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Abstract

Matching a 2D contour to a non-rigidly deformed 3D
mesh is a challenging problem due to ambiguities arising
from dimensionality differences. In the past, product graph
based methods were only able to either produce fast but
noisy solutions, or smooth but slow solutions (the latter
enabled by higher-order costs computed in the conjugate
product graph). In this work, we propose an approximation
of these higher-order costs so that they can be computed in
the ordinary product graph. This leads to an efficient algo-
rithm for high-quality 2D-3D shape matching and enables
novel applications, like an interactive user interface which
allows to refine the solution gradually. We show theoret-
ically that our method is efficient, and we experimentally
validate that the accuracy gap of our approximation to the
optimum is small in practice. Our code is available.1

1. Introduction
The problem of shape matching, i.e. determining vertex cor-
respondences between two shapes, has received increased
attention in previous years [8, 20, 31]. If the input shapes
are non-rigidly transformed, the problem becomes compli-
cated due to many degrees of freedom and it can be shown
that it is NP-hard (even for shapes with geodesic isometries)
when formulated as a QAP [23]. Most research in this field
has been devoted to 2D-2D [38] and 3D-3D [31] match-
ing, while 2D-3D matching has been mostly neglected.
This is despite a diverse range of potential applications, in-
cluding transferring deformations from 2D contours to 3D
meshes, retrieval via 2D drawings, and artistic arrangement
of curves. Moreover, interaction with 2D shapes is often
easier for non-expert users. With that, transferring functions
or properties (imposed in 2D) from 2D to 3D would bene-
fit interactive applications. A promising approach to tackle
2D-3D shape matching are path-based methods [26, 34] as
they ensure continuity of the solution (neighbouring edges
on 2D shape are matched to neighbouring edges on 3D
shape) and furthermore such approaches are solvable in
polynomial time. Lähner et al. [26] can compute correspon-

1https://github.com/christophpetzsch/sm-2D3D-approx
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Figure 1. Visualisation of matching a 2D contour to a 3D shape
with various methods. Colours indicate corresponding points. Pre-
vious methods were either inaccurate (Lähner et al.) or slow (Roet-
zer et al.), while our method produces high-quality results in rea-
sonable runtime.

dences efficiently, yet, they rely purely on point-wise fea-
ture. Consequently, they do not consider deformation costs,
which in turn often causes unrealistic twisting in the solu-
tion, see Fig. 1. In contrast, Roetzer et al. [34] introduce the
conjugate product graph, which enables the incorporation
of higher-order costs and thus allows to explicitly consider
deformation costs. While this leads to high-quality corre-
spondences, it significantly increases computation time due
to the much larger conjugate product graph. However, com-
putation time is critical for interactive applications. Thus,
there is a need for an efficient algorithm for high-quality
2D-3D correspondences.

In this work we fill this gap and propose an approxima-
tion for the higher-order cost functions of [34]. This leads to
results of similar quality, which, however, can be computed
efficiently without the need for the larger conjugate product
graph. We summarise our main contributions as follows:
• We propose the first method for 2D-3D shape matching

that attains two desirable properties that have not been
achieved at the same time: regularisation with higher-
order costs (leading to high-quality correspondences) and
an efficient algorithm that can be used in interactive ap-
plications.

• We experimentally demonstrate that in all cases our ap-
proximation leads to objective values at most 10% higher
than the ones computed by Roetzer et al. [34].

• In particular, this enables applications that involve high-



quality landmark-based 2D-3D shape matching in inter-
active time, specifically with 2D shapes with up to 300
vertices and 3D shapes with up to 2100 vertices.

2. Related Work
Shape Matching Non-rigid shape matching is a widely
studied problem, both in 2D [29] and 3D [11, 36], with
methods being based on axiomatic [15, 17, 21, 31] and
learning-based paradigms [8, 9, 16, 22, 28]. While learning-
based methods are capable of predicting accurate results
very fast during inference, they typically require a lot of
training data and usually cannot guarantee desirable prop-
erties of the solution. In contrast, axiomatic methods can
provide guarantees, e.g. per-instance optimality gaps [5, 18,
27], or geometric consistency [13, 14, 33, 35, 43]. Yet,
axiomatic methods typically have high computational com-
plexity in the 3D setting. In contrast, for lower-dimensional
matching problems, there exist efficient (polynomial-time)
and globally optimal algorithms, such as for matching se-
quences (or 1D signals) using dynamic time warping [19,
37, 44], and matching 2D contours using shortest paths [38].
These methods particularly benefit from the fact that the
solution has a one-dimensional structure, so that it can be
expressed as a path in a certain graph. Recently, a path-
based approach has also been proposed for 3D-3D shape
matching [32]. The setting of non-rigidly matching closed
(i.e. without boundary) 2D contours to 3D shapes has also
been addressed using path-based formalisms. Lähner et
al. [26] cast 2D-3D shape matching as finding a shortest
path in a product graph, which can be solved to optimality
efficiently. However their approach heavily relies on spec-
tral features, which may locally be inaccurate. The resulting
matchings are often noisy (see Fig. 1). Roetzer et al. [34]
overcome these limitations by introducing the conjugate
product graph. This allows to regularise the solution space
with a rigidity prior which leads to more natural and smooth
matchings. Yet, it increases computational complexity sig-
nificantly due to the (approx. 10→) larger conjugate product
graph. In this work, we approximate the solution of [34],
which drastically reduces computation times while still us-
ing a rigidity prior leading to high-quality matching results.

Shortest Path Approximation Dijkstra’s algorithm [12]
for shortest path computation in graphs is very efficient
and yields globally optimal solutions in polynomial time
(assuming non-negative edge-costs). However, it requires
knowledge of the full graph and static edge-wise costs,
which is too restrictive for some problem settings. Gen-
eral shortest path computations on grids [39] or meshes [30]
are less efficient and many approximations have been pro-
posed over the years [10, 24, 40, 42]. Other applications
might include a dynamic graph computation with edge in-
sertions and deletions [1], or the computation of higher-

order costs that cannot be captured in fixed edge weights.
In [26, 34], authors dynamically compute the graph to find
shortest paths with a version of Dijkstra’s algorithm. Fur-
thermore, [34] lifts the product graph to the conjugate prod-
uct graph which allows to use a rigidity prior leading to
high-quality 2D-3D correspondence. Yet, this also leads
to a larger graph, and thus to increased computation times.
Here, the usage of the conjugate product graph is essen-
tial since the higher-order costs cannot be computed in the
ordinary (i.e. not a conjugate) product graph used in [26].
To overcome this, we propose an approximation of the cost
function of [34] using merely the ordinary product graph.
The key idea is to consider a greedy approach that fixes pre-
decessors when visiting vertices.

3. Background on 2D-3D Shape Matching
Below, we summarise the main ideas of 2D-3D shape
matching. For an in-depth discussion see [26, 34].

Shapes as Graphs A directed graph G = (VG , EG) con-
sists of a set of vertices VG and a set of oriented edges
EG ↑ {(v1, v2)|v1, v2 ↓ VG , v1 ↔= v2} (an oriented edge
means that (v1, v2) ↓ EG does not imply (v2, v1) ↓ EG).
A 2D contour M with m vertices can be discretised as a
directed loop, i.e. a graph M = (VM, EM) satisfying

VM = {0, . . . ,m↗ 1}, (1)

EM =
{
(k, k + 1)|k ↓ {0, ...,m↗ 2}

}
↘
{
(m↗ 1, 0)

}
.

(2)

Similarly, a 3D triangle mesh N can be formalised as a
directed graph N = (VN , EN ). To this end, we con-
vert each undirected edge (i.e. the edges of the triangles)
to two opposite-oriented edges. Consequently, for every
directed edge (v1, v2) ↓ EN , its opposite-oriented edge
(v2, v1) ↓ EN is also in EN .

Product and Conjugate Graphs We denote by E+ =
E ↘ {(v, v)|v ↓ V} the extended edge set, in which self-
edges (v, v) (i.e. edges from and to the same vertex) are
called degenerate. For a contour (VM, EM) and a 3D mesh
(VN , EN ), we define the product graph P = (VP , EP) via

VP =VM → VN , (3)

EP ={(eM1 , e
N
2 ) | eM1 ↓ E+

M, e
N
2 ↓ E+

N , (4)

e
M
1 or eN2 non-degenerate}.

We use the term layer to refer to the set of vertices Vk :=
k → VN (i.e. all product vertices referring to the same con-
tour vertex k).



Finally, for a directed graph G = (VG , EG), we define the
conjugate graph (also called the line graph) G→ by

V→
G = EG , (5)

E→
G = {((v1, v2), (v2, v3)) | (v1, v2), (v2, v3) ↓ V→

G}. (6)

This turns edges into vertices, connecting them if they share
a vertex between them. We refer the reader to [34] for visu-
alisations of these concepts.

2D-3D Shape Matching as Shortest Cyclic Paths 2D-
3D shape matching can be cast as finding a cyclic shortest
path in the product graph P . To this end, we make P a-
cyclic by duplicating V0 (so that we obtain layer Vm and
we connect layer Vm↑1 to Vm rather than V0) and search
for a shortest path from layer V0 to layer Vm which starts
and ends on the same 3D-vertex, see also [26, 34]. For-
malising 2D-3D shape matchings this way ensures continu-
ity, i.e. neighbouring 2D vertices get matched to neighbour-
ing 3D vertices. The so-called degenerated edges allow for
’vertex-to-edge’ and ’edge-to-vertex’ matchings, which are
necessary to account for potential differences in discretisa-
tion and for non-isometric deformations.

The cost of a matching (i.e. corresponding to a given
cyclic path in the product graph) can be measured by sum-
ming up the costs of the edges along the path, i.e. by using a
function c : EG ≃ [0,⇐). The shortest (cyclic) path within
the product graph can be computed by using variants of Di-
jkstra’s algorithm [12]. In particular, this can be efficiently
done, as the structure of the product graph allows to use
dynamic programming: every layer Vk only has outgoing
edges into layers Vk and Vk+1. Consequently, we can iter-
ate through the layers from first to last and we only need to
maintain priority heaps for each individual layer (for gen-
eral graphs, we would need to maintain priority heaps for
the whole graph to ensure optimality of the path). To en-
force consistency between the first and last path point in V0

and Vm, we apply the branch-and-bound method of [2] as
proposed in [26].

Cost Function The simplest choice of cost functions
compares point-wise features with each other. However,
due to the difference in dimension between 2D and 3D
shapes most common features for 2D-2D or 3D-3D shape
matching are not applicable. Lähner et al. [26] use adapted
spectral features, specifically Heat Kernel Signatures [41]
and Wave Kernel Signatures [3], but results show that these
are locally noisy. While this allows to compute match-
ings efficiently, the result often twists on the 3D shape (see
e.g. Fig. 1), mainly because higher-order directional infor-
mation cannot be taken into account. These issues have
been addressed by Roetzer et al. [34] with the following
cost terms:

• A data term based on the difference of local thickness of
2D and 3D shape respectively, i.e. for a product vertex
v = (i, j) they define

ddata((i, j)) := ω1(|l2Di ↗ l
3D
j |) (7)

where l2Di is the thickness of the 2D mesh at vertex i, and
similarly for l3Dj . Here ω1 is the robust loss function from
Barron [4].

• A regularisation term based on the differences between
deformations of subsequent edges on 2D shape and on
3D shape respectively. Specifically, for product edges
(v1, v2) and (v2, v3), they compute rotations R(v1,v2) and
R(v2,v3) that transform the coordinate frame of the 2D
edge into the coordinate frame of the 3D edge. Using the
geodesic distance of the rotations, represented using unit
quaternions q(v1,v2) and q(v2,v3), this yields the regulari-
sation term

dreg(v1, v2, v3) := ω2(arccos(⇒q(v1,v2), q(v2,v3)⇑)), (8)

where again ω2 is the loss function from Barron [4] but
with different parameters.

Using Dijkstra’s algorithm, we cannot use these cost func-
tions to compute globally optimal paths (in the ordinary
product graph), as we need cost functions depending only
on edges, i.e. pairs of vertices, as opposed to using pairs of
edges as in (8). Thus, in [34], Dijkstra is instead run on the
conjugate product graph with costs assigned to conjugate
edges, which have a scope of two product edges. This yields
significant improvements in matching quality, at the cost
of an increased computation time due to the (approx. 10→)
larger conjugate product graph. In the end, the cost for a
conjugate product vertex (vj , vi) can be written as

E[(vj , vi)] = min
k→

E[(vk→ , vj)]+ddata(vi)+dreg(vk→ , vj , vi),

(9)
where E[(vj , vi)] denotes the total cost of the path going
from the bottom layer (V0,V1) to (vj , vi), which can be
optimised using Dijkstra and branch-and-bound in the con-
jugate product graph.

4. Fast Approximate with Rigidity Prior
A major disadvantage of running Dijkstra on the ordinary
product graph is that we can take no higher-order infor-
mation into account. In contrast, in the conjugate prod-
uct graph, we can take higher-order information into ac-
count. Yet, this comes at the cost of having a much larger
graph which in turn leads to higher computation times. We
propose to use a blended graph, a mix of the ordinary
and conjugate product graph. This allows to approximate
higher-order costs without significantly increasing the prod-
uct graph size and consequently not significantly increasing
computation times.
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Figure 2. Illustration of higher-order cost computation as done
by us (left) and done by Roetzer et al. [34] (right). Dashed yel-
low lines indicate combinations that are considered in respective
methods. Edges that are ignored as part of our approximation are
greyed out. In short, our approximation does not consider all pos-
sible combinations which might lead to an overall higher energy
but rarely has a big impact on matching quality in practice.

Higher-Order Approximation Our cost function is an
approximation of the higher-order cost function of Roet-
zer et al. [34] but can be computed on the ordinary product
graph. The higher-order costs depend on two subsequent
edges. Thus, we remember the edge used to enter a ver-
tex and use this edge in the computation of the cost of any
succeeding vertices. To this end, we store the predecessor
vk↑ = Pr(vj) of a vertex vj before computing the cost of
vertices that come after vj . Then, the cost of vi, when en-
tered from vj , can be computed as follows

E[vi] = E[vj ] + ddata(vi) + dreg(vk↑ , vj , vi). (10)

Here the predecessor vk↑ of vj satisfies

k
↓ := argmin

k
E[vk] + ddata(vj) + dreg(vPr(vk), vk, vj)

(11)
where vk are the potential predecessors of vj . In other
words, we choose vk↑ as the locally optimal predecessor of
vj by considering the previous path. Yet, we do not con-
sider the effect the choice of vk↑ has on the subsequent path
(since we cannot know the subsequent path at this point,
cf. also to Eq. (9) where vi is considered when determining
k
→). This leads to the approximation and loss of guarantee

of global optimality of the computed path w.r.t. the rigidity
regularisation. We illustrate the cost computation in Fig. 2.

Blended graph Computing the (approximated) cost of
vertices requires knowledge about which vertices are used
to enter their predecessors. Thus, computing the cost of ver-
tices on layer V1 requires knowing the predecessors of the
vertices on layer V0 (which are on Vm↑1). Yet, these are
only known at the end of each Dijkstra call. This means our
approximation is not applicable here. Instead, we use con-
jugate vertices for the first layers. Thus, the first two layers
of our graph are (V0,V1) and (V1,V2). Conjugate edges are
then used to enter (V1,V2) from (V0,V1). We use dummy

Product Graph Conjugate Product Graph Blended Graph

Figure 3. From left to right: schematic illustration of the graphs
used by Lähner et al. [26], by Roetzer et al. [34] and us. Gray
vertices indicate ordinary product layers and blue nodes indicate
conjugate product layers. Our blended graph only uses conjugate
layers for the first layers (where our approximation is not possible)
and for the last layers (to enforce consistency).

edges to enter V2 from (V1,V2) (i.e. we connect any conju-
gate product vertex (vi, vj) on layer (V1,V2) with a (ordi-
nary) product vertex vk on layer V2 if vj = vk). For dummy
edges, we do not compute any costs but instead copy re-
spective costs from (V1,V2). The final ordinary product
graph layer is Vm (the copy of V0), and we use the edges
entering Vm to compute the costs of (Vm,Vm+1) (Vm+1

being the copy of V1). In summary, the resulting blended
graph consists of two conjugate product graph layers at the
bottom, one conjugate product graph layer at the top, and
in-between we use ordinary product graph layers, see also
Fig. 3. Consequently, our branch-and-bound method runs
on the conjugate layer (V0,V1) (unlike Lähner et al. [26]
which runs on the ordinary product graph layer V0). We
discuss differences in size of respective graphs in Sec. 5.

5. Theoretical Analysis
In this section we theoretically analyse the computational
complexity of the algorithms of Lähner et al. [26], Roet-
zer et al. [34] and ours based on the number of vertices and
edges of each layer.

For any graph G = (VG , EG), the runtime of Dijkstra is
dominated by the delete- and update-operations of the min-
heap (we use a binary heap in our implementation). The
former happens at most once per vertex and the latter at
most once per edge. Both operations require O(ln(|VG |))
pairwise comparisons of costs of minheap elements. We de-
note with ε and ϑ the smallest integers such that deletions
require at most ε ln(|VG |) and updates at most ϑ ln(|VG |)
pairwise comparisons. Thus, the total number of pairwise
comparisons for Dijkstra is

(ε|VG |+ ϑ|EG |) ln(|VG |). (12)



[26] [34] Ours

Number of vertices
on first layer n 13n 13n

Number of vertices
on middle layers n 13n n

Number of edges
on middle layers 13n 143n 13n

Number of layers m m m
Worst-case complexity
of single Dijkstra call

(ω+ 13ε)
mn ln(n)

13(ω+ 11ε)
mn ln(n)

(ω+ 13ε)
mn ln(n)

Worst-case number
of Dijkstra calls n 13n 13n

Worst-case total
complexity

(ω+ 13ε)
mn2 ln(n)

169(ω+ 11ε)
mn2 ln(n)

13(ω+ 13ε)
mn2 ln(n)

Table 1. Worst-case computational complexity of different shape
matching methods. Here, n := |VN | is the number of 3D ver-
tices, m := |VM| is the number of 2D vertices and ω,ε denote
constants which dependent on the implementation of the minheap
(i.e. the complexity of deleting the smallest element and updat-
ing the cost of an element). For easier exposure, we approximate
the worst-case complexity of a single Dijkstra call of ours with
(ω+13ε)mn ln(n) (instead of (ω+13ε)(m→2)n ln(n)+13(ω+
11ε)3n ln(n)).

Since we have a minheap for each layer, we need to de-
termine the number of vertices and edges per layer. We
note that a layer can be a ordinary product graph layer or a
conjugated product graph layer. Following the argumenta-
tion in [34], we assume that each vertex of a 3D shape N
has 6 neighbours on average. From that, we conclude that
|EN | ⇓ 6 · |VN | (we note that converting undirected edges
into directed edges doubles the number of edges). Since
the product graph contains two product edges per 3D edge
(one degenerate, one non-degenerate) as well as one prod-
uct edge per 3D vertex (resembling a self-edge of said 3D
vertex), we have 13 times more product edges than product
vertices. On the conjugate layers, every vertex is connected
to 6 degenerate and 5 non-degenerate (conjugate) vertices.
Thus, we have 11 times more edges than vertices.

Combining all this information, we report the total com-
putational complexity in Tab. 1. We note that this also in-
cludes the worst-case number of iterations of the branch-
and-bound method. Above all, branch-and-bound requires
at most as many iterations as there are vertices on the first
layer. Furthermore, for easier exposure, we neglect the 3
conjugate layers in our blended graph for worst-case com-
putational complexity analysis of a single Dijkstra call. In
fact, for large m (i.e. the number of contour vertices), the
computational complexity of a single Dijkstra call of ours
is dominated by the m↗ 2 ordinary product graph layers.

6. Experiments
In the following, we evaluate our method’s performance
w.r.t. matching quality and runtime in comparison to pre-
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Figure 4. We show the mean runtime in seconds using a log scale
for the approaches by Lähner et al. [26], Roetzer et al. [34] and
our approach. On the left, we fix 3D mesh resolution and alter 2D
mesh resolution. On the right,we fix 2D mesh resolution and alter
3D mesh resolution. Lähner et al. [26] solves a smaller problem
and thus is the fastest (while it cannot incorporate higher-order
costs). In comparison to the other higher-order-cost-approach by
Roetzer et al. [34], ours is significantly faster.

vious works (Sec. 6.2, Sec. 6.3). We also test the robust-
ness of our method (Sec. 6.4). Finally, we show that run-
time improvements enable applications like interactive 2D-
3D shape matching and 3D shape retrieval (Sec. 6.5).

6.1. Experimental Setup

All experiments are run on an Intel Core i9-12900K with
64GB of DDR5 RAM.

Datasets We use the 2D-3D matching datasets proposed
in [26] based on FAUST [6] and TOSCA [7] 3D shape
matching datasets. FAUST consists of 10 classes of hu-
mans with different body shapes with 6890 vertices each.
All classes have their shapes in 10 different poses, resulting
in 100 deformed 3D shapes. Furthermore, for each class the
dataset provides a 2D contour of the null pose with roughly
900 vertices with point-wise ground-truth correspondence
to respective 3D shapes. In addition, 2D and 3D shapes
have consistent part-segmentation.

TOSCA contains 80 human and animal shapes with up
to 12k vertices in 9 different classes. Each class consists
of 3D shapes in different poses and comes with at least one
2D contour with roughly 900 vertices. TOSCA does not
contain point-wise ground-truth correspondences from 2D
to 3D shapes but contains consistent part-segmentation.

Competing Methods We compare against Roetzer et
al. [34] and Lähner et al. [26], which are the only two meth-
ods tackling the same non-rigid path-based 2D-3D setting.
Roetzer et al. uses the conjugate product graph which gives
qualitatively good but slow results. Lähner et al. operates
on the ordinary product graph which is efficient but leads



to discretisation noise and does not allow to employ higher-
order costs. Similarly as in [34], we run Lähner et al. with-
out segmentation features as this would lead to an unfair ad-
vantage (segmentation features are essentially a coarse pre-
matching). See Sec. 3 for an explanation of the differences
between methods.

Metrics We use the following metrics to evaluate the per-
formance of the different methods. We note that in con-
trast to 3D-3D shape matching, the different dimension-
ality and challenging non-bijectivity leads to ambiguity in
the solutions and therefore there does not exists rigorous
ground-truth correspondence. While we evaluate the com-
monly used matching errors, we additionally use segmen-
tation errors and encourage the reader to judge matching
performance based upon qualitative examples.

Segmentation errors are defined as the normalised
geodesic distance from the correct segment, i.e.

ϖseg(x, y) = min
y↑↔N

distN (y, y↓)

diam(N )
s.t. ϱN (y↓) = ϱM(x).

(13)
where distN denotes the geodesic distance on N and ϱ•
denotes the segmentation labels.

The normalised matching errors are defined as

ϖgeo(x, y) =
distN (y, ŷ)

diam(N )
. (14)

Here, ŷ is the ground-truth corresponding point. For both
metric, diam(·) describes the diameter of a shape.

For both error metrics, we visualise cumulative error-
curves which plot the percentage of points that have an error
lower than a certain threshold over respective error thresh-
olds. The area under the curve (AUC) is the integral
of said cumulative segmentation or matching error curves
(larger AUC values are better).

6.2. Runtime
We evaluate the runtime of the different approaches for
2D-3D shape matching on FAUST for varying 2D and 3D
mesh resolutions, see Fig. 4. Our method is significantly
faster than [34] while producing similar qualitative result,
see Fig. 8. We also show the ratio of the runtime and ap-
proximation factor between Roetzer et al. and our approach,
see Fig. 5 for different 2D and 3D mesh sizes. While we
decrease the runtime with up to a factor of 20, the approxi-
mation stays within 10% and is often lower. The high vari-
ation in the runtime stems from the varying branches of the
branch-and-bound approach.

6.3. Shape Matching Performance
We quantitatively compare our results using the ground-
truth correspondences and segmentation correspondences

Figure 5. (Left) The mean ratio of the runtime of Roetzer et
al. [34] relative to the runtime of our algorithm. As can be
seen, our speedup is roughly an order of magnitude in most cases.
(Right) The mean ratio of the cost of the matching computed by
our algorithm relative to the cost of the matching computed by
Roetzer et al. Despite no known theoretically derived maximum
approximation factor, the ratio rarely exceeds 110%.
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Figure 6. Cumulative segmentation error plots on FAUST (left)
and TOSCA (right). Numbers in legends are AUCs. Our method
performs similar to [34] and is significantly better than [26].

given for FAUST and TOSCA. The segmentation errors on
FAUST and TOSCA are reported in Fig. 6 and show that
our results are on-par with the method [34]. The approxi-
mation factor of our method versus [34] is plotted in Fig. 5.
While our computed matchings costs are up to 10% higher,
this does not affect matching quality as badly which can be
seen from roughly equal segmentation errors.

In Fig. 7, we show matching errors on FAUST for all
methods. We emphasise that possible ground-truth corre-
spondences are given for this dataset, but there are lots of
ambiguities in the 2D-3D shape matching setting such that
there is no single correct solution. The results show that
again our methods performs on-par with [34] and consider-
ably better than [26]. Also, when left-right swapped solu-
tions are removed from the error-curves, our methods still
performs similarly well compared to [34], see, Fig. 7 (right).

Finally, we show qualitative results of all methods in
Fig. 8. This shows that our method also visually produces
matchings of similar quality compared to [34].

6.4. Robustness Evaluation
We test the robustness of our method w.r.t. Gaussian noise
and w.r.t. varying discretisations.
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Gaussian Noise We displace the vertices of the 3D shapes
by three-dimensional Gaussian random vectors. We show
the effect for different variances in Fig. 9 for our method
and Roetzer et al. [34], since we are especially interested
how our approximation of higher-order costs is affected.
For low levels of noise, the methods perform similarly, but
unlike [34] our method is not robust against large amounts
of noise very likely due to the approximate nature of ours.

Varying Discretization Furthermore, we test the robust-
ness of our method against varying discretisation of the con-
tour. Results can be seen in Fig. 9 and show that the effect
of non-uniform discretisation on our method is minimal em-
phasised by equal AUCs (for uniform sampling it is 0.97
and for non-uniform sampling it is 0.95).

6.5. Applications

We show that our significant runtime improvements en-
able (previously impossible) applications of 2D-3D shape
matching.

Interactive Contour Matching Even though our method
returns good correspondences in many cases without land-
marks, the 2D-3D settings includes many ambiguities
which might lead to undesirable solutions. We implemented
a GUI in which the solution will be improved on-the-fly af-
ter the user dynamically adds landmark correspondences.
By fixing one or multiple landmarks, the layers in the prod-
uct graph containing these landmark correspondence can
be reduced to a single vertex. This allows to completely
remove the branch-and-bound strategy and with that fur-
ther reduces computation times significantly. In turn, this
enables working on high-resolution meshes at interactive
speeds (e.g. a contour with 300 vertices and a 3D mesh with
2100 vertices can be matched in around 0.9s). The GUI
with selected landmark vertices can be seen in Fig. 10. We
show further results in the supplementary, see Sec. 6.5.

Lähner et al. [26] Ours
Cat 0.3925 0.6700
Centaur 0.6438 1.0000
Human 0.5497 0.7851
Dog 0.8084 0.5587
Horse 0.9415 1.0000
Wolf 0.2436 1.0000

Table 2. Average Precision of our approach and the approach of
Lähner et al. [26] for shape retrieval. We outperform Lähner et
al. in all categories except for category dog.

Non-Rigid 3D Shape Retrieval For this task, we query
a set of 3D shapes with a 2D contour. After computing
the matching between the 2D contour and all 3D shapes we
return the best-matching 3D shapes according to the match-
ing cost. This is especially useful since drawing the rough
shape of the 3D target in 2D is much easier for users than
modelling a rough 3D shape. Furthermore, this allows users
to explore a 3D shape collection without any semantic la-
bels easily. We note that we only compare our method to
Lähner et al. and not to Roetzer et al. since computation
times for Roetzer et al. are not feasible for this task (a sin-
gle query would already take days). The retrieval ranking
is computed by comparing the matching energies (the lower
the energy the better the ranking score). To obtain com-
parable energies for different classes and resolutions, we
normalise the computed energy by using the length of the
computed path in the five-dimensional product graph. This
yields a useful measure for shape similarity. The results of
our approach and that of [26] are shown in Tab. 2. We out-
perform [26] for all classes except for class dog. We note
that retrieval results for [26] are worse than reported in [26]
because the segmentation feature is not used and the shapes
were downsampled. We provide further retrieval examples
in the supplementary, see Fig. A.2.

7. Discussion and future work

Learned Features The thickness- and rigidity-based fea-
tures of Roetzer et al. [34] and our algorithm yield high-
quality matchings. Yet, we believe that learned features
could allow for significant improvements, especially be-
cause local rigidity requires both shapes to be scaled con-
sistently (which cannot be assumed in general).

Approximate Branch-and-Bound In this paper, we de-
creased the computation time of a single Dijkstra call. Yet,
through the branch-and-bound strategy, multiple Dijkstra
calls are necessary to determine a cyclic solution. To fur-
ther improve computation times, one could adapt the ap-
proximate branch-and-bound method introduced in [25] to
decrease the number of Dijkstra calls and thus further de-
crease computation times.
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Figure 9. (Left) The effects of Gaussian noise on the AUC by our
algorithm and by Roetzer et al. [34]. The fact that we only com-
pute an approximation means that we lose a lot of the robustness to
noise compared to [34]. (Right) The effect of a uniform vs. non-
uniform discretisation. We can see that our algorithm performs
better with uniform discretisation but is robust overall.

8. Conclusion

We have introduced an approximation method for higher-
order cost computation which allows to efficiently compute
high-quality 2D-3D shape correspondences. This higher-
order cost computation was previously only possible when
using the larger conjugate product graph and thus was in-
efficient. In contrast, algorithms running on the smaller,
ordinary product graph would lead to worse but more effi-
cient results. Our algorithm combines efficiency and high-
quality by approximating higher-order regularisation costs.
We achieve this, by fixing edge-predecessors preliminary.
While this can lead to sub-optimal results, we empirically

Figure 10. Our Matlab-based GUI for interactive landmark
matching. The user can click on vertices on the contour (left) and
on the 3D mesh (right) to match the former to the latter. Landmark
vertices are used to improve the matching (within under a second).

show that sacrificing global optimality has nearly no effect
on matching quality in practice. In addition, this leads to
a significant decreases in computation time which enables
applications like interactive landmark matching and shape
retrieval.
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