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Abstract

Phenotype vocabularies and genomic studies use
incompatible coding systems for biomedical con-
cepts, hindering large biobanks from realizing
their full potential for precision medicine. Ex-
isting biomedical language models (LMs) by-
pass code heterogeneity but cannot embed single-
nucleotide polymorphisms (SNPs), while graph-
based methods require brittle manual cross-walks.
We introduce GENEREL (GENomic Encoding
REpresentation with Language model), the first
ontology-agnostic, genetic-contextualized frame-
work that unifies diseases, drugs, pathways, genes,
and 65,000 common SNPs in a single vector space.
GENEREL encodes free-text concepts with a
Transformer, embeds SNPs via a lightweight mul-
tilayer perceptron (MLP) with trainable embed-
dings, and aligns both domains through multi-
task, weighted contrastive learning over UMLS
synonyms, PrimeKG relations, GWAS/eQTL vari-
ant–trait links, and UK Biobank correlations.
On four external benchmarks—DisGeNET, Drug-
Bank, Million Veteran Program (MVP) and a held-
out GWAS Catalog split—GENEREL surpasses
specialized LMs and graph baselines, while its
cosine similarity reliably tracks odds-ratio effect
sizes. The resulting representation paves the way
for cross-biobank retrieval, variant prioritization,
and downstream integrative analyses.
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1. Introduction
Large-scale biobanks (e.g., UK Biobank [8], MVP [25], All
of Us [1]) pair genome-wide variant information with rich
electronic health records (EHRs), while traditional GWAS
cohort studies, cataloged in resources like the GWAS Cat-
alog [20], offer curated genetic associations across diverse
traits. Together, these resources hold immense promise for
advancing precision medicine. However, integration across
them remains limited due to incompatible phenotype rep-
resentations: EHR-linked studies use PheCodes, ICD, or
SNOMED CT [22], while GWAS studies often rely on the
Experimental Factor Ontology (EFO). These discrepancies
in coding and variable definitions hinder cross-study har-
monization, and existing manual mappings are brittle and
difficult to scale.

Biomedical LMs (BioBERT [16], PubMedBERT [12], Sap-
BERT [19]) offer a promising solution to interoperability
challenges by learning from unstructured text and bypassing
rigid code systems. However, these models lack detailed
biological understanding, particularly of genetic variation.
SNPs are essentially treated as out-of-vocabulary tokens,
limiting the models’ ability to reason over SNPs and clinical
concepts jointly. As a result, semantically distinct diseases
with different biological underpinnings—such as type 1 and
type 2 diabetes—can receive nearly identical embeddings
(e.g., cosine similarity > 0.99 with PubMedBERT), obscur-
ing important mechanistic differences and reducing their
utility for genetics-informed applications.

This paper proposes GENEREL, GENomic Encoding
REpresentation with Language model, a unified embedding
framework that bridges this divide. GENEREL (i) encodes
any free-text biomedical concept using an LM, (ii) embeds
65 k common SNPs via a lightweight MLP, and (iii) aligns
the two spaces through multi-task, weighted contrastive
learning over four complementary resources: UMLS syn-
onyms [5], PrimeKG biomedical relations [9], variant–trait
links from the GWAS Catalog [7] and GTEx eQTL stud-
ies [21], and patient-level phenotype-genotype correlations
from UK Biobank.

Our contributions are summarized as follows.
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• Ontology-agnostic harmonization — by operating directly
on natural language, GENEREL bypasses coding incom-
patibilities and integrates multi-source knowledge without
manual mapping.

• Genomic–clinical coupling — joint training yields a single
embedding space covering diseases, drugs, genes, path-
ways, and SNPs, enabling cross-domain reasoning.

• State-of-the-art performance — on external benchmarks
from MVP, DisGeNET [23], DrugBank [15], and held-
out GWAS studies, GENEREL outperforms specialized
baselines and ranks SNP relevance in a manner consistent
with reported odds ratio magnitudes.

2. Related Work
Graph-based concept embedding. Biomedical knowl-
edge graphs represent biomedical entities, such as dis-
eases, drugs, and genes, as nodes connected by curated
or predicted relationships. Early work in link predic-
tion applied matrix factorization to co-occurrence or ad-
jacency matrices [3; 13; 11]; followed by more expres-
sive techniques such as translational models (e.g. TransE,
TransH, TransR) [6; 18], bilinear scoring (DistMult, Sim-
plE) [27; 14], and graph neural networks (GNNs) [17].
While effective within a single coding system, these meth-
ods rely on explicit node identifiers, making cross-system
interoperability dependent on fragile manually curated map-
pings — and rarely extend to SNP-level genetic variants.
Efforts to embed SNP–phenotype via matrix factorization
of genotype–phenotype correlation matrices [30] offer an
alternative, but such approaches cannot incorporate textual
evidence or generalize to unseen concepts, limiting their
utility in complex, multi-modal biomedical settings.

Biomedical LMs. Domain-adapted Transformers such as
BioBERT [16], ClinicalBERT [2], PubMedBERT [12], and
SapBERT [19] learn rich semantics directly from text, al-
leviating code heterogeneity. Later models inject graph
structure (CODER [28], KRISSBERT [29]) or improve re-
trieval (BGE [10]), yet all treat SNPs as out-of-vocabulary
tokens and thus cannot reason jointly over genetic and clin-
ical spaces. Our work departs from prior art by simul-
taneously embedding free-text biomedical concepts and
65 k common SNPs, and by aligning them through multi-
task weighted contrastive learning over UMLS, PrimeKG,
GWAS/eQTL, and UK Biobank, yielding the first ontology-
agnostic, genetic-contextualized representation that trans-
fers across databases.

3. GENEREL
Overview. A biomedical term (free text) or a SNP is fed
into a specific encoder separately; multi-task, weighted con-
trastive learning then aligns all entities in one vector space.

Table 1. Training pairs after filtering.
Task Source #Pairs

Synonym UMLS 246 k
Concept–Concept PrimeKG 325 k
Concept–SNP GWAS + eQTL 136 k
Concept–SNP UK Biobank 467 k

Total 1.17 M

Unified Embedding Space. Given a biomedical concept c,
we take the [CLS] hidden state from a pretrained LM Mϕ

and project it to d dimensions:

ce =W Mϕ(c) + b.

For each SNP g (e.g. rs2476601) we look up a learnable
vector from an embedding matrix ψ∈RM×d and refine it
with a two-layer MLP: ge = MLP

(
ψg

)
. Both ce and ge

inhabit the same d = 768 space, enabling direct comparison.

Multi-task Weighted Contrastive Objective. Across het-
erogeneous sources (§3) we collect positive pairs S =
{(h, t)} and minimize a weighted InfoNCE loss:

L = −
∑

(h,t)∈S

wh,t log
exp(⟨he, te⟩/τ)∑
h̃∈C exp(⟨h̃e, te⟩/τ)

,

where τ is learnable as in CLIP [24]. Weights wh,t ∈
(0, 2] reflect association strength—odds ratios or regression
β—and default to 1 when unavailable.

We instantiate three tasks that share parameters and mini-
batches: i) Synonym identification from UMLS [5];
ii) Concept–concept relations from PrimeKG [9]; iii)
Concept–SNP links from the GWAS Catalog, GTEx
eQTL [7; 21], and UK Biobank correlations.

Training Resources and Setup. Table 1 summarizes the
four data sources. For GWAS/eQTL, we normalize study-
specific statistics before clipping to (0, 2]; UK Biobank
pairs are selected by absolute correlation thresholding.
GENEREL is trained for 25 epochs on a single L40S GPU
using AdamW (learning rate: 2× 10−5 for Mϕ, 2× 10−3

for ψ; batch size: 512).

4. Experiments
4.1. Benchmarks and Baselines

We assess two tasks: (i) concept–concept relatedness
on DisGeNET and DrugBank; (ii) concept–SNP associ-
ation on the GWAS test split and the MVP. Baselines
include domain LMs (BioBERT, ClinicalBERT, PubMed-
BERT, SapBERT, CODER, KRISSBERT, BGE) [16; 2; 12;
19; 28; 29; 10], graph models (TransE/H/R, DistMult, Sim-
plE) [6; 26; 18; 27; 14], and an SVD factorization of the
UKB correlation matrix [30]. All embeddings use d=768.

2



Submission and Formatting Instructions for ICML 2025

Table 2. AUCs for detecting the related biomedical concept pairs against randomly sampled negative pairs. The associations include
disease-gene and pathway-gene pairs from DisGeNET and Indication-Drug and Indication-Gene pairs from DrugBank. The results are
reported based on 5 independent runs.

Model DisGeNET DrugBank
Disease–Gene Pathway–Gene Indication–Drug Indication–Gene

BioBERT 0.519± 0.013 0.568± 0.008 0.714± 0.010 0.579± 0.009
ClinicalBERT 0.483± 0.033 0.528± 0.011 0.636± 0.010 0.549± 0.009
PubmedBERT 0.528± 0.023 0.555± 0.011 0.711± 0.011 0.578± 0.011
SapBERT 0.627± 0.019 0.585± 0.011 0.667± 0.008 0.656± 0.006
CODER 0.564± 0.015 0.594± 0.013 0.811± 0.006 0.657± 0.006
KRISSBERT 0.623± 0.009 0.621± 0.010 0.753± 0.005 0.745± 0.012
BGE 0.640± 0.023 0.577± 0.014 0.763± 0.005 0.537± 0.015
GENEREL 0.770± 0.016 0.758± 0.009 0.824± 0.009 0.850± 0.005
#Pairs 1,366 778 4,207 6,148

Table 3. AUCs for detecting the related biomedical concepts and SNPs pairs on MVP and the GWAS test split. −Trait and −SNP indicates
the anchors when randomly sampling negatives. Results are reported based on 5 independent runs.

MVP-Trait MVP-SNP GWAS-Trait GWAS-SNP
Cor.Mat.SVD 0.775± 0.009 0.840± 0.004 - -
TransE 0.543± 0.015 0.524± 0.008 0.693± 0.007 0.621± 0.003
TransH 0.531± 0.015 0.516± 0.004 0.655± 0.009 0.601± 0.003
TransR 0.578± 0.014 0.528± 0.014 0.767± 0.008 0.737± 0.008
DistMult 0.622± 0.009 0.761± 0.001 0.825± 0.008 0.893± 0.002
SimplE 0.636± 0.006 0.759± 0.004 0.813± 0.004 0.894± 0.001
GENEREL 0.821± 0.012 0.810± 0.002 0.942± 0.003 0.939± 0.002

4.2. Results

Concept–Concept Relatedness. We use two held-out
sources—DisGeNET (Disease–Gene, Pathway–Gene) and
DrugBank (Indication–Drug, Indication–Gene); none of
these pairs appears in PrimeKG after exact-match filter-
ing. We compare GENEREL with domain LMs (BioBERT,
ClinicalBERT, PubMedBERT, SapBERT, CODER, KRISS-
BERT [29]) plus the strong general model BGE [10]. AUC
is computed against random negatives using cosine simi-
larity. Table 2 shows GENEREL tops all four benchmarks,
confirming it captures true biological relatedness beyond
surface wording.

Concept–SNP Association. Table 3 shows that GENEREL
outperforms every baseline on the GWAS split by a wide
margin. On MVP it beats all graph learners and edges out
SVD by 0.046 when traits are anchored, though it trails
SVD by 0.030 when SNPs are anchored.

A key weakness of the graph learning and SVD base-
lines is their reliance on hard-coded IDs; discrepancies be-
tween PheCode, EFO and other vocabularies—and even
simple synonymy (e.g. reactive arthritis vs. Reiter’s syn-
drome)—prevent seamless integration across datasets. By
encoding free text directly, GENEREL sidesteps these cod-
ing barriers and can harmonize information that would oth-
erwise remain siloed.

4.3. Ablation Study

A key feature of the GENEREL framework is its incorpo-
ration of multi-task and multi-source training. To demon-
strate the function of each training task, we conduct abla-
tion experiments on different combinations of the training
datasets. Besides the previous benchmarks, we also include
COMETA [4], a dataset curated from public anonymous
health discussions on Reddit, to evaluate the model perfor-
mance on disambiguating synonyms in biomedical concepts.
COMETA contains 20 k English biomedical mentions in
various forms of daily languages. We pool the samples in
the “general” and “specified” splits. We report the AUCs
for synonym pairs and randomly sampled negative pairs to
maintain consistency with other benchmarks. The results
are listed in Table 4.

Table 4. Ablation study (mean AUC). U = UMLS, P = PrimeKG,
G = GWAS/eQTL. Columns: DisG = DisGeNET (Disease–Gene),
DrugB = DrugBank (Indication–Drug), COM = COMETA.

Model DisG DrugB MVP GWAS COM Avg

Full (U+P+G) 0.764 0.837 0.816 0.941 0.977 0.868
–U 0.771 0.838 0.807 0.940 0.932 0.858
–U –P 0.683 0.737 0.815 0.950 0.944 0.826
–U –P –G 0.670 0.690 0.620 0.549 0.922 0.690

Without the UMLS training task, we observe a decline in
performance on the COMETA benchmark, as the model’s
ability to disambiguate synonyms decreases due to the lack
of synonym information in the other datasets. When fur-
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Figure 1. Embedding visualizations of GENEREL and PubMedBERT using t-SNE are shown. We highlight the autoimmune diseases, the
related genes, and, additionally for GENEREL, the related SNPs.

Figure 2. Evaluation of detecting the relative degree of relatedness.
The plot depicts the accuracies of different sub-sample groups with
various odds ratio differences.

ther excluding PrimeKG from training, the performance on
DisGeNET and DrugBank drops by 0.081 and 0.100 respec-
tively. The GWAS catalog and UK Biobank primarily focus
on gene and trait concepts, lacking broader biomedical con-
cepts such as pathways and drugs. PrimeKG enhances the
model’s learning by integrating this additional information.
When trained only on UK Biobank, the model performs
worse uniformly across the benchmarks, since GWAS cov-
ers a broader range of biomedical concepts and SNPs com-
pared to UK Biobank. Overall, the ablation demonstrates
the necessity and functionality of each training task,showing
the benefits of the multi-task, multi-source training scheme.

5. Discussion
Interpretable distances. By weighting the InfoNCE loss
with odds ratios, GENEREL aligns cosine similarity with
biological effect sizes, allowing embedding distances to re-
flect the strength of genetic associations. Figure 2 shows
that when the odds–ratio gap exceeds 2, the stronger SNP
is ranked first in 84.7% of held-out GWAS pairs; Table 5
lists concrete high- vs. low-risk examples. Such calibrated
distances enable variant prioritization and causal follow-up
studies.

Table 5. AUCs of GENEREL detecting the concept-SNP related-
ness against random negatives on the original concept phrases and
the substituted synonyms on MVP and GWAS.

MVP GWAS
Original 0.798±0.008 0.901±0.004

Synonyms 0.786±0.005 0.836±0.005

Robustness to lexical variation. Substituting traits with
UMLS synonyms only reduces GWAS AUC from 0.901
to 0.836 (Table 5), far smaller than graph-based base-
lines—evidence that text-level encoding mitigates coding
noise common in EHRs.
Qualitative structure. The t-SNE plot in Figure 1 clus-
ters autoimmune diseases, their genes, and associated SNPs
tightly in GENEREL, whereas PubMedBERT scatters them.
This illustrates the benefit of coupling genomic and clinical
signals within one embedding space.
Limitations and future work. Current vocabularies cover
65 k common SNPs but omit rare or structural variants;
training depends on summary statistics rather than raw geno-
types. Future directions include (i) genetic-contextualized
tokenization for rare variants, (ii) multi-modal contrastive
heads for imaging or time-series data, and (iii) instruction
fine-tuning for zero-shot genomic QA.

6. Conclusion
GENEREL presents the first ontology-agnostic, genetic-
contextualized embedding that jointly positions diseases,
drugs, pathways, genes, and SNPs in a unified vector
space—enabling the construction of a biomedical knowl-
edge graph that transcends the limitations of incompatible
coding systems. Across four external benchmarks, it out-
performs specialized LMs and graph baselines, while its
similarity scores faithfully reflect biological effect size. We
believe this unified representation will serve as a founda-
tion for cross-biobank discovery and precision-medicine
applications.
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[23] Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-
Sacristán, A., Deu-Pons, J., Centeno, E., Garcı́a-
Garcı́a, J., Sanz, F., and Furlong, L. I. Disgenet: a
comprehensive platform integrating information on
human disease-associated genes and variants. Nucleic
acids research, pp. gkw943, 2016.

[24] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A.,
Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin,
P., Clark, J., Krueger, G., and Sutskever, I. Learn-
ing transferable visual models from natural language
supervision, 2021.

[25] Verma, A., Huffman, J. E., Rodriguez, A., Conery, M.,
Liu, M., Ho, Y.-L., Kim, Y., Heise, D. A., Guare, L.,
Panickan, V. A., et al. Diversity and scale: Genetic
architecture of 2068 traits in the va million veteran
program. Science, 385(6706):eadj1182, 2024.

[26] Wang, Z., Zhang, J., Feng, J., and Chen, Z. Knowl-
edge graph embedding by translating on hyperplanes.
In Proceedings of the AAAI conference on artificial
intelligence, volume 28, 2014.

[27] Yang, B., Yih, W.-t., He, X., Gao, J., and Deng,
L. Embedding entities and relations for learning
and inference in knowledge bases. arXiv preprint
arXiv:1412.6575, 2014.

[28] Yuan, Z., Zhao, Z., Sun, H., Li, J., Wang, F., and Yu,
S. Coder: Knowledge-infused cross-lingual medical
term embedding for term normalization. Journal of
Biomedical Informatics, 126:103983, 2022. ISSN
1532-0464.

[29] Zhang, S., Cheng, H., Vashishth, S., Wong, C., Xiao,
J., Liu, X., Naumann, T., Gao, J., and Poon, H.
Knowledge-rich self-supervision for biomedical entity
linking. In Goldberg, Y., Kozareva, Z., and Zhang, Y.

(eds.), Findings of the Association for Computational
Linguistics: EMNLP 2022, pp. 868–880, Abu Dhabi,
United Arab Emirates, December 2022. Association
for Computational Linguistics.

[30] Zhao, Y., Cai, H., Zhang, Z., Tang, J., and Li, Y. Learn-
ing interpretable cellular and gene signature embed-
dings from single-cell transcriptomic data. Nature
communications, 12(1):5261, 2021.

6


