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Abstract

We propose an approach for analyzing and
comparing curricula of study programs in
higher education. Pre-trained word embed-
dings are fine-tuned in a study program clas-
sification task, where each curriculum is rep-
resented by the names and content of its
courses. By combining metric learning with
a novel course-guided attention mechanism,
our method obtains more accurate curriculum
representations than strong baselines. Exper-
iments on a new dataset containing curricula
of computing programs demonstrate the inter-
pretability power of our approach via attention
weights, topic modeling, and embeddings vi-
sualizations. We also present a use case that
compares computing study programs in the US
and Latin America and showcase the capabili-
ties of our method for identifying similarities
and differences in topics of study in curricula
from different countries.

1 Introduction

In recent years, the demand for computing careers
has highly increased due to their influence in almost
every area of human knowledge. In some coun-
tries, scientific associations such as ACM, IEEE, or
ABET define guidelines to categorize computing
careers through quality requirements (Shackelford
et al., 2005). However, other countries do not have
access to these specialized institutions or profes-
sionals, which may generate confusion among com-
puting careers or mixtures between them (Sabin
et al., 2016).

Prior work aims to analyze local context, and an-
alyze market offer without following international
standards. For example, de Alburquerque et al.
(2010) and Prietch (2010) employ curriculums to
analyze the market offer and propose to standard-
ize Brazilian computing curriculums. More specifi-
cally, the Computer Science (CS) curriculum from
the University of Sao Paulo is examined every year
to incorporate current innovations (Macédo, 2016).

In contrast to using local context, other works
follow international standards. ICACIT (2019)
elaborate an international accreditation process and
make a suggestion to improve computing careers.
Also, Murrugarra-Llerena et al. (2011) analyzes
curriculums from Peru and Brazil using hierarchi-
cal clustering. They show groups identifying as-
sociations between both countries, and showing
differences from the Peruvian context.

All previous works employ semi-automatic ap-
proaches and may need human intervention to
reveal insights. Also, Murrugarra-Llerena et al.
(2011) is the most related work to our approach,
however, it only uses careers in Latin America and
only course titles without descriptions. This rep-
resentation may provide an incomplete story. We
also believe hierarchical clustering may not provide
explanations about what the model learns.

In this work, we hypothesize that fine-grained
data sets and interpretable approaches are required
to better understand computing curriculums. We
collected a novel dataset combining course titles
and their descriptions from US Universities. Then,
we empower data analysts with an interpretable
model combining course-guided attention and met-
ric learning. Our approach identifies core courses
per computing career.

Using our collected dataset, we compare our
course-based attention approach to traditional text
embedding techniques, fine-tuned Bert models, and
metric learning approaches. Our approach outper-
forms all of them. We also show qualitative results
via attention weights, topic modeling, and embed-
ding visualizations. These results highlight the
interpretability of our approach by identifying rel-
evant words for each computing career. Finally,
we develop an application to visualize how Latin
America computing programs are identified with
international ABET computing careers.

In summary, our main contributions are:

* A novel dataset of US computing careers, with



representative Latin America universities.

¢ An examination of attention, metric learn-
ing, and Bert modules to generate more in-
terpretable embedding representations.

* An application to categorize a computing cur-
riculum compared to international standards.

2 Approach

Since no prior dataset exists with course titles and
their descriptors, we first collect such dataset in
section 2.1. Next, we describe our course-based
attention approach in section 2.2 and conclude with
our implementation details in section 2.3.

2.1 Dataset

We collected 300 curriculums among computing
programs from the best universities in USA. As
a quality criterion, we follow ABET program' to
filter them. In detail, we collected 100 Computer
Science (CS), 100 Computer Engineering (CE),
38 Information Technology (IT), 34 Information
Science (IS), and 28 Software Engineering (SE)
curriculums. Each curriculum consists of a set of
courses including their title and course description.
We depicted an example from each computing pro-
gram in Table 2 (appendix).

In addition to the USA curriculums, we collected
18 LATAM curriculums to analyze their degree of
internationalization. We prioritize high-ranking
universities that claim a CS profile and are freely
available. Our selected curriculums come from
Brazil, Colombia, Mexico, and Peru. We translate
them to English to avoid multi-lingual issues.

We used web scrapping with beautiful soup li-
brary?. For some curriculums, we require a manual
inspection (e.g. to remove information about cred-
its and hours) to ensure a uniform structure. We
plan to release the data set after article acceptance.

2.2 Course-based attention approach

Our course-based attention approach Bert, et qtt
aims to learn the importance of each course associ-
ated with computing careers. As shown in Figure
1, our approach receives a computing curriculum
composed of courses and their Bert embeddings
curriculumen,y,. Then, we compute att,eights OF
each course. Using these weights, we calculated
a weighted average over the courses and generate
a new curriculum embedding curriculumemy_auvg-

"https://www.abet.org/
Zhttps://www.crummy.com/software/Beautiful Soup/

Finally, we collapsed the generated embedding in
100 features.

To learn well-defined groups among computing
careers, we employ metric learning with the follow-
ing triplet loss (Schroff et al., 2015), where N is
the number of instances in a batch, « is the triplet
margin with value 0.3%, and 6 denotes the learnt
parameters.
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Given an anchor curriculum (c}') and using in-
stances in the same batch, we select curriculums
with the same category as positive annotations (),
and curriculums from different categories as nega-
tive annotations (c}'). Data points were randomly

sampled with a batch size of 64 to ensure that every
category is present in each iteration.
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Figure 1: Our course-based attention approach. It gen-
erates an interpretable representation of curriculums
via attention weights and metric learning. Attention
highlights core courses, while metric learning learns
boundaries to form well-defined groups. Both compo-
nents are crucial to find accurate representations.

2.3 Implementation details

We implemented the networks using Py-
torch (Paszke et al., 2019) and metric learning
library (Musgrave et al., 2020). We ran each exper-
iment ten times with different seeds using SGD.
From preliminary experiments, we vary the batch
size in the range [32, 64, 128] and the embedding
output in the range [128,256,512]. Then, we
select the best configuration (batch size = 64 and
embedding size = 128) in our validation set.

3 Experimental validation

3.1 Baselines

We compare three traditional methods:
Word2vec (Mikolov et al., 2013), Glove (Pen-
nington et al., 2014), and Bert (Devlin et al.,

3Default parameter suggested by metric learning library.



2019). Additionally, we fine-tuned Bert’s
embedding with our training data:

* Bertunsup, unsupervised finetuning using lan-
guage modeling.

* Bertgsup, supervised finetuning using classifica-
tion labels.

We also consider metric learning baselines:

* Bertet, supervised metric learning using Bert.
* Fusionmet+ait, Supervised metric learning with
attention over Glove, Word2vec and Bert.

3.2 Evaluation protocol

From our US dataset, we split our data in 60% for
training, 20% for validation, and 20% for testing.
Using the train set, in non-pretrained models, we
learn a new embedding representation. Then, we
use those embeddings to feed machine learning
classifiers. To select the best parameter configura-
tion, each classifier was evaluated on a validation
set and the configuration with higher Flwas se-
lected for testing. For all non-pretrained models,
we trained them with ten different seeds and report
their F1 average.

3.3 Quantitative experiments

We aim to validate which approach generates
a more precise representation for classification.
From the computed embeddings, we trained four
classifiers: K-nearest neighbour (KNN), Linear
Regression (LR), Linear Support Vector Machine
(LSVM), and Radial Support Vector Machine
(RSVM) with a proper search range of parameters
(detailed in Section A.2).

Table 1 shows F1-score for all the embeddings
in the test set. We observe that Bert ,e¢4q4 OUtper-
forms on average all other competitors and boosts
the RSVM classifier. F'ustonet+qtt 1S the second-
best performer and reports competitive results with
the KNN and RSVM classifiers. From pre-trained
embeddings, the best baseline is Bert and presents

Models KNN LR LSVM RSVM Avg
Word2vec 55.10 71.00  57.10 5590 | 59.77
Glove 5490 73.10 64.80 64.80 | 64.40
Bert 48.50 80.30  75.90 65.90 | 67.65
Bertsup 55.00 78.10  71.40 68.20 | 68.17
Bertunsup 6420 73.00 69.50 70.10 | 69.20
Bertmet 7340 72.60 72.10 72.80 | 72.72
Bertmet+att 71.60 75.60  75.70 75.60 | 74.82
Fusionmettate | 7240 69.60  74.00 75.40 | 72.85

Table 1: Fl-score results on the test set of our embed-
dings with KNN, LR, LSVM and RSVM classifiers.
Last three baselines used metric learning.

the best result in LR and LSVM. On the other hand,
the weakest baselines are Glove and Word2vec. A
possible explanation is the low number of features
and scarce training data.

To conclude, we believe our improved perfor-
mance is due to our interpretable embedding via
attention weights and metric learning modules as
detailed in the section below.

3.4 Qualitative experiments
3.4.1 Attention weights

To analyze the internal functionality of our ap-
proach, from each curriculum, we extract the atten-
tion weights of each course. Then, we rank them in
decreasing order and select the top five. We group
these selected courses per computing program and
create a word cloud visualization.

Figure 2 shows these computed word clouds for
each computing program. We find that words with
a higher number of occurrences are relevant to their
respective category name. We observe that “com-
puter” is common among all computing careers,
but it is more relevant for CS, CE, and SE; while it
has less importance for IT and IS.

CS suggests a strong association to algorithms
and computer; CE to design and computer. IT to
Information Management and System; IS to Princi-
ples and Information Database and SE to Systems
and Programming. All these associations confirm
the identity of each career, and we observe that IT
and IS highlight information-related courses, while
CS, CE, and SE are more technical. For example,
CS focuses on algorithm efficiency, CE specializes
in hardware design, and SE promotes programming
skills in general. The frequencies of each word by
category are in Section A.3.2.

Also, we selected words with highest attention,
and identify topics using (Popa and Rebedea,
2021)* in Section A.3.1. Similarly, we observe
key differences among careers.

3.4.2 Embedding visualizations

To understand if our attention-guided interpretabil-
ity is able to generate meaningful embeddings,
we visualize Bert and Bertmet+qre through
Umap (Mclnnes et al., 2018) in Figure 3.
Bertpettatt separates more clearly computing
programs than Bert. CE and CS show well-defined
boundaries rather than in Bert Umap, and over-
lap is minimized among all categories. We also

*https://huggingface.co/cristian-popa/bart-tl-all
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Figure 2: Word Clouds from courses of top 5 attention weights obtained with Bert,,c¢+q:+ model on the test set
with (a) Computer Science (CS), (b) Computer Engineering (CE), (¢) Information Technology (IT), (d) Information

System (IS), and (e) Software Engineering (SE).

(b) Bertmettatt

Figure 3: Umap visualizations for (a) Bert and (b)
Bertpmettatt- Bertmet+qre embeddings distinguishes
better each computing category, while Bert present
some overlaps.

observe that IT and IS are close by. A possible
explanation is through their shared financial and
administration components. On the other hand, SE
seems to be hard to form its own group. Apparently,
it has pieces of all careers. We attribute this finding
due that SE is a new career, less well-established.
Finally, we also analyze the attention weights
of our best competitor F'ustonmettqrt in Section
A.3.3. Bert is the most important representation,
which confirms our choice of Bert embedding.

4 Application: internationalization

For our application, we investigate how LATAM
computing careers relate to international standards.
We used our learnt Bert,,et1qt¢ tO project unseen
CS LATAM computing careers and relate them
with US standards in Figure 4 using Umap.
LATAM curriculums (in triangles) form two pre-
dominant groups: one near to the CS group, and

« CS v PERU
CE MEXICO
T BRAZIL
IS v COLOMBIA
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(a) Bertmet+att with LATAM countries

Figure 4: Umap visualizations for Bert,,et4qtt With
LATAM countries. Triangles represent LATAM coun-
tries, conformed by Peru, Mexico, Brazil, and Colom-
bia. These countries form two groups: one near CS and
other near IT, IS, and SE.

the other group surrounding IS and SE. Also, no
LATAM career surrounds the CE profile. From this
visualization, we infer that LATAM careers are dif-
ferent from the US because none of them lay inside
US groups. Then, we perform a closer study on
individual LATAM countries. Brazil and Mexico
have a clear CS profile. Also, Mexico seems much
more integrated with the US profile maybe because
of its near geographic location. On the other hand,
Peru has a mixed profile between CS, SE, and IS;
which may suggest a better definition of courses
per career. Finally, Colombia belongs to SE.

S5 Conclusion

In this article, we explore an interpretable way to
classify computing curriculums combining course-
guided attention and metric learning. Our approach
finds more cohesive groups with clear separation
among them. These groupings are helpful for dif-
ferent machine learning models. Also, we ana-
lyze what our approach learns via attention weights,
topic modeling, and visualization techniques.

As future work, we plan to evaluate our approach
in other NLP domains. Also, we will combine
Bertmettarr and Fusionei+qie Creating a new
embedding combining course-guided attention, a
embedding-guided attention (Bert, Glove, and
Word2vec), and metric learning.
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A Appendix

We provide a sample curriculum per computing ca-
reer and additional details for quantitative and qual-
itative experiments. For quantitative, we provide
details about parameter ranges for model selection.
For qualitative experiments, we provide results on
topic modeling, show counts for attended courses
from our attention module, and attention weights
for the best baseline competitor.

A.1 Sample curriculum

Each collected curriculum in our dataset consists
of a set of courses. Each course has an associated
title and description. We depicted an example from
each computing program in Table 2.

A.2 Range parameters for experiments

We mention the employed machine learning models
with their associated parameter values below:

* For k-nearest neighbour (KNN), we evaluate
k with values [3,5,7].

* For Linear Regresion (LR), we evaluate cost
C with values [275,273,271,2%, ..., 215].

* For Linear SVM (LSVM), we evaluate cost C
with values [275,273,271, 2!, ....,21°].

« For  Radial SVM
evaluate cost C with values
275,273, 271 21 ... 21 and gamma
with values [271°, 2713 211 9l 23]

(RSVM), we

A.3 Quantitative experiments
A.3.1 Topic modeling

As a complementary way to understand our se-
lected courses, we selected the ten words with the
highest attention, and input them to BART topic
model (Popa and Rebedea, 2021)° to name them.

Shttps://huggingface.co/cristian-popa/bart-tl-all



Description

Career Course title
CS Algorithms and Data Structures
CE | Computer Architecture and Design
IT Information Technology Security
IS Information Systems Applications
SE Software Engineering Design

Principles of RISC-type CPU instruction set and ...
Information technology security from a manager ...

Study of data structures and algorithms ...

Concepts and production skills ...
Techniques and methodologies ...

Table 2: Sample curriculum showing course titles and their description per computing career.

The named topics are shown in Table 3. CS,
CE, and IT share the word computer highlighting
the importance of computing fundamentals, while
IT and IS share the topics management and in-
formation relating to business knowledge. Also,
programming skills are shared among CS and SE
careers.

Career Topic
CS computer programming data
CE computer design system
IT management information computer
1S system management information data
SE software programming language

Table 3: Topic identified with each computing career
using BART (Popa and Rebedea, 2021) model.

A.3.2 Counts for attended courses

Figure 5 shows the frequency of the top fifteen
courses per category in decreasing order. We find
the following associations per each computing ca-
reer:

* CS highlights computer, introduction, system,
design, algorithm, programming, and data
courses.

* CE focuses on systems, design, computer, dig-
ital, and embedded.

* IT has relevant terms such as system, manage-
ment, information, web, and programming.

* IS focuses on systems, principles, information,
database, and management.

* SE highlights programming, systems, data,
introduction, C, and software.

In summary, IT and IS are related to manage-
ment and information knowledge. CE focuses on
hardware concepts such as systems, design, and
digital. Finally, CS and SE focus on software de-
velopment related to programming, data, and algo-
rithm courses.

A.3.3 Attention weights best competitor

We analyze our best competitor F'usionmet+qtt 1O
discover interesting knowledge. We extract atten-
tion weights for each embedding representation.
On average we obtained 0.2149 weight for Glowve,
0.0621 for Word2vec, and 0.7230 for Bert. This
finding confirms our election to select Bert em-
bedding in our approach. Also, it is interesting
to see that Glove and Word2vec also have com-
plementary and meaningful knowledge for better
representation. Probably Word2vec and Glove
provide local information to the Bert embedding.
Note, that their attention scores have the same or-
der as their correspondent F1-score (see three first
rows in Table 1).
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Figure 5: Top fifteen frequency terms of each category. The X-axis shows the word term, while Y-axis shows
their frequency. The categories are (a) Computer Science (CS), (b) Computer Engineering (CE), (c) Information
Technology (IT), (d) Information System (IS), and (e) Software Engineering (SE).



