An Empirical Study of Uncertainty Estimation
Techniques for Detecting Drift in Data Streams

Anton Winter Nicolas Jourdan
TU Darmstadt, Germany TU Darmstadt, Germany
anton.winter@stud.tu-darmstadt.de n.jourdan@ptw.tu-darmstadt.de
Tristan Wirth Volker Knauthe
TU Darmstadt, Germany TU Darmstadt, Germany

tristan.wirth@gris.tu-darmstadt.de volker.knauthe@gris.tu-darmstadt.de

Arjan Kuijper
TU Darmstadt, Germany
arjan.kuijper@igd.fraunhofer.de

Abstract

In safety-critical domains such as autonomous driving and medical diagnosis,
the reliability of machine learning models is crucial. One significant challenge
to reliability is concept drift, which can cause model deterioration over time.
Traditionally, drift detectors rely on true labels, which are often scarce and costly.
This study conducts a comprehensive empirical evaluation of using uncertainty
values as substitutes for error rates in detecting drifts, aiming to alleviate the reliance
on labeled post-deployment data. We examine five uncertainty estimation methods
in conjunction with the ADWIN detector across seven real-world datasets. Our
results reveal that while the SWAG method exhibits superior calibration, the overall
accuracy in detecting drifts is not notably impacted by the choice of uncertainty
estimation method, with even the most basic method demonstrating competitive
performance. These findings offer valuable insights into the practical applicability
of uncertainty-based drift detection in real-world, safety-critical applications.

1 Introduction and Motivation

In high-stakes scenarios, such as industrial or medical applications, ensuring the reliability of
machine learning model predictions is paramount. These domains often present dynamic and
uncertain environments, necessitating adaptive machine learning solutions with minimal operational
overhead. A prevalent issue impacting prediction reliability is concept drift, where a data distribution
changes over time [[14]. It can be denoted as Pyyin(X,Y) # Popline, (X, Y'), representing disparities
in data distributions during initial training and online operation. This is common in various domains,
where alterations in conditions lead to non-stationary data streams. If overlooked, concept drift can
degrade model performance across applications. Therefore, adaptive strategies like periodic model
updates or retrainings, especially upon drift detection, can be applied to maintain model reliability in
evolving operational landscapes. However, most conventional drift detection algorithms, e.g. [7, [1]],
rely on error rates that demand access to scarce and costly true labels. An alternative is given by a
class of drift detectors that work in an unsupervised way, utilizing a model’s prediction confidence /
uncertainty as a proxy for the error rate, such as Confidence Distribution Batch Detection (CDBD)
[L1] and Margin Density Drift Detection (MD3) [[L7]. More recently, Uncertainty Drift Detection
(UDD) was proposed by Baier et al. [2], which utilizes neural network uncertainty estimates

Workshop on Distribution Shifts, 37th Conference on Neural Information Processing Systems (NeurIPS 2023).

from Monte Carlo Dropout (MCD) sampling [6] as input for the Adaptive Windowing (ADWIN)
detection algorithm [3]. As MCD is only one possibility of extracting uncertainty estimates from
neural networks, we investigate the influence of the choice of uncertainty estimation method on the
performance of the overall drift detection capability. In prior work, Ovadia et al. [14] analyzed
uncertainty estimation methods under dataset shift but only for synthetic drifts. While Baier et
al. [2]] consider real-world datasets, they limit their experiments to a single uncertainty estimation
method. Thus, our core contribution is an empiric comparison of four state-of-the-art neural network
uncertainty estimation methods, as well as a baseline method, for classification tasks in combination
with the ADWIN detector to identify drifts in real-world data streams. These uncertainty estimators
are evaluated using seven commonly used real-world datsets.

2 Methodology and Experiments

To compare the uncertainty estimation methods introduced in the following, we conduct two experi-
ments for each method and dataset. Both start by training the method with the initial five percent of
the whole data stream. The first experiment serves as a baseline and thus, the remaining data is tested
without analyzing uncertainty estimates or triggering retrainings. In the main experiment however,
batches of the stream are evaluated and uncertainty estimates are used as a proxy for the error rate of
the ADWIN detector. Once a drift is detected, a retraining is triggered with the initial five percent
plus the most recent samples equivalent to one percent of the stream size. Thereby, models may
adapt to new concepts while retaining sufficient generalization. Every experiment is repeated five
times with different random seeds and results are averaged to allow for a fair comparison. Figure|T]
illustrates the process of the main experiment.

Uncertainty ADWIN
estimates 20102313 | - | > €eu?
J = % 515 retraining

L Drift
Training
data
59, —— > Retraining data 1%

Figure 1: Approach to uncertainty drift detection.

2.1 Uncertainty Estimation Methods

To quantify model uncertainty, Bayesian neural networks, which learn a posterior distribution over
model parameters, can be employed [14]. This distribution enables the application of Bayesian
model averaging (BMA) during inference. Therefore, multiple weights w; are drawn to gather a
distribution of predictions p;(y|w;, x), given input features x and target labels y. The final prediction
P(y|z) is then given as the average

P
plylz) = Z (y|ws,) e

For regression tasks, the uncertainty is the standard deviation of said distribution. While there are
several uncertainty-related metrics for classification tasks, only Shannon’s entropy /{ does not require
ground-truth labels. Given the final prediction p(y|x) with K classes, it is computed as

K
H{p(yl)] Z Py = klz) - logyply = k|z). ©

Although bayesian methods were previously considered state-of-the-art, they are computationally
intractable for modern neural networks with millions of parameters [12]. Therefore, alternatives

have been developed, of which we analyzed the following in our experiments. To get an uncertainty
estimate, Shannon’s entropy H is applied to the final prediction of each method.

Basic Neural Network. Given the focus on classification tasks, a distribution of predictions is not
necessarily required. Hence, the simplest method is to use a single prediction from an unmodified
neural network. The motivation for this is to have a baseline for the more sophisticated methods.

Monte Carlo Dropout (MCD). Rather than drawing multiple weights from a posterior distribution as
in BMA, a random dropout filter is applied to the neurons for several forward passes. These estimates
are then averaged to get a final prediction. This allows for estimating the uncertainty in the model
parameters based on the variability of the predictions across different dropout masks (2} 16].

Ensemble. A distribution of predictions can also be won by training multiple neural networks.
Different seeds of members introduce randomness due to their influence on the initial weights as well
as the shuffling of data during training. As Lakshminarayanan et al. [[10] have shown, few members,
i.e. 5, can be sufficient for good uncertainty estimates.

Stochastic Weight Averaging Gaussian (SWAG). Based on Stochastic Weight Averaging (SWA), a
generalization technique in deep networks, Maddox et al. [[12]] propose a method to approximate a
posterior distribution over neural network weights. Therefore, a Gaussian is fit utilizing the SWA
solution as the first moment and a low rank plus diagonal covariance also inferred from stochastic
gradient descent iterates. Given this posterior distribution, BMA is applied to get a final prediction.

Activation Shaping (ASH). The ASH method can be considered a more advanced version of the
basic neural network, as it also works on single predictions. Djurisic et al. [5] introduced it as an
out-of-distribution (OOD) detection method that reaches state-of-the-art performance. Assuming
over-parameterized feature representations in modern neural networks, the hypothesis is that pruning
a larger percentage of activations in a late layer helps with tasks such as OOD detection.

The hyperparameters of the introduced methods as well as the model architectures can be found in
Appendix [A.T] Furtheremore, we include details of the tuning process in Appendix [A.3]

2.2 Drift Detector

Concept drift detectors, such as Drift Detection Method [7], Page Hinkley Test [[15], and ADWIN
[3]], are typically error rate-based, necessitating access to costly true labels [8]. In contrast, data
distribution-based detectors exclusively analyze input features, often using distance metrics like the
Kolmogorov-Smirnov test [16] to identify changes in feature distribution. Regardless of the detection
method employed, distinguishing between noise and genuine concept drift poses a significant chal-
lenge [19], requiring a balance between swift adaptation to changes and resilience to noise. ADWIN
offers performance guarantees for false positives and false negatives, making it an attractive choice.
Furthermore, it is able to work with any real-valued input instead of beeing limited to an error rate
between 0-1. As introduced by Bifet et al. [3], ADWIN utilizes sliding windows of variable size.
While no drift is present, new samples are added to a window W. After each sample, the algorithm
attempts to find two sub-windows W}, and W that contain distinct averages. Once this happens a
drift is assumed and the older sub-window is discarded. The variability of heterogeneous real-world
data streams can be addressed by the sensitivity parameter § € (0, 1). The configuration for our
experiments can be found in Appendix [A.T]

2.3 Datasets

For our studies, we use seven real-world classification datasets from the USP Data Stream Repos-
itory [18]. They encompass abrupt, incremental and reocurring drifts, along with combinations
thereof. In the Gas sensor dataset chemical sensor data is analyzed to identify one of six gases. The
Electricity dataset focuses on predicting market price changes driven by supply and demand. For
the Rialto dataset, segments of images from a timelapse with changing weather conditions shall be
classified. Lastly, optical sensors are used to analyze moving patterns of flying insect species while
drift is artificially introduced to generate the InsAbr, InsInc, InsIncAbr and InsIncReo datasets.

2.4 Metrics and Results

For evaluation, we focus on the following two metrics to capture the quality of the uncertainty
estimates as well as the drift detection performance: Expected Calibration Error (ECE) | [13]
measures the average deviation between prediction confidence and accuracy. As the name suggests,
it quantifies how well a model is calibrated. We expect that calibration correlates positively with
drift detection capability. Matthew’s Correlation Coefficient (MCC) 7 is able to handle class
imbalances which generally makes it a good metric for classification tasks [4]. We employ the MCC
to measure the overall prediction performance of the models, averaged over the complete experiment
runs. We expect that poor drift detection performance will lead to unsuitable retraining points, in turn
producing low MCC scores and vice versa.

The results of our experiments can be found in Table [l Analyzing the MCC values shows that
the SWAG method offers the most balanced performance across all datasets. However, the gap
in performance to the other methods is minimal. In fact, all methods perform fairly similarly.
Surprisingly, even the basic method without any modifications keeps up with the others. Greater
differences can be identified when analyzing the ECE as depicted in Figure 2] Here, the SWAG
method offers significantly better calibrated predictions in nearly all datasets. The only exception is
the InsIncAbr dataset, where all methods achieve a proficient calibration. All other methods appear
to be similarly worse calibrated compared to SWAG for the remaining datasets. Despite that, this
does not directly translate to a better drift detection performance, as shown by the MCC values.
Meanwhile, the total execution time fluctuates notably depending on the method selected, as presented
in the last row of Table[I] As the basic and ASH method are based on a single sample, they serve
as a lower bound in this regard. While MCD and the SWAG method both increase the inference
runtime due to the sampling process, adaptations in the training process of the SWAG method incurr
additional overhead. Although the execution time of the ensemble could be reduced by parallelizing
the training and inference process of individual ensemble members, this would require additional
computational resources. Hence, we choose not to, resulting in the highest execution time by far.
Appendix includes further details of the main experiment as well as an additional experiment to
validate the retraining positions found by the uncertainty-based detector. Furthermore, it contains the
standard deviations of our experiments.

Table 1: Performance comparison of uncertainty estimation methods for drift detection. Table cells
contain the average MCC (1) values and (number of retrainings) for the naive baselines without
retrainings (upper) and retrainings triggered by ADWIN when using the respective uncertainty
estimation method (lower), respectively. Bold numbers indicate the best performance. To given an
impression of the computational cost, the last row contains the total execution times for each method.

Basic MCD Ensemble SWAG ASH
0.273 (0) 0.256 (0) 0.245 (0) 0.299 (0) 0.275 (0)

Gas 0.455(36) 046 (55) 0.492(50) 0.46(52) 0.459 (35)
Electricity 0.178 (0) 0.198 (0) 0.183 (0) 0.191 (0) 0.175 (0)
0.424 (11) 0.421(10) 0.405(10) 0.419(7) 0.438 (10)
Rialto 0.532 (0) 0.534 (0) 0.505 (0) 0.52 (0) 0.525 (0)
0.537 (43) 0.553(48) 0.527(45) 0.54(52) 0.539 (43)
InsAbr 0.471 (0) 0.472 (0) 0.461 (0) 0.48 (0) 0.474 (0)
0.519 (9) 0.509 (8) 0.503 (8) 0.514 (6) 0.508 (7)
Insnc 0.087 (0) 0.1 (0) 0.081 (0) 0.1 (0) 0.085 (0)
) 0.241 (3) 0.238 (3) 0.241 (3) 0.301 (4) 0.231 (3)
InsIncAbr 0.304 (0) 0.307 (0) 0.308 (0) 0.299 (0) 0.316 (0)
0.53(24) 0.525(26) 0.518(23) 0.445(25) 0.531 (25)
InsIncReo 0.141 (0) 0.133 (0) 0.172 (0) 0.16 (0) 0.133 (0)
0.253 (18) 0.247 (20) 0.236(18) 0.302 (21) 0.243 (20)

Total exec. time 6821s 7339s 15653s 9036s 6890s

ECE
o

o4 ‘ B Basic MCD EEE Ensemble | SWAG EEE ASH
0.3

0.

il N

Electricity Rialto InsAbr InsInc InsIncAbr InsIncReo

Figure 2: Calibration of the employed uncertainty estimation methods measured by ECE () across
the seven datasets.

3 Conclusion

In this work, we implemented five uncertainty estimation methods for classification tasks and
evaluated them in experiments including seven real-world datasets. Our goal was to compare the
utility of their uncertainty estimates for unsupervised concept drift detection by using them as a proxy
for the error-rate in combination with the ADWIN detector. Thereby, drift points in data streams
shall be identified to trigger retrainings at the appropriate time and ultimately prevent model decay.
Interestingly, even our baseline method, relying solely on the entropy calculated from the softmax
scores, performed competitively with more sophisticated state-of-the-art methods. Moreover, all
methods performed fairly similar in terms of overall classification performance as measured by the
MCC metric. While the SWAG method achieved the most balanced MCC values, differences were
only marginal. However, this was not the case when analyzing the ECE. Here the SWAG method
offers significantly better calibrated predictions than all other methods. Regardless, these did not
translate to better results for the drift detection. Thus, the assumption can be made, that the choice of
method does not have a noteworthy influence on the performance of uncertainty-based concept drift
detection for real-world applications.

To confirm the previous assumption, future work may include testing further real-world datasets,
including regression problems. For those, the basic neural network and the ASH method are no longer
applicable. Instead, the effect of the ASH method in combination with the remaining approaches
could be studied.

References

[1] Manuel Baena-Garcia, José del Campo-AVila, Raul Fidalgo, Albert Bifet, Ricard Gavalda, and Rafael
Morales-Bueno. Early drift detection method. In Fourth international workshop on knowledge discovery
from data streams, volume 6, pages 77-86. Citeseer, 2006.

[2] Lucas Baier, Tim Schlor, Jakob Schoffer, and Niklas Kiihl. Detecting concept drift with neural network
model uncertainty. arXiv preprint arXiv:2107.01873, 2021.

[3

—

Albert Bifet and Ricard Gavalda. Learning from time-changing data with adaptive windowing. In
Proceedings of the 2007 SIAM international conference on data mining, pages 443—-448. SIAM, 2007.

[4

—

Davide Chicco and Giuseppe Jurman. The advantages of the matthews correlation coefficient (mcc) over
f1 score and accuracy in binary classification evaluation. BMC genomics, 21:1-13, 2020.

[5

—

Andrija Djurisic, Nebojsa Bozanic, Arjun Ashok, and Rosanne Liu. Extremely simple activation shaping
for out-of-distribution detection. arXiv preprint arXiv:2209.09858, 2022.

[6

—_

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pages 1050-1059. PMLR, 2016.

[7

—

Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning with drift detection. In
Advances in Artificial Intelligence—SBIA 2004: 17th Brazilian Symposium on Artificial Intelligence, Sao
Luis, Maranhao, Brazil, September 29-Ocotber 1, 2004. Proceedings 17, pages 286-295. Springer, 2004.

[8

—

Paulo M Gongalves Jr, Silas GT de Carvalho Santos, Roberto SM Barros, and Davi CL Vieira. A
comparative study on concept drift detectors. Expert Systems with Applications, 41(18):8144-8156, 2014.

[9

—

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural networks.
CoRR, abs/1706.04599, 2017.

(10]

(11]

[12]

(13]

(14]

[15]
(16]

(7]

(18]

[19]

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems, 30,

2017.

Patrick Lindstrom, Brian Mac Namee, and Sarah Jane Delany. Drift detection using uncertainty distribution
divergence. Evolving Systems, 4:13-25, 2013.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson. A simple
baseline for bayesian uncertainty in deep learning. Advances in Neural Information Processing Systems,
32, 2019.

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well calibrated probabilities
using bayesian binning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
AAATI’15, page 2901-2907. AAAI Press, 2015.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? evaluating predictive
uncertainty under dataset shift. Advances in neural information processing systems, 32, 2019.

Ewan S Page. Continuous inspection schemes. Biometrika, 41(1/2):100-115, 1954.

Christoph Raab, Moritz Heusinger, and Frank-Michael Schleif. Reactive soft prototype computing for
concept drift streams. Neurocomputing, 416:340-351, 2020.

Tegjyot Singh Sethi and Mehmed Kantardzic. Don’t pay for validation: Detecting drifts from unlabeled
data using margin density. Procedia Computer Science, 53:103-112, 2015.

Vinicius MA Souza, Denis M dos Reis, Andre G Maletzke, and Gustavo EAPA Batista. Challenges in
benchmarking stream learning algorithms with real-world data. Data Mining and Knowledge Discovery,
34:1805-1858, 2020.

Alexey Tsymbal. The problem of concept drift: definitions and related work. Computer Science Department,
Trinity College Dublin, 106(2):58, 2004.

A Appendix

A.1 Reproducibility

To make our experiments reproducible, Table[2] gives an overview of the neural network architecture
used for each dataset. Hidden layers use Rectified Linear Unit activations, while softmax is applied in
the final layer. The ADAM optimizer is used with binary or categorical cross-entropy loss, depending
on the number of classes. For MCD, 100 forward passes are carried out. The Ensemble consists
of three members. Bayesian model averaging is conducted with 100 samples from the posterior
approximation of the SWAG method. Details on these choices are discussed in Furthermore,
the estimated covariance matrix utilized in the approach has a rank of 25 and is updated each epoch,
starting at the first iteration. For the ASH method, the version termed ASH-p was chosen, where
unpruned activations are not modified at all. Pruning is applied in the penultimate hidden layer (i.e.
third last overall layer) with a pruning percentage of 60%. Lastly, Table [3|indicates the sensitivity
values 9 for the ADWIN detector.

Table 2: Overview of model architectures.

Name No. Layers Neurons per layer Dropout rate Epochs
Gas 5 128, 64, 32, 16, 8 0.2 100
Electricity 3 32,16, 8 0.1 400
Rialto 4 512, 512, 256, 32 0.2 200
InsAbr 5 128, 64, 32, 16, 8 0.1 200
InsInc 5 128, 64, 32, 16, 8 0.1 100
InsIncAbr 3 32,16, 8 0.1 50
InsIncReo 3 128, 64, 32 0.1 400

Table 3: Sensitivity values for ADWIN detector.

Gas Electricity Rialto InsAbr InsInc InsIncAbr InsIncReo
0.1 le-15 le-20 0.002 0.002 0.1 0.1

A.2 Additional Results and Experiments

We generated reliability diagrams [9]] in addition to Table [I|and Figure [2] of the main experiment.
These diagrams illustrate the quantification of the ECE. Hence, buckets of confidence values are
compared to their average accuracy. Furthermore, the gaps to a perfect calibration are visualized.
Plots can be found in Figures [3]-[5] Consistent to Figure 2] they show that the SWAG method offers
the best calibration.

To validate the retraining positions found by the uncertainty based drift detection, we also conducted
an experiment with equally and randomly distributed retraining positions. We compared these against
the SWAG-based drift detection. Hence, the same amount of retrainings was triggered as found by
the SWAG approach for each dataset (see Table[d). While the retraining positions found by SWAGs
uncertainty values yield significantly better predictions for Gas, Electricity, and InsAbr, the opposite
is the case for InsIncAbr and InsIncReo. Here, the equally distributed approach for retrainings offers
noticeably better results. For Rialto and InsInc there are only slight differences between all three
methods. Nevertheless, the detection based approach still offers the best overall performance.

As we repeated all of these experiments five times with different random seeds, we also include the
standard deviations in Tables [3]-[71

Gas — Basic Gas — MCD Gas — Ensemble Gas — SWAG Gas — ASH
1.0 1.0 1.0 1.0 1.0
--- ideal calibration --- ideal calibration --- ideal calibration ---ideal calibration ---ideal calibration
0.97 mmm outputs / 0.97 mmm outputs 0.97 mmm Outputs 0.9 mmm Outputs 097 mmm outputs
0.8 ! Gaps) 08! Gaps 0.8 Gaps 0.8 Gaps 0.8 Gaps
0.7{ ECE: 0.405 0.7{ ECE: 0.272 0.7{ ECE: 0.309 ECE: 0.215 0.7 ECE: 0.412
5. 0.6 5. 0.6 5. 0.6 -~ 5. 0.6
9 3 3 9 9
@ @ @ @ @
505 505 505 5 5
3 3 3 3 3
9 9 9 o} o}
<04 <04 < 0.4 < <
0.3 0.3
0.2 0.2+
0.1 0.14
0.0+ 0.0 0.0 0.0 0.0
0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 09 1.0
Confidence Confidence Confidence Confidence Confidence
10 Electricity — Basic 10 Electricity — MCD 10 Electricity — Ensemble 10 Electricity — SWAG 10 Electricity — ASH
--- ideal calibration --- ideal calibration --- ideal calibration --- ideal calibration ---ideal calibration
0.9 pum Outputs 0.9 pum Outputs 0.9 pum Outputs 0.9 Outputs 0.9 pm Outputs
0.8 ! Gaps 08! Gaps 0.8 Gaps 0.8 Gaps 0.8 Gaps
0.7{ ECE: 0.19 0.7{ ECE: 0.161 0.7{ ECE: 0.175 0.7 ECE: 0.035 0.7 ECE: 0.186
> 0.6 > 0.6 > 0.6 > 0.6 > 0.6
3 3 9 9
@ @ @ @
505 505 5 0.5 5 0.5 5
5] 51 e 51 51
g 2 O / o o
<04 0.4 , < 0.4 % < 0.4 <
03 03 v 0.3 v 0.3
02 02 4 0.2 0.2
. .
01 01{ ./ 01{ ./ 0.1
o /
0.0+ 0.0+ 0.0+ 0.0+ 0.0+
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 09 1.0
Confidence Confidence Confidence Confidence Confidence
Rialto — Basic Rialto — MCD Rialto — Ensemble Rialto — SWAG Rialto — ASH
1.0 1.0 1.0 1.0 1.0
--- ideal calibration --- ideal calibration --- ideal calibration --- ideal calibration --- ideal calibration
0.9 pum Outputs 0.9 pm Outputs 0.9 pm Outputs 0.9 Outputs 0.9 pum Outputs
0.8 1 Gaps 0.8 I Gaps 0.8 Gaps 0.8~ Gaps 0.8~ Gaps
0.7{ ECE: 0.243 0.7{ ECE: 0.16 0.7 ECE: 0.206 0.7{ ECE: 0.034 0.7{ ECE: 0.24
06 > 0.6 > 0.6 > 0.6 > 0.6
9 3 3 3
e e e e
505 505 5 0.57 5 0.54 505
g g g g g
<04 <04 < 0.4 < 0.4 <04
0.3 0.3 0.3 0.3 0.3
0.2 0.2 0.2 0.2 0.2
0.1 0.1 0.14 0.14 0.1
% %
0.0 .0 0.0 0.0+ 0.0
0.0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 09 1.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 09 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Confidence

Confidence

Confidence

Confidence

Figure 3: Reliability diagrams of main experiment (1/3)

Confidence

Accuracy

InsAbr — Basic InsAbr — MCD InsAbr — Ensemble InsAbr — SWAG InsAbr — ASH
1.0 1.0 1.0 1.0 1.0
--- ideal calibration --- ideal calibration --- ideal calibration ---ideal calibration --- ideal ca
0.97 mmm outputs 0.97 mmm outputs 0.97 mmm Outputs 0.9 mmm Outputs 097 mmm outputs
0.8 ! Gaps v 08! Gaps 0.8 Gaps 0.8 Gaps 0.8 Gaps
0.7{ ECE: 0.189 0.7{ ECE: 0.163 0.7{ ECE: 0.236 ECE: 0.089 0.7 ECE: 0.189
0.6 5. 0.6 5. 0.6 -~ 5. 0.6
3 3 9 9
@ @ @ @
0.5 505 505 5 5
3 3 3 3
9 9 o} o}
0.4 <04 < 0.4 < <
0.3
0.2+
.
0.14
. 0.0+ 0.0+ 0.0+ 0.0+
0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 09 1.0
Confidence Confidence Confidence Confidence
Insinc — Basic Insinc — MCD Insinc — Ensemble Insinc — SWAG Insinc — ASH
1.0 1.0 1.0 1.0 1.0
--- ideal calibration --- ideal calibration --- ideal calibration --- ideal calibration --- lideal ca
0.9 pum Outputs 0.9 pum Outputs 0.9 pum Outputs 0.9 Outputs 0.9 pm Outputs
0.8 ! Gaps 08! Gaps 0.8 Gaps 0.8 Gaps 0.8 Gaps
0.7 ECE: 0.222 0.7{ ECE: 0.189 0.7 ECE: 0.266 0.7 ECE: 0.023 0.7 ECE: 0.226
0.6 > 0.6 > 0.6 > 0.6 > 0.6
9 3 9 9
@ @ @ @
0.5 505 5 0.5 5 0.5 505
8 g g S
0.4 <04 < 0.4 < 0.4 <
0.3 0.3 0.3 0.3
0.2 0.2 0.2 , 0.2
0.1 0.1 0.14 0.14
0.0+ 0.0 0.0+ 0.0+ 0.0+
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 09 1.0
Confidence Confidence Confidence Confidence
10 InsincAbr — Basic 10 InsincAbr — MCD InsincAbr — Ensemble 10 InsincAbr — SWAG 10 InsincAbr — ASH
--- ideal calibration --- ideal calibration eal calibration --- ideal calibration ==
0.9 B Outputs 0.9 B Outputs utputs 0.91 B Outputs 0.9 B Outputs
0.8 1 Gaps 0.8 I Gaps 0.8 Gaps 0.8~ Gaps 0.8~ Gaps
0.7{ ECE: 0.051 0.7{ ECE: 0.033 0.7 ECE: 0.054 0.7{ ECE: 0.058 0.7 ECE: 0.047
0.6 > 0.6 > 0.6 > 0.6 > 0.6
9 3 3 3
e e e e
0.5 505 5 0.57 5 0.54 505
g g g g
0.4 <04 < 0.4 < 0.4 <04
0.3 0.3 0.3 0.3 0.3
0.2 0.2 0.2 0.2 0.2
0.1 0.1 0.14 0.14 0.1
0.0+ 0.0+ 0.0 0.0+ 0.0+
0.0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 09 1.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 09 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Confidence

Confidence

Confidence

Figure 4: Reliability diagrams of main experiment (2/3)

Confidence

10 InsincReo — Basic 10 InsincReo — MCD 10 InsincReo — Ensemble 10 InsincReo — SWAG 10 InsincReo — ASH
--- ideal calibration --- ideal calibration --- ideal calibration --- ideal calibration --- lideal ca
0.9 pum Outputs 0.9 pum Outputs 0.9 pum Outputs 0.9 Outputs 0.9 pum Outputs
0.8 ! Gaps 08! Gaps 0.8 Gaps 0.8 Gaps 0.8 Gaps
0.7{ ECE: 0.446 0.7{ ECE: 0.36 0.7{ ECE: 0.4 0.7{ ECE: 0.234 0.7{ ECE: 0.45
> 0.6 > 0.6 > 0.6 > 0.6 > 0.6
3 9 3 9 9
@ @ @ @ @
505 505 5 0.5 5 0.5 505
3 3 3 3 3
g g 9 g o}
<04 <04 < 0.4 < 0.4 <04
0.3 0.3 0.3 0.3 0.3
0.2 0.2 0.2 0.2 0.2
. %
01 01 0.1 0.1 0.1 ’
0.0+ 0.0+ 0.0+ 0.0+ 0.0+
0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence Confidence Confidence Confidence

Figure 5: Reliability diagrams of main experiment (3/3)

10

Table 4: Retraining position validation.

SWAG Equal dist. Random dist.

Gas 0.46 (52) 0.387(52) 0.38 (52)
Electricity 0.419 (7) 0.346 (7) 0.351 (7)

Rialto 0.54(52) 0.555(52) 0.557 (52)
InsAbr 0.514 (6) 0.459 (6) 0.484 (6)
InsInc 0301 (4) 0.301(4) 0.293 (4)
InsIncAbr 0.445 (25) 0.483 (25) 443 (25)
InsIncReo 0.302 (21) 0.344 (21) 0.32 (21)

Table 5: Standard deviations of baseline experiment without retrainings.

Basic MCD Ensemble SWAG ASH
Gas 0.0249 0.0437 0.0119 0.0274 0.0404
Electricity 0.016 0.0093 0.0125 0.0235 0.014
Rialto 0.0102 0.0118 0.0054 0.0035 0.0014
InsAbr 0.0066 0.0017 0.0017 0.0014 0.0022
InsInc 0.0099 0.0101 0.0101 0.0096 0.0075
InsIncAbr 0.0067 0.0035 0.0042 0.0086 0.005
InsIncReo 0.0073 0.0109 0.004 0.0033 0.0059

Table 6: Standard deviations of main experiment with ADWIN detection.

Basic MCD Ensemble SWAG ASH

Gas 0.0331 0.0438 0.0366 0.0203 0.0347
Electricity 0.0199 0.0368 0.0356 0.0187 0.0136
Rialto 0.0034 0.0028 0.0030 0.0036 0.0026
InsAbr 0.0060 0.0082 0.0107 0.0251 0.0101
InsInc 0.0156 0.0125 0.0138 0.0162 0.0158
InsIncAbr 0.0021 0.0050 0.0096 0.0203 0.0078
InsIncReo 0.0088 0.0072 0.0111 0.0113 0.0095

Table 7: Standard deviations of retraining position validation experiment.

SWAG Equal dist. Random dist.

Gas 0.0203 0.0094 0.0305
Electricity 0.0187 0.0208 0.0398
Rialto 0.0036 0.0013 0.0047
InsAbr 0.0251 0.0039 0.0247
InsInc 0.0172 0.0021 0.0316
InsIncAbr 0.0203 0.0081 0.0469
InsIncReo 0.0113 0.0036 0.0156

11

A.3 Hyperparameter Tuning

To tune the hyperparameters, the main experiment was run for several configurations with the same
seed. Tables in the following show the MCC based on all predictions and the number of retrainings
in parentheses.

For MCD the only additional hyperparameter is the number of stochastic forward passes 7. As
Table [reveals, we tested 7' = 25, 50, 75 and 100. Although 7" = 25 had the best performance
in the majority of our experiments, this is not really representative for the overall performance. In
fact, discrepancies are rather slight in datasets where T' = 25 yields the best performance, while it
is significantly outperformed in other datasets. We found that 7" = 100 offers the most balanced
performance across all datasets. The additional computational cost is also negligible as 7" = 100
triggers the least amout of retrainings and thus incurrs the lowest execution time for all experiments
combined.

Table 8: MCC values of MCD with 25, 50, 75, and 100 forwards passes.

T=25 T =50 T=175 T =100

Gas 0418 (49) 0443 (48) 0.41(44) 0.451 (46)
Electricity 0.365(8) 0.386(10) 0.363(11) 0.415(8)
Rialto 0.554(59) 0.56 (61) 0.554(59) 0.553 (59)
InsAbr 0.509 (9) 0491 (6) 0.521(10) 0.481 (5)
InsInc 0.218(2) 0216(1) 0217(1) 0.216(1)

InsIncAbr 0.54 (25) 0.538(23) 0.538(23) 0.538 (22)
InsIncReo 0.249 21) 0.24(19) 0.24 (20) 0.235(18)
Total exec. time 4712s 4712s 4875s 4638s

Similar to MCD there is only one hyperparameter for the Ensemble. Namely, the number of members
M which was set to three, five, and seven during our tests, as shown in Table EL Here we found very
slight differences overall. Thus, we choose the version with the least computational cost, which is
M = 3.

Table 9: MCC values of an ensemble of 3, 5, and 7 members.

M=3 M=5 M=7

Gas 0.479 (48) 0.494 (51) 0.479 (52)
Electricity 0422 (10) 0.407 (9) 0.426 (10)
Rialto 0.529 (46) 0.529 (48) 0.526 (51)
InsAbr 0474 (4) 0.505(8) 0.494 (8)
InsInc 0.259 (3) 0.194(1) 0.255(2)

InsIncAbr 0.53(24) 0.514 (26) 0.508 (22)
InsIncReo 0.231 (21) 0.255(22) 0.25(18)
Total exec. time 12912s 19511s 31092s

Other than the previous methods, SWAG comes with several hyperparameters. First, the influence of
the number of weight samples S drawn from the approximated distribution was tested. Therefore,
the rank K was set to 25, and weights were updated every epoch starting at the first iteration. As
shown by Table[T0] S = 100 offers the most balanced performance. The higher execution time
compared to S = 50 and S = 75 is the result of more retrainings in datasets such as InsAbr and
InsIncReo. Consequently, there is a noticeable performance gap in said datasets which mitigates the
slower execution. Onwards, the effect of the rank K was studied with a fixed S. As seen in Table
[T1] the initial rank of K = 25 slightly outperformed the other settings. Starting at later epochs and

12

reducing the update frequency for the SWAG method showed no mentionable improvements neither
in performance, nor in execution time. Thus the final configuration was S = 100 and K = 25 with
updates in every epoch beginning at the start of training.

Table 10: MCC values of SWAG with 25, 50, 75, and 100 weight samples.

S =25 S =50 S=175 S =100

Gas 0.436 (49) 0.433(57) 0.456(55) 0.455 (53)
Electricity ~ 0.414 (10) 0.435(11) 0343 (13) 0.396 (10)
Rialto 0.544 (53) 0546 (54) 0.543 (49) 0.541 (53)
InsAbr 0.543(9) 0.503(6) 0517(7) 0.542(8)
InsInc 0283(3) 029(4) 0304(4) 0.296(3)

InsIncAbr 0.51 (25) 0.487(23) 0.528 (23) 0.504 (22)
InsIncReo 0.332(31) 0.282(16) 0.311(20) 0.335 (28)
Total exec. time 5694s 5018s 4913s 5514s

Table 11: MCC values of SWAG with S = 100 and K = 10, 25, and 40.

Gas 0.443 (54) 0.455(53) 0.435 (55)

Electricity ~ 0.412(10) 0.396 (10) 0.392 (13)
Rialto 0.543 (54) 0.541(53) 0.548 (50)
InsAbr 0.521(7) 0.542(8) 0.54(8)
InsInc 0.255(3) 0296(3) 0.318 (4)

InsIncAbr 0.487 (26) 0.504 (22) 0.514 (21)
InsIncReo 0.316 (28) 0.335(28) 0.289 (22)
Total exec. time 5603s 5514s 5472s

All three ASH versions introduced by Djurisic et al. [5] were tested with pruning percentages between
60% and 90% in the penultimate layer. As Table[T2]reveals, the best results performance was achieved
by the ASH-p version with a rather low pruning percentage of 60%. This is surprising, as ASH-p was
the worst method in tests from Djurisic et al. where it served as a baseline. Furthermore, experiments
have shown that higher pruning percentages were hurting performance. Lastly, the placement of the
pruning layer was tested for the previous best configuration. While differences were slight, the best
performance was reached when pruning in the penultimate hidden layer (i.e. third last overall layer)
as seen in Table[13]

13

Table 12: MCC values of ASH-p (top), ASH-b (middle) and, ASH-s (bottom) for pruning percentages
60%, 70%, 80% and 90%.

60% 70% 80% 90%

0.443 (42) 0.443 (42) 0398 (47) 0.293 (60)
Gas 0.407 (38) 0.407 (38) 0.357 (39) 0.388 (48)
0.397 (28) 0.397 (28) 0.396 (26) 0.347 (25)

0.475 (12) 0.395(10) 0.408 (6) 0.422 (13)
Electricity 0347 (8) 0.464 (10) 0.444 (10) 0.412(12)
0318(4) 0339(3) 0338(3) 0.398(4)

0.539 (42) 0.537 (41) 0.526 (45) 0.447 (43)
Rialto 0.551 (38) 0.56(36) 0.564 (39) 0.442 (41)
0.569 (35) 0.561 (35) 0.575(35) 0.45 (39)

0.496 (7) 0474 (10) 0435(7) 0322 (8)
InsAbr 0471 (4) 03869 0426(5 0301 (5)
0491 (6) 0.405(7) 0435(5) 0342 (9)

0217(1) 0252(5) 0.179(2) 0.172(3)
InsInc 0237(2) 0.155(3) 0.162(3) 0.153(2)
023(2) 0.196(3) 0.196(5) 0.223(3)

0.502 (24) 0.502(24) 0.477 (24) 0.336 (22)
InsIncAbr 0.473 (25) 0.473(25) 0.435(19) 0.424 (20)
0.526 (17) 0.526 (17) 0.453 (21) 0.419 (24)

0.232(17) 0.254(17) 0.208(17) 0.171 (21)
InsincReo 0.202(12) 0.196 (13) 0.142(8) 0.168 (21)
0.214(9) 0.171(6) 0.223(13) 0.116(17)

3570s 3551s 3718s 3657s
Total exec. time 3034s 3122s 3026s 3483s
2804s 2715s 3240s 3297s

Table 13: MCC values of ASH-p with a pruning percentage of 60% at outputlayer - 1, -2, and -3.

L—1 L—2 L—3
Gas 0.443 (42) 0.441 (36) 0.399 (39)
Electricity ~ 0.475(12) 0.423 (13) 0.453 (13)
Rialto 0.539 (42) 0.545 (43) 0.545 (43)
InsAbr 0.496 (7) 0494 (6) 0.496 (8)
InsInc 0217(1) 0237(3) 0.234(3)

InsIncAbr 0.502 (24) 0.526 (21) 0.524 (24)
InsIncReo 0.232 (17) 0.259 (21) 0.245 (20)
Total exec. time 3570s 3611s 3646s

14

	Introduction and Motivation
	Methodology and Experiments
	Uncertainty Estimation Methods
	Drift Detector
	Datasets
	Metrics and Results

	Conclusion
	Appendix
	Reproducibility
	Additional Results and Experiments
	Hyperparameter Tuning

