Jaech et al., 2024; Guo et al., 2025a; Team et al., 2025; Comanici et al., 2025). Beyond
enhancing overall model performance, the reasoning-before-answering pattern directly demonstrates
how and why the LLM arrives at the answer, thereby markedly improving the reliability and inter-
pretability of the LLM’s response. Through the generated rationale, people can confirm the correctness
of the answer or identify why the model makes mistakes. Therefore, reasoning-augmented LLMs
offer a new promising approach to addressing the aforementioned challenges in scientific-domain
LLMs, potentially enhancing their practical utility.

Currently, the research on reasoning LLMs has predominantly focused on general domains, such
as mathematics (Yang et al., 2024b; Shao et al., 2024) and programming (Zhu et al., 2024; Hui
et al., 2024). In contrast, the reasoning capability of existing LLMs remains highly limited in
scientific domains. There are two reasons that hinder current LLMs from excelling in scientific-
domain reasoning. 1) The understanding of domain knowledge remains superficial owing to the
shortage of in-depth enough training data. The advanced domain knowledge is typically insufficient
in general-purpose corpora, while even in current domain-specific corpora, the domain knowledge
is still shallow. Current domain-specific corpora (Taylor et al., 2022; Xie et al., 2023; Zhao et al.,

1The inference code, training datasets, and the model parameters will be open-sourced.
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2025b; Zhang et al., 2024a; Yu et al., 2024) often focus on literature text and high-level phenomena
and fail to conduct a proper breakdown into internal mechanisms and atomized knowledge points.
For example, in the field of chemistry, the types and positions of functional groups2 within molecules
fundamentally determine molecules’ properties and reactivities. However, instead of training on
functional-group-level knowledge, current chemical LLMs usually directly learn molecule-level
knowledge about properties and reactivities. The lack of atomized knowledge significantly constrains
the capacity of these models for providing high-quality rationales. 2) The intrinsic reasoning logic in
these domains differs significantly from that in mathematics and programming, making it difficult
for models to generalize relevant reasoning skills through training in general domains. This not
only prevents general-domain LLMs from performing high-quality reasoning in scientific domains,
but also introduces additional challenges for building domain-specific reasoning models, which
usually involve distillation before reinforcement learning. The common distillation method involves
gathering rationales from advanced reasoning LLMs, such as DeepSeek-R1 (Guo et al., 2025a) and
o3-mini (OpenAI, 2025b), and training student models using supervised finetuning. This process
assumes that the teacher LLM is capable of generating sufficiently reasonable rationales. However,
this assumption often fails to hold in the scientific fields, such as chemistry. Owing to the limited
understanding of atomized knowledge and chemical logic, even powerful general-domain reasoning
models will highly probably fail to generate accurate and in-depth reasoning for chemical problems.

In this work, we focus on addressing the two aforementioned challenges in the chemistry domain
and develop a chemical reasoning LLM, ChemDFM-R. Specifically, we consider the presence of
functional groups in molecules and the changes of functional groups during reactions to be atomized
knowledge points. We develop a toolkit to identify these features from molecules and reactions
and incorporate them into the domain pretraining corpus. The resulting corpus contains over 101
billion tokens from 12 million literature, 30 million molecules, and 7 million reactions. To equip the
model with the capability of chemistry-specific reasoning, we develop a mixed-source distillation
process that can take advantage of both the expertise in the carefully curated knowledge points and the
advanced reasoning capabilities of general LLMs. Domain-specific reinforcement learning is applied
after the distillation process to integrate different capabilities the model learned from corresponding
sources and further enhance the reasoning capability. The resulting model, ChemDFM-R, shows
promising reasoning capabilities as well as advanced performance in multiple chemical benchmarks
and can provide high-quality rationale, helping researchers deeply understand and verify its answer.
In short, the contributions of this work are threefold:

• We developed a toolkit to identify the functional groups of molecules and the changes of
functional groups during reactions. Using this toolkit, we built a 101-billion-token domain
pretraining corpus, ChemFG, which encodes atomized functional-group–level chemical
knowledge.

• We proposed a mixed-source distillation method to effectively initialize the model’s rea-
soning ability under limited resources by incorporating both expertise in functional-group
knowledge and distilled rationales. With subsequent reinforcement learning, we achieve a
chemical reasoning LLM, ChemDFM-R.

• Extensive experiments demonstrate the promising chemical reasoning capability of
ChemDFM-R. The created model achieves outstanding performance and manages to gener-
ate clear and rational rationales, which significantly boost the reliability and interpretability
of the final answer.

2 CHEMFG

In the field of chemistry, functional groups serve as the bridge between molecular structures, proper-
ties, and reactivities, making them one of the most critical intermediate reasoning steps in chemical
reasoning. As demonstrated in Figure 1, functional groups directly influence the properties of
molecules and determine the types of reactions that can take place. However, existing training
corpora of LLMs often lack detailed information on molecular functional groups, preventing models
from directly and precisely learning this atomized chemical knowledge. Therefore, we collect a

2A group of atoms in a molecule with distinctive chemical properties. Please refer to https://en.
wikipedia.org/wiki/Functional_group for more details.
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Figure 1: The influence of functional groups

Table 1: Data composition of ChemFG.

Type Sources #Entries #Tokens

Literature Internet 12M 79B

Molecules PubChem &
PubChemQC 30M 22B

Reactions USPTO-
FULL 7M 0.6B

functional-group-centered domain pretraining corpus, ChemFG, which consists of data from three
sources: literature, molecules, and reactions. The basic statistics of ChemFG are shown in Table 1
with details provided in Appendix A.1.

2.1 FUNCTIONAL GROUP IDENTIFICATION

Despite the Internet-scale publicly available molecule and reaction corpora, there are no existing
databases that describe the correspondence between functional groups and molecules or reactions.
To tackle this issue, we develop a functional group identification toolkit based on thermo library3

by extending its embedded SMARTS4 list from 83 types of functional groups to 241 and improving
its algorithms. With the help of the developed toolkit, we annotate the functional groups of all our
domain-pretraining molecule data. Further details are provided in Appendix A.2.

As for reactions, we annotate the changes of functional groups during reactions with the following
process. First, with the help of atom mapping annotations provided by the USPTO-FULL dataset, we
identify the reaction centers as the atoms that are involved in bond changes during reactions. Based
on these reaction centers and our functional group identification toolkit, we identify the functional
groups of the reactants that directly participate in the reaction and those of the product that directly
result from the reaction. Finally, the reaction can be described as a functional group transformation,
where reacting functional groups are converted into product functional groups. Besides functional
groups, there are other structural changes during reactions that are equally important, including ring
breaking, ring forming, and bond changes outside functional groups. Therefore, we also construct
tools to identify these changes in a similar manner.

2.2 QUALITY CONTROL

To ensure the annotation quality of functional groups, we hire three graduate-level chemical experts
to conduct manual inspections. Firstly, all the experts agree that the extended SMARTS list has
already covered the most common functional groups. For molecules, our tool’s annotation accuracy
of 100 random samples reaches 98%, with errors primarily due to corner cases such as rare functional
groups or complex interactions between functional groups and aromatic rings. For the annotation of
reactions, our tool achieves 89% accuracy when tested with 100 random samples. The errors mainly
arise from invalid reactions or wrong atom mapping annotations. Examples and analyses of the error
are demonstrated in Appendix A.3.

3 CHEMDFM-R

As outlined in Figure 2, the training pipeline of ChemDFM-R can be divided into two parts: 1)
Domain Pretraining and Instruction Tuning (§ 3.1), where the basic general LLM is trained with
atomized chemical knowledge; 2) Distillation and Reinforcement Learning (§ 3.2), where the model’s
chemical reasoning capability is enhanced.

3https://thermo.readthedocs.io/
4https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html, SMiles AR-

bitrary Target Specification, a normalized form of SMILES.

3
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b) Chemical Rationale Learning

a) Atomized Chemical Knowledge Enhancement 
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Figure 2: The overview of the training pipeline of ChemDFM-R.

3.1 ATOMIZED CHEMICAL KNOWLEDGE ENHANCEMENT

In this stage, our model mainly learns the atomized chemical knowledge to prepare itself with
“ingredients” to “cook” the chemical rationales. Specifically, we achieve that through domain
pretraining and instruction tuning.

Domain Pretraining. In domain pretraining, we leverage the 101-billion-token ChemFG corpus
introduced in Section 2 to familiarize our model with the knowledge related to functional groups. We
train our model from one of the most advanced general LLMs, Qwen2.5-14B (Yang et al., 2024a).
Considering that general knowledge is also vital for Chemical LLMs, we also incorporate a substantial
amount of general-domain pretraining data into our domain pretraining corpus to ensure that the
model retains its general capabilities as much as possible.

Instruction Tuning. The primary goal of instruction tuning is to teach the model how to analyze
the purpose and requirements of a given task and make proper use of the knowledge learned in
the pretraining phase. However, existing instruction tuning datasets in the field of chemistry are
typically derived from well-studied chemistry tasks and suffer from a severe lack of diversity of both
task varieties and instruction expressions. Therefore, we construct a new instruction tuning dataset
for ChemDFM-R based on the instruction tuning dataset of ChemDFM (Zhao et al., 2025b). To
improve the overall task and instruction diversity, we introduce numerous new chemistry-related tasks,
such as scientific paper QA, chemical property ordering, and reaction step prediction, and perform
instruction-rewriting to achieve an average instruction-entry ratio of 1:50. For detailed information
on the construction and composition of the instruction tuning dataset, please refer to Appendix B. To
maintain the general capabilities of our model, we mixed our chemical instruction tuning data with
general instruction tuning data in a 1:2 ratio. The Qwen2.5-14B model is finetuned for 2 epochs on
this mixed dataset after domain pretraining, resulting in the ChemDFM-I model.

3.2 CHEMICAL RATIONALE LEARNING

The primary goal of this stage is to teach the model how to reason with the atomized knowledge
it has acquired. Chemical reasoning requires a deep understanding of chemical principles and
logic, as well as the capability to apply them for analysis. These capabilities can not be learned or
induced from general-domain reasoning training. Therefore, we propose a chemical rationale learning
pipeline to specifically enhance the chemical reasoning capabilities of LLMs based on distillation
and reinforcement learning.
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Traditional Distillation with Answer

Traditional Distillation

Traditional Distillation with Answer and Functional Group (Ours)

Input: Question

Generated Rationale:
Starting from the bromo‐substituted bicyclic heterocycle, the reaction with the α‐chloroketone (CC(=O)CCl) under 
basic conditions in the presence of auxiliary reagents (including the carbamoyl derivative CN(C=O)C, cyclic ether 
solvent C1COCC1 and the acetate salts) generates a nucleophilic species that displaces the bromine atom; this 
substitution leads to the installation of a CH2COCH3 (acetylmethyl) side chain at the aromatic position, and detailed 
mechanistic steps involving activation, nucleophilic attack and subsequent stabilization yield the final product whose 
structure is best represented by the SMILES string NC1=NC2(CO1)c1cc(CC(=O)CH3)ccc1Oc1ncc(O)cc12.
Answer:
NC1=NC2(CO1)c1cc(CC(=O)CH3)ccc1Oc1ncc(O)cc12

Input: Question + Answer

Generated Rationale:
First, the starting heterocyclic structure is analyzed to identify the reactive sites, particularly noting the free hydroxyl 
group on the aromatic heterocycle which is a common nucleophilic center. Next, by considering the reactant 
containing the acetyl chloride fragment (indicated by CC(=O)CCl) along with other reagents that could activate the 
acyl group (such as CN(C=O)C and the acetate ion O=C([O-])[O-] with accompanying cations), we infer that an acyl 
transfer reaction is taking place. The free OH group likely attacks an activated acyl intermediate generated from 
CC(=O)CCl, with the assistance of base or nucleophilic catalysts present in the reagents, leading to the substitution of 
the hydroxyl hydrogen with an acylated chain. In this context, the acyl group is appended through an ethoxy linkage 
(OCC(C)=O), indicating that a two-carbon chain bearing an acetyl terminus is incorporated via nucleophilic 
substitution. Finally, integrating this transformation into the overall structure of the starting heterocycle preserves 
the ring systems while modifying the phenolic OH into the acyloxy ether linkage, consistent with the structure 
provided in the product.

Input: Question + Answer + Functional Group Information

Generated Rationale:
The reaction involves a phenol group (from the first reactant, NC1=NC2(CO1)c1cc(Br)ccc1Oc1ncc(O)cc12) and an 
aliphatic chloro-ketone (CC(=O)CCl). The phenol's hydroxyl group acts as a nucleophile, attacking the electrophilic 
carbon adjacent to the carbonyl in CC(=O)CCl via an SN2 mechanism. The chloride leaves as a leaving group, forming 
a new O-C bond between the phenolic oxygen and the acetyl-bearing carbon. This results in the substitution of the 
Cl atom in CC(=O)CCl with the oxygen from the phenol, generating an ether linkage (OCC(C)=O) attached to the 
aromatic ring. The ketone group (C=O) remains intact, and the bromine substituent on the aromatic ring is 
unaffected.

A hydroxy group with an aromatic 
ring attached + a chloro group > a 
ether group with an aromatic ring 
attached.

Question:

Answer:

FG Information:

Based on the provided reactants 
and reagents, can you 
determine the chemical 
structure of the resulting 
product?
Reactants: 
NC1=NC2(CO1)c1cc(Br)ccc1Oc1
ncc(O)cc12.CC(=O)CCl
Reagents: 
CN(C=O)C.C1COCC1.O=C([O-
])[O-].[K+].[K+].O.[Cl-].[Na+].O

Product:

NC1=NC2(CO1)c1cc(Br)ccc1Oc1n
cc(OCC(C)=O)cc12

Figure 3: Comparison of rationales generated by o3-mini
with and without additional input information. We mark the
correct analyses in the rationale as green, while the wrong
ones as red. For more examples and detailed analyses, please
refer to Appendix C.1.

Mixed-Source Distillation. We
leverage distillation to prevent the
early unstable cold start phase of
reinforcement learning. It could
illustrate the reasoning patterns to
the model and build up its basic
reasoning capabilities.

Specifically, the entries in the distilla-
tion dataset come from three sources,
each of which corresponds to part
of the abilities required for chemi-
cal reasoning: 1) the instruction tun-
ing dataset of ChemDFM-R (∼70%)
to maintain basic chemical knowl-
edge and prevent catastrophic forget-
ting; 2) pseudo-reasoning data de-
scribing the functional groups of in-
volved molecules or reactions (∼22%)
and highlighting vital intermediate
reasoning steps and functional group
analyses; 3) teachers’ rationales from
DeepSeek-R1 and o3-mini (∼8%)
which introduce general reasoning patterns to the model and initiate its reasoning capabilities.

To improve the quality and efficiency of the teacher’s rationales in the chemical domain, instead
of asking teacher models to generate rationales from scratch, we provide them with rich additional
information. Specifically, the teacher models are provided with the question instruction, the ground
truth answer, and the functional group information of the molecules and reactions in the question.
Comparison of the rationales generated by DeepSeek-R1 with and without the additional information
is illustrated in Figure 3. The rationales generated with full additional information are significantly
more valid and in-depth than the other two. More examples with detailed analysis of the rationale
generation are given in Appendix C.1. Moreover, to comprehensively assess the quality of our distilled
rationales, we sampled a small subset of them and conducted a quantitative human assessment. The
results are illustrated in Appendix C.2.

Similar to instruction tuning, we mix our mixed-source distillation dataset with general data in a
1:2 ratio. The general data are also sampled from multiple sources, where ∼92% of the entries
are sampled from the general data for instruction tuning of ChemDFM-R and ∼8% are from AM-
Deepseek-R1-Distill-1.4M (Zhao et al., 2025a). The ChemDFM-I model is finetuned for one epoch
on this mixed dataset.

Reinforcement Learning. After distillation, reinforcement learning (RL) is leveraged to further
enhance the reasoning capabilities of our model. The composition of the RL dataset is illustrated in
Figure 2, while more details of our reinforcement learning process are illustrated in Appendix D and
E.

4 EXPERIMENTAL RESULTS

We first evaluate ChemDFM-R with multiple baselines on benchmarks specifically designed for
assessing the chemical capabilities of LLMs (§ 4.1). Then, we validate the effectiveness of our
methods by ablation studies (§ 4.2). Finally, to highlight the importance and effectiveness of chemical
reasoning, we demonstrate its capability in facilitating reliable human-AI collaboration (§ 4.3).

4.1 BENCHMARK EVALUATION

We evaluate ChemDFM-R and the baseline models on two of the most popular and comprehensive
benchmarks specifically designed for assessing the chemical capabilities of LLMs: SciKnowE-
val (Feng et al., 2024) and ChemEval (Huang et al., 2024). Given the large number of tasks included

5
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Table 2: Benchmark results on SciKnowEval and ChemEval. “mol.” stands for “molecule” and
“react.” stands for “reaction”. Qwen-2.5-14B represent Qwen2.5-14B-Instruct. The numbers in the
table represent the average performance over five inference runs, with the values in parentheses
indicating the standard deviation. The best performance for each task is indicated using boldface. *
We use RPS (Peng et al., 2025) to balance the different scales of the scores on different tasks in the
ChemEval benchmark.

Model
SciKnowEval ChemEval*

text mol. react. all text mol. react. all

Qwen2.5-14B 77.0(0.11) 35.7(0.23) 72.1(0.24) 61.3(0.12) 79.6(1.43) 24.8(0.63) 46.8(1.81) 57.7(0.72)

ChemDFM-I 78.8(0.38) 50.6(0.40) 91.1(0.70) 69.7(0.23) 81.2(2.48) 68.4(3.56) 54.6(5.19) 70.7(1.10)

ChemDFM-R 76.7(0.18) 51.1(0.56) 93.8(0.37) 69.1(0.27) 78.3(2.38) 83.5(1.89) 58.5(2.61) 73.8(1.83)

in SciKnowEval (19 tasks) and ChemEval (36 tasks), to facilitate fair and clear comparison, we
categorized the tasks into three groups: text-centric, molecule-centric, and reaction-centric tasks.
Details of the task categorization are provided in the Appendix G.

4.1.1 PERFORMANCE COMPARISON WITH BASELINES
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Figure 4: The performance change for all the in-
dividual tasks in SciKnowEval and ChemEval be-
tween Qwen2.5-14B-Instruct, ChemDFM-I, and
ChemDFM-R.

First, we show the effectiveness of our train-
ing pipeline by comparing the performances
of ChemDFM-R with those of 1) Qwen2.5-
14B-Instruct (Yang et al., 2024a), which is
the general-domain instruction tuning model
of Qwen2.5-14B, and 2) ChemDFM-I, which
incorporates atomized chemical knowledge en-
hancement but precedes the stage of chemical
rationale learning. The quantitative results are
illustrated in Table 2, while examples of the
ChemDFM-R’s rationales are analyzed in Ap-
pendix F.

As showcased in Table 2, ChemDFM-R con-
sistently outperforms Qwen2.5-14B-Instruct on
both SciKnowEval and ChemEval, demonstrat-
ing that our specialization pipeline has success-
fully improved the model’s chemical capabil-
ities. Specifically, the performances on text-
centric tasks remain almost intact while those on
molecule-centric and reaction-centric tasks in-
crease significantly. This proves that our method
manages to improve the chemical capabilities of
LLM while largely maintaining its abilities in
understanding natural language.

Moreover, we also evaluated ChemDFM-I to il-
lustrate the contributions of the different stages
in our training pipeline. Results show that
the atomized chemical knowledge enhance-
ment stage consistently improves perfor-
mance across all task categories, while the chemical rationale learning stage further strengthens
performance on molecule- and reaction-centric tasks. We attribute this phenomenon to two factors.
First, the molecule- and reaction-centric tasks typically demand more domain-specific chemical
reasoning, such as molecular property prediction or retrosynthesis analysis. In contrast, text-centric
tasks rely more on natural language understanding, such as chemical named entity recognition and
literature question-answering. As a result, learning chemical reasoning over molecules and reactions

6
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Table 3: Benchmark results on SciKnowEval and ChemEval. “mol.” stands for “molecule” and
“react.” stands for “reaction”. The best performance for each task is indicated using boldface, while
the second-best is indicated using underline. * We use RPS (Peng et al., 2025) to balance the different
scales of the scores on different tasks in the ChemEval benchmark.

Model
SciKnowEval ChemEval*

text mol. react. all text mol. react. all

MolInst 69.4 38.4 41.7 55.0 47.3 15.6 8.9 29.1
ChemLLM-20B-DPO 73.6 38.4 88.1 62.1 64.5 25.4 17.5 42.2
ChemDFM-13B-v1.0 70.2 42.6 85.0 61.6 61.5 42.3 34.0 49.2
ChemDFM-8B-v1.5 72.2 45.6 86.9 63.9 26.7 12.6 18.3 21.1
ether0 38.7 33.7 66.0 39.8 9.4 14.3 11.2 11.0

GPT-4o 76.1 44.6 44.6 61.2 82.7 35.0 52.9 63.3
Qwen3-14B (no think) 76.5 34.5 80.2 61.4 81.5 25.4 26.9 53.1

DeepSeek-R1 80.1 30.8 83.0 62.2 81.2 19.7 47.9 57.6
Qwen3-14B (think) 86.6 40.8 88.5 69.9 79.0 24.7 40.7 55.7
o4-mini 81.3 57.0 97.3 74.0 78.4 60.7 53.6 67.3

ChemDFM-R 76.7 51.1 93.8 69.1 78.3 83.5 58.5 73.8

provides limited benefit to these text-focused tasks. Second, for the sake of answer verifiability, the
reinforcement learning tasks do not include purely text-based tasks, which may adversely affect the
model’s text reasoning ability. Incorporating text-related tasks into the RL stage through joint training
might help preserve performance on text-based tasks.

Furthermore, Figure 4 illustrates the performance changes across individual tasks. The results
clearly show that most tasks benefit from our training pipeline, especially the molecule-centric
tasks and reaction-centric tasks. Moreover, the two training stages provide complementary gains
across different tasks, enabling the final model to achieve superior results on a broader range of
tasks. Notably, among the tasks where ChemDFM-R does not surpass Qwen2.5-14B-Instruct, a
substantial proportion involves numerical prediction, such as Yield Extraction, Molecular Property
Calculation, and Product Yield Prediction. In fact, almost all the molecule-centric and reaction-
centric tasks where ChemDFM-R falls short of Qwen2.5-14B-Instruct are those involving numerical
reasoning and prediction. This pattern suggests that the numerical calculation and prediction abilities
of ChemDFM-R are relatively weak, highlighting a potential direction for further improvements.

4.1.2 PERFORMANCE COMPARISON WITH ADVANCED LLMS

To further demonstrate the prowess of ChemDFM-R, we compare it with three sets of models: 1)
existing chemical LLMs, including MolInst (Fang et al., 2024), ChemLLM (Zhang et al., 2024a),
ChemDFM (Zhao et al., 2025b), and ether0 (Narayanan et al., 2025); 2) advanced non reasoning
LLMs in the general domain, including GPT-4o (Hurst et al., 2024) and Qwen3-14B (no think) (Yang
et al., 2025); 3) advanced reasoning LLMs in the general domain, including DeepSeek-R1 (Guo et al.,
2025a), Qwen3-14B (think) (Yang et al., 2025), and o4-mini (OpenAI, 2025a). The experimental
results are illustrated in Table 3. For detailed performances of individual tasks and more evaluations
on FGBench (Liu et al., 2025b) and ChemCOTBench (Li et al., 2025b), please refer to Appendix G.

As shown in Table 3, ChemDFM-R significantly outperforms both the general-domain LLMs and
domain-specific LLMs of similar size, especially in the molecule-centric and reaction-centric tasks.
Specifically, on ChemEval, it even considerably surpasses Qwen3-14B, the next-generation model in
the same series as our base model Qwen2.5-14B. When compared to cutting-edge LLMs, ChemDFM-
R achieves better performance than GPT-4o and DeepSeek-R1, while demonstrating competitive
results relative to o4-mini on SciKnowEval. Considering the tiny size of our model, this result strongly
demonstrates the prowess of ChemDFM-R and the effectiveness of our specialization process.
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Table 4: Ablation study results on SciKnowEval and ChemEval. “No Thinking” denotes the data
source of the instruction-tuning dataset, “Pseudo” denotes the pseudo-reasoning data source, and
“Distilled” denotes the teacher’s rationale data source. The best performance for each task is indicated
using boldface. * We use RPS (Peng et al., 2025) to balance the different scales of the scores on
different tasks in the ChemEval benchmark.

Data Source for Distillation SciKnowEval ChemEval*

No Thinking Pseudo Distilled text mol. react. all text mol. react. all

✗ ✗ ✗ 77.7 49.9 94.2 69.2 76.4 70.9 59.9 70.4
✗ ✗ ✔ 75.5 49.6 87.9 67.2 72.0 68.8 63.6 68.9
✔ ✗ ✔ 77.4 50.6 92.4 69.1 78.0 83.1 61.8 74.5
✔ ✔ ✔ 76.8 52.0 94.5 69.5 80.3 84.5 61.3 75.8

4.2 ABLATION STUDY

We conducted two sets of ablation studies, which verify the two key components of ChemDFM-R’s
training pipeline, respectively: 1) atomized chemical knowledge enhanced domain pretraining (demon-
strated in Appendix H); 2) mixed-source distillation (demonstrated below).

To validate the effectiveness of our newly designed mixed-source distillation method, we conduct
an ablation study by gradually simplifying the composition of the distillation dataset. The results
are shown in Table 4. The results prove that the traditional distillation method (Row 2) struggles to
achieve positive impacts on performance in the chemical domain. It even underperforms the “zero”
method (Row 1) proposed by Deepseek-R1, where there is no distillation stage before reinforcement
learning. With the help of data sampled from the instruction-tuning dataset to maintain chemical
capabilities and knowledge (Row 3), the model’s performance gets boosted significantly. Moreover,
the pseudo-reasoning data further help the model to achieve higher performance (Row 4), which
corresponds to the final setting of our proposed mixed-source distillation method.

4.3 RELIABLE HUMAN-AI COLLABORATION

Another important advantage of ChemDFM-R’s reasoning capability is that it allows humans to verify
the correctness of answers, identify and correct errors, and discover new insights or perspectives.
This enables more practical, reliable, and flexible human-AI collaboration. In this section, we first
present human evaluation scores of the rationales generated by different reasoning models, which
highlight the advantages of ChemDFM-R in facilitating more practical, reliable, and user-friendly
human–AI interaction. We then demonstrate the prowess of ChemDFM-R in enabling reliable
human–AI collaboration through illustrative examples. Specifically, an example is showcased in
Figure 5, while more examples are illustrated in Appendix J.

4.3.1 HUMAN ASSESSMENT OF RATIONALE QUALITY

To assess the quality of rationales under practical situations, we constructed ten graduate-level
questions based on recent publications from several influential chemistry journals. The questions
cover different major subfields of chemistry, including organic chemistry, inorganic chemistry,
materials chemistry, analytical chemistry, and polymer chemistry. Then, different reasoning LLMs
are leveraged to solve these questions through human-AI interactions. Five graduate-level chemistry
experts were hired to evaluate these interactions across five dimensions. The evaluation results are
demonstrated in Table 5, while the questions and metrics are introduced in Appendix I. From these
results, we draw three main conclusions:

First, our model outperforms all baselines, including DeepSeek-R1, in both chemical correctness and
answer accuracy, indicating that it possesses a stronger grasp of chemical knowledge. In particular,
our model shows a clearer advantage on SMILES-related tasks, demonstrating a more precise
understanding of molecular structures.

Second, our model achieves significantly higher scores in effective information density. Unlike models
such as Qwen3-14B and DeepSeek-R1, which often generate extremely lengthy reasoning chains
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Table 5: Human assessment of the quality of rationales from different reasoning LLMs. Please
refer to Appendix I for the introduction of the five metrics and the detailed questions used in this
assessment. As the rationales of o4-mini are not accessible, we only use the answer provided by
o4-mini. All metrics are higher-is-better.

Models
Chemical Answer Analytical Reasoning Effective

Correctness Accuracy Coverage Coherence Information Density

ether0 1.56 1.60 1.40 1.76 1.56
DeepSeek-R1 4.10 3.88 4.34 4.42 3.62

Qwen3-14B (think) 3.56 3.92 4.24 3.98 3.00
o4-mini 3.94 3.96 3.84 4.16 4.12

ChemDFM-R 4.52 4.28 3.94 4.62 4.70

exceeding 1,000 tokens, our model produces concise yet informative reasoning. This considerably
reduces the burden on human users when verifying correctness or identifying errors.

Finally, our model performs slightly lower than Qwen3-14B and DeepSeek-R1 on analytical coverage.
This is partially because their extremely lengthy reasoning chains allow them to enumerate many
possible considerations. It is also true that our model commonly focuses on one or a few major
possibilities rather than adequately enumerating all potential factors. This highlights a productive
direction for future enhancement of our model’s analytical breadth.

4.3.2 PRACTICAL CASES OF HUMAN-AI COLLABORATION

Turn1: What is oxygen evolution reaction (OER)? Please propose a reasonable mechanism of heterogeneous OER under acidic conditions.

<think>
To derive the answer, one starts by defining the oxygen evolution reaction (OER) as the electrochemical process that converts water into molecular
oxygen, which is a critical step in water splitting. Recognizing that OER can occur under both acidic and basic conditions, the focus is on the
mechanism under acidic conditions, where the reaction involves protons (H+) and water molecules. The process is typically facilitated by a catalyst,
often a transition metal oxide, which provides active sites for the reaction. The mechanism is then broken down into several steps: first, the
adsorption of water molecules onto the catalyst surface, followed by the formation of an intermediate species such as an adsorbed hydroxyl group
(OH–) or a water-derived species. Subsequent steps involve the transfer of protons and electrons, leading to the formation of an oxygen-oxygen
bond, which is a key step in the reaction. Finally, the desorption of molecular oxygen (O2) from the catalyst completes the cycle. This sequence of
adsorption, intermediate formation, bond formation, and desorption is consistent with the known electrochemical steps in OER under acidic
conditions, and it is supported by experimental observations and theoretical models.
</think>
<answer>
The oxygen evolution reaction (OER) is an electrochemical process that involves the conversion of water into molecular oxygen (O2) and protons (H+).
In heterogeneous OER under acidic conditions, the reaction typically occurs on a solid catalyst surface. The mechanism can be described as follows:

1. **Water adsorption**: Water molecules (H2O) adsorb onto the catalyst surface.
2. **Proton transfer**: Protons (H+) are transferred from the adsorbed water molecules to the catalyst surface, forming hydroxyl (OH-) groups.
3. **Oxygen adsorption**: The hydroxyl groups further react to form adsorbed oxygen species (O*), which are intermediates in the reaction.
4. **Oxygen evolution**: The adsorbed oxygen species combine to form molecular oxygen (O2), which desorbs from the catalyst surface and enters
the solution.

The overall reaction can be represented as:

2H2O → O2 + 4H+ + 4e-
</answer>

Turn2: Since you mentioned that some transition metal oxides possess catalytic properties, can you recommend some specific metal oxides in detail?

<think>
To determine which transition metal oxides exhibit catalytic properties for the oxygen evolution reaction (OER), one considers the electronic structure
and surface reactivity of these materials. The oxides of metals such as iridium (Ir), ruthenium (Ru), and cobalt (Co) are known to be effective
catalysts due to their favorable electronic properties and ability to stabilize reaction intermediates. Iridium oxide (IrO2) is particularly notable for
its high activity and stability under acidic conditions, making it a widely used catalyst in OER applications. Ruthenium oxide (RuO2) also
demonstrates excellent catalytic performance, while cobalt oxide (Co3O4) has been explored for its cost-effectiveness and moderate activity. These
metal oxides are incorporated into electrochemical cells, where they facilitate the adsorption of water molecules, the formation of oxygen-
containing intermediates, and the subsequent bond formation leading to O2 evolution. The selection of these materials is supported by extensive
experimental data and theoretical calculations that highlight their ability to enhance the efficiency of the OER process.
</think>
<answer>
Some transition metal oxides that possess catalytic properties for the oxygen evolution reaction (OER) include iridium oxide (IrO2), ruthenium oxide
(RuO2), and cobalt oxide (Co3O4). These metal oxides are commonly used as catalysts in electrochemical cells for water splitting and other
applications. They exhibit high catalytic activity under acidic conditions, making them suitable for OER. The catalytic activity of these metal oxides is
attributed to their electronic structure and ability to stabilize reaction intermediates during the OER process.
</answer>

Turn3: I noticed that you mentioned iridium oxide (IrO2) is particularly notable, but iridium, as a noble metal, is relatively expensive. Can you devise a
plan to reduce the cost while still maintaining good catalytic activity?

<think>
To address the high cost of noble metal catalysts like iridium oxide while maintaining catalytic activity, one can explore strategies that reduce their
usage or enhance their efficiency. One approach involves incorporating these metals into composite materials, where they are combined with
cheaper transition metal oxides such as cobalt or nickel. By forming mixed metal oxides or heterostructures, the expensive metals can be
distributed more efficiently, leveraging their catalytic properties while minimizing their overall amount. Additionally, optimizing the morphology
and surface area of the catalysts, such as by creating nanostructures or thin films, can increase the active sites available for the reaction, thereby
enhancing performance without requiring larger quantities of the noble metals. Furthermore, doping or alloying these metals with other elements
can modify their electronic properties, improving their catalytic activity and reducing the necessary loading. These strategies collectively aim to
balance cost-effectiveness with catalytic efficiency in the oxygen evolution reaction.
</think>
<answer>
To reduce the cost of iridium oxide (IrO2) while maintaining good catalytic activity, one approach is to incorporate it into a composite material with a
less expensive metal oxide, such as cobalt oxide (Co3O4) or nickel oxide (NiO). This composite material can exhibit enhanced catalytic properties due
to the synergistic effects between the two metal oxides. Another strategy is to optimize the morphology and surface area of the catalyst, which can
improve its activity and reduce the amount of IrO2 required. Additionally, doping IrO2 with other metal ions, such as iron (Fe) or manganese (Mn),
can modify its electronic properties and enhance its catalytic performance. These approaches can help reduce the cost of IrO2 while still achieving
good catalytic activity for the oxygen evolution reaction (OER).
</answer>

Figure 5: An example of reliable human-AI collaboration
using ChemDFM-R. This conversation is inspired by Li et al.
(2025a). This example illustrates a process of research inspi-
ration seeking with the help of ChemDFM-R.

To make our example more realistic,
we design our conversation topic ac-
cording to a newly published chemi-
cal research paper, Li et al. (2025a).
It is worth noticing that this paper
was published in 2025, so it is impos-
sible for ChemDFM-R to encounter
this paper during either the pretrain-
ing of the base model, Qwen2.5-
14B, or our domain-pretraining pro-
cess. To demonstrate the potential of
ChemDFM-R, we assume the role of
a researcher seeking a new research
inspiration and engage the model in a
dialogue about the subfield to which
this paper belongs.

First, as a researcher seeking inspi-
ration, we ask ChemDFM-R to in-
troduce the oxygen evolution reac-
tion (OER) briefly, including the defi-
nition and mechanism of it. Although
the answer itself is a relatively rigid re-
sponse to the question, the model’s ra-
tionale reveals interesting insights. In
its rationale, ChemDFM-R mentions
that OER requires a transition metal
oxide catalyst, which often presents
valuable opportunities for further re-
search. Therefore, we further ask it
to give more detailed recommenda-
tions for the catalysts. As a response,
ChemDFM-R proposes multiple dif-
ferent oxides, which is a wide range
for us to dig into. However, in its rationale, ChemDFM-R itself says that “iridium oxide (IrO2) is
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particularly notable for its ...”, which is very inspiring. Since it is well known that iridium-based
compounds are often very expensive, a natural follow-up question arises: how can we optimize this
catalyst to reduce its cost while maintaining its catalytic performance? Surprisingly, ChemDFM-R
manages to propose the initial ideas that align closely with the ideas presented in Li et al. (2025a),
“forming mixed metal oxides or heterostructures” and “optimizing the morphology and surface area
of the catalysts”. At this point, a broad research direction has taken shape.

It is worth noticing that nearly all the inspirations are drawn from the rationale of ChemDFM-R,
which demonstrates the significance and value of ChemDFM-R’s ability to generate reasoning.
This example shows that, with the enhanced chemical knowledge and strong chemical reasoning
capabilities, ChemDFM-R has the potential to facilitate reliable human-AI collaboration, thereby
advancing AI-driven research and applications. More examples involving error correction and answer
improvement with the help of rationales are demonstrated in Appendix J.

5 RELATED WORK

General Domain Reasoning LLMs. Shortly after the emergence of LLMs, their remarkable
reasoning capabilities were discovered by Kojima et al. (2022) and explored by works such as
ToT (Yao et al., 2023) and PAL (Gao et al., 2023). Recently, OpenAI-o1 (Jaech et al., 2024) followed
by DeepSeek-R1 (Guo et al., 2025a) and Kimi K1.5 (Team et al., 2025) demonstrated the prowess
of reasoning models and the method to enhance LLMs’ reasoning capabilities using reinforcement
learning-based pipelines. Subsequently, many studies have focused on improving the reasoning
capabilities of models in various general domains, primarily in mathematics and coding. For example,
Shao et al. (2024) and Zhang et al. (2024b) have further proven and discussed the effectiveness of
reinforcement learning in terms of enhancing models’ reasoning capabilities, while Dou et al. (2024)
and Zhang et al. (2025d) have explored better reward functions in mathematics and coding.

Chemical LLMs. The specialization of LLMs has become one of the most popular research
areas after the emergence of general-use LLMs, including the development of chemical LLMs.
LlaSMol (Yu et al., 2024) and Mol-Instruct (Fang et al., 2024) construct a chemical instruction
tuning dataset and develop models that could excel in multiple chemical tasks, while extensive
training with only chemical tasks has led to a substantive loss of natural language capabilities and
task generalization ability in these models. Shortly after, Zhang et al. (2024a) leveraged high-quality
instruction tuning and developed ChemLLM, which has acquired advanced chemical capabilities
while retaining a considerable level of general language abilities. Furthermore, ChemDFM (Zhao
et al., 2025b) achieved stronger chemical and generalization capabilities through domain pretraining
and instruction tuning with both chemical data and general-domain data. It is worth noticing that the
data used in previous work overlooks the intrinsic chemical essence, which is crucial for LLMs to
master reasoning with chemical intuition and principles. To tackle this issue, we construct a function-
group-centric domain pretraining corpus to introduce such atomized chemical knowledge to LLMs.
Recently, there has been pioneering work building chemical reasoning models for specific tasks, such
as RetroDFM (Zhang et al., 2025b) for retrosynthesis and multi-task specialist ether0 (Narayanan
et al., 2025). Although their models exhibit strong reasoning capabilities and favorable performance
on the training tasks, they often lack generalization ability. Consequently, they cannot accommodate
the complex scenarios and demands that arise in real human–AI interactions, making it difficult for
them to meet the requirements of a practical chemistry research assistant.

6 CONCLUSION

In this work, we have developed a chemical reasoning LLM, ChemDFM-R, by tackling both the
limitations in understanding atomized chemical knowledge and the domain-specific reasoning logic.
By incorporating atomized knowledge about molecular functional groups and their changes during
reactions into the pretraining corpus, and applying a mixed-source distillation approach before
reinforcement learning, we have enhanced the model’s ability to reason efficiently and effectively
in chemistry. Our extensive experiments demonstrate that ChemDFM-R significantly improves
chemical problem-solving and reasoning capabilities, making it a valuable tool for facilitating reliable
human-AI collaboration in chemistry and advancing AI-driven research and applications.
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Therefore, they should not be regarded as authorship or substantive contribution.
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A DETAILS ABOUT CHEMFG

A.1 RAW DATA COLLECTION

Literature. Literature, including papers and textbooks, contains not only the widely accepted
chemical knowledge and principles, but also the cutting-edge research in the field of chemistry.
Therefore, to take full advantage of chemical literature, we collected over 12 million literature from
the open Internet dated prior to January 2022. After further cleaning and deduplication, 79B tokens
are obtained from it.

Molecules. Molecules are the fundamental participants in various chemical processes. Therefore,
it is crucial for Chemical LLMs to understand molecular structures and properties. We manage to
acquire large-scale molecule datasets from PubChem5, one of the biggest open accessible chemical
databases with more than 100M compounds. We include 30 million molecules along with their
notations, descriptions (if applicable), and properties. Besides PubChem, we also leverage the
PubChemQC (Nakata & Shimazaki, 2017) dataset, which contains the quantum chemical calculation
results of 86M molecules from PubChem, to supplement the quantum chemical properties of these
molecules, such as dipole moment and orbital energy. To diversify the final data entry, we randomize
the order of the properties and use three different formats: markdown list, markdown table, and JSON
dictionary to formulate the molecule data.

Reactions. Reactions are the major process in the chemical world. In ChemFG, we use the reactions
from USPTO-FULL (Dai et al., 2019), one of the most comprehensive open-sourced chemical reaction
databases. To avoid data leakage, we exclude the test set of USPTO-FULL, USPTO-MIT (Jin et al.,
2017), and USPTO-50K (Schneider et al., 2016) according to the products of reactions. Moreover, to
further enhance the data diversity, we leverage the SMILES (Simplified Molecular Input Line Entry
System) augmentation method introduced in R-SMILES (Zhong et al., 2022) and achieve a total of
10 times augmentation of data. Finally, a corpus of 7 million reactions is obtained.

A.2 FUNCTIONAL GROUPS COVERAGE

The functional groups that can be recognized by our toolkit are categorized based on the heteroatoms
and listed as follows:

• Hydrocarbon Groups (7): alkene, alkyne, allene, cumulene, carbocation, carbanion,
carbene.

• Boron Groups (6): borane, boronic acid, boronic ester, borinic acid, borinic ester, borate
ester.

• Oxygen Groups (36): alcohol, alkoxide, ether, phenol, phenolate, enol, enolate, enol ether,
alkynol, alkynolate, alkynol ether, ketone, ketene, aldehyde, hemiketal, hemiacetal, ketal,
acetal, carboxylic acid, carboxylate, ester, organic acid anhydride, carboxylic anhydride,
organic carbonate, organic hydroperoxide, organic peroxide, peroxyacid, ortho ester, ortho-
carbonate ester, methylenedioxy, ethylenedioxy, oxonium ion, oxocarbenium ion, carbonyl
ylide, oxonium ylide, epoxy.

• Nitrogen Groups (62): primary amine, secondary amine, tertiary amine, ammonium cation,
quat, amine oxide, enamine, hydroxylamine, hemiaminal, hemiaminal ether, thioaminal,
thioaminal ether, aminal, primary ketimine, secondary ketimine, primary aldimine, sec-
ondary aldimine, amidine, guanidine, ketoxime, aldoxime, hydrazone, organic amide, ami-
date anion, imide, carbamic acid, carbamate ester, carbamate anion, azide, azo, hydrazine,
acylhydrazine, amidrazone, cyanate, isocyanate, nitrile, isonitrile, cyanamide, carbodiimide,
nitrate ester, nitrite ester, nitro, nitroso, nitrosamine, iminium cation, nitrone, nitronic
acid, imidic acid, imidate anion, imidate, imidocarbonate, imidocarbamate, urea, azoxy,
N-oxoammonium, hydroxamic acid, hydroxamate, azanide, azomethine ylide, nitrile ylide,
isodiazene, nitronate.

5https://pubchem.ncbi.nlm.nih.gov/
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• Sulfur Groups (85): mercaptan, thiolate anion, organic sulfide, thioenol, enedithiol, thioeno-
late, thioenol ether, persulfide anion, organic disulfide, sulfenic acid, sulfenic ester, sulfe-
namide, sulfoxide, sulfone, sulfine, sulfene, sulfinylamine, sulfur diimide, sulfinic acid,
sulfonic acid, sulfinate ester, sulfonate ester, sulfinate anion, sulfonate anion, thiosulfi-
nate, thiosulfonate, thiosulfurous ester, dithiosulfurous ester, thiosulfuric ester, organosulfite,
organosulfate, dialkylsulfates, sulfinamide, sulfonamide, sulfamic acid, sulfamate, sulfamide,
thiocyanate, isothiocyanate, thioketone, thioketene, thial, thioamide, thiourea, hemithioketal,
hemithioacetal, dithiohemiketal, dithiohemiacetal, monothioketal, monothioacetal, dithioke-
tal, dithioacetal, carbothioic S-acid, carbothioic O-acid, thiol form thiocarboxylate, thione
form thiocarboxylate, thiolester, thionoester, carbodithioic acid, carbodithioic anion, car-
bodithioic ester, monothiocarbonate, xanthic acid, xanthate, xanthate anion, dithiocar-
bonate, trithiocarbonate, O-thiocarbamic acid, S-thiocarbamic acid, O-thiocarbamate, S-
thiocarbamate, O-thiocarbamate anion, S-thiocarbamate anion, thioimidic acid, thioimidate
anion, thioimidate, dithiocarbamic acid, dithiocarbamate, dithiocarbamate anion, imidoth-
iocarbonate, imidodithiocarbonate, imidothiocarbamate, sulfonium ion, sulfonium ylide,
sulfoxonium ylide.

• Silicon Groups (5): silane, siloxane, silyl ether, silyl enol ether, silyl alkynol ether.

• Phosphorus Groups (17): phosphine, phosphonium, aminophosphine, phosphine oxide,
phosphinic acid, phosphinate, phosphonic acid, phosphonate, phosphite ester, phosphinite,
phosphonite, phosphodiester, phosphate mono-ester, phosphate tri-ester, phosphoramide,
thiophosphate, phosphonium ylide.

• Halogen Groups (14): fluoro, chloro, bromo, iodo, halamine, sulfenyl halide, sulfinyl halide,
sulfonyl halide, halosulfate, phosphoryl halide, phosphorus halide, acyl halide, imidoyl
halide, thioacyl halide.

• Organometalic Groups (5): organolithium, organomagnesium, organoaluminium, organoz-
inc, organomercury.

• Aromatic (4): pyrrolic N, pyridinic N, aromatic O, aromatic S.

The occurrence of these functional groups in the domain-pretraining corpus is shown in Figure 6.

A.3 QUALITY CONTROL

To validate the correctness of our functional group identification toolkit, we hired three graduate-level
chemical experts to conduct manual inspections. Specifically, we sampled 100 annotated molecules
and reactions, respectively, and asked the experts to determine whether the annotations were correct.
Results show that our functional group identification toolkit achieves 98% accuracy rate on molecules
and 89% on reactions. Examples of the errors are demonstrated in Figure 7.

B INSTRUCTION TUNING DATASET

B.1 RAW DATA COLLECTION

Our instruction tuning dataset is constructed of three parts corresponding to the three main information
carriers in chemistry: molecule-centric tasks, reaction-centric tasks, and knowledge-centric tasks.
The distribution of instruction tuning data is shown in Figure 8.

B.1.1 MOLECULE-CENTRIC TASKS

• Name Translation: The name translation between SMILES, IUPAC name, and molecular
formula. The data is constructed from PubChem6.

• Description Generation: The molecule description task is to describe the molecule given its
SMILES. The data is constructed from PubChem. We only use the high-quality descriptions
that contain more than two sentences.

6https://pubchem.ncbi.nlm.nih.gov/
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Molecule Labeling Error 1:

Correct Label: alkene, organoborane, 
boron chloride

Our Annotation: alkene

Molecule Labeling Error 2:

Correct Label: (Unstable structure) 
iodo, pyrrolic N, aromatic S, amide, 
amidine

Our Annotation: iodo, pyrrolic N, 
aromatic S

Reaction Labeling Error 1:
Correct Label: an olefin with an aromatic ring attached; an 
ester; a hemiketal; a breakable aliphatic ring + inorganic NN >> 
an amide; an imine; a new aromatic ring

Our Annotation: an olefin with an aromatic ring attached; an 
ester; a hemiketal; a breakable aliphatic ring + inorganic NN >> 
an aliphatic O atom; a new aromatic ring

Reaction Labeling Error 2:
Correct Label: Error Reaction

Our Annotation: an aliphatic C atom with three O atoms 
attached + an aliphatic C atom with an olefin group attached 
>> a carboxylic acid; a new C - C bond

Figure 7: Examples of the error annotations of our functional group identification toolkits.

• Molecule Design: The molecule design task is the reverse task of molecule description. It
requires the model to predict the SMILES given the molecule description. We use the same
high-quality description data from PubChem to construct this task.

• Property Classification: These tasks require models to predict the value of molecular
properties from a list of candidates (usually yes and no). The data is constructed from 5 of
the most popular property classification datasets in MoleculeNet (Wu et al., 2018), namely
BACE, BBBP, ClinTox, HIV, and Tox21.

• Property Regression: These tasks require the models to predict the value of molecular
properties, which is a real number. Data are also from MoleculeNet, namely FreeSolv, Lipo,
and QM9.

• Property Ordering: Provided a list of molecules, models are asked to rank them in
ascending or descending order of some specific property. Raw data comes from the same
source as property regression.

• Property Selection: Provided a list of molecules, models are asked to select the one with
the highest or lowest value of some specific property. Raw data comes from the same source
as property regression.

B.1.2 REACTION-CENTRIC TASKS

• Reaction Completion: Given an incomplete reaction, models need to complete the missing
reactants, reagents, or products. Raw data comes from USPTO-Full (Dai et al., 2019),
USPTO-MIT (Jin et al., 2017), and USPTO-50K (Schneider et al., 2016).

• Step Prediction: Given a reaction, models are required to predict the experimental procedure
to conduct it in the laboratory. Raw data comes from USPTO (Dai et al., 2019).

• Yield Prediction: In this task, models are required to predict the yield of the given reactions.
The data is constructed from the USPTO dataset.

• Temperature Prediction: In this task, models are required to predict the temperature that is
suitable for the given reactions to conduct. The data is constructed from the USPTO dataset.

• Reaction Component Selection: In this task, a series of reactants and reagents is given
with a list of candidate molecules. Models need to pick from the candidates the molecules
that could participate in the reaction and lead to the highest yield. The data is constructed
from the USPTO dataset.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.1.3 KNOWLEDGE-CENTRIC TASKS

• Exam Questions: This task is composed of questions from the exams in middle school and
high school. Raw data comes from the Open Internet.

• Literature QA: In this task, models are required to answer questions based on the given para-
graph. The data is extracted from the long paragraph following the method in SciQAG (Wan
et al., 2024). The raw data comes from the articles in the domain-pertaining. The articles
are split into sections and then truncated into paragraphs within 2k to 3k tokens. We ask
GPT-4o-mini to extract 15 keywords from each paragraph, then generate 10 question-answer
pairs according to them. We adopt another LLM, Qwen2.5-14B-Instruct, to evaluate the
quality of the QA pair in 4 dimensions: completeness, accuracy, reasonableness, and agnos-
ticism. The LLM will score the QA pair from 1 to 5 using the designed prompts. QA pairs
with any scores below 5 are discarded. If there are more than 1 QA pair left, the questions
are asked in conversation turns.

• Literature Summarization: In this task, models are required to give a summarization of the
paragraph. The summarization is generated from GPT-4o-mini from the paragraph sample.

• Literature Translation: In this task, models are required to translate the English paragraph
into Chinese. The translation is generated from GPT-4o-mini from the paragraph sample.
Since the source data consists of OCR text extracted from English articles, which is inher-
ently noisy, we decided to discard the reverse task of translating Chinese paragraphs into
English.
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Figure 8: The distribution of instruction tuning data.

B.2 INSTRUCTION GENERATION

To acquire a higher generalization capability, we adopt a two-stage process to obtain as diverse a set
of instructions as possible for each task. Specifically, based on the number of data entries for each
task, we first manually write 5-20 seed task descriptions accordingly. Then, we ask three different
models, Qwen2.5-72B-Instruct, Llama-3.1-70B-Instruct, and GPT-4o-mini, to diversify these task
descriptions. Specifically, during each request, we sample 5 descriptions from all the generated
descriptions and ask the model to generate 10 new descriptions using 5 different prompts one by
one. Following this, we append to each of the descriptions the instructions that introduce the input of
each data entry by a formatted string of Python and ask GPT-4o-mini to further diversify them. As
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Traditional Distillation with Answer

Traditional Distillation

Traditional Distillation with Answer and Functional Group (Ours)

Input: Question

Generated Rationale:
The compound’s IUPAC name specifies a tetracyclic structure with a 7,15‐diaza 
tetracyclo[7.7.1.0^2,7.0^10,15]heptadecan backbone, featuring a ketone at position 6 and hydroxyl groups at 
positions 5 and 12; recognition of these functional groups, along with the indicated stereochemical configurations 
(1S,2R,5S,9S,10S,12S), leads to its identification as the natural product Pearsonine isolated from Pearsonia cajanifolia, 
and by mapping the four fused rings, incorporating the two nitrogen atoms, the carbonyl group, and the two 
hydroxyl substituents, a SMILES string was constructed with explicit stereochemistry to yield the final result.
Answer:
O=C1[C@@H]2CN(C[C@H](O)1)[C@@H]3CCN(C2)[C@H](O)C3

Input: Question + Answer

Generated Rationale:
The process begins by interpreting the IUPAC description, where the molecule is defined with a tetracyclic diaza 
framework and specific stereochemistry noted as (1S,2R,5S,9S,10S,12S), indicating the configuration of each chiral 
center, and contains two hydroxyl groups and one ketone functionality, which must be accurately placed in the 
resulting structure. Next, by analyzing the tetracyclic core given by the descriptor 
diazatetracyclo[7.7.1.02,7.010,15]heptadecan, one identifies the ring connectivity and the positions where 
heteroatoms (nitrogens) and functional groups (OH and C=O) are introduced in the scaffold. Standard SMILES 
notation requires the use of chiral descriptors such as [C@@H] or [C@H] to indicate the absolute configuration at 
each carbon, and ring closure numbers to denote the cycles correctly. By systematically assigning the atoms, 
ensuring that the ketone is placed at position 6 (as indicated by '6-one'), and incorporating the two hydroxyl 
substitutions at positions corresponding to 5 and 12, the connectivity is mapped following the lengths of carbon 
chains and ring junctures. In addition, the presence of nitrogen atoms in the diaza structure requires correct 
attachment without disrupting the stereochemical centers. Finally, converting the complete 3D structural 
information into a linear SMILES string involves careful tracking of ring closures and stereochemical markers, leading 
to the final notation that aligns with all the given criteria.

Input: Question + Answer + Functional Group Information

Generated Rationale:
To derive the SMILES notation, one begins by examining the molecule’s systematic name and recognizing it describes 
a complex fused tetracyclic structure with specific stereochemistry indicated by (1S,2R,5S,9S,10S,12S). The process 
involves deciphering the ring system described as tetracyclo[7.7.1.02,7.010,15]heptadecanone, which informs the 
arrangement of the four fused rings and the connectivity of the bridgehead atoms. Next, the presence and positions 
of functional groups such as the dihydroxy substituents (at carbons 5 and 12) and the ketone group (at carbon 6, 
denoted by O=C) are identified and mapped onto the core structure. Additionally, the molecule contains two 
nitrogen atoms (as indicated by diaza at positions 7 and 15), which are incorporated into the cyclic system in place of 
carbon atoms; proper placement of these heteroatoms is key. After delineating these groups and establishing the 
connectivity of the cyclic systems, one assigns stereochemical configurations using the chiral markers “@” and “@@” 
according to the IUPAC configuration rules to reflect the specified S and R configurations accurately. Finally, using 
SMILES conventions, the structure is linearized into a string that preserves ring closures, functional groups, 
heteroatoms, and stereochemistry, resulting in the complete SMILES notation for the complex natural product.

Can you identify a molecule that 
fits the following criteria? What is 
the most likely substance?
Description: 
(1S,2R,5S,9S,10S,12S)-5,12-
dihydroxy-7,15-
diazatetracyclo[7.7.1.02,7.010,15]
heptadecan-6-one is a natural 
product found in Pearsonia 
cajanifolia with data available.
SMILES:

Two hydroxy groups, an amide 
group, and a tertiary amine group

Question:

Answer:

FG Information:

O=C1[C@@H](O)CC[C@@H]2[C@
H]3C[C@@H](CN12)[C@@H]1C[C
@@H](O)CCN1C3

Figure 9: Comparison of rationales generated by o3-mini with and without additional input informa-
tion. We mark the correct analyses in the rationale as green, while the wrong ones as red.

a result of the above diversification process, we constructed a number of instructions equivalent to
approximately 2% of its total data volume for each task. In other words, each instruction appears
around 50 times in the instruction-tuning dataset.

C QUALITY CONTROL OF THE DISTILLATION RATIONALE GENERATION

C.1 COMPARISON OF RATIONALES GENERATED BY TEACHER MODELS

As shown in Figure 3, 9, and 10, the rationales generated using our method exhibit distinct advantages
in terms of accuracy, completeness, and logicality.

The advantage in accuracy is mainly reflected in Figure 3. In Figure 3, o3-mini completely
misunderstands the chemical reaction that occurs between the given molecules. This might result
from its incorrect identification of the reagents and the structure of the complex reactants (these errors
are also reflected in the rationales). When given the correct answer, o3-mini still mistakenly identified
chloro-ketone as acyl chloride and consistently adhered to this error throughout the reasoning process,
resulting in a series of related structural inaccuracies. On the contrary, when the functional group
information is provided, o3-mini manages to generate a near-perfect rationale with zero error.
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Traditional Distillation with Answer

Traditional Distillation

Traditional Distillation with Answer and Functional Group (Ours)

Input: Question

Generated Rationale:
The molecule with the lowest octanol/water distribution coefficient (log D) is the most hydrophilic. The second 
SMILES string contains a phenol group (O-), which is highly polar due to its hydroxyl group capable of hydrogen 
bonding, and an amide group (C(=O)N) that enhances water solubility through hydrogen bonding. Additionally, the 
presence of an ether group (CCOCC) contributes to polarity. The other options feature more hydrophobic 
substituents like methyl groups (Cc), thioether (SCC), and fewer hydrogen-bonding groups, increasing their log D 
values. The combination of phenol, amide, and ether in the second molecule maximizes hydrophilicity, leading to the 
lowest log D.
cAnswer:
Oc1nnc(Cc2cccc(c2)C(=O)N3CCOCC3)c4ccccc14c

Input: Question + Answer

Generated Rationale:
To determine the molecule with the lowest octanol/water distribution coefficient (log D), the hydrophilicity and 
structural features of each option are analyzed. The first SMILES (CN1CCN(CC1)C(=O)c2cc3ccccc3n2C) contains a 
piperazine ring with a secondary amide group (C=O) capable of hydrogen bonding, enhancing water solubility. The 
fused aromatic system (c2cc3ccccc3n2C) introduces moderate hydrophobicity, but the amide's polarity dominates. 
The second SMILES (Oc1nnc(Cc2cccc(c2)C(=O)N3CCOCC3)c4ccccc14) includes a hydroxyl group (O-) and an amide, 
but its extended aromatic systems (c4ccccc14) and alkyl chains (Cc2...) increase hydrophobicity. The third SMILES 
incorporates thioether (S-) and multiple methyl groups (Cc...), which are highly hydrophobic, along with bulky 
aromatic systems. Comparing these, the first molecule's combination of a polar amide and limited hydrophobic 
regions results in the highest hydrophilicity, leading to the lowest log D.

Input: Question + Answer + Functional Group Information

Generated Rationale:
The octanol/water distribution coefficient (logD) reflects a molecule's hydrophilicity and hydrophobicity. Lower logD 
values correspond to higher hydrophilicity. The first SMILES (CN1CCN(CC1)C(=O)c2cc3ccccc3n2C) contains a tertiary 
amine and carboxamide. The tertiary amine can become protonated at physiological pH, increasing water solubility. 
The carboxamide group is polar, further enhancing hydrophilicity. The second SMILES 
(Oc1nnc(Cc2cccc(c2)C(=O)N3CCOCC3)c4ccccc14) includes a phenolic hydroxyl group (pKa ~10), which may partially 
ionize at pH 7.4, but its lower ionization extent compared to the tertiary amine reduces its hydrophilicity. The third 
SMILES contains thioether/sulfide groups and multiple hydrophobic methyl substituents, increasing hydrophobicity. 
The first molecule’s combination of ionizable tertiary amine and polar carboxamide gives it the lowest logD.

A tertiary amine, an amide, and a 
pyrrolic N.
An ether, an amide, two pyridinic 
Ns, and a phenol.
An aromatic O, two amides, an 
thioether, three pyridinic Ns.

Question:

Answer:

FG Information:

Please use your knowledge of 
molecular properties in chemistry 
to answer the following question. 
Identify the molecule with the 
lowest octanol/water distribution 
coefficient from the given SMILES 
strings based solely on their 
structures. Only submit the 
corresponding SMILES of that 
molecule, without including any 
other information. 
Options: 
CN1CCN(CC1)C(=O)c2cc3ccccc3n2
C,Oc1nnc(Cc2cccc(c2)C(=O)N3CC
OCC3)c4ccccc14,Cc1ccc2cc(C)c3n
nc(SCC(=O)N4CCN(CC4)C(=O)c5oc
cc5)n3c2c1

Answer:

CN1CCN(CC1)C(=O)c2cc3ccccc
3n2C

Figure 10: Comparison of rationales generated by DeepSeek-R1 with and without additional input
information. We mark the correct analyses in the rationale as green, while the wrong ones as red.
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The advantage in completeness is mainly reflected in Figure 9. In Figure 9, given only the
question, DeepSeek-R1 only generates a brief analysis on the second option while dismissing the
other three options with a single sentence in total. This overly simple analysis leads to a wrong
prediction. With the help of the ground truth answer, the generated rationale analyzes all options
individually. However, due to its lack of chemical knowledge, the analysis still exhibits errors
in functional group recognition or overlooks key influencing factors. After enhancing chemical
knowledge with the functional group information, DeepSeek-R1 finally manages to generate a more
comprehensive analysis with few errors.

The advantage in logicality is mainly reflected in Figure 10. In Figure 10, with only the question,
o3-mini can hardly generate any useful rational. The rational merely repeats the IUPAC components
mentioned in the question before rushing to a highly inaccurate conclusion without substantive
analysis. When given the ground truth answer, o3-mini can construct a reasonably good rationale with
minimal factual error. However, the rationale still contains non-negligible issues in terms of logical
coherence. A sound reasoning process should follow the approach exemplified by the reasoning chain
generated by o3-mini using our method: analyzing in the order of molecular skeleton, functional
groups, heteroatoms, and chiral centers. This sequence reflects a step-by-step refinement from the
fundamental molecular structure to more intricate structural details. However, with only the question
and answer, the generated rationale mixes these analytical steps and lacks critical details, such as the
precise position of the nitrogen atom, resulting in a disorganized and incomplete reasoning process.

C.2 QUALITY CONTROL

High Quality
67%
(177)

Minor Flaw
23%
(60)

Substantive
Issue
10%
(27)

Figure 11: Human validation result of teachers’
rationales. “Minor Flaw” represents acceptable
flaws, such as skipping reasoning steps or missing
possibilities. “Substantive Issue” means severe
logic errors or nonsense reasoning.

To quantitatively validate the quality of the
teachers’ rationales generated by our method,
we hired three graduate-level chemical experts
to perform manual assessments. Results in Fig-
ure 11 show that among the sampled 264 ratio-
nales, 177 of them (67%) exhibit sufficiently
high quality, 60 of them (23%) have minor, ac-
ceptable flaws such as reasoning step skipping
or missing possibilities, and 27 of them (10%)
contain substantive issues such as logic errors
or nonsense reasoning. Two examples of dis-
tilled rationales with minor flaws are shown in
Figure 12, and two examples of distilled ratio-
nales with substantive issues are shown in Fig-
ure 13. Considering that reinforcement learning
will be used after distillation to correct errors
and improve performance, and that it is difficult
to systematically distinguish these problems in
the rationales, we used all the data during the
distillation process.

D DETAILS OF REINFORCEMENT LEARNING

To construct the reinforcement learning dataset, a subset of tasks that have verifiable answers is
selected from our instruction-tuning dataset. We sampled data from the same sources used to build
the instruction-tuning dataset, while minimizing overlap between the specific instances contained in
the two datasets. These tasks are mixed together and uniformly sampled during training. We use the
DAPO (Yu et al., 2025) algorithm for reinforcement learning. As for the reward system, we follow
the method recommended by DeepSeek-R1 (Guo et al., 2025a), where the reward system consists of
format rewards and accuracy rewards. The format rewards evaluate whether a response strictly follows
the reasoning format, and the accuracy rewards evaluate whether a response is correct. Specifically,
considering the redundancy of the casual SMILES notations (one molecule could correspond to
multiple SMILES), we first canonicalize all the SMILES in the response before calculating the
accuracy rewards.
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Example 1 of Distilled Rationales with Minor Flaws: Overly simplify description of the reaction process
Instruction: Predict the product of the reaction using the given reactants and reagents, and express it in SMILES notation.
Given:
Reactants: Cc1cc2c3ccccc3ccc2c2ccccc12.O=C1CCC(=O)N1Br
Reagents: ClC1C=CC=CC=1.CO.C(OOC(=O)C1C=CC=CC=1)(=O)C1C=CC=CC=1

Provide the resulting product and its SMILES notation.

Rationale:
The reactants are a methyl-substituted polycyclic aromatic compound (SMILES: Cc1cc2c3ccccc3ccc2c2ccccc12) and a brominated imide halamine
(SMILES: O=C1CCC(=O)N1Br). The halamine contains an N-Br bond, which is reactive. The aliphatic methyl group (CH3) attached to the aromatic
system undergoes bromination via radical substitution. The N-Br bond in the halamine cleaves homolytically, generating a bromine radical (Br·). This
abstracts a hydrogen atom from the methyl group, forming a methyl radical (CH2·). The bromine radical then combines with the methyl radical,
resulting in a bromomethyl group (CH2Br) and a new Br-C bond. The aromatic system remains intact, and the imide group (O=C1CCC(=O)N1) from the
halamine loses Br to form a secondary amine (NH) as a byproduct.

Example 2 of Distilled Rationales with Minor Flaws: Inappropriate naming
Instruction: To maximize the reaction yield, choose a candidate from the list Nc1ccc(-c2ccccc2)cn1, Cc1ccc(N)nc1, COc1ccc2nc(N)sc2c1, Nc1ncc(-
c2ccccc2)cc1-c1ccccc1
Answer: that best completes the given reaction O=C(CBr)c1ccc(Br)cc1.O=C([O-])O.[Na+]>CCO>Unknown product, ensuring each substance is
represented in SMILES notation and adhering to the standard format for chemical reaction equations.

Rationale:
Starting with the reaction details, we first note that the mechanism likely involves nucleophilic attack by an amine on an electrophilic center
generated from the acyl bromide species. Since all options supply a primary amine functionality, attention turns to the aromatic framework that
supports it. By examining the aromatic heteroatoms and substituent patterns, one assesses how each molecule’s electronic properties might stabilize
the intermediate and facilitate the reaction. In this case, the extended aromatic system and the presence of pyridinic nitrogen—with its electron-
withdrawing nature—helpfully modulate reactivity and lower steric hindrance. Additionally, comparing specific substituents such as ether or
additional alkyl groups, one finds that the option offering a conjugated biphenyl structure with optimized resonance stabilization is predicted to
provide the highest yield by enhancing nucleophilicity while accommodating the transition state effectively. Given these considerations, the
reasoning supports selecting the molecule with the most extended conjugated system featuring a primary amine attached to a pyridinic framework,
as it best meets the criteria for high-yield synthesis under the reaction conditions.

Figure 12: Examples of the distilled rationales with minor flaws.

Example 1 of Distilled Rationales with Substantive Issue: Incorrect identification of the key components
Instruction: Can you please rank these molecules, given in SMILES format, according to their internal energy at 0 K from highest to lowest?
SMILES List: 
[H]OC([H])([H])C([H])([H])[C@@]1([H])O[C@@]2([H])C([H])([H])[C@@]2([H])O1,
[H]C#CC([H])([H])C1[NH2+][C@@]2([H])C([H])([H])[C@@]2([H])O1,
[H]OC([H])([H])C1[NH2+][C@@]2([H])C([H])([H])C([H])([H])[C@@]2([H])O1,
[H]OC([H])([H])C([H])([H])C1[NH2+][C@@]2([H])C([H])([H])[C@@]2([H])O1
Order of internal energy at 0 K:

Rationale:
At 0 K, internal energy is determined by molecular potential energy, which depends on bond strength, ring strain, and functional group stability. The
first SMILES contains a six-membered acetal ring (low ring strain) and hydroxy groups. The second SMILES has an alkyne (high bond energy due to sp-
hybridized carbons) and a five-membered hemiaminal ether ring (moderate ring strain). The third SMILES includes a six-membered hemiaminal ether
ring (lower strain than five-membered) with an alcohol group and a charged NH2+ group (higher electrostatic potential energy). The fourth SMILES
contains a five-membered hemiaminal ether ring (higher strain than six-membered) with an alcohol group and NH2+ charge. Alkyne > charged groups
> five-membered ring strain > six-membered ring stability dictates the ranking: third (six-membered charged),second (alkyne + five-
membered),fourth (five-membered charged),first (six-membered uncharged).

Example 2 of Distilled Rationales with Substantive Issue: Multiple logic errors
Instruction: For chemical analysis, select the molecule with the highest dipole moment by comparing the SMILES of the given options:
[H]/N=C/NC(=O)NC(=O)C,[H]/N=C/NC(=O)C(C)(C)C,[H]/N=C(/C(=O)/C(=N/[H])N)N,[H]/N=C(\C(=O)N/C=N/[H])N. Provide the SMILES of the chosen
molecule.

Rationale:
To determine which molecule has the highest dipole moment, analyze the polarity and symmetry of the functional groups. Dipole moments increase
with greater electronegativity differences and additive polar bond vectors. The first molecule contains urea (two amide groups) and imide (two
carbonyl groups),which are polar, but symmetry may reduce the net dipole. The second molecule has an amidine and a single amide, but bulky tert-
butyl substituents (C(C)(C)C) introduce steric hindrance, potentially reducing polarity. The third molecule features a ketone (C=O) and amidine, but
conjugated resonance between the ketone and amidine groups (C(=O)/C(=N/[H])) may delocalize electron density, opposing dipole contributions. The
fourth molecule includes a carboxamide (C(=O)N) and two amidine groups (N=C-N), arranged asymmetrically. The carboxamide's carbonyl (C=O) and
N-H bonds create strong dipoles, while the amidine groups (with protonated N atoms and adjacent C=N) contribute additional polarity. The lack of
symmetry in the fourth molecule allows these dipoles to align constructively, resulting in the highest net dipole moment.

Figure 13: Examples of the distilled rationales with substantive issues.
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E TRAINING DETAILS OF CHEMDFM-R

E.1 MITIGATING DATA LEAKAGE

Data leakage is a crucial problem for the evaluation of LLMs. During the training of ChemDFM-R,
measures have been taken to reduce the risk of data leakage. For the domain pretraining corpus, we
avoid using the same molecules and reactions as those presented in SciKnowEval (Feng et al., 2024)
and ChemEval (Huang et al., 2024) benchmarks. For instruction tuning and mixed-source distillation,
the same molecules and reactions are deliberately excluded from a task if they appear in relative tasks
in SciKnowEval and ChemEval. We use canonicalized SMILES to determine whether two molecules
are the same. Reactions are considered the same if they share the same product.

E.2 STATISTICS ABOUT COMPUTATION AND DATA

We trained ChemDFM-R on NVIDIA A800 Tensor Core GPUs for a total of 30840 GPU hours.
Specifically:

1). for domain pretraining, the model was trained on the 101-billion ChemFG corpus A for
24728 GPU hours;

2). for instruction tuning, the model was trained on over 7.5 million instructions B, which
consist of 2.5 million chemical instructions and 5 million general instructions, for 3785
GPU hours;

3). for mixed-sourced distillation, the model was trained on the mixed-sourced distillation
dataset, which is of the same scale as the instruction-tuning dataset, for 2059 GPU hours;

4). for reinforcement learning, the model was trained on 121,811 samples for 268 GPU hours.

E.3 HYPERPARAMETERS AND SYSTEM PROMPTS

Training Hyperparameters. The hyperparameters used during the training of ChemDFM-R are
listed in Table 6.

Inference Setting. During the inference of ChemDFM-R, we set the temperature to 0.6, topK to 1,
and topP to 1 with no other penalties.

System Prompts. During the training of ChemDFM-R, three different system prompts are used.
Specifically:

• For all samples in the instruction-tuning dataset and the non-reasoning samples in the
mixed-source distillation dataset, we use: "You are a helpful assistant."

• For the pseudo-reasoning data in the mixed-source distillation dataset, we use: "You
are a helpful assistant that is good at answer chemical questions. You will analyze the
presence of functional groups in molecules and the changes in functional groups dur-
ing reactions before giving response. These analyses will help you solve the problem
better. The analyses and answer are enclosed within <think> </think> and <answer> </an-
swer> tags, respectively.\ni.e.,\n<think>\nanalyses here\n</think>\n<answer>\nanswer
here\n</answer>"

• For the distilled data and the training of reinforcement learning, we use "You are
a helpful assistant that is good at reasoning. You always reason thoroughly before
giving a response. The reasoning process and answer are enclosed within <think>
</think> and <answer> </answer> tags, respectively.\ni.e.,\n<think>\nreasoning process
here\n</think>\n<answer>\nanswer here\n</answer>"

F THE ANALYSIS OF CHEMDFM-R’S RATIONALE

In Figure 14, ChemDFM-R is asked to pick a correct product for the given reaction. Instead of
wasting time (tokens) on analyzing the SMILES in great detail, which DeepSeek-R1 always does,
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Table 6: The training hyperparameters used during the training of ChemDFM-R.

Domain Instruction Mixed-source Reinforcement
Pretraining Tuning Distillation Learning

Initial Learning Rate 1e-5 1e-5 1e-5 5e-7
Minimal Learning Rate 1e-6 0 0 0

Optimizer Adam(0.9, 0.95)
Scheduler Cosine

Max Sequence Length 8192 8192 8192 -
Max Generation Length - - - 1024

Train Batch Size 624 512 512 128
Rollout Batch Size - - - 512

Epochs 1 2 1 1
DAPO Group Size - - - 8

DAPO Epsilon - - - (0.2, 0.3)
Initial KL Coefficient - - - 1e-3

Question: Given a question and four options, please select the right answer. Your answer should be "A", "B",
"C" or "D". Please directly give the answer without any explanation.
Given the reactants and reagents (in SMILES format) which are split by "." as follows:
CC(C)(C)OC(=O)NCCc1ccc(OCCC23CC4CC(CC(C4)C2)C3)cc1.CO.Cl
Which of the following candidate SMILES represents the correct product of this reaction?

A. COc1ccc(COC(=N)C(Cl)(Cl)Cl)cc1 B. c1ccc(OCCOCCCCCCCCOC2CCCCO2)cc1

C. C#Cc1ccc(C2(OCC)CC2)c(C(C)C)c1 D. NCCc1ccc(OCCC23CC4CC(CC(C4)C2)C3)cc1

<think>
To approach the problem, one first confirms that the starting material incorporates a carbamate ester group
(defined as an ester of carbonic acid that links to an –NH- fragment, which is often used for protecting
amino groups during synthesis) and then considers that converting this functional group into a primary
amine requires a deprotection step. This analysis involves recognizing that such transformations typically
occur via acid-catalyzed mechanisms, where the reagents provided (including a molecule containing CO and
Cl, which can function as a source of activating agents like an HCl, a common reagent for removing
carbamate protecting groups) promote the cleavage of the tert-butyl protecting group, leading to the
formation of the free amine. By examining the set of options supplied, only the selection whose structure
contains the primary amine functionality, identified by an -NH2 attached directly to an aromatic ring
substituted with an appropriate side chain (which matches the context provided in the reagent
transformations), is consistent with this deprotection process. This methodical structural evaluation,
considering both the reaction mechanism and the changes between the protecting group and the final
product, leads to the selection of the correct molecule that exhibits the primary amine substitution pattern
under the reaction conditions.
</think>
<answer>
D
</answer>

Figure 14: An example of the responses generated by ChemDFM-R on the reaction prediction task.
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Question: You are an expert chemist. Given the molecule SMILES, your task is to provide the detailed
description of the molecule using your experienced chemical knowledge.
Please strictly follow the format, no other information can be provided.

The Molecule SMILES is as follows:
CCCCCC/C=C/C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP(=O)(O)OP(=O)(O)OC[C@H]1O[C@@H](N2C=N
C3=C(N)N=CN=C32)[C@H](O)[C@@H]1OP(=O)(O)O

<think>
To derive the molecular description, one first examines the SMILES notation to identify the structural
components such as the alkene, hydroxy, ether, anhydride, primary amine, carboxamide, thiolester, and
phosphate mono-ester groups, as well as the aromatic heteroatoms like pyrrolic N and pyridinic N.
Recognizing these functional groups and their connectivity, one then correlates the structure with known
biochemical molecules, particularly those involved in metabolic pathways. By noting the presence of a
coenzyme A moiety and a deprotonated thiolester linkage, which are characteristic of acyl-CoA derivatives,
one can infer that the molecule is an acyl-CoA compound. This structural analysis, combined with knowledge
of metabolic roles in organisms such as Escherichia coli and mouse, leads to the conclusion that the
molecule is a metabolite with a specific acyl group attached to coenzyme A.
</think>
<answer>
The molecule is a medium-chain fatty acyl-CoA that results from the formal condensation of the thiol group
of coenzyme A with the carboxy group of trans-2-nonenioic acid. It is a trans-2-enoyl-CoA, a medium-chain
fatty acyl-CoA and a monounsaturated fatty acyl-CoA. It is a conjugate acid of a trans-2-nonenoyl-CoA(4-).
</answer>

Figure 15: The overview of the training pipeline of ChemDFM-R on the molecule captioning task.

Question: Please give the IUPAC name of the molecule given by SMILES: Cc1ccc(C(C)NC(=O)CCCN
(c2cccc(Cl)c2)S(C)(=O)=O)c(C)c1.

<think>
To derive the IUPAC name, one first examines the SMILES notation to identify the molecular structure, noting
the presence of an aromatic ring substituted with methyl groups, a secondary amine linkage, and a
sulfonamide group attached to a benzene ring bearing a chloro substituent. The next step involves
determining the connectivity and substituent positions on the aromatic system, ensuring that the
substituents are numbered according to IUPAC rules to give the lowest possible locants. The molecule is
then divided into its principal structural components, with one part being the substituted benzene ring and
the other part being the acyl chain linked to the sulfonamide group. The acyl chain is further analyzed to
determine its substituent pattern, including the N-substitution with the sulfonamide group. By applying
systematic nomenclature rules, including the priority of functional groups and the use of prefixes and
suffixes to denote substituents and connectivity, the complete IUPAC name is constructed. This process
integrates the identification of functional groups, the determination of substituent positions, and the
systematic assembly of the name according to IUPAC guidelines.
</think>
<answer>
4-(3-chloro-N-methylsulfonylanilino)-N-[1-(2,4-dimethylphenyl)ethyl]butanamide
</answer>

Figure 16: The overview of the training pipeline of ChemDFM-R on the SMILES to IUPAC task.
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ChemDFM-R1 goes directly into the key point of this question: the functional groups present in the
reactants and the potential reactions between them. Specifically, ChemDFM-R successfully identifies
the key functional group, the carbamate ester group. By recalling that the carbamate ester group is
typically used to protect amino groups, ChemDFM-R infers that the reaction taking place is likely
a deprotection reaction. Then, ChemDFM-R confirms its assumption by examining the provided
reagents. Finally, ChemDFM-R predicts the feature of the possible product and picks the option that
matches it. This example demonstrates the precision of ChemDFM-R in finding the key point of
chemical questions, and the effectiveness and efficiency of ChemDFM-R’s rationales. Moreover, it is
also worth noticing that, instead of using the “elimination-shortcut” which is commonly adopted by
other cutting-edge reasoning LLMs, ChemDFM-R directly reasoned out the reaction mechanism and
the features of the correct answer, thereby selecting the correct option.

As illustrated in Figure 15, when asked to describe a molecule given by SMILES, ChemDFM-R first
analyzes the functional groups present in the molecule, such as the alkene group, the phosphate mono-
ester group, and the pyrrolic N group. Then, ChemDFM-R successfully correlates the composition
and connectivity of these functional groups with metabolic pathways and further manages to identify
the molecule as a coenzyme A derivative. After that, it recognizes the deprotonated thiolester linkage
in the molecule and further narrows down the molecule to an acyl-CoA derivative. Finally, ChemDFM-
R gives a relatively comprehensive description of the molecule. ChemDFM-R even provides the
potential role of this molecule in metabolic processes in its rationale, further demonstrating its strong
reasoning ability as well as the value of the rationale as a complement to the final answer.

Figure 16 showcases an example response of ChemDFM-R when asked to generate the IUPAC name
of the given molecule. The IUPAC name is the standard name for a molecule, assigned according
to the rules established by the International Union of Pure and Applied Chemistry (IUPAC). It can
effectively reflect the functional groups present in the molecule and their connectivity. Therefore,
ChemDFM-R starts its reasoning with a comprehensive analysis of the functional groups of the given
molecule. Then, it emphasizes the importance of correctly labeling the atoms, which is precisely an
area where large language models are particularly prone to errors. After this, ChemDFM-R follows
the rule of IUPAC naming and divides the molecule into its principal structural components. It also
specifically points out the N-substitution with the sulfonamide group. Finally, a complicated and
correct IUPAC name is predicted by ChemDFM-R.

G DETAIL RESULTS OF BENCHMARK EVALUATION

G.1 CHEMEVAL

We consider the L1 and L2 level tasks in ChemEval (Huang et al., 2024) as text-centric tasks, the L3
level tasks as molecule-centric tasks, and the L4 level tasks as reaction-centric tasks. Moreover, there
are tasks that we can not achieve a feasible grading in ChemEval. We temporarily skip these tasks.
The raw results are demonstrated in Table 7.

As illustrated in Table 7, ChemDFM-R manages to achieve competitive performance in the text-
centric tasks compared with the cutting-edge LLMs, while achieving SOTA performance across all
the molecule-centric tasks and a large portion of the reaction-centric tasks. A detailed analysis of the
task characteristics reveals that ChemDFM-R tends to perform less effectively on tasks involving
numerical prediction, which will be a key focus of our future optimization efforts.

G.2 SCIKNOWEVAL

We group the tasks in SciKnowEval (Feng et al., 2024) based on their input and output. Specifically,
the task is classified as a text-centric task if there is no SMILES appear in its input or output, as a
reaction-centric task if there are reaction SMILES appear in its input or output, and as a molecule-
centric task otherwise. Due to budget limit, we currently skip the tasks that require GPT-4o for
grading. The raw results are demonstrated in Table 8.

As illustrated in Table 8, ChemDFM-R achieves competitive performance on SciKnowEval compared
to cutting-edge LLMs. It is worth noting that ChemDFM-R’s performance advantage is less pro-
nounced on SciKnowEval than on ChemEval. This is primarily because most tasks in SciKnowEval
are formulated as multiple-choice questions, which substantially reduce the burden on the model’s
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Table 7: The detailed benchmark results of different models on ChemEval (Huang et al., 2024).
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Table 8: The detailed benchmark results of different models on SciKnowEval (Feng et al., 2024).
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comprehension and generation processes, allowing it to arrive at correct answers through “shortcuts”
such as option comparison and elimination.

G.3 ANALYSIS OF GENERALIZABILITY

To further demonstrate the generalizability of our model, we separate the tasks in SciKnowEval and
ChemEval based on whether the same target appears in the training dataset of ChemDFM-R. This
results in two categories: 1) Same Task Different Instruction (DI), demonstrating the instruction-level
generalizability of our model, 2) Different Task (DT), demonstrating the task-level generalizability
of our model. The evaluation results are presented in Table 10, from which we draw three key
observations.

First, while enhancing the model’s chemical capabilities, our training procedure largely preserves
strong generalization performance. Compared with our baseline model, Qwen2.5-14B-Instruct,
ChemDFM-R not only achieves substantially better performance on DI tasks but also improves on
DT tasks, demonstrating that the knowledge acquired through training can be generalized to new
tasks.

Second, our model performs significantly better on DI tasks than on DT tasks, indicating that it
exhibits stronger instruction-level generalization than task-level generalization.

Finally, our model underperforms o4-mini on molecule-centric DT tasks in ChemEval. Upon further
inspection, we find that among the three tasks in this category, only the “SMILES-to-SELFIES and
SELFIES-to-SMILES conversion” tasks show inferior performance compared with o4-mini. This
outcome mainly arises from the fact that we used only SMILES as the molecular representation
during training. Considering that SMILES and SELFIES can be deterministically converted into each
other through rule-based transformations, we believe that this weaker performance, or the lack of
explicit SELFIES understanding and generation capability, does not materially affect the model’s
usefulness or effectiveness in practical chemistry applications.

G.4 MORE EVALUATIONS ON FGBENCH AND CHEMCOTBENCH

In addition to ChemEval and SciKnowEval, we also evaluate ChemDFM-R along with our baseline
models on two of the newly proposed benchmarks: FGBench (Liu et al., 2025b), which primarily
focuses on evaluating LLMs’ capability to determine the property changes after functional-group-level
molecular modification, and ChemCOTBench (Li et al., 2025b), which comprehensively evaluates
LLMs’ capabilities in solving reasoning intensive chemical problems including molecular editing,
molecular optimization, and reaction related. The experimental results are illustrated in Table 9, from
which we draw three main observations:

First, ChemDFM-R outperforms both traditional chemistry LLMs and Qwen2.5-14B-Instruct. This
demonstrates that our model possesses stronger chemical knowledge and more advanced chemical
reasoning capabilities, enabling superior performance on reasoning-intensive tasks. This also validates
the effectiveness of our ChemDFM-R training pipeline.

Second, compared with the more powerful Qwen3-14B, our model achieves better results only on
ChemCOTBench. We believe this is due to the fundamental differences among the benchmarks:
unlike ChemCOTBench and ChemEval, which primarily consist of open-ended generative tasks
across multiple subfields, FGBench is composed exclusively of multiple-choice questions of property
selection and numerical prediction problems of property prediction. For multiple-choice questions,
as analyzed in the Appendix G.2, the required comprehension and generation ability is considerably
lower than for free-form generation, allowing Qwen3 to circumvent its weaknesses and achieve
strong results. For numerical prediction tasks, the performance gap aligns with our analysis in
Section 4.1.1, further highlighting the limitations of ChemDFM-R on numerically intensive tasks and
pointing toward directions for future improvement. Therefore, we believe that ChemDFM-R’s weaker
performance on FGBench relative to Qwen3 primarily reflects its remaining room for improvement
on tasks related to numerical reasoning and prediction, whereas its superior performance on the
broader ChemCOTBench highlights its advantage in overall chemical capability.

Finally, when compared with the 671B DeepSeek-R1 and the advanced closed-source model o4-mini,
ChemDFM-R generally shows lower performance on both datasets. Given the substantial differences
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Table 9: Benchmark results on FGBench and ChemCOTBench. “MUE” stands for “Molecule Under-
standing and Editing ”, “MO” stands for “Molecule Optimization”, and “CR” stands for “Chemical
Reaction”. We use the recommended metrics of each task, except the MUE tasks. Considering that
the tasks in MUE include metrics where either larger or smaller values are preferred, we use the
RPS Peng et al. (2025) to obtain a unified measure of average performance. The best performance for
each task is indicated using boldface.

Model
FGBench ChemCOTBench

Boolean Value MUE MO CR
ACC ↑ RMSE ↓ RPS ↑ ∆ ↑ SR ↑ ACC ↑ FTS ↑

MolInst 21.2 218.7 53.2 0.020 39.2 0.3 8.3
ChemLLM-20B-DPO 45.3 140.6 46.3 0.022 12.0 6.0 0.5
ChemDFM-13B-v1.0 13.7 162.9 38.2 0 0.8 1.8 0.5
ChemDFM-8B-v1.5 22.8 216.0 22.6 0.036 10.5 0.5 0.1

GPT-4o 59.0 63.5 67.9 0.105 51.5 15.0 40.0
Qwen2.5-14B-Instruct 63.0 68.1 57.1 0.013 43.2 4.7 16.7
Qwen3-14B (no think) 76.1 85.7 59.0 0.078 34.5 8.2 35.1

DeepSeek-R1 74.0 73.6 59.4 0.318 62.5 26.7 48.4
Qwen3-14B (think) 59.4 75.5 39.4 0.125 32.8 10.6 25.3
o4-mini 70.8 82.9 69.9 0.499 68.2 31.8 44.4

ChemDFM-R 65.0 90.1 69.1 0.184 48.7 24.4 49.2

Table 10: Benchmark results on SciKnowEval and ChemEval. “mol.” stands for “molecule”, “react.”
stands for “reaction”, “DI” stands for “Different Instruction”, and “DT” stands for “Different Task”.
The best performance for each task is indicated using boldface. * We use RPS (Peng et al., 2025) to
balance the different scales of the scores on different tasks in the ChemEval benchmark.

Model
SciKnowEval ChemEval*

DI DT DI DT
mol. text mol. react. mol. react. text mol. react.

MolInst 39.4 69.4 38.0 41.7 10.4 10.0 47.3 42.7 8.6
ChemLLM-20B-DPO 37.0 73.6 38.9 88.1 20.9 28.4 64.5 49.7 14.8
ChemDFM-13B-v1.0 53.6 70.2 38.3 85.0 44.9 13.0 61.5 50.4 39.2
ChemDFM-8B-v1.5 55.9 72.2 41.4 86.9 10.1 38.1 26.7 19.1 13.3
ether0 35.6 38.7 33.0 66.0 18.4 50.0 9.4 1.3 1.6

GPT-4o 37.4 76.1 47.5 44.6 33.8 42.2 82.7 52.3 55.5
Qwen2.5-14B-Instruct 23.9 77.2 40.5 71.9 17.3 50.0 77.5 53.8 41.2
Qwen3-14B (no think) 23.6 76.5 38.9 80.2 19.3 32.9 81.5 52.5 25.4

DeepSeek-R1 40.9 80.1 26.8 83.0 14.0 55.3 81.2 50.1 46.0
Qwen3-14B (think) 27.3 86.6 46.2 88.5 19.2 26.1 79.0 52.8 44.4
o4-mini 44.7 81.3 61.9 97.3 51.7 58.5 78.4 86.4 52.4

ChemDFM-R 68.9 76.8 45.2 94.5 95.5 66.3 80.4 62.0 60.0

in model scale, we consider this partially expected and acceptable. In future work, we plan to
extend our methods to larger LLMs to provide stronger chemical generalist reasoning LLMs for the
open-source community.

H ABLATION STUDY FOR ATOMIZED CHEMICAL KNOWLEDGE
ENHANCEMENT

Directly verifying the effect of atomized knowledge enhancement would be extremely costly, since it
requires repeatedly performing computationally expensive domain pretraining. Therefore, instead
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Table 11: Ablation study results on SciKnowEval and ChemEval. DP represents Domain Pretraining,
and Know. represent Knowledge. The best performance for each task is indicated using boldface. *
We use RPS (Peng et al., 2025) to balance the different scales of the scores on different tasks in the
ChemEval benchmark.

DP Corpus Composition SciKnowEval ChemEval*

Atomized Know. Text-based Know. text mol. react. all text mol. react. all

✗ ✗ 66.9 30.0 34.5 49.9 44.6 25.5 25.4 34.8
✗ ✔ 67.1 30.6 36.5 50.4 43.6 25.6 28.5 35.2
✔ ✗ 65.7 31.8 37.8 50.3 51.9 25.9 33.8 40.8
✔ ✔ 66.2 31.7 37.4 50.5 53.7 26.9 31.0 41.1

of training a model of the same size as ChemDFM-R on the full dataset for comparison, we used
Qwen2.5-1.5B as the base model and conducted the full training pipeline on a 10% subset of
ChemDFM-R’s data. By varying the data composition in the subset of the domain-pretraining
corpus, we trained different versions of models for comparison while keeping the computational cost
manageable. The results are presented in Table 11.

Compared with the model without any domain pretraining (Row 1), models pretrained on either the
text-based-knowledge corpus (Row 2) or the atomized-knowledge corpus (Row 3) show improvements
on most tasks. This demonstrates the importance and necessity of domain pretraining for strengthening
domain knowledge, and indirectly supports our hypothesis that general domain LLMs generally
possess insufficient advanced chemical knowledge. Furthermore, the model pretrained solely on
the atomized-knowledge corpus outperforms the model pretrained on the traditional text-based-
knowledge corpus on many tasks, despite its corpus being only 20% of the latter. This provides
strong evidence that fine-grained atomized knowledge enables more efficient domain knowledge
enhancement. Finally, the model pretrained on the combined text-based- and atomized-knowledge
corpora (Row 4) achieves the best overall performance, reflecting the complementary strengths
of the two corpora and validating the effectiveness of our atomized-knowledge–enhanced domain
pretraining approach.

I DETAILS OF THE HUMAN ASSESSMENTS OF RATIONALE QUALITY

We hired five graduate-level chemical experts to assess the interactions across the following five
dimensions, each of which is scored on a 5-point scale:

• Chemical Correctness: The correctness of chemical knowledge and logic demonstrated
throughout the reasoning process.

• Answer Accuracy: Whether the final answer is correct.
• Analytical Coverage: The extent to which different plausible possibilities are explored

during reasoning.
• Reasoning Coherence: Whether the reasoning remains focused, coherent, and aligned with

the problem.
• Effective Information Density: The density of useful information in the reasoning chain,

reflecting the friendliness and efficiency of interaction.

The ten original questions we used are listed as follows.

Organic Chemistry:

• (Yao et al., 2025) I have used m-CPBA to convert the carbon-carbon double bond within the
[H][C@]12CC[C@@]3(CC[C@]1C)C(=O)C1=C[C@@]4(C)CC[C@@](C(C)C)[C@]4
([H])C[C@]1([H])[C@]23C into an epoxide, and obtained chiral epoxy products with
different ratios (d.r. = 5:1). Please propose possible reasons.

• (Zhou et al., 2025) Clc1ccccc1 is difficult to react with [O-]C(F)(F)F under normal condi-
tions, but it can be converted into a free radical cation under photocatalytic conditions and
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can react with [O-]C(F)(F)F in the presence of [Ag+] to obtain the product in high yield.
Please provide the structure of the product.

Inorganic Chemistry:

• (Schwarzmann et al., 2025) C[Bi+2]([O]1CCCC1)([O]1CCCC1)([O]1CCCC1)([O]1CCC
C1)[O]1CCCC1 is a newly reported strong Lewis acid. Please provide
the oxidation state, ligand, and coordination number of the metal ion in
C[Bi+2]([O]1CCCC1)([O]1CCCC1)([O]1CCCC1)([O]1CCCC1)[O]1CCCC1, and
explain the reason why it has strong Lewis acidity.

• (Mandai et al., 2025) Fc1c(F)c([B-](c2c(F)c(F)c(B3Oc4ccccc4O3)c(F)c2F)(c2c(F)c(F)c(B3
Oc4ccccc4O3)c(F)c2F)c2c(F)c(F)c(B3Oc4ccccc4O3)c(F)c2F)c(F)c(F)c1B1Oc2ccccc2O1
is a newly reported stable Lewis acidic anion, which breaks the previous understanding that
anions are incompatible with Lewis acids. Please analyze its structure, explain why it can
act as a Lewis acid, and indicate its binding sites with Lewis bases.

Materials Chemistry:

• (Li et al., 2025a) What is oxygen evolution reaction (OER)? Please propose a reasonable
mechanism of heterogeneous OER under acidic conditions.

• (Liu et al., 2025a) C1=Cc2cc3ccc(cc4nc(cc5ccc(cc1n2)[nH]5)C=C4)[nH]3 and
c1ccc2nsnc2c1 can form covalent organic frameworks through covalent bonding under
certain conditions, which can utilize the excitation energy of singlet and triplet states
for photocatalysis. Please determine which is the electron donor and which is the
electron acceptor during the electron transfer process through the structural analysis of
C1=Cc2cc3ccc(cc4nc(cc5ccc(cc1n2)[nH]5)C=C4)[nH]3 and c1ccc2nsnc2c1.

Analytical Chemistry:

• (Wu et al., 2025) CC(C)(C)c1cc2cc(C(C)(C)C)cc3c4cc(C(C)(C)C)cc5cc(C(C)(C)C)cc(c(c1)
c23)c54 is a fluorescent material. Please explain the reason why it can emit light from the
perspective of molecular structure.

• (Guo et al., 2025b) c1cc(-c2ccc3cc4cc(-c5ccncc5)ccc4cc3c2)ccn1 and
N#Cc1cc(C#N)c(C#N)cc1C#N can be co assembled into a eutectic and emit or-
ange light under photoluminescence. After the addition of O=C(O)C(F)(F)F, the eutectic
will undergo a transformation, and the luminescence will change from orange light to yellow
light. Please explain the reason.

Polymer Chemistry:

• (Zhang et al., 2025a) O=S(=O)(Oc1nc(=Cc2ccco2)c(OS(=O)(=O)C(F)(F)F)nc1=Cc1ccco1)
C(F)(F)F and O=S(=O)(Oc1nc(=Cc2ccccc2)c(OS(=O)(=O)C(F)(F)F)nc1=Cc1ccccc1)
C(F)(F)F are monomers of two polymers that form polymers un-
der solid-state heating conditions. In addition, it was found that
O=S(=O)(Oc1nc(=Cc2ccco2)c(OS(=O)(=O)C(F)(F)F)nc1=Cc1ccco1)C(F)(F)F is
relatively more prone to dimerization when heated in the solution. Please infer the reason by
comparing their structures.

• (Rugh et al., 2025) Under certain conditions, C[Si]1(C)OCCOCCO1 can undergo anionic
ring opening polymerization to obtain polymers, which exhibit extremely high ionic conduc-
tivity in lithium battery electrolytes, surpassing poly (ethylene oxide). Please analyze the
reasons from a structural perspective.

J MORE EXAMPLES OF RELIABLE HUMAN-AI COLLABORATION

Figure 17 illustrates a conversation starting from the same turn as that illustrated in the main text.
In this conversation, we focus on fully understanding the mechanism of the oxygen evolution
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Turn1: What is oxygen evolution reaction (OER)? Please propose a reasonable mechanism of heterogeneous OER under acidic conditions.

<think>
To derive the answer, one starts by defining the oxygen evolution reaction (OER) as the electrochemical process that converts water into molecular oxygen, which is a critical
step in water splitting. Recognizing that OER can occur under both acidic and basic conditions, the focus is on the mechanism under acidic conditions, where the reaction
involves protons (H+) and water molecules. The process is typically facilitated by a catalyst, often a transition metal oxide, which provides active sites for the reaction. The
mechanism is then broken down into several steps: first, the adsorption of water molecules onto the catalyst surface, followed by the formation of an intermediate species
such as an adsorbed hydroxyl group (OH–) or a water-derived species. Subsequent steps involve the transfer of protons and electrons, leading to the formation of an oxygen-
oxygen bond, which is a key step in the reaction. Finally, the desorption of molecular oxygen (O2) from the catalyst completes the cycle. This sequence of adsorption,
intermediate formation, bond formation, and desorption is consistent with the known electrochemical steps in OER under acidic conditions, and it is supported by experimental
observations and theoretical models.
</think>
<answer>
The oxygen evolution reaction (OER) is an electrochemical process that involves the conversion of water into molecular oxygen (O2) and protons (H+). In heterogeneous OER
under acidic conditions, the reaction typically occurs on a solid catalyst surface. The mechanism can be described as follows:

1. **Water adsorption**: Water molecules (H2O) adsorb onto the catalyst surface.
2. **Proton transfer**: Protons (H+) are transferred from the adsorbed water molecules to the catalyst surface, forming hydroxyl (OH-) groups.
3. **Oxygen adsorption**: The hydroxyl groups further react to form adsorbed oxygen species (O*), which are intermediates in the reaction.
4. **Oxygen evolution**: The adsorbed oxygen species combine to form molecular oxygen (O2), which desorbs from the catalyst surface and enters the solution.

The overall reaction can be represented as:

2H2O → O2 + 4H+ + 4e-
</answer>

Turn2: Since you mentioned in your thinking that the formation of oxygen-oxygen bond is the key to the reaction, please give an intermediate that reflect the formation of
oxygen-oxygen bond and improve the mechanism you provided.

<think>
To incorporate the formation of the oxygen-oxygen bond into the mechanism, one starts by recognizing that this bond formation is a critical step in the oxygen evolution
reaction (OER). The process involves the generation of an adsorbed oxygen species (O) on the catalyst surface, which then undergoes a transformation to form an
intermediate that contains the oxygen-oxygen bond. This intermediate is typically represented as a peroxide-like species (OOH) or a superoxide-like species (O2−), depending
on the specific reaction conditions and the electronic properties of the catalyst. The formation of this bond is facilitated by the transfer of protons and electrons, which are
provided by the acidic environment and the catalyst, respectively. The stabilization of the intermediate is crucial for the subsequent steps, including the final desorption of
molecular oxygen (O2) from the catalyst surface. By integrating these specific intermediates and their roles in the mechanism, one can clearly illustrate how the oxygen-oxygen
bond is formed and how it contributes to the overall OER process under acidic conditions.
</think>
<answer>
In the mechanism of the oxygen evolution reaction (OER) under acidic conditions, the formation of the oxygen-oxygen bond is a critical step. This bond formation occurs
through the generation of an intermediate species that contains two oxygen atoms. The specific intermediate formed depends on the reaction conditions and the catalyst used.

One possible intermediate is the peroxide species (OOH), which is formed when two hydroxyl groups (OH-) undergo a coupling reaction. This coupling reaction involves the
transfer of an electron and a proton, leading to the formation of the peroxide bond (O-O).

Another possible intermediate is the superoxide species (O2−), which is formed when an oxygen atom (O) undergoes a one-electron reduction. This reduction can occur
through the transfer of an electron from the catalyst surface or from another oxygen species.

The formation of these intermediates is essential for the subsequent steps in the OER mechanism, including the final desorption of molecular oxygen (O2) from the catalyst
surface. The stability and reactivity of these intermediates are influenced by factors such as the electronic properties of the catalyst and the reaction conditions (e.g., pH,
temperature).
</answer>

Figure 17: An example of reliable human-AI collaboration using ChemDFM-R. We draw inspiration
from this conversation from Li et al. (2025a). This example illustrates a process of error detection
and correction with the help of rationales.

Turn1: I have used m-CPBA to convert the carbon-carbon double bond within the [H][C@]12CC[C@@]3(CC[C@]1C)C(=O)C1=C[C@@]4(C)CC[C@@](C(C)C)
[C@]4([H])C[C@]1([H])[C@]23C into an epoxide, and obtained chiral epoxy products with different ratios (d.r. = 5:1). Please propose possible reasons.

<think>
The reaction involves m-CPBA (meta-chloroperbenzoic acid) oxidizing a carbon–carbon double bond in a complex cyclic structure to form an epoxide. m-CPBA acts as an
electrophilic oxidizing agent, where the peracid's oxygen attacks the double bond, forming a cyclic transition state. The stereochemical outcome is influenced by the complex
cyclic framework's rigidity and steric factors. The double bond's geometry and the spatial arrangement of substituents around the double bond determine which face of the
alkene is more accessible to the electrophilic oxygen from m-CPBA. The complex cyclic system imposes constraints that favor one diastereomeric pathway over another, leading
to a 5:1 diastereomeric ratio. The chiral centers in the complex cyclic structure further influence the transition state energies, with one pathway being thermodynamically
favored due to reduced steric strain or optimal orbital overlap during the epoxidation process.
</think>
<answer>
The complex cyclic framework of the molecule and the steric factors around the double bond lead to a preferential attack by the oxidant on one face of the double bond,
resulting in a diastereomeric ratio of 5:1.
</answer>

Turn2: Please explain in detail how double bond's geometry and spatial arrangement of substituents around the double bond determine which face of the alkene is more
accessible.

<think>
The spatial arrangement of substituents around the double bond in the complex cyclic structure creates steric hindrance, which influences the accessibility of the alkene face to
the oxidizing agent. The complex cyclic framework imposes rigidity, restricting the approach of m-CPBA to one face of the double bond. Substituents such as methyl group
create steric bulk, favoring the less hindered transition state during epoxidation. Additionally, electronic factors, including the electron-donating or electron-withdrawing
nature of substituents, further modulate the reactivity of the alkene face. The combination of steric and electronic effects results in a preferential attack on the less congested
face, leading to the observed diastereomeric ratio of 5:1 in the epoxide products.
</think>
<answer>
The complex cyclic structure imposes steric constraints that influence the accessibility of the double bond to the oxidizing agent. The arrangement of substituents around the
double bond creates a situation where one face is more sterically accessible than the other, leading to a preference for the oxidizing agent to attack from that side, which is
reflected in the diastereomeric ratio of the resulting epoxide products.
</answer>

Figure 18: An example of reliable human-AI collaboration using ChemDFM-R. We draw inspiration
from this conversation from Yao et al. (2025). This example illustrates a process of information
completion.
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reaction (OER). Suppose, as a newbie, we are unable to determine the correctness of the answer.
With the help of ChemDFM-R’s rationale, we could easily discover that the key step of the reaction
mentioned in the rationale, which is “the formation of an oxygen-oxygen bond”, is absent in the
answer. This could serve as a reminder that the answer could be incorrect, and drive us to further
request the model to clarify this inconsistency. After this follow-up inquiry, the model provided a
better answer.

Figure 18 is a conversation about a reaction proposed in Yao et al. (2025). We first ask ChemDFM-R
to explain the reason for the different ratios of the chiral epoxy products. Although the model’s
answer is relatively broad, ChemDFM-R thoroughly analyzes the influence factors in its rationale,
including the bond’s geometry and the spatial arrangement of substituents around the double bond,
which is not included in the answer. With this information, we can further pursue the follow-up
question and obtain an improved answer.

K LIMITATION AND FUTURE WORK

In this work, we developed a chemical generalist reasoning model using atomized chemical knowl-
edge enhancement and mixed-source distillation-based chemical rationale learning. Through both
benchmark evaluations and human assessments, we demonstrated the strong potential of ChemDFM-
R in solving chemical problems and supporting human–AI collaboration. The evaluations also
revealed several limitations of our model, which can be summarized in three aspects.

First, as shown in Section 4.1.1, the chemical rationale learning phase substantially enhances per-
formance on molecule- and reaction-centric tasks but weakens general language abilities, especially
numerical prediction abilities. This is mainly because our RL stage relies on rule-based methods to
calculate rewards, which restricts the types of tasks we can use. Designing reward mechanisms better
suited to chemical contexts and allowing a broader range of RL tasks will be an important direction
for the improvement of ChemDFM-R.

Second, results in Table 5 indicate that although our model produces concise and informative
reasoning chains, which greatly improve its usability and friendliness in human–AI interactions, this
conciseness can compromise analytical coverage. Achieving a better balance between maintaining
concise reasoning chains and providing sufficiently diverse analyses could further enhance ChemDFM-
R’s practical value in interactive settings.

Finally, similar to general reasoning models, ChemDFM-R occasionally exhibits inconsistencies
between its reasoning process and final answers. In chemistry, this includes both mismatches between
reasoning steps and conclusions, and the use of incorrect chemical knowledge within the reasoning.
Enhancing reward design to enforce consistency and incorporating stronger chemical supervision
will be another key area for future improvement.
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