Efficient Autoregressive Inference for
Tabular Foundation Models

Conor Hassan'-2, Nasrulloh Loka?, Cen-You Li?, Daolang Huang':2, Paul E. Chang>*,
Yang Yang®, Francesco Silvestrin®, Samuel Kaski''?:°, Luigi Acerbi®

'ELLIS Institute Finland
2Department of Computer Science, Aalto University, Finland
3Department of Computer Science, University of Helsinki, Finland
“DataCrunch
SDepartment of Computer Science, University of Manchester, UK
conor.hassan@aalto.fi

Abstract

Transformer-based tabular foundation models excel at single-pass marginal pre-
diction, yet many applications require coherent joint distributions across predic-
tions. Purely autoregressive architectures capture dependencies but forgo flexible
set-conditioning used in meta-learning; deploying set-based models autoregres-
sively forces re-encoding the augmented context at each step. We introduce a
causal autoregressive buffer that encodes the context once, caches it, and uses a
causal buffer for generated targets. Targets attend to the cache and the visible
buffer prefix, enabling efficient batched autoregressive generation and one-pass
joint log-likelihoods. A unified training scheme (masked attention with a buffer-
size curriculum) covers both modes with minimal overhead. On a small tabular
foundation model, the buffer matches joint estimates from existing approaches
while delivering up to 20X faster joint sampling.

1 Introduction

Set-based conditioning models—neural processes and transformer variants (Garnelo et al., 2018a;
Nguyen & Grover, 2022; Chang et al., 2025), prior-fitted networks (Miiller et al., 2022), and re-
cent tabular foundation models (Hollmann et al., 2023, 2025; Jingang et al., 2025)—summarize
variable-sized context sets with permutation-invariant encoders, enabling rapid marginal prediction
on new targets. Many applications, however, need joint distributions over multiple targets to cap-
ture dependencies. A common approach deploys these models autoregressively (Bruinsma et al.,
2023): after each prediction, the conditioning set is augmented and re-encoded, breaking caching
and yielding a bottleneck of O(K (N+K)?) for K targets and context size N. Efficient attention
(Jaegle et al., 2021; Feng et al., 2023) helps for static contexts but not repeated recomputation.

We propose a causal autoregressive buffer that decouples one-time context encoding from sequen-
tial dependence modeling. The context C is encoded once and cached; a dynamic buffer stores
previously predicted targets. New targets attend to both the cache and the causal buffer, eliminating
repeated context passes and enabling parallelism. A unified training strategy using masked attention
and a buffer-size curriculum lets a single model deliver efficient marginal predictions and accelerated
autoregressive sampling and likelihood evaluation with minimal extra training cost and comparable
accuracy to standard AR deployment.

Our main contributions are: (i) A causal autoregressive buffer that separates set-based context
encoding from sequential dependence, enabling efficient joint sampling and likelihoods. (ii) A uni-

Al for Tabular Data workshop at EurIPS 2025.

s Tabular foundation model
Context Cache E Target X}
Encode E 30
O((N + k) 7 Target x5 <
:/ E 15
e <
Context Set Predictions H g oo
H * 8 .
W '\ Target Xg a -1
[y k=1,..., K
Standard Autoregressive Loop § 30
5
\5 15
E 0.0
Context Set o
3 s
""""""""""""""" mmmmmmmmmes o
1 Encode G(N?) < —16 —08 0.0 08
Target X} = .
Context Cache ' 5 -~
G(N) : E 10 e
Target X B -7
T H Ry -
o) /:/ %D -
Buffer Predictions : T E‘ 10| o= =T
k=1..K : N
--------------------------------------- . I " S
Autoregressive with Buffer Loop (ours) : —t = ARW/ buffer (ours) t- Standard AR

Figure 1: Standard AR re-encodes the augmented context at each step, costing O(K (N+K)?). Our
buffered approach encodes C once and caches it; new targets enter a causal buffer that attends to
the cache and prior buffer entries, avoiding re-encoding. On a tabular foundation model, accuracy
matches the non-buffered baseline while achieving up to 20 x faster joint sampling.

fied training scheme (masked attention, buffer-size curriculum) that covers both modes with minimal
overhead. (iii) Empirical evidence showing up to 20x speedup with comparable predictive accuracy.

2 Background

We consider meta-learning tasks where a model adapts to new prediction problems from ob-
served data without retraining. Given a context set C = {(x,,yn)})_; and a target set T =
{(x5,, ys)Y M, the goal is to learn pg(yt.,, | X3.073C) (Foong et al., 2020). When targets are
processed autoregressively we use index k for readability. Set-based transformer models such as
transformer neural processes (TNPs; Nguyen & Grover, 2022) and prior-fitted networks (PFNs;
Miiller et al., 2022) summarize C with multi-head self-attention (MHSA) and decode each target x},
using multi-head cross-attention (MHCA), producing a diagonal factorization:

M
PoWiae | x1ariC) = [o | v, 1e(C))) - Q)
m=1
Here r¢(C) is a permutation-invariant context summary (via MHSA) and Iy is the decoder pro-
ducing a parametric predictive distribution for v, (e.g., a Gaussian; more expressive heads include
Riemannian distributions (Miiller et al., 2022) and mixtures of Gaussians (Uria et al., 2016; Chang
et al., 2025)). Models are trained by maximum likelihood on random context—target splits.

Many applications require dependencies across targets (joint sampling or joint likelihood evalu-
ation). While one can equip Eq. (1) with multivariate parametrics (Nguyen & Grover, 2022), a
flexible alternative is an autoregressive (AR) factorization (Bruinsma et al., 2023):

K
k—1
po(yire | x1.x:C) = [[po (i | xis CU{(x}, u))}izt) -)
k=1
This is a deployment mode of the same set-conditioned model: each prediction conditions on all
previous targets. For likelihoods, AR is order-dependent; averaging over permutations approximates
permutation invariance. The drawback is computational: each augmentation of the conditioning

set forces recomputation of r¢(-), yielding O(K(N+K)?) cost and making parallel AR sampling
cumbersome (e.g., B parallel sequences often require B copies of the model).

Sample generation time Log-likelihood evaluation time Training step time

& -~
v 7’ 10°
& —1 -~
1071 | el bkt bt it 183 Y 10 o
— Vo oY S Y, mm—.u m—, § w—Y —_ ,‘ —_
1 & - L)
> R B D o
£ 102 E 107" * £
= = D &
:
v ~ 107!
3 ya— " B 4
1073 1077 | v= S i § m ST
S== == == === == =@= = ¢ 9 @, 9 ORI
32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024
N N N
=&= Ours TNP-D-Ind === TNP-D-AR TNP-A 4 TNP-ND

Figure 2: Wall-clock time (log-scale) for sampling, joint log-likelihood, and a training step vs.
context size IV. Buffered inference is faster than strong AR baselines.

3 Efficient Autoregressive Inference

We condition the predictive distribution on a static context C and a dynamic autoregressive buffer B:
K

po(yix | Xix;C) = [pouir | ralxi, [re(C), bru—i))), br = r5((xi, 4i), [re(C), brw—1)),

k=1
3)

where r¢(C) is computed once (cached), rp is a causal-MHSA encoder, and b, are the encoded
buffer tokens (b.o = 0)). The decoder Iy cross-attends once to the concatenated keys/values (K/V)
from the cache and the visible buffer prefix, then outputs a parametric head. With an empty buffer,
Eq. (3) reduces to Eq. (1). We enforce: (R1) context immutable (read-only cache); (R2) strictly
causal buffer (token j attends only to < j); (R3) one-way flow (no writes into C); (R4) targets
read from the cache and the visible buffer prefix. Buffered AR costs O(N?+K N+K?) (one-time
context pass, total cross-reads, causal buffer self-attention) versus O (K (N+K)?) for naive AR that
re-encodes the augmented context at each step. Architectural details appear in Appendix A.

Training details. We minimize expected NLL over tasks from P. For each D = {(x;,y;)} ",
a random partition 7 yields context C, buffer B = {(x, yx)}:_, (random order), and targets 7 =

{(Xm, Ym)IM_,, with Niog = N+K+M. We compute all target predictions in a single masked
forward pass. Mask: 50% context-only; 50% context plus a random buffer prefix Bi.,,, with v, ~
Uniform(1, K) (see Appendix A.2). The training objective is:

L(6) = Ep.p : 4)

M
Ec.5,7)~r(|D) [— Z log pe (Ym | Xm7C,31:vm)]

m=1

where Bi.,,, is the raw buffer prefix for target m (v, =0 means context-only). The curriculum
preserves marginal quality (frequent buffer-free predictions) and teaches incorporation of buffer
information (random prefixes), aligning with posterior predictives under varying conditioning sets
(Miiller et al., 2022; Elsemiiller et al., 2024).

Summary of inference procedures. Inference uses a two-stage routine: one-time context prefill
(O(N?)), followed by predictions interacting with the cached context. For sampling, we decode
sequentially, appending each (x}, y;) to the buffer cache. For joint log-likelihoods, we pack buffer
tokens for (x},y;) and query tokens for xJ, so each query attends to C and Bj.,—1, computing
all conditionals in one pass; averaging over orders approximates permutation invariance. Batched
sampling reuses the single context cache across streams. See Appendix A for algorithms, masks,
and variants; related work is in Appendix B.

4 Experiments

We evaluate two axes: (i) the efficiency of the autoregressive buffer, such as wall-clock times for
sampling, joint log-likelihood, and a full training step; and (ii) predictive quality on real tabular tasks

Table 1: Average Log-likelihood (1) results on UCI datasets with TabICL. We evaluate our
proposed AR-Buffer mechanism integrated into a TabICL foundation model against independent
and standard AR baselines. Performance is measured on both interpolation (Int) and forecasting
(For) tasks across three real-world datasets. Results are reported as mean and standard error over 16
randomly sampled mini-datasets (N = 128, M = 32).

Electric Consumption Gas Turbine Bike Sharing
Int For Int For Int For

Independent 1.60 (0.10) 1.02 (0.29) -0.39 (0.14) -1.16 (0.60) 1.54 (0.06) 0.97 (0.11)
Standard AR 1.63 (0.10) 1.38 (0.27) -0.38 (0.14) -0.75(0.33) 1.57(0.06) 1.21(0.10)

AR w/ buffer (K =32) 1.61(0.10) 1.35(0.27) -0.38(0.14) -0.76 (0.33) 1.57 (0.06) 1.18 (0.10)

with a foundation-model backbone, comparing independent predictions, versus joint predictions
generated autoregressively with and without the buffer.

Computational efficiency. All models share a unified codebase, matched parameter counts, and
identical input/output heads (Appendix C). We benchmark four TNP variants for joint prediction:
TNP-D-Ind (diagonal, independent), TNP-ND (non-diagonal multivariate Gaussian), TNP-D-AR (di-
agonal model run autoregressively via re-encoding), and TNP-AR (fully autoregressive with causal
self-attention). We use TNP baselines because the transformer and attention pattern of TNP-D match
the dataset-wise in-context transformer in TabICL and TabPFN (Hollmann et al., 2023), giving a
controlled efficiency comparison across alternative joint-sampling mechanisms that use similar at-
tention operations (independent, non-diagonal, AR via re-encoding, fully AR). As context, TNP-AR
typically matches TNP-D-AR accuracy but is slower, while TNP-ND is one-pass yet tends to underfit
dependencies. All runs use KV caching, FlashAttention-2 (Dao, 2023), and compilation. Figure 2
reports time vs. context size N with the same backbone as downstream experiments; buffer K =16.
Sampling/likelihood: M =16, batch B=256; training: M =256, B=128. Our method is 3-20x
faster than TNP-AR/TNP-D-AR for sampling, matches TNP-AR and is K x faster than TNP-D-AR
for likelihoods, and trains 4—12x faster than TNP-AR with minimal overhead vs. TNP-D/TNP-ND.
Extended sweeps are in Appendix D.

Tabular foundation model. We instantiate the buffer in a TabICL-like architecture (Jingang et al.,
2025) and adapt it to regression. The architecture has two parts: (i) a set encoder that computes
feature embeddings once (cached), and (ii) a dataset-wise in-context transformer whose trans-
former/attention match TNP-D / TabPFN (Hollmann et al., 2023). We add a structured attention
mask so predictions are written to a causal buffer while the context cache remains immutable—no
re-encoding during AR inference. Pre-training follows the Sstructured causal model synthetic prior
(Jingang et al., 2025) on 10.24M datasets (up to 10 features, and context sizes between 8 and 1024
with buffer size K=32; each task is split into context, buffer, and targets. Further details appear
in Appendix E.1. Results. We evaluate on three UCI time-series datasets (Electric Consumption,
Gas Turbine, Bike Sharing). For each, we form 16 tasks with N=128 context and M =32 targets
under interpolation (Int) and forecasting (For). Using the same backbone, we compare: Independent
(marginals), Standard AR (K=1), and AR w/ buffer (K=32). Table 1 shows both AR modes out-
perform independent predictions, and AR w/ buffer matches Standard AR within s.e., indicating the
buffer preserves AR dependencies while enabling efficient inference.

5 Discussion

We introduce a causal autoregressive buffer that decouples one-time context encoding from
lightweight sequential updates in set-conditioned transformers. By caching context keys/values and
handling target-to-target dependencies in a causal buffer, we reduce attention from O(K (N+K)?)
to O(N?*+NK+K?). In tabular prediction, the buffer matches autoregressive baselines while
achieving up to 20x faster joint sampling, with minimal extra training cost vs. standard models
and up to 10x lower training cost than fully autoregressive baselines. Gains are largest when many
joint samples are drawn from the same large context and moderate K. Future work includes scaling
to larger target sizes and integrating the buffer into post-pretraining fine-tuning of existing tabular
foundation models.

References

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block Diffusion: Interpolating between autoregres-
sive and diffusion language models. In International Conference on Learning Representations,
2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 2020.

Wessel P Bruinsma, James Requeima, Andrew YK Foong, Jonathan Gordon, and Richard E Turner.
The Gaussian neural process. In 3rd Symposium on Advances in Approximate Bayesian Inference,
2021.

Wessel P Bruinsma, Stratis Markou, James Requeima, Andrew YK Foong, Tom R Andersson, Anna
Vaughan, Anthony Buonomo, J Scott Hosking, and Richard E Turner. Autoregressive conditional
neural processes. In International Conference on Learning Representations, 2023.

Paul E Chang, Nasrulloh Loka, Daolang Huang, Ulpu Remes, Samuel Kaski, and Luigi Acerbi.
Amortized probabilistic conditioning for optimization, simulation and inference. In International
Conference on Artificial Intelligence and Statistics. PMLR, 2025.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter-
national Conference on Learning Representations, 2023.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Block neural autoregressive flow. In Uncertainty in
artificial intelligence. PMLR, 2020.

Vincent Dutordoir, Alan Saul, Zoubin Ghahramani, and Fergus Simpson. Neural diffusion pro-
cesses. In International Conference on Machine Learning. PMLR, 2023.

Lasse Elsemiiller, Hans Olischliger, Marvin Schmitt, Paul-Christian Biirkner, Ullrich Koethe, and
Stefan T. Radev. Sensitivity-aware amortized bayesian inference. Transactions on Machine
Learning Research, 2024.

Leo Feng, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed. Efficient queries
transformer neural processes. In NeurlPS 2022 Workshop on Meta-Learning, 2022.

Leo Feng, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed. Latent bot-
tlenecked attentive neural processes. In International Conference on Learning Representations,
2023.

Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed.
Memory efficient neural processes via constant memory attention block. In International Confer-
ence on Machine Learning. PMLR, 2024.

Andrew YK Foong, Wessel P Bruinsma, Jonathan Gordon, Yann Dubois, James Requeima, and
Richard E Turner. Meta-learning stationary stochastic process prediction with convolutional neu-
ral processes. In Advances in Neural Information Processing Systems. Curran Associates, Inc.,
2020.

Marta Garnelo, Dan Rosenbaum, Chris J Maddison, Tiago Ramalho, David Saxton, Murray Shana-
han, Yee Whye Teh, Danilo J Rezende, and SM Ali Eslami. Conditional neural processes. In
International Conference on Machine Learning. PMLR, 2018a.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Ali Eslami,
and Yee Whye Teh. Neural processes. In ICML 2018 Workshop on Theoretical Foundations and
Applications of Deep Generative Models, 2018b.

Mathieu Germain, Karol Gregor, lain Murray, and Hugo Larochelle. Made: Masked autoencoder
for distribution estimation. In International Conference on Machine Learning. PMLR, 2015.

Manuel Gloeckler, Michael Deistler, Christian Weilbach, Frank Wood, and Jakob H Macke. All-
in-one simulation-based inference. In International Conference on Machine Learning. PMLR,
2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems. Curran Associates, Inc., 2020.

Noah Hollmann, Samuel Miiller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
that solves small tabular classification problems in a second. In International Conference on
Learning Representations, 2023.

Noah Hollmann, Samuel Miiller, Lennart Purucker, Arjun Krishnakumar, Max Koérfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319-326, 2025.

Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
Tim Salimans. Autoregressive diffusion models. In International Conference on Learning Rep-
resentations, 2022.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autoregressive
flows. In International Conference on Machine Learning. PMLR, 2018.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International Conference on Machine
Learning. PMLR, 2021.

QU Jingang, David Holzmiiller, Ga€l Varoquaux, and Marine Le Morvan. TabICL: A tabular foun-
dation model for in-context learning on large data. In International Conference on Machine
Learning. PMLR, 2025.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Im-
proved variational inference with inverse autoregressive flow. In Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2016.

Jose Lara-Rangel, Nanze Chen, and Fengzhe Zhang. Exploring pseudo-token approaches in trans-
former neural processes. arXiv preprint arXiv:2504.14416, 2025.

Hugo Larochelle and Tain Murray. The neural autoregressive distribution estimator. In international
conference on artificial intelligence and statistics. PMLR, 2011.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
Transformer: A framework for attention-based permutation-invariant neural networks. In Inter-
national conference on machine learning. PMLR, 2019.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In International Conference on Learning Representations,
2023.

Sulin Liu, Peter J] Ramadge, and Ryan P Adams. Generative marginalization models. In Interna-
tional Conference on Machine Learning. PMLR, 2024.

Sarthak Mittal, Niels Leif Bracher, Guillaume Lajoie, Priyank Jaini, and Marcus A Brubaker. Ex-
ploring exchangeable dataset amortization for bayesian posterior inference. In ICML 2023 Work-
shop on Structured Probabilistic Inference and Generative Modeling, 2023.

Sarthak Mittal, Niels Leif Bracher, Guillaume Lajoie, Priyank Jaini, and Marcus Brubaker. Amor-
tized in-context Bayesian posterior estimation. arXiv preprint arXiv:2502.06601, 2025.

Samuel Miiller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
formers can do Bayesian inference. In International Conference on Learning Representations,
2022.

Samuel Miiller, Matthias Feurer, Noah Hollmann, and Frank Hutter. PFNs4BO: In-context learning
for bayesian optimization. In International Conference on Machine Learning. PMLR, 2023.

Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy pooling:
Learning deep permutation-invariant functions for variable-size inputs. In International Confer-
ence on Learning Representations, 2019.

Tung Nguyen and Aditya Grover. Transformer Neural Processes: Uncertainty-aware meta learning
via sequence modeling. In International Conference on Machine Learning. PMLR, 2022.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems. Curran Associates, Inc.,
2017.

Massimiliano Patacchiola, Aliaksandra Shysheya, Katja Hofmann, and Richard E Turner. Trans-
former neural autoregressive flows. In ICML 2024 Workshop on Structured Probabilistic Infer-
ence & Generative Modeling, 2024.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018. URL https://openai.com/index/
language—unsupervised/.

Arik Reuter, Tim GJ Rudner, Vincent Fortuin, and David Riigamer. Can transformers learn full
Bayesian inference in context? International Conference on Machine Learning, 2025.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021.

Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang,
Han Cai, Yao Lu, and Song Han. HART: Efficient visual generation with Hybrid AutoRegressive
Transformer. In International Conference on Learning Representations, 2025.

Benigno Uria, Iain Murray, and Hugo Larochelle. A deep and tractable density estimator. In Inter-
national Conference on Machine Learning. PMLR, 2014.

Benigno Uria, Marc-Alexandre Co6té, Karol Gregor, Iain Murray, and Hugo Larochelle. Neural
autoregressive distribution estimation. Journal of Machine Learning Research, 17(205):1-37,
2016.

George Whittle, Juliusz Ziomek, Jacob Rawling, and Michael A Osborne. Distribution trans-
formers: Fast approximate Bayesian inference with on-the-fly prior adaptation. arXiv preprint
arXiv:2502.02463, 2025.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dLLM: Training-free acceleration of diffusion LLM by enabling KV
cache and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

https://openai.com/index/language-unsupervised/
https://openai.com/index/language-unsupervised/

Table of Contents

A

Method Details

A.1 Modules and notation
A.2 Training mask that implements (R1)-(R4)
A.3 Algorithms for autoregressive sampling and log-likelihood evaluation
A.4 Architectural generality

Related Work

Transformer Neural Process Baselines Details

Computational Efficiency Details

D.1 ScalingwithBatchSize
D.2 Impact of Custom TritonKernel
D.3 Comparison to Open-Source Baselines
D.4 Training Time Scaling
D.5 Impact of Attention Patterns on Training Speed

Experimental Details
E.1 Tabularmodeldetails
E.2 EvaluationDetails

Use of Large Language Models

14
14
14
15
16

18
18
19

20

A Method Details

This appendix spells out the modules used in Eq. (3), the single block-sparse attention mask that
implements requirements (R1)—(R4), and the exact procedures for autoregressive sampling and one-
pass joint log-likelihood evaluation.

A.1 Modules and notation

Our method uses three sets of tokens: context C, buffer B, and targets 7, of sizes N, K, M, respec-
tively. Throughout this paper, let

E,: X=RY E,: YR a:{l,....K}->R?

denote learned embeddings for inputs, outputs, and buffer positions. In addition, we introduce role
embeddings that indicate token type, denoted by e, efdle and e{gfe for context, buffer, and target
tokens, respectively.

Context encoder rc. Given context pairs C = {(x,,yn)}_;, construct context tokens: €% =
E.(x,) + Ey(yn) + e, process them with bidirectional MHSA (no positional embeddings), and
cache per-layer keys/values:

{KVEYL | = re(C) (computed once; immutable).

Buffer encoder rp. For a buffer prefix By, = {(x},y})}}_;, form tokens 2" = E,(x}) +
E,(y;)+a(j) —|—e{)‘;1§, then apply strictly causal MHSA on { e';“f} j<k so that each token is restrigted to
attend only to earlier tokens in the sequence, and in addition, each token performs cross-attention to

the cached context {KV@} This yields per-layer KV%M that we update incrementally at inference:
{KVg,, }ier = r5 (B, re(0)).

Target decoder ry and prediction head. For a target input x}, we create a query token
e = Eu(x1) + e{gtle. The target decoder ry; performs a single cross-attention from e to the
concatenated keys/values of the context cache {KV¢} and the visible buffer prefix {KVj =~ },

followed by normalization and an MLP:

B = v (e, [{KVEL (KVE,, }]), én = h),

where 1) is the distribution head (e.g., the mixture-of-Gaussian head).

A.2 Training mask that implements (R1)-(R4)

We concatenate tokens as [C, B, T] with sizes N, K, and M, respectively, and use one block-sparse
attention mask consisting of the following five unmasked sections (everything else is masked):

(1) Self-attention within context. Context tokens attend bidirectionally to other context tokens.
Context never attends to buffer or targets (context is read-only outside this block).

(2) Buffer reads context (cross-attention). Each buffer token can read (attend to) all context tokens.
This lets the buffer incorporate task information from the cached context while keeping the context
cache immutable.

(3) Causal self-attention within the buffer. Within the buffer itself, attention is strictly causal: a
buffer token at position j can only read earlier buffer positions < j (no future reads). This encodes
the autoregressive dependency among realized targets.

(4) Targets read context (cross-attention). Each target query can read the entire cached context.
There are no edges between targets.

(5) Targets read buffer (prefix only, cross-attention). Each target query can read only a visible
prefix of the buffer. The visible prefix length for target m is v,,: training (teacher forcing): we
set v, =0 for 50% of targets and sample v,,, ~ Uniform{1,..., K} for the rest (the curriculum);

Transformer diagonal prediction map training mask Transformer diagonal prediction map training mask w/ AR buffer

Kiv
[Contextself-attn ~ EEE Buffer-context cross-attn I Target-buffer cross-attn

[Bulffer self-attn I Target-context cross-attn

Figure Al: Block-sparse attention masks with and without an autoregressive buffer. Left: a
diagonal prediction-map transformer (e.g., TNP/PFN): the context attends to itself and each target
reads the entire context. Right: our buffered variant inserts an autoregressive memory B between
context and targets, adding three blocks: (i) buffer reads context (ii) causal self-attention within
buffer (iii) target reads varying number of elements from start of buffer, depending on curriculum.

sampling: at step k, the active query sees the realized prefix k—1; one-pass joint log-likelihood:
packed queries use v,,=m—1 to recover the autoregressive chain in a single forward pass.

All other connections are masked: context never reads buffer or targets; targets never read targets;
and buffer never reads targets. This single pattern implements the four requirements from the main
text—immutable context, strictly causal buffer, unidirectional flow out of context, and target access
to (context + visible buffer). See Fig. Al for the diagram.

Complexity. Under this mask, a full prediction pass costs O(/N?+ N K + K ?) attention operations
per layer: one-time O(N?) for C, O(NK) for reads from C, and O(K?) for causal buffer self-
attention. This replaces the (’)(K (N+K)2) cost of naive AR re-encoding. Packing B target orders
in parallel (for order averaging) isolates the B buffer sets while sharing the context cache, yielding
O(N? + B(NK + K?)).

A.3 Algorithms for autoregressive sampling and log-likelihood evaluation

We include here the pseudocode for the main procedures used in our method.

Autoregressive sampling. Given a context C and a sequence of target inputs x7, ..., X}, we gen-
erate samples by first performing a one-time prefill of C, caching its keys and values in an O(N?)
operation. We then decode sequentially following Eq. (3): for each step & = 1,..., K, we form
a target query for input xj, attend to the cached context and causal buffer Bj,_, sample y; from
the predictive distribution, and append (x}, y}) to the buffer with its positional embedding. Only
the buffer’s key/value cache is incrementally updated, avoiding context recomputation and yielding
O(N? + NK + K?) total complexity. Algorithm 1 details the autoregressive sampling procedure.

Joint likelihood evaluation. Our framework can also evaluate the joint likelihood of a set of
K = M targets, {(x5,,y5)}X_,, in a single forward pass. To achieve this, similar to the TNP-
A variant of Nguyen & Grover (2022), we pack two sets of tokens into the model: (i) buffer tokens
for the targets {(x},yx) }<,, and (ii) separate query tokens for the same target inputs {x}, }X_,. A
causal attention mask ensures that each query for x7, attends to the context C and only the preceding

buffer tokens Bi.m—1 = {(X},¥})}k<m. This allows all conditional probabilities to be computed
in one pass: logpe(yt.x | X1.x,C) = Zi:l log po(yy, | X%, C, Brim—1). This is algebraically

10

Algorithm 1 Autoregressive sample generation for K targets

Require: Context C = {(zy,, yn) })_,, target inputs {z} }5_,
1: {KV5} « re(C) > O(N?); cached
2: Initialize {KV ol > empty buffer cache
3: fork =1to K do

B 1 (Ea(a)+eigle, [{KVE), {KVE,, 1)

Sample y; ~ po(+; ¢ (hy))

Append (z%, y}); update {KV@L .} (strictly causal)
end for
return {y;}/",

AN (S

Algorithm 2 Joint log-likelihood evaluation for K targets

Require: Context C = {(zy,, yn)), ordered targets {(x}, y5)} o,

{KV.} « re(C) > O(N?); cached
Build all K buffer tokens; compute {KV% .., } under causal mask

Build target queries {E, (z})+efo* i,

Mask: target k sees B1.;—1 and all of C

Compute {log py, } X ,;

return Zszl log pi,

EANE AR I

identical to sequential autoregressive evaluation but executes in a single forward pass with total at-
tention cost O(N2+K N+K?2). Notably, autoregressive likelihood estimates are order-dependent;
to recover approximate permutation invariance, we average the likelihood over multiple buffer or-
derings (Murphy et al., 2019). Algorithm 2 presents the joint likelihood evaluation.

Batched autoregressive sampling. Our method is particularly efficient for autoregressively gener-
ating multiple samples in a batch, conditional on the same context C (e.g., multiple joint predictions
for the same observed function values — see Fig. 1). A naive batched autoregressive approach must
re-encode a growing context set at every generation step for each of the B samples. To generate B
samples of length K, this results in a prohibitive total cost of O(BK (N + K)?). In contrast, our
approach performs the expensive context prefill (O(N?)) only once. This single context cache is
then efficiently reused across all B batched generation streams, with only the small, dynamic buffer
maintaining a separate state for each sample. This reduces the total cost to O(N? + B(NK + K?)),
making batched sampling practical even for large contexts and batches.

A.4 Architectural generality

Our buffer is a general mechanism applicable to other transformer variants. For instance, a Perceiver-
style encoder (Jacgle et al., 2021) summarizes the context C into a fixed set of P < N latent tokens,
also known as pseudo-tokens (Lee et al., 2019; Feng et al., 2023; Lara-Rangel et al., 2025). We
can precompute the latent key/value representations once — autoregressive decoding then requires
attending only to these P latents and the growing causal buffer. The per-layer attention cost is
O(N P+P?) for the prefill and O(PK+K?) for decoding K samples. In contrast, the approach
without our buffer would incur a larger cost of O(N PK+P?K+PK?).

B Related Work

Neural processes and prior-fitted networks. Our method can serve as a modular component
within neural processes (NPs; Garnelo et al., 2018b,a; Bruinsma et al., 2021; Nguyen & Grover,
2022; Dutordoir et al., 2023; Chang et al., 2025) or prior-fitted networks (PFNs; Miiller et al., 2022,
2023; Hollmann et al., 2023). Prior work on efficient NP methods has primarily focused on im-
proving scalability with respect to the context set size (Feng et al., 2022, 2023) and on reducing
memory usage (Feng et al., 2024) for independent prediction tasks. By contrast, our method targets

11

efficiency in autoregressive joint sampling and evaluation, an area that has received limited atten-
tion in the NP literature. Our contributions are complementary and can be combined with other
architectural improvements.

Transformer probabilistic models. Recent work increasingly leverages transformer architectures
for probabilistic modeling, framing Bayesian inference as an in-context learning task. These meth-
ods perform tasks such as approximating posterior distributions, modeling conditional relationships,
and estimating posterior predictive distributions by conditioning on context observations and, op-
tionally, additional prior information (Mittal et al., 2023; Gloeckler et al., 2024; Reuter et al., 2025;
Chang et al., 2025; Whittle et al., 2025; Mittal et al., 2025). Our work builds on this direction by
leveraging transformer-based variants of neural processes and prior-fitted networks.

Tabular foundation models. The effectiveness of PFNs has led to transformer-based tabular foun-
dation models such as TabPFN (Hollmann et al., 2023, 2025) and TabICL (Jingang et al., 2025),
which demonstrate strong performance on tabular data through in-context learning approaches. The
“in-context learning” over rows within these models follows the same attention mechanisms as stan-
dard transformer neural processes and PFNs; our method integrates naturally with these models,
serving as a complementary module for efficient joint sampling and prediction.

Autoregressive joint density estimation. Autoregressive approaches are widely used for joint
density estimation, from neural autoregressive density estimators (Larochelle & Murray, 2011; Uria
et al., 2016; Germain et al., 2015) to normalizing flows (Kingma et al., 2016; Papamakarios et al.,
2017; Huang et al., 2018; De Cao et al., 2020; Patacchiola et al., 2024), and order-agnostic au-
toregressive models (Uria et al., 2014; Hoogeboom et al., 2022; Liu et al., 2024). Within the NP
literature, our method is related to the Autoregressive Transformer NP (TNP-A; Nguyen & Grover,
2022) which duplicates targets into queries and observed values. While TNP-A uses this duplication
for both training and inference, we recognize it is only needed for likelihood evaluation. Bruinsma
et al. (2023) showed that deploying standard NPs autoregressively improves joint predictions but
requires expensive context re-encoding at each step. Our buffer mechanism combines insights from
both approaches: like TNP-A, we enable parallel likelihood evaluation, and like Bruinsma et al.
(2023), we model autoregressive dependencies while training on independent targets — our separate
buffer architecture avoids both TNP-A’s training overhead and the re-encoding bottleneck.

Connection to other generative modeling techniques. Modern generative models for joint dis-
tributions follow two main paradigms: diffusion and flow-matching models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021; Lipman et al., 2023) that generate samples through
continuous-time dynamics, and autoregressive transformers (GPTs; Radford et al., 2018; Brown
et al., 2020) that generate sequences token-by-token with cached key-value states. While diffu-
sion dominates in continuous domains like images and video, autoregressive transformers excel
in discrete sequences and show excellent performance and scalability in multiple domains. Our
buffer mechanism brings the efficiency of autoregressive transformers to NPs and PFNs. Standard
NPs/PFNs struggle with joint prediction because they must re-encode the entire context at each
autoregressive step. Our approach instead mirrors language models: encode the set-based con-
text once (like a prompt) and generate efficiently through cached representations. Recent work has
shown these paradigms can be combined (Tang et al., 2025; Arriola et al., 2025; Wu et al., 2025),
suggesting future extensions.

C Transformer Neural Process Baselines Details

We summarize the baseline transformer neural process (TNP) variants used in our comparisons,
following Nguyen & Grover (2022).

C.1 TNP-D

This model takes as input a context set {(x,,y,)}2_; and a target set {x*, }}_,. Similar to Sec-

tion A, the context embeddings eS™ are processed with bidirectional MHSA with no positional en-
codings. Each target is decoded by:

by = v, 1e(0), G = v(hn),

12

where 1 is the distribution head (Gaussian as in the original paper; we primarily use a mixture of
Gaussians). The left panel of Fig. A1 shows the training mask for TNP-D. This model is trained via
maximum likelihood estimation of independent targets given a fixed context set.

At deployment, the decoding can be independent or autoregressive, yielding TNP-D-Ind and TNP-
D-AR methods. TNP-D-Ind decodes all targets independently in a single pass. It is fast (context and
targets encoded once), but cannot capture dependencies between targets.

TNP-D-AR decodes targets sequentially, appending each sampled (x,, y»,) to the context. This
captures joint structure but requires re-encoding the growing set at each step. TNP-D-Ind is invari-
ant to target order; TNP-D-AR is order-sensitive, so we approximate the predictive distribution by
averaging over multiple target orderings.

C.2 TNP-ND

This model encodes the context set once and decodes all targets simultaneously by parameterizing a
joint multivariate Gaussian distribution over the outputs. The embedder and transformer backbone
are identical to those of TNP-D-Ind:

hm = r[g[(elﬁ;, Ire (C)) .
Then the joint distribution is obtained via

¢ =¢np(hi,... hy),

where 1 p is the multivariate Gaussian head that outputs both a mean vector and valid covariance
matrix. The mean is produced per target, and a lightweight self-attention head over the set of tar-
gets yields fixed-width embeddings that are transformed into a valid covariance factor. This design
supports a variable number of targets and is invariant to target order.

The training optimizes the joint multivariate Gaussian likelihood of the target points. At inference,
the joint samples and log-likelihood are computed in a single pass. This model is invariant to the
order of target points.

C.3 TNP-A

The key difference between this model and TNP-D is the attention mechanism on the target set.
This model processes three sets: the context {(x,,,y,)}2_;, the target {x* }M_, and the observed
target {(x*,,y%,)}M_,. To differentiate, we denote the embeddings of {(x7,, v,) }2_, by {e®}.
Similar to TNP-D, the context embeddings attend to each other. For the target set, each)5 attends
to the context and the previous observed target embeddings e?fﬁl. Likewise, the observed target
embeddings attend to context and previous target embeddings (Fig. 2 of Nguyen & Grover 2022).

The target causal mask allows TNP-A to model the joint likelihood simultaneously in one single
pass, assuming the observations are given (e.g., for training and test log-likelihood evaluations). For
prediction generation, however, each sampled target needs to be re-encoded and attended for the
generation of next targets, yielding a sequential re-encoding procedure. The causal mask on the
target set is sensitive to the target order, and thus the final likelihood is an average over multiple ran-
dom permutations. Note that this model processes duplicated target set—{x%, }}/_, and an observed
sequence {(x%,,y%,)} M_,; this creates significant computational overhead in both the training and
the inference, particularly when the target set is large (see e.g. Section D and Figs. A7 to A9).

Compared to our method, TNP-A can be viewed as TNP-D with a ‘frozen buffer’ {(x%,, v,)}, of
size K = M containing the observed targets. For likelihood evaluation where all sets are processed
in one shot, the behavior of TNP-A and our approach are analogous, with the set {(x%,, 3%,)}M_;
serving a role similar to our buffer. However, for AR sampling, TNP-A repeatedly re-encodes the
full context and target sets after each sampled y,, whereas our method dynamically adapts to new
samples. Moreover, since TNP-A does not afford a dynamic-size target set decoupled from the

‘in-context’ targets, training is much more expensive than our method (see Fig. 2 in the main text).

13

D Computational Efficiency Details

This section provides additional empirical results to support the efficiency claims made in the main
paper. We present an analysis of performance scaling with batch size, an ablation study of our
custom kernel, a comparison against unoptimized open-source baselines, and further ablations on
training time. In all subsequent plots, the absence of a data point for a given method indicates that
the experiment failed due to an out-of-memory (OOM) error for that specific configuration.

D.1 Scaling with Batch Size

To analyze the effect of batch size B, we provide expanded results for autoregressive sampling and
joint log-likelihood evaluation in Fig. A2 and Fig. A3, respectively. These plots show the wall-clock
time as a function of the number of context points /N for various batch sizes. The results confirm
that our method’s performance advantage over autoregressive baselines like TNP-A is consistent and
often widens as the context and batch size increase.

Sample generation time (M = 16)

B=128 B =256 B =512 B=1024
100 -t o
" e
& s " "
@10‘1 Al Bk B A Bphed B - I U L A Bk “
Py Ve V. mmmmV. mmVa u mvem ® Y. Vommm . mmmmV.n mmVa u mVems = ¥ Vo V. mmm—Y.n Ve u mVem u V. Vo V. .3 =Y mVem u V-
£
£ 102
-3
10 G —— g y— —) w— GG T Y) — S— @ T Y — w— Y I Y — —

32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024
N N N
=f= Ours TNP-D-Ind =# = TNP-D-AR TNP-A =& TNP-ND

Figure A2: Autoregressive sampling time (log scale) versus context size N for an expanded range
of batch sizes B.

Log-likelihood evaluation time (M = 16)

B=128 B =256 B =512 B=1024
10° - - -
ok A -
2101 ok ’A’ - ~ - PR - s
@ g ~ - s - Y A
- - [e - Ll
o - w* P -k N - A
g, - . R % . ¥
& 10 A — g w g S /.v.‘
A B o
=t w g = g ="°
1073 | omamn & mimi®® ==) Gt

©
V= Ve EEVA s, =Y Voo M M Y/ Y Y, i B Y, T B\ Y/ Y o Y . Y

32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024
N N N
=$= Ours TNP-D-Ind =i = TNP-D-AR TNP-A = TNP-ND

Figure A3: Joint log-likelihood evaluation time (log scale) versus context size N for an expanded
range of batch sizes B.

D.2 Impact of Custom Triton Kernel

To isolate the contribution of our custom attention kernel, we compare the sampling time of our
method with and without this optimization. The kernel is designed to accelerate a key computational
step: the cross-attention between the batched target embeddings (batch size B) and the concatenation
of a batched buffer cache with a shared context cache (batch size 1). A naive implementation would
explicitly expand the context cache tensor B times to match the batch dimension before the attention
operation. This “expand” operation is memory-bandwidth intensive and creates a large, redundant
intermediate tensor.

14

Our custom Triton kernel avoids this bottleneck by fusing the expansion and attention computations.
The kernel loads the single context cache into fast SRAM and reuses it for each item in the batch,
calculating the attention on-the-fly without ever materializing the full expanded tensor in slower
global memory. As shown in Fig. A4, this memory-centric optimization provides a substantial
speedup that grows with the batch size B.

Sample generation time (M = 16)

B=128 B =256 B =512 B=1024
2 g R .
5
E
] I y
6x10°2 [Py e i e s . mbm = e w R
e B = s g ‘I - I\.. [——— [FTe— R —— M m— ’I. -

32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024
N N N

== Ours (w/ Triton) #= Ours (w/o Triton)

Figure A4: Ablation study for autoregressive sampling, comparing our method with and without the
custom Triton kernel across different context and batch sizes.

D.3 Comparison to Open-Source Baselines

To demonstrate the fairness of our primary comparisons, we benchmark our optimized baseline
implementations against their standard, publicly available versions. The results for sampling and
likelihood evaluation are shown in Fig. A5 and Fig. A6. Our optimized baselines are consistently
3 — 10x faster than their standard counterparts. This confirms that our method’s performance gains
are due to fundamental algorithmic advantages, not an unfair comparison against unoptimized code.

Sample generation time (M = 16)

B=128 B =256 B =512 B=1024
10!
10° . e o e
e - : w* e ™ . o &° -
2 107! [md Beg Bmd @ Emioied B omt g Bl (€8 maret? Sl & i 0P omd s P
£102
1073
32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024
TNP-D-Ind (base) TNP-D-AR (base) TNP-A (base) TNP-ND (base) =& TNP-ND (compiled)
e=f= TNP-D-Ind (compiled) = =&= TNP-D-AR (compiled) TNP-A (compiled)

Figure A5: Comparison of our optimized baseline implementations against standard open-source
versions for autoregressive sampling.

15

Log-likelihood evaluation time (M = 16)

B=128 B =256 B =512 B=1024
10!
. : 3
10° . ~ > o= "
2 . - - . =" . P e
Z o . - X s — P > o .
o . * - * - - » - .t
- » * - .
- - . - .t P o
£ 1072 | gom me == L o=== .ot - e et
= » gt 4 " .

.
. g . . g o8 s & > 5 g n'd ™ s & e g = . s &
L PP

FER

107 | e » A —— - - [——

32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024
N N N

TNP-A (base) R L TNP-A (compiled) TNP-ND (base) = TNP-ND (compiled)

Figure A6: Comparison of our optimized baseline implementations against standard open-source
versions for joint log-likelihood evaluation.

D.4 Training Time Scaling

We further analyze the scaling of training step time with respect to the number of target points M
for different batch sizes. Figs. A7 to A9 show this relationship for batch sizes of 64, 128, and 256,
respectively. The results show that as the context, target, or batch size increases, TNP-A becomes
increasingly expensive to train relative to all other methods.

Training step time (forward + backward, B = 64)

M=128 M =256 M =512
100

@ 7% A
(]
E .
=101 pn g n

ettt | fifenentet=—t | gy

32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024

N N N
=§= Ours #= TNP-D-Ind i« TNPA =& TNP-ND
Figure A7: Training step time vs. number of target points M for batch size B = 64.
Training step time (forward + backward, B =128)
M=128 M =256 M =512
100 N

@ A
[} E
£ . .
=101 o8 - S _ S

» {_‘,;‘,— .3—-;:_- - g,, < s @ & Sm— x‘—&,—.-,g:_—lg/

sm e ot s —

32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024
N N N

=¢=Ours #= TNP-D-Ind += TNP-A =& TNP-ND

Figure A8: Training step time vs. number of target points M for batch size B = 128.

16

Training step time (forward + backward, B = 256)

M =128 M =256 M =512
100
)
[}
é -* /" e >*
-1 < — — =2 N
10 o=, T:,-‘t-. 13‘—"3, SE— -Ith-ﬂ.§='.g‘/"“ :: -:—— -':" =

32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024
N N N

== Ours s= TNP-D-Ind TNP-A =& TNP-ND

Figure A9: Training step time vs. number of target points M for batch size B = 256.

D.5 Impact of Attention Patterns on Training Speed

A key difference between the baseline models is their compatibility with modern, efficient attention
implementations. The causal attention mask required by TNP-A during training is incompatible
with kernels like FlashAttention, forcing it to use PyTorch’s standard, but slower, “math” attention
backend. In contrast, models like TNP-D and ours can leverage these faster kernels.

In Section C, we discussed the duplicated processing of TNP-A on the target set, which incurs
significant computational overhead. To determine if TNP-A’s slow training is fundamental to its
architecture or merely an artifact of this kernel incompatibility, we conduct a controlled ablation.
We disable FlashAttention for all methods, forcing a fair comparison on the same standard PyTorch
attention backend. The results, shown in Figs. A10 to A12, are unequivocal. Even on a level playing
field, TNP-A’s training time is orders of magnitude slower than all other methods. This confirms
that its high computational cost is an inherent consequence of its autoregressive design, not just an
implementation detail.

Training step time (forward + backward, B = 64)

M =128 M =256 M =512
10°
) o
3y /’ /’ P4
E 107 o)“", Gy g -oy/‘ -
=t s g e— st S tmn g

32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024
N N N

== Ours i= TNP-D-Ind TNP-A =& TNP-ND

Figure A10: Training step time vs. number of target points M using the standard PyTorch attention
backend (FlashAttention disabled). Batch size B = 64.

17

Training step time (forward + backward, B = 128)

M =128 M =256 M =512
10° &
PN .
é ,//’ »// . A*“,/
[= e R /‘ e fe/‘ o= - :; =2
p — p fommA——— ——

ST S

32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024
N N N

=¢m= Ours TNP-D-Ind TNP-A =& TNP-ND

Figure A11: Training step time vs. number of target points M using the standard PyTorch attention
backend (FlashAttention disabled). Batch size B = 128.

Training step time (forward + backward, B = 256)

M=128 M =256 M=512
10°
2 o %
1 P Pre — =t
g Ve _ p® ——
HlO_1 - _‘:‘3’, = -«;‘3/ ;/"’

32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024
N N N

=8= Qurs TNP-D-Ind TNP-A =& TNP-ND

Figure A12: Training step time vs. number of target points M using the standard PyTorch attention
backend (FlashAttention disabled). Batch size B = 256.

E Experimental Details

E.1 Tabular model details

This section describes the TabICL model and explains how the training dataset was generated. No-
tably, the base architecture used for this tabular data example is different from the one used in the
other experiments, highlighting the broad applicability of our method.

E.1.1 Architecture

Set encoder. We reuse the first two stages of TabICL (Jingang et al., 2025) without modification:
the distribution-aware column processor (TF.,, implemented with induced self-attention blocks)
followed by the context-aware row-wise transformer (TF,,,,) with RoPE. Scalars are mapped by a
1 — 128 linear layer; each column is then processed across rows by an ISAB stack (Lee et al.,
2019) with three blocks, four heads, 128 inducing points, feed-forward hidden dimension of 256.
The row-wise encoder has three layers with four heads, feed-forward hidden dimension of 256, and
ROPE base 100,000. We prepend two [CLS] tokens per row and concatenate their outputs, yielding
a 256-dimensional row embedding (2 x 128). We use at most ten features per table.

Tokenization and additive target encoding. The set encoder produces one row token per sample
for context, buffer, and target rows (dimension 128; only selects the subset of the vector correspond-
ing to the [CLS] token dimensions). Context and buffer tokens receive the target value additively
via a small target encoder (linear 1 — 128. Buffer tokens also receive a learned positional embedding
indicating their autoregressive index (up to 32 positions). This keeps labels additive, lets us compute
the set encoder once, and makes the buffer explicit at the token level.

18

Dataset-wise ICL with a buffered mask. On top of these tokens we run a dataset-wise trans-
former with twelve layers and four heads, model width 128, and feed-forward size 256. The atten-
tion mask is the only architectural change relative to TabICL: context attends bidirectionally and
is read-only at inference; the buffer uses strictly causal self-attention; target queries attend to the
cached context and to the causal prefix of the buffer; there are no edges into context from buffer or
targets. The maximum buffer size is 32 tokens and we query 512 targets per task.

Prediction head. Predictions use a GMM head with 20 components and a minimum standard
deviation of 1073.

Caching. The column and row set encoder is computed once for all rows. During autoregressive
decoding we cache keys/values for the context once and update only the buffer cache, so the same
context cache is reused across parallel generations.

E.1.2 Data generation and preprocessing

SCM prior and task family. We generate datasets with the MLP-based structured causal model
(SCM) prior in the style of Hollmann et al. (2023), following the dataset-wise, set-encoded regime
of TabICL (Jingang et al., 2025). Concretely, we first sample a DAG with layered (MLP-style)
connectivity and then define each variable cas ¢ = f(Pa(c)) + €, where Pa(c) are its parents, f
is a small MLP with nonlinearity, and ¢ is independent noise. Unless stated otherwise, we sample
the feature dimension d € [1, 10], and per-task context sizes N € [8, 1024]; targets are continuous
responses with dataset-specific noise levels. The cause sampler follows the TabPFN prior (including
mixed marginals); the SCM therefore yields columns that may be non-Gaussian or discrete at source,
which we handle with the TabICL preprocessing described below.

Sampling of task partitions. For each generated dataset we draw a random partition (C, B, T)
with N ~ Uniform{8, ..., 1024}, buffer capacity fixed at K = 32, and target count M = 512. Per
batch, we fix (d, N, K, M) across tasks to avoid padding and stack samples directly.

Preprocessing. We adopt the TabICL PreprocessingPipeline and fit it on context features only.
The fitted transform is then applied to context, buffer, and target features. Regression targets are
standardized using context statistics, i.e., § = (y — py.c)/0y.c, and the same (p, o) are used for
buffer and targets. No missing values are synthesized by the SCM generator.

Summary of preprocessing pipeline. We use a three-stage, per-column pipeline following Jingang
et al. (2025): (i) standard scaling; (ii) normalization (power, i.e., Yeo—Johnson); and (iii) outlier
handling via a z-score threshold 7 = 4.0. At transform time, values outside the fitted range are
clipped to the training (context) min/max before normalization, mirroring TabICL’s behavior.

E.1.3 Training procedure

We train with AdamW (learning rate 1 x 1074, $=(0.9, 0.95), weight decay 0.0), batch
size 64 datasets per step, gradient clipping at 0.5, and dropout 0.0 throughout the backbone.
Mixed-precision training uses AMP with bfloat16. All runs use f1oat32 tensors at the data
interface. A cosine schedule with warmup is used (cosine_with_warmup); warmup-steps=
2000 takes precedence over the nominal warmup_ratio= 0.20; num_cycles= 1. Automatic
mixed precision is enabled with amp_dtype=bfloat16. Each training step draws a batch of 64
independent tasks (datasets) with feature dimension d sampled from {1, ..., 10} and context size N
from {8, ...,1024}; buffer size and target count are fixed at K =32 and M =512. Training is capped
at max_steps = 160,000, i.e., one epoch effective duration. This corresponds to approximately
64 x 160,000 = 10.24 million synthetic tasks seen during pretraining. The global data seed is 123.
We trained the model on a single NVIDIA A100 80 GB GPU for approximately 3 days.

E.2 Evaluation Details

In this paper log-likelihood values are always averaged (LL divided by the number of target points
M).

19

Tabular foundation model. We pretrain a task-agnostic tabular model on synthetic data (Sec-
tion E.1) and evaluate it on three UCI datasets: Individual Household Electric Power Consumption',
Gas Turbine CO and NOx Emission DataSet?, and Bike Sharing3.

For each dataset, we evaluate likelihood values over 16 randomly sampled subsets. The context
and target sets are set to N = 128, M = 32. Each likelihood evaluation is an average of 128
permutations.

F Use of Large Language Models

Idea generation and exploration. We used Large Language Models (LLMs) in the early stages of
this work to support idea generation, brainstorming, and the exploration of possible methodological
directions. LLMs were also employed for tasks such as identifying related work through web search
and summarization, which helped us gain an initial overview of relevant literature.

Coding assistant. LLMs provided assistance with coding, primarily by generating boilerplate
components of the codebase, visualization scripts, and test codes. They were also used for drafting
parts of the implementation in PyTorch. All code produced or suggested by LLMs was carefully
reviewed, verified, and modified where necessary to ensure correctness and reliability.

Writing assistant. Finally, LLMs were used in preparing the manuscript, particularly for refining
clarity, conciseness, and grammatical correctness. They supported rephrasing and restructuring of
text, helping us to communicate ideas more effectively while maintaining the accuracy and integrity
of the content.

"https://archive.ics.uci.edu/dataset/235/individual+household+electric+
power+consumption

Mttps://archive.ics.uci.edu/dataset/551/gas+turbine+co+and+nox+
emission+data+set

Shttps://archive.ics.uci.edu/dataset/275/bike+sharing+dataset

20

https://archive.ics.uci.edu/dataset/235/individual+household+electric+power+consumption
https://archive.ics.uci.edu/dataset/235/individual+household+electric+power+consumption
https://archive.ics.uci.edu/dataset/551/gas+turbine+co+and+nox+emission+data+set
https://archive.ics.uci.edu/dataset/551/gas+turbine+co+and+nox+emission+data+set
https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset

	Introduction
	Background
	Efficient Autoregressive Inference
	Experiments
	Discussion
	
	Method Details
	Modules and notation
	Training mask that implements (R1)–(R4)
	Algorithms for autoregressive sampling and log-likelihood evaluation
	Architectural generality

	Related Work
	Transformer Neural Process Baselines Details
	TNP-D
	TNP-ND
	TNP-A

	Computational Efficiency Details
	Scaling with Batch Size
	Impact of Custom Triton Kernel
	Comparison to Open-Source Baselines
	Training Time Scaling
	Impact of Attention Patterns on Training Speed

	Experimental Details
	Tabular model details
	Architecture
	Data generation and preprocessing
	Training procedure

	Evaluation Details

	Use of Large Language Models

