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Abstract

In multimodal learning, dominant modalities often overshadow others, limiting
generalization. We propose Modality-Aware Sharpness-Aware Minimization (M-
SAM), a model-agnostic framework that applies to many modalities and supports
early and late fusion scenarios. In every iteration, M-SAM in three steps optimizes
learning. First, it identifies the dominant modality based on modalities’ contri-
bution in the accuracy using Shapley. Second, it decomposes the loss landscape,
or in another language, it modulates the loss to prioritize the robustness of the
model in favor of the dominant modality, and third, M-SAM updates the weights
by backpropagation of modulated gradients. This ensures robust learning for the
dominant modality while enhancing contributions from others, allowing the model
to explore and exploit complementary features that strengthen overall performance.
Extensive experiments on four diverse datasets show that M-SAM outperforms
the latest state-of-the-art optimization and gradient manipulation methods and
significantly balances and improves multimodal learning.

1 Introduction
Multimodal learning [27] has become the cornerstone of emerging deep neural models. These ad-
vanced models integrate diverse data types, including text, audio, images, and sensor data, mimicking
the multiplicity of sensory information that humans experience.

(a) AGM (b) SAM (c) M-SAM

Figure 1: Loss landscape visualization of CREMA-D
(late fusion) for AGM, SAM, and M-SAM from two
different viewpoints.

This capability for integration is crucial for a
range of complex tasks. This integration capa-
bility is crucial for a range of complex tasks,
enabling models to fully grasp context through
multiple viewpoints, essential in a wide spec-
trum of applications such as autonomous driv-
ing, human-computer interaction, and intelligent
virtual agents. By blending various sources of
information, these multi-modal approaches can
construct richer and more robust representations,
potentially leading to improved performance
across various domains. However, achieving
the ideal balance among modalities presents a
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Figure 2: The normalized overfitting gap (τ ) comparisons of joint-trained, OGM-GE, AGM, SAM,
and our proposed M-SAM on the AV-MNIST dataset. Viewing this in color is recommended.

unique challenge, as one modality can dominate
the learning process, limiting the model’s ability to develop unique discriminative capabilities from
less dominant data sources. In practice, the imbalanced modality can lead to unexpected results,
where the performance of jointly trained models shows minimal improvement or even declines
compared to unimodal models. [4, 33]. Some studies have found that different modalities often
converge at varying speeds, a phenomenon known as uncoordinated convergence [23, 28, 30, 34, 16].
Modality encoders sometimes overfit due to the nature of the input data and the underlying task,
especially when overexposed to their training data.[23, 28, 6]. This overexposure causes the model
to adhere too closely to the noise and unique characteristics of the training data, resulting in poor
generalization to new, unseen data. Similarly, the shared network, which integrates features from
all modalities, can be overfitted to the combined feature space, reducing its ability to generalize
effectively. This uncoordinated convergence can significantly hinder the performance of multi-modal
models.

While many researchers [28, 23] argue that multi-modal networks fail to fully utilize individual
modalities if their performance drops in mono-modality evaluations compared to single-modality
training, such claims may overlook key aspects of how these networks are structured. For instance,
late fusion techniques [41, 38, 8], where modalities are kept separate until the final layers and allow
each modality’s impact to be more easily assessed. In contrast, early fusion merges modalities from
the start and process them together. In these cases, the contributions of individual modalities become
intertwined, making their individual effects less distinguishable but not necessarily less significant.
The fact that a modality does not perform as well individually within a complex multi-modal system
does not mean it is not providing valuable information. Evaluating these networks requires a more
profound look rather than a straightforward comparison of isolated performances.

Recent SOTA [23, 28] studies, which utilize gradient modulation techniques, tailor backpropagation
for each modality, aiming to find minima that are perfectly suited to each modality. While this
approach does outperform previous modulation-based works by achieving better accuracy on both
modalities and overall, huge gap shows it tends to overfit [18], leading to sharper minima [12]
that constrain the model’s ability to explore shared and complementary high semantic cues across
modalities. The degree of overfitting is evaluated using the normalized overfitting gap, τ , measuring
the discrepancy between a model’s training and test performance. It is defined as:

τ =
|Acctrain −Acctest|

Acctest
, (1)

with 0 ≤ τ ≤ 1, and assuming models are not underfitted, values closer to 0 signify robust gener-
alization, whereas values nearing 1 indicate pronounced overfitting. Such a normalized overfitting
gap has been established as a proxy for sharpness and generalization ability [18, 7], and it clearly
illustrates the advantage of our method in learning flatter, generalizable minima. Figure 2 shows that
throughout training, our M-SAM method maintains a close match between training and validation
accuracy, indicating a well-balanced learning process. Figure 1 further highlights differences in
curvature by visualizing the loss landscapes. The relationship between flatter, wider minima and
reduced overfitting gap is clearly reflected in M-SAM. By relaxing the strict perturbation constraint
used in traditional SAM, M-SAM finds broader, flatter minima. This outcome aligns with the findings
of Friendly-SAM [24] that argues traditional SAM not necessarily gets to the flattest minima.
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In our paper, we present Modality-Aware SAM (M-SAM), a method designed to boost network
generalization by giving precedence to the dominant modality. By steering the learning process
towards flatter minima that favor the dominant modality, M-SAM enhances its resilience against
parameter updates from other modalities during backpropagation. Additionally, this approach allows
non-dominant modalities the freedom to explore and search for optimal features aligned with overall
performance. Unlike recent studies that have only slightly improved encoder performance through
narrow-focused gradient modulation techniques, M-SAM actively searches for broader, flatter areas
in the loss landscape that benefit all modalities and the shared network. This approach prevents
our system from becoming overly fine-tuned to the particular characteristics of the training data.
The proposed method also dynamically adjusts the learning process by continuously evaluating and
rebalancing the contribution of each modality in favor of the dominant modality’s generalization in
each iteration that not only enhances the weaker modalities to search for their optima but also ensures
a more balanced, robust learning across the board. As our main contributions, we show that:

• Our method is conceptually aligned with findings that dominant modalities can emerge
during multi-modal training due to dynamics such as modality competition [15]. We propose
a practical optimization-based solution that dynamically adapts to such imbalances during
training. Specifically, we introduce Modality-Aware SAM (M-SAM), which detects and
prioritizes the dominant modality at each iteration and mini-batch, ensuring its robustness
against noisy gradient contributions from weaker modalities and promoting more stable
multi-modal convergence.

• M-SAM with a modality-focused generalization capability enhances the resilience and
stability of the dominant modality against weight updates from other modalities while
simultaneously preventing underfitting phenomena in non-dominant modalities.

• Using the architecture proposed by [23] as a baseline, we evaluated M-SAM across diverse
datasets and scenarios, including early and late fusion. Our experiments demonstrate
consistent and substantial performance improvements over state-of-the-art methods in
optimizer design, highlighting the versatility and effectiveness of M-SAM.

2 Related works and backgrounds

2.1 Multi-modal learning

Multi-modal learning is a rapidly growing field in research, aiming to efficiently process data from
multiple senses for practical applications. It spans various domains, including multi-modal recognition
[37] and understanding audio-visual scenes [43]. Researchers have highlighted the advantages of
multi-modal learning over uni-modal approaches [14], while others have delved into the challenges
and failures associated with this type of learning [15]. Despite efforts to enhance performance with
more information, studies [5, 30, 34, 36] have shown that many multi-modal learning methods struggle
due to discrepancies between modalities. To address these challenges, researchers have proposed
innovative approaches such as OGM-GE [28], which adaptively controls optimization by monitoring
modality contributions. G-Blending [34] computes optimal blending based on modality behaviors,
while MSES [8] detects overfitting and performs early stopping. MSLR [38] effectively builds late-
fusion multi-modal models, and AGM [23] boosts performance with adaptive gradient modulation
and fusion strategies. Kontras et al. [20] considered uni-modal loss values beside multimodal-gradient
to modulate encoder gradients, and [35] customized Pareto approach for multimodal scenarios. These
advancements aim to improve the effectiveness of multi-modal learning models.

2.2 SAM

Sharpness-Aware Minimization (SAM) was first proposed by [7] as a machine learning technique
to enhance model generalization. It achieves this by concurrently minimizing the loss value and
the sharpness of the loss function, aiming for flatter minima. SAM has demonstrated efficacy
beyond deep neural networks, finding applications in diverse fields such as language models [1]
and fluid dynamics [17], illustrating its adaptability. Adaptive SAM (ASAM) [21] improves SAM
by dynamically adjusting the sharpness radius, addressing the parameter scale-dependency issue.
Surrogate Gap Guided Sharpness-Aware Minimization (GSAM) [44] introduces the surrogate gap,
simplifying sharpness measurement in local minima. Fisher SAM [19] enhances SAM by using
ellipsoids from Fisher information, refining neighborhood structures for better sharpness estimation.
GAM [40] presents first-order flatness focusing on the maximal gradient norm within a perturbation
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radius which bounds both the maximal eigenvalue of Hessian at local minima and the regularization
function of SAM. SAM finds applications in various machine-learning tasks [3, 26, 1, 39]. Chen et
al. [3] use SAM on Vision Transformer and MLP-Mixers to enhance accuracy and robustness. Na et
al. [26] note SAM’s role in parameter compressibility and task transfer. Yeo et al. [39] apply SAM
to medical imaging, improving segmentation while balancing sharpness and warp regularization.
However, SAM has not been used in multi-modal learning so far.

3 Multi-modality learning and SAM

3.1 Notation and Problem Definition

In tasks where we deal with datasets composed of multiple modalities, the training set D =⋃N
i=1{

⋃M
m=1 (x

i
m, y

i)}} often includes a variety of data types, where m ∈ [1, . . . ,M ] indicates
the modality to which the data sample (xim, y

i) belongs. These modalities could represent different
sources or types of data, like images, audio, texts, and sensor readings. To address the imbalance
gradients across these modalities, we partition the whole set as D =

⋃M
m=1 (Xm, Y ), which Xm and

Y contain data from mth modality and it’s corresponding label and N represents training samples
population.

3.2 Preliminaries

Our objective is to train a system that can accurately acquire and process data from all modalities,
ensuring that each contributes to the back-propagation considering the optimization stage, despite
their differences in representation. From mth modality’s perspective, the system, modeled by a
function fm(·; θm) parameterized by θm, aims to predict the correct label ŷi for a given sample xi.
The loss function, among other variants, acts as the guide ℓ(ŷi, yi) to fine-tune the parameters θm
during training. The training task would be formulated as:

θ∗ = min
θ

N∑
i=1

L
(
fs

(
fe1 (x

i
1 · · ·xiM ; θ1)⊕1 f

e
2 (x

i
1 · · ·xiM ; θ2) · · · ⊕M−1 f

e
M (xi1 · · ·xiM ; θM )

)
, yi

)
,

(2)
where ⊕i denotes an arbitrary fusion operation, such as early, late, or any hybrid fusion methods
and fem represents the encoder associated with mth modality. θ∗ is the optimal parameter set we
seek, defined such that {θi ⊂ θ | ∀ 1 ≤ j ≤ M ; θi ∩ θj ̸= ∅}. Note that, θm represents a portion
of architecture parameters including neural connections, activation function, etc. that carry out the
effect of xim to the output. Being more precise, θm : = {θem ∪ θemk | k ∈ {1, 2, . . . ,M},m ̸= k},
where θem represents the modality-specific encoder architecture parameters of mth modality. θemk
defines the model’s parameters associated with the fusion network that fuses modality kth to modality
mth. The shared network fs and its parameters θs in fs(., θs) are influenced by forward/backward
propagation of various modalities. Considering these definitions, Eq. 2, without loss of generalization
can be comprehended as follows;

θ∗ = min
θ

N∑
i=1

L
(
f
(
xi1, x

i
2, . . . , x

i
M ; θ

)
, yi

)
= min

θ

N∑
i=1

L
(
fs

(
ϕ1, ϕ2, . . . , ϕM ; θs

)
, yi

)
, (3)

where f and θ in f(., θ) respectively are the model and its parameters. On the other hand,
ϕm = fem(xi1, . . . , x

i
m, . . . , x

i
M ; θem, θ

s
m1, θ

s
m2, . . . , θ

s
mk |m̸=k, . . . , θ

s
mM ) is defined as the feature

representation produced by the m-th encoder taking into account other modalities’ effect through the
fusion network’s parameters, θmjs.

Considering Eq. 3, the loss function of the multi-modal underlying task can be expressed as the
sum of the losses from all modalities, as L = 1

N

∑N
i=1 L

(
fs

(
ϕ1, ϕ2, . . . , ϕM ; θs

)
, yi

)
. The intricate

interplay among modalities during model training, coupled with the complexity of deep neural
network architectures, poses significant challenges in isolating the individual contributions of each
modality to overall performance. Utilizing the Shapley approach as outlined by [29], offers a robust
mechanism to decompose the contributions of each modality to the output loss on a per mini-batch
basis (Appendix. B)

L = (v1 + v2 + · · ·+ vM )L = L1 + L2 + · · ·+ LM , (4)
where vm represents contribution of the mth modality in the output. Note that

∑
M vm = 1.
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3.3 Learning Dynamics and Loss Landscape

Let ψ = fs(ϕ1, ϕ2, . . . , ϕm, . . . , ϕM ; θs) denote the combined feature representation that integrates
the contributions from all modalities, and θs represents shared weights associated to the downstream
task. Given that, the update rules for the parameters are as follows:

θsm(t+1)
= θsm(t)

− η∇θsL(θsm(t)
) = θsm(t)

− η 1

N

N∑
i=1

(
∂L(ψ, yi)

∂ψ

∂ψ

∂θs

)
, (5)

θem(t+1)
= θem(t)

− η∇θeL(θem(t)
) = θem(t)

− η 1

N

N∑
i=1

(
∂L(ψ, yi)

∂ψ

∂ψ

∂ϕm

∂ϕm
∂θem

)
, (6)

where η is the learning rate, L is the loss function, and t indexes the iteration of the gradient
descent. In Eq. 5, ∂ψ

∂θs represents the component where inter-modality interaction occurs. During
backpropagation, this term adjusts the shared network weights, θs, based on the gradients contributed
by all modalities. Considering the decomposition of the loss landscape described in Eq. 4 and depicted
in Fig. 3, as training progresses, if the dominant modality, m0, is guided toward a wide, flat minimum
in the loss landscape, this ensures that even when inter-modality interactions slightly deviate the
shared-network parameters, θs and move the dominant modality from its optimal minima, it remains
within the bounds of a wide, stable minimum. Consequently, weight updates in the shared parameter
space, θs, may shift the network parameters slightly. Still, the dominant modality’s contribution to
the overall loss remains relatively small compared to the case where it converges to a sharp minimum.

3.4 SAM

SAM is an optimization technique that improves generalization by finding flatter minima by mini-
mizing the maximum loss in a neighborhood around the parameters. Specifically, consider a family
of models parameterized by θ ∈ W ⊆ Rd; L is the loss function over the training dataset D. SAM
aims to minimize the following upper bound of the Probably Approximately Correct (PAC)-Bayesian
generalization error for any ρ > 0,

L(θ) ≤ max
∥ϵ∥p≤ρ

L(θ + ϵ) +
λ

2
∥θ∥2. (7)

To solve the above minimax problem, at each iteration t, SAM updates

ϵt = ρ·sign(∇L(θt−1))|∇L(θt−1)|q−1

(∥∇L(θt−1)∥q
q)

1/p ,

θt = θt−1 − ηt (∇L (θt−1 + ϵt) + λθt−1) ,
(8)

Here 1/p+1/q = 1, ρ > 0 is a hyperparameter, λ > 0 is the parameter for weight decay, and ηt > 0
is the learning rate. By setting p = q = 2 and introducing an intermediate variable ut, we have:

ut = θt−1 +
ρ∇L (θt−1)

∥∇L (θt−1)∥
= θt−1 + ϵt, (9)

θt = θt−1 − ηt (∇L (ut) + λθt−1) . (10)

3.5 Modality-Aware SAM

To enhance the overall performance of models on multimodal datasets, the SAM optimization process
can be adapted by incorporating a split loss function (Eq. 4). This reformulation targets the dominant
modality, making it more robust against changes in network parameters due to backpropagation
from other modalities. While SAM’s modality-agnostic nature originally confines its generalization
capability, this new approach ensures that the proposed M-SAM provides strong generalization power
in the context of diverse and complex multimodal data. Utilizing Eq.7 and Eq.4, we can reformulate
SAM as follows:

min
θ

max
∥ϵ∥p≤ρ

[L1(θ + ϵ) + · · ·+ LM (θ + ϵ)] +
λ

2
∥θ∥2. (11)

In this regard, the perturbation defined in Eq. 9 can also be divided into components associated with
each modality as ϵt = ϵ1t + ϵ2t + · · ·+ ϵm0

t + · · ·+ ϵMt , where m0 is the dominant modality. When
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Algorithm 1 M-SAM Algorithm

Require: Training dataset D =
⋃N
i=1{

⋃M
m=1 (x

i
m, y

i)}}, neural network f(·) with parameters θ,
loss functionL, mini-batch size b, learning rate η, neighborhood size ρ, weight decay coefficientλ,

Ensure: Trained parameters θ∗
1: Initialize parameters θ0, t = 0
2: while not converged do
3: Sample minibatch B = {((x11, . . . , x1M ), y1), . . . , ((xb1, . . . , x

b
M ), yb)}

4: L(θt) =
∑
M L(f(xim; θt), y

i) =
∑
M vmL(f(xi1, . . . , xiM ; θt), y

i) ▷ Eq. 4
5: Ld(θt) = vdL(f(xi1, . . . , xiM ; θt), y

i) | md = arg max
m∈{1,...,M}

vm

6: Ls(θt) =
∑
m
vmL(f(xi1, . . . , xiM ; θt), y

i) , ∀m ∈M = {m ∈ {1, . . . ,M},m ̸= md}

7: ∇Ld(θt) = Backward(Ld, f(·)), ∇Ls(θt) = Backward(Ls, f(·))
8: ϵd

t = ρ ∇Ld(θt)
∥∇Ld(θt)∥2

9: θt ← θt − ηt
[
∇Ld(θt + ϵd

t) +∇Ls(θt) + λθt
]

10: t← t+ 1
11: end while

−𝜼𝜼𝜵𝜵𝜽𝜽𝒎𝒎𝒆𝒆 𝑳𝑳𝒎𝒎

𝑳𝑳𝒎𝒎 𝑿𝑿𝒎𝒎,𝒀𝒀 ;𝜽𝜽𝒎𝒎𝒆𝒆 ,𝜽𝜽𝒔𝒔

−𝜼𝜼𝜵𝜵𝜽𝜽𝒔𝒔𝑳𝑳𝒎𝒎𝟎𝟎

−𝜼𝜼𝜵𝜵𝜽𝜽𝒔𝒔𝑳𝑳𝒎𝒎

−𝜼𝜼𝜵𝜵𝜽𝜽𝒔𝒔𝑳𝑳𝒎𝒎𝟎𝟎

−𝜼𝜼𝜵𝜵𝜽𝜽𝒔𝒔𝑳𝑳𝒎𝒎

𝑳𝑳𝒎𝒎𝟎𝟎 𝑿𝑿𝒎𝒎𝟎𝟎 ,𝒀𝒀 ;  𝜽𝜽𝒎𝒎𝟎𝟎
𝒆𝒆 ,𝜽𝜽𝒔𝒔

−𝜼𝜼𝜵𝜵𝜽𝜽𝒎𝒎𝟎𝟎𝒆𝒆 𝑳𝑳𝒎𝒎𝟎𝟎

𝜽𝜽𝒎𝒎𝟎𝟎
𝒆𝒆 𝜽𝜽𝒎𝒎𝒆𝒆

𝜽𝜽𝒔𝒔

(a)

−𝜼𝜼𝜵𝜵𝜽𝜽𝒎𝒎𝟎𝟎𝒆𝒆 𝑳𝑳𝒎𝒎𝟎𝟎
−𝜼𝜼𝜵𝜵𝜽𝜽𝒎𝒎𝒆𝒆 𝑳𝑳𝒎𝒎

𝑳𝑳𝒎𝒎𝟎𝟎 𝑿𝑿𝒎𝒎𝟎𝟎 ,𝒀𝒀 ;  𝜽𝜽𝒎𝒎𝟎𝟎
𝒆𝒆 ,𝜽𝜽𝒔𝒔 𝑳𝑳𝒎𝒎 𝑿𝑿𝒎𝒎,𝒀𝒀 ;  𝜽𝜽𝒔𝒔,𝜽𝜽𝒎𝒎𝒆𝒆

−𝜼𝜼𝜵𝜵𝜽𝜽𝒔𝒔𝑳𝑳𝒎𝒎𝟎𝟎

−𝜼𝜼𝜵𝜵𝜽𝜽𝒔𝒔𝑳𝑳𝒎𝒎

−𝜼𝜼𝜵𝜵𝜽𝜽𝒔𝒔𝑳𝑳𝒎𝒎𝟎𝟎

−𝜼𝜼𝜵𝜵𝜽𝜽𝒔𝒔𝑳𝑳𝒎𝒎

𝜽𝜽𝒎𝒎𝟎𝟎
𝒆𝒆 𝜽𝜽𝒎𝒎𝒆𝒆

𝜽𝜽𝒔𝒔

(b)
Gradient components (to encoders’ 
parameters, 𝜵𝜵𝜽𝜽𝒎𝒎𝟎𝟎𝒆𝒆  and 𝜵𝜵𝜽𝜽𝒎𝒎𝒆𝒆 )

Gradient components (to shared 
network’s parameters, 𝜵𝜵𝜽𝜽𝒔𝒔)

Modalities’ gradients considering the 
interaction between modalities.

Modalities’ gradients assuming zero 
interaction between modalities.

The shared parameter space’s Gradient components 
summation, 𝜼𝜼(𝜵𝜵𝜽𝜽𝒔𝒔𝑳𝑳𝒎𝒎𝟎𝟎 − 𝛁𝛁𝜽𝜽𝒔𝒔𝑳𝑳𝒎𝒎).

,

update trajectory

Starting and ending point in the decomposed 
parameter spaces.

Sharp/flat
landscape

Figure 3: Illustration of the interaction of gradients in sharp and flat loss landscapes (before
and after convergence of MSAM). In (a), the sharp landscape amplifies the dominant modality
m0’s gradient magnitude, often overshadowing the non-dominant modality due to large and differing
gradient directions in the shared parameter space. In (b), settling the dominant modality m0 in a
flatter minimum reduces its gradient magnitude across a wide range of parameter neighborhoods,
allowing the non-dominant modality to explore the parameter space more freely and promoting
balanced optimization across modalities. Note that the loss landscape decomposition is achieved
using the Shapley method by dividing total loss to modality-specific loss in every iteration.

the dominant modality approaches or settles on a minimum, its contribution to the loss function
during perturbations is significantly greater than that of other modalities. Therefore, making this
dominant modality robust against perturbations from other modalities allows the latter to search
for their minima without substantially affecting the dominant modality or the overall performance
of the model. However, there is no guarantee that ϵm0

t >> ϵmt ,∀m ∈ {1, 2, . . . ,M | m ̸= m0}.
As a result, the traditional SAM can not provide focused generalization in favor of the dom-
inant modality. Inspired by [42], by ignoring the SAM optimization term of non-dominant
modalities in Eq. 11, our proposed modality-aware SAM optimization target is achieved as

minθ

Optimization term for the dominant modality︷ ︸︸ ︷[
max

∥ϵ∥p≤ρ
Lm0

(θ + ϵm0
)− Lm0

(θ)

]
+ Lm0

(θ)+

optimization term for non-dominant modalities︷ ︸︸ ︷
[L1(θ) + L2(θ) + · · ·+ LM (θ)] +λ

2 ∥θ∥
2.

The gradient update equation, Eq. 10, is modified as follows;
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θt = θt−1 − ηt
(
∇Lm0

(θt−1 + ϵm0
t ) +∇L1 (θt−1)

+∇L2 (θt−1) + · · ·+∇LM (θt−1) + λθt−1

)
, (12)

where ϵm0
t calculated as ϵm0

t =
ρ∇Lm0 (θt−1)

∥∇Lm0 (θt−1)∥ .

As illustrated in Eq. 12, the proposed modality-aware SAM bypasses sharpness-aware minimization
for non-dominant inputs, which are less prone to overfitting due to being overshadowed by the
dominant modality. We adopted the Shapely value proposed by [23], elaborated in Appendix. B to
split the loss into individual modalities’ loss. Algorithm. 1 outlines the complete M-SAM utilizing
SGD as the base gradient optimizer.

3.6 Stability and Convergence Analysis of M-SAM

Following the analytical framework in [22], we establish the convergence behavior of M-SAM under
its dynamic update rule and modality-aware selection mechanism. For analytical tractability and
without loss of generality, we make the following assumptions:

1. L(θt) =

M∑
m=1

νmLm(θt) and its gradient is bounded K-smooth (K-Lipschitz), i.e.,

∥∇L(θt)−∇L(θ̂t)∥ ≤ K∥θt − θ̂t∥, ∀θt, θ̂t, that ∥∇L(θt)∥ ≤ Gmax.

2. Learning rate ηt = η0√
t

and perturbation ρt = ρ0√
t
. for analytical tractability. In theory,

this smooth decay schedule facilitates convergence analysis. In practice, we adopt a step-
wise decay, by multiplying the learning rate by 0.1 every 70 iterations, which decays ηt
even faster. This empirical schedule still satisfies the convergence conditions and does not
compromise the theoretical guarantees.

considering dt = θt+1 − θt = −ηt∇L(θ̂t) and θ̂t = θt + ρt
∇m0

L(θt)

∥∇m0L(θt)∥ where∇m0
means gradient

toward the dominant modlaity. Using descent Lemma for a k-smooth function we can write:

L(θt+1)− L(θt) ≤ −ηt⟨∇L(θt),∇L(θ̂t)⟩+
Kη2t
2
∥∇L(θ̂t)∥2 =

− ηt⟨∇L(θt),∇L(θt)−∇L(θt) +∇L(θ̂t)⟩+
Kη2t
2
∥∇L(θ̂t)∥2 =

− ηt∥∇L(θt)∥2 − ηt⟨∇L(θt),∇L(θ̂t)−∇L(θt)⟩+
Kη2t
2

(∥∇L(θ̂t)∥2) ≤

− ηt∥∇L(θt)∥2 + ηt⟨∇L(θt),∇L(θt)−∇L(θ̂t)⟩+Kη2tG
2
max ≤

− ηt∥∇L(θt)∥2 + ηt∥∇L(θt)∥∥∇L(θt)−∇L(θ̂t)∥+Kη2tG
2
max ≤

− ηt∥∇L(θt)∥2 +Kηtρ
2
tGmax +Kη2tG

2
max

(13)

Although the upper-bound term appears to capture potential instability introduced by dynamic
modality switching, it can be shown that the bound is a function of ρt alone. Hence, the convergence
rate of M-SAM remains invariant to the gradient of the selected modality ∇m0

L(θt), ensuring that
modality selection does not affect stability.

by rearranging the inequality, it would be as:

ηt∥∇L(θt)∥2 ≤ L(θt)− L(θt+1) +Kηtρ
2
tGmax +Kη2tG

2
max (14)

now do summation over all iterations, 1 ≤ t ≤ T . Using telescope sum properties for loss terms on
the right side of the inequality and this property, η0√

T

∑T
t=1 ∥∇L(θt)∥2 ≤

∑T
t=1 ηt∥∇L(θt)∥2:

η0√
T

T∑
t=1

∥∇L(θt)∥2 ≤ L1(θt) +Kη0ρ
2
0Gmax

T∑
t=1

1

t
√
t
+Kη20G

2
max

T∑
t=1

1

t
(15)
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Considering that
∑T
t=1

1
t ≤ 1+log T and

∑T
t=1

1
t3/2

forms a p-series with p = 3
2 > 1, whose partial

sum remains bounded, the only term on the right-hand side influencing the asymptotic behavior is the
harmonic component. Therefore, the overall convergence rate of M-SAM is O

(
log T√
T

)
.

1

T

T∑
t=1

∥∇L(θt)∥2 ≤ O
(
log T√
T

)
.

That means, As T increases, the average gradient decreases at rate log T√
T

. This is similar to what we
get for methods like SGD and traditional SAM.

4 Experiments and Discussion

4.1 Dataset

M-SAM is evaluated on three popular multi-modal datasets: AV-MNIST [33], CREMA-D [2],
UR-Funny [11], and AVE [31]. Details of these datasets are presented in Appendix. A

4.2 Networks’ architecture and preprocessing

To evaluate our approach’s performance in both late and early fusion strategies across various multi-
modal datasets, we followed a unified model design based on prior works by [23, 25]. For early fusion,
we used the MAXOUT network [9] for the fusion module. Consistent encoder architectures were
maintained for each dataset in both fusion strategies. Specifically, ResNet18 was used as the encoder
for the audio and visual modalities in the AV-MNIST and CREMA-D datasets. In contrast, the
UR-Funny dataset utilized a Transformer [32] encoder for all three modalities. To ensure consistency
with previous works, we followed the preprocessing steps they applied. For CREMA-D, we extracted
1 frame per minute (fpm) from each clip and processed the audio data into a spectrogram of size
257×299 with a window length of 512 and an overlap of 353. We used SGD with 0.9 momentum and
10−4 weight decay as the optimizer. The learning rate was initially set to 10−3 and was multiplied by
0.1 every 70 epochs. For UR-Funny, we utilize the preprocessed data introduced by [25].

4.3 Results and discussion

To show the effectiveness of M-SAM, we compared it with mainstream multi-modal optimizer
enhancement approaches: MSES [8], MSLR [38], OGM-GE [28], AGM [23], MM-Pareto [35],
CGGM [10], and Recon-Boost [13]. Our findings reveal that M-SAM consistently outperforms all
other methods in overall performance and mono-modal accuracy across most scenarios. However, we
believe its final performance metrics do not solely determine a method’s efficacy; the trends observed
throughout the training epochs also provide valuable insights. Therefore, we analyzed the accuracy
of the validation set over these epochs. These accuracy curves highlight how the method handles
various modalities, which can sometimes conflict during training. The smooth and steady progression
of M-SAM’s overall accuracy curves demonstrates its robustness in managing the complexities of
multi-modal learning and its ability to harmonize different modalities effectively.

4.3.1 Early Fusion Setup

In early fusion, Table. 2, modality-specific representations are combined before classification, which
causes their gradients to interact directly in the shared feature space. Joint-Train performs poorly
in this setup, particularly on CREMA-D and UR-Funny, where modality imbalance is more severe.
AGM and MM-Pareto provide modest improvements, with MM-Pareto benefiting from its multi-
objective loss formulation. CGGM and Recon-Boost also perform competitively. CGGM explicitly
supports early fusion by computing modality-specific gradients through separate forward passes,
even when using a shared classifier. It modulates training based on the difference between each
modality’s gradient and the joint gradient, without requiring modality-specific heads. Recon-Boost,
while evaluated primarily with decision-level fusion, still offers competitive performance under early
fusion. Its alternating update strategy and reconcilement loss help manage imbalance, though its
training dynamics are better suited to architectures with modality-specific learners.
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Table 1: Accuracy (Acc.), and single-modal accuracy (Acca, Accv, Acct) on the AV-MNIST,
CREMA-D, UR-Funny, and AVE datasets using late fusion architecture. Please note that the
OGM-GE method could not extend to more than two modality cases in their original shape.

Model AV-MNIST [33] CREMA-D [2] UR-Funny [11] AVE [31]
Acca Accv Accmm Acca Accv Accmm Acca Accv Acct Accmm Acca Accv Accmm

Single-audio 39.61 .. .. 52.12 .. .. 59.23 .. .. .. 65.43 .. ..
Single video .. 65.14 .. .. 60.37 .. .. 53.16 .. .. .. 64.58 ..
Single-text .. .. .. .. .. .. .. .. 63.46 .. .. .. ..

Joint-Train 14.59 62.85 68.41 56.08 44.32 61.19 50.31 53.51 49.78 64.50 59.10 63.72 73.19
MSES [8] 27.50 63.34 70.68 55.31 45.72 64.13 55.31 49.69 57.87 64.23 65.84 71.93 76.47
MSLR [38] 22.72 62.92 70.62 55.75 47.84 62.93 53.14 53.59 46.93 65.52 70.39 69.41 75.22
OGM-GE [28] 24.53 55.85 71.08 58.15 58.90 64.42 .. .. .. .. 67.91 71.09 75.53
AGM [23] 38.90 63.65 72.14 56.35 54.12 64.72 54.87 49.36 62.22 65.97 70.68 72.34 77.11
MM-Pareto [35] 42.17 64.31 73.22 61.85 56.94 66.63 54.59 52.12 62.37 67.04 70.31 73.88 77.68
CGGM [10] 39.53 64.13 73.42 57.14 55.07 67.03 55.21 49.83 62.74 67.43 70.91 73.17 77.83
Recon-Boost [13] 40.12 64.18 73.59 57.08 54.83 67.47 55.13 50.08 62.88 67.61 71.13 73.48 78.02
SAM 36.31 64.67 73.17 60.69 51.43 66.32 53.67 51.37 61.48 65.95 66.13 72.83 77.66
M-SAM 41.93 64.97 74.08 62.78 53.22 68.56 51.56 52.67 60.17 68.31 68.27 72.57 79.67

Table 2: Accuracy (Acc.), and single-modal accuracy (Acca, Accv, Acct) on the AV-MNIST,
CREMA-D, UR-Funny, and AVE datasets using early fusion architecture..

Model AV-MNIST [33] CREMA-D [2] UR-Funny [11] AVE [31]
Acca Accv Accmm Acca Accv Accmm Acca Accv Acct Accmm Acca Accv Accmm

Joint-Train 24.28 60.14 71.15 55.31 51.72 62.13 54.87 50.86 54.14 65.15 67.40 71.85 76.29
AGM [23] 47.79 68.48 72.26 51.42 47.54 64.09 64.88 55.20 63.36 66.07 68.85 72.46 77.08
MM-Pareto [35] 39.82 66.15 72.74 56.90 52.83 65.30 58.32 53.08 60.45 65.92 68.52 72.18 76.83
CGGM [10] 41.30 67.27 73.11 57.84 53.67 66.90 60.42 53.40 62.53 66.98 69.01 72.81 77.32
Recon-Boost [13] 40.94 67.01 72.97 57.56 54.01 66.74 59.88 53.26 62.18 66.83 68.91 72.63 77.18
SAM 38.56 64.81 73.22 56.35 53.52 66.22 54.08 49.77 63.86 66.87 68.37 72.02 76.76
M-SAM (Ours) 45.63 67.72 74.48 56.83 53.71 68.43 63.20 54.77 65.24 67.92 70.11 72.46 78.23

M-SAM significantly outperforms all baselines across datasets in Accmm, with gains of +1.4 % to
+2.3 % over the closest competitors, CGGM and Recon-Boost. These improvements are attributable to
its optimizer design: M-SAM inherits the generalization benefits of SAM while explicitly prioritizing
stable training of the dominant modality. Unlike prior methods that rely on static loss weighting or
sequential modality updates, M-SAM adjusts its behavior on a per-iteration basis, mitigating gradient
interference without requiring architecture changes.

4.3.2 Late Fusion Setup

Late fusion provides a strong evaluation setting for CGGM and Recon-Boost. As demonstrated in
Table. 1, CGGM leverages classifier-gradient discrepancy to modulate updates, while Recon-Boost
alternates training across modalities and applies a reconcilement loss to improve coordination. Both
methods consistently outperform AGM and MM-Pareto in Accmm across most datasets. However,
M-SAM achieves the highest performance overall. Unlike prior methods that rely on architectural
separation or sequential training, M-SAM operates entirely at the optimizer level. Its intrinsic design
encourages consistently flatter convergence across training iterations, preserving the optimization
trajectory of the dominant modality while allowing non-dominant modalities greater freedom to
adapt. This balance emerges not from hand-tuned loss weights but from the geometry of the update
itself. Notably, the lower single-modality accuracies of M-SAM, despite significantly higher Accmm,
suggest that it encourages the learning of features that are not independently discriminative but become
informative through cross-modal interaction, enabling more effective integration of complementary
modality features.

5 Conclusion

In this paper, we introduced M-SAM, an optimizer-level framework that extends Sharpness-Aware
Minimization (SAM) to address optimization instability in multi-modal learning. M-SAM identifies
the dominant modality per batch and aligns the sharpness-aware update direction with its gradient,
enabling stable convergence while preserving learning flexibility for other modalities. This mechanism
promotes flatter optima without requiring architectural changes or explicit loss weighting. As
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illustrated in Figure 1, M-SAM produces a consistently flatter loss landscape compared to baseline
methods such as AGM, improving both generalization and robustness. Empirical results across four
multi-modal benchmarks demonstrate that M-SAM outperforms a range of strong baselines, from
gradient modulation methods such as AGM and CGGM to stage-wise training strategies like Recon-
Boost. These findings highlight the effectiveness of optimization-aware strategies in harmonizing
modality contributions and improving training stability in multi-modal settings.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction accurately state the contributions of
the paper and align with both the theoretical and experimental results presented, effectively
setting the scope and expectations for the reader.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: the paper discusses the limitations of the work, including a thorough examina-
tion of assumptions, potential robustness issues, and the scope of empirical validity. This
discussion ensures transparency and aligns with academic norms that encourage honesty
about the limitations of research methodologies and findings.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: the paper provides a complete set of assumptions and correct proofs for
each theoretical result, ensuring that all theorems and lemmas are well-documented and
cross-referenced, with detailed proofs accessible either in the main text or supplemental
material.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All of our results can be reproduced and we will release our code after the
paper is accepted.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used in the paper is publicly accessible. We will also release our
code after the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: the paper specifies all the training and test details, including data splits,
hyperparameters, and optimizer types, as well as how these were chosen. These details are
presented in the core of the paper, with additional information available in the appendix or
supplemental material, ensuring that the experimental results can be fully understood and
appreciated.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: the paper reports error bars suitably and correctly defined, along with appro-
priate information about the statistical significance of the experiments. It clearly states the
factors of variability captured by the error bars, the method for calculating them, and the
assumptions made. Additionally, the paper explains the preprocessing of data in detail,
providing a level of transparency not found in some other literature.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: the paper provides sufficient information on the computer resources needed to
reproduce the experiments by mentioning the hardware used for execution, such as the type
of CPU or GPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms with the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: as the research is foundational and applicable to a broad area, making it
difficult to define specific societal applications or impacts. The paper does not address
societal impacts because the nature of the work does not lend itself to immediate, direct
societal implications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our method doesn’t have high risk of misuse. We only use publicly available
data and models, which poses no significant risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit every referenced asset with citations.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: This paper introduces new code for sharpness-aware minimization designed
for multi-modality learning, and we will release the code after the paper is accepted.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper doesn’t perform crowdsourcing and research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper doesn’t perform research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: the LLM is used only for writing, editing, or formatting purposes and does not
impact the core methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Dataset

To evaluate the effectiveness of our approach, we conducted experiments on three widely used
multimodal datasets from the domains of affective computing and multimedia. From the affective
computing domain, we utilized the CREMA-D and UR-Funny datasets.

Table 3: The datasets specifications.
Field of Research Size Dataset Modality Samples content

L UR-Funny[11] {a, v, t} 16,514 humor
Affective Computing

M CREMA-D [2] {a, v} 7,442 emotion

M AV-MNIST[33] {a, v} 70,000 digit
Multimedia

S AVE[31] {a, v} 4,143 event
detection

The CREMA-D dataset, curated for speech emotion recognition tasks, includes six emotional labels
spanning various speech recordings. The UR-Funny dataset, designed for humor detection, incorpo-
rates multimodal cues, including text, visual gestures, and acoustic-prosodic features, providing a
rich benchmark for affective computing. In the multimedia domain, we employed the AV-MNIST
dataset, which focuses on multimedia classification. This dataset features disturbed images paired
with audio signals, offering a challenging setting for evaluating cross-modal learning.

Further details about these datasets, including modality types and task descriptions, are provided in
Table. 3.

B Mono-Modal Contribution in Total Performance

To split the total loss function into the modality-specific loss function as what Eq. 4 shows, we
adopted the Shapley metric proposed by [23]. Consider:

Φ(x) = fs
(
ϕ1, ϕ2, . . . , ϕM ; θs

)
, (16)

where x = (x1, . . . , xM ) represents all corresponding M modalities of the input and ϕm =
fem(xi1, . . . , x

i
M ; θem, θ

s
m1, . . . , θ

s
mk |m ̸=k, . . . , θ

s
mM ) is defined as the feature representation pro-

duced by the m-th encoder taking into account other modalities’ effect through the fusion network’s
parameters, θmj . LetsM := {m}Mi=1 denote the set of all modalities. Zero-padding 0m indicates the
absence of modality m features. If S is a subset ofM, then Φ(S) indicates that for m ∈ S, xm is
replaced with 0m. The mono-modal response for modality m is then defined as:

Φm(x) =
∑

S⊆M\{m}
S ̸=∅

|S|! (k − |S| − 1)!

k!
Vm(S; Φ), (17)

where Vm(S; Φ) = Φ(S ∪ {m}) − Φ(S). The empty subset is excluded from the summation to
ensure the relation:

Φ(x) =
∑
m

Φm(x). (18)

For illustration, in the case of two modalities, it would be as follows;

Φm1
(x) =

1

2
[Φ({x1, x2})− Φ({01, x2})] + Φ({m1, 0m2

}). (19)

B.1 From Mono-Modal Attribute to Loss Landscape Decomposition

The Shapley values in Eq. 17 serve as decomposing weight to compute mono-modal contributions
into the overall accuracy. They inherently operate in the domain of performance metrics, not loss
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Figure 4: Performance comparisons of late fusion settings: Joint-Trained, AGM, OGM-GE, SAM,
and our proposed Modality-Aware SAM, on the AV-MNIST and CREMA-D datasets. Viewing this
in color is recommended.
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Figure 5: Performance comparisons of early fusion settings: Joint-Trained, AGM, OGM-GE,
SAM, and our proposed Modality-Aware SAM, on the AV-MNIST and CREMA-D datasets. Viewing
this in color is recommended.

values. In contrast, SAM is explicitly designed to operate on the optimization landscape by directly
utilizing loss values. This fundamental difference raises a critical challenge: how can we bridge
the gap between modality-specific performance contributions and the loss landscape decomposition
during the training process?

To address this, we propose leveraging the Shapley value in Eq. 17. By computing Shapley values
for each modality during training, we dynamically adjust the weights associated with their losses,
thereby linking the concept of modality performance to loss decomposition. This dynamic adjustment
ensures that modalities contributing more to performance are appropriately emphasized in the loss
computation. Specifically, the weight associated with each modality’s loss is derived from its
normalized Shapley value. Mathematically, this is expressed as:

νm =
Φm∑M
i=1 Φi

, (20)

where M is the total number of modalities, Φm is the Shapley value of the m-th modality, and νm
represents the normalized weight in Eq. 4.
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Figure 6: Performance comparisons of the Joint-Trained, AGM, SAM, and our M-SAM on UR-Funny
datasets’ validation set using late fusion (first row) and early fusion (second row) architecture. It is
recommended to view this in color.

C Learning Curves

Fig. 4 and Fig. 6 present the performance comparisons of our proposed Modality-Aware SAM
(M-SAM) with SAM and other state-of-the-art methods, including AGM, OMG-GE, and Joint-Train,
under late fusion settings for the AV-MNIST and CREMA-D datasets and both late and early fusion
scenarios of URFunny dataset, respectively. The results consistently demonstrate the superiority of
M-SAM across both datasets and all metrics (audio, visual, and overall accuracy).

For the AV-MNIST dataset, M-SAM achieves the highest accuracy in all metrics. In the audio modal-
ity, M-SAM converges quickly and achieves a final accuracy of approximately 0.40, outperforming
SAM (0.35), AGM, and OMG-GE, which lag significantly. In the visual modality, M-SAM demon-
strates smooth and steady improvement, achieving the best accuracy of around 0.65. In contrast, SAM
achieves slightly lower accuracy, and AGM and OMG-GE show notable instability. Regarding overall
accuracy, M-SAM reaches approximately 0.74, clearly surpassing SAM (0.71) and significantly
outperforming other methods, which fail to approach competitive levels. On the CREMA-D dataset,
M-SAM maintains its superiority across all metrics. In the audio modality, M-SAM consistently
achieves higher accuracy and improved stability compared to SAM, which shows oscillations during
training. AGM and OMG-GE perform poorly, failing to converge effectively. In the visual modality,
M-SAM achieves the highest accuracy, with SAM trailing behind and other methods struggling to
maintain stability. Finally, in overall accuracy, M-SAM again emerges as the best-performing method,
with the smoothest convergence and highest final accuracy.

D Margin of Superiority over Joint-Train baseline

To evaluate the effectiveness of each method, we report the normalized marginal improvement in
accuracy over the Joint Training (JT) baseline. Specifically, we compute the percentage increase in
overall accuracy (Accmm) for each method relative to the JT baseline using the following formulation:

(a) (b) (c) (d)

Figure 7: Relative improvement in multi-modal accuracy (Accmm) over the Joint-Training baseline
on (a) AV-MNIST, (b) CREMA-D, (c) UR-Funny, and (d) AVE datasets. Our M-SAM consistently
achieves the highest normalized gain, outperforming all methods.

This normalized metric allows for a fair comparison across datasets of varying base difficulty and
scales, highlighting how much each method improves over standard joint optimization.
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∆rel(Method) =
Accmm(Method)− Accmm(JT)

Accmm(JT)
× 100 (21)

As shown in Figure 7, our proposed M-SAM consistently achieves the largest relative gain across all
datasets, outperforming strong baselines such as Recon-Boost and CGGM.
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