

000 001 002 003 004 005 PLUG-AND-PLAY COMPOSITIONALITY FOR BOOSTING 006 CONTINUAL LEARNING WITH FOUNDATION MODELS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Vision learners often struggle with catastrophic forgetting due to their reliance on class recognition by comparison, rather than understanding classes as compositions of representative concepts. This limitation is prevalent even in state-of-the-art continual learners with foundation models and worsens when current tasks contain few classes. Inspired by the recent success of concept-level understanding in mitigating forgetting, we design a universal framework CompSLOT to guide concept learning across diverse continual learners. Leveraging the progress of object-centric learning in parsing semantically meaningful slots from images, we tackle the challenge of learning slot extraction from ImageNet-pretrained vision transformers by analyzing meaningful concept properties. We further introduce a primitive selection and aggregation mechanism to harness concept-level image understanding. Additionally, we propose a method-agnostic self-supervision approach to distill sample-wise concept-based similarity information into the classifier, reducing reliance on incorrect or partial concepts for classification. Experiments show CompSLOT significantly enhances various continual learners and provides a universal concept-level module for the community.

1 INTRODUCTION

Artificial intelligence systems mimic the learning behavior of human intelligence by collecting information and managing knowledge pools from continually assigned tasks in the open world. This need to handle non-independent and identically distributed training data has driven research in continual learning (CL) (Zhou et al., 2024c;a; Biesialska et al., 2020), which aims to balance the objectives of overcoming *catastrophic forgetting* (McCloskey & Cohen, 1989) of learned tasks and achieving *efficient adaptation* to future tasks, also known as the *stability-plasticity dilemma* (Grossberg, 2012). Leveraging a powerful pre-trained backbone to ensure a basic understanding of the world, CL methods of foundation models (FMs), including prompt-based methods (Gao et al., 2023; Smith et al., 2023; Wang et al., 2022c;b; 2024; Gao et al., 2024), representation-based methods (Zhou et al., 2025; 2024b; McDonnell et al., 2023; Zhang et al., 2023), and model-mixture-based methods (Gao et al., 2023; Wang et al., 2024; Marouf et al., 2024), have emerged as a popular direction in this field. However, FMs need to be updated when encountering out-of-distribution data in the upcoming tasks (Yang et al., 2025).

The human brain exhibits *compositionality* (Hupkes et al., 2020; Liao et al., 2024) when comprehending the world, decomposing seen concrete objects into abstract concepts. For example, a *Chihuahua* consists of general dog concepts such as *body shapes* and chihuahua-specific concepts like *small size* and *head shapes*. This interpretability is intuitive to humans, enabling them to generalize novel dog species by decomposing them into combinations of existing concepts while learning disentangled new concepts to refine the knowledge base, thus, facilitating efficient reuse (Liao et al., 2024). A common strategy for existing CL methods for FMs to alleviate forgetting is to inherit parameters learned from old tasks when initializing new tasks' models, as done in Wang et al. (2024); Gao et al. (2024). These state-of-the-art (SOTA) approaches generally do not fully exploit cross-task potential correlations (i.e., common concepts shared across tasks). In contrast, learning low-dimensional concept combinations to understand classes does not require establishing class representations from the high-dimensional feature level, as in traditional methods, thereby mitigating catastrophic forgetting and enabling rapid adaptation to novel classes (Liao et al., 2024; Yu et al., 2025; Yang et al., 2024; Kundargi et al., 2025; Lai et al., 2024). Thus, a set of CL methods leverages interpretable tools, e.g., ChatGPT (Brown et al.,

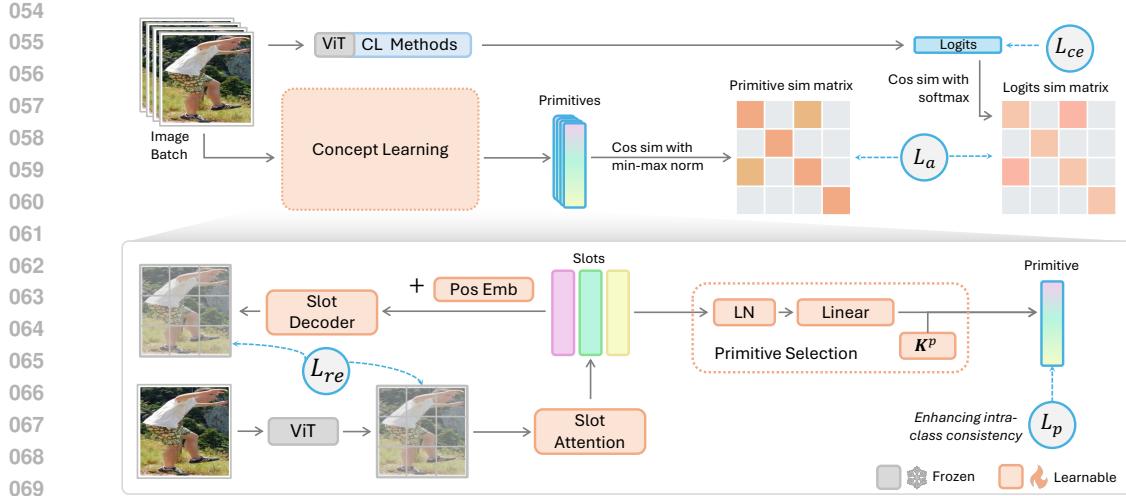


Figure 1: Proposed CompSLOT framework. Given an image batch, we extract primitives for each image with a concept learning procedure. Then, we distill the sample-wise similarity from the primitive representations of the image batch into logits. **Takeaway:** This conceptual pair-wise similarity enables the model to make decisions by additionally considering low-dimensional concept combinations, rather than relying solely on high-dimensional features.

2020), prototypes (Rymarczyk et al., 2023; Ahrens et al., 2023), and concept bottleneck models (Yu et al., 2025; Yang et al., 2024; Lai et al., 2024) to bring attention to concepts within images, which achieves great success on boosting CL performance. Another challenge is that canonical benchmarks, such as Split-CIFAR100 (Krizhevsky et al., 2009) and Split-ImageNet-R (Hendrycks et al., 2021), are not specifically designed to evaluate the compositionality of continual models. The CFST evaluation framework (Liao et al., 2024) (including CGQA and COBJ) is the only work, to our knowledge, that systematically studies the compositionality of a continual learner. CFST introduces two component-relevant phases in which the data share a common concept set with different combinations. In the first phase, the dataset is split into several continual tasks, aiming to train a continual learner. Subsequently, the second phase is used to evaluate the learner’s compositional generalization performance on unseen concept combinations.

Motivated by the above analysis, we pose the research question: *Can the compositionality in concept learning truly enhance the CL performances of SOTA continual learners with FMs?* We propose a **Compositional Slot** plug-in (**CompSLOT**) for continual learning to answer the above question, which is illustrated in Figure 1. The first step involves extracting concepts from raw images, namely, **conducting concept learning**. Several studies have shown significant progress in concept learning by utilizing explicit concept-level supervision obtained from segmentation masks (Kirillov et al., 2023; Ravi et al., 2025) or natural language annotations (Ramesh et al., 2021; Yu et al., 2025). Nevertheless, it is crucial to compare with SOTA CL methods of FMs, where only labels from the current CL tasks are available as supervision. Consequently, Slot Attention (Locatello et al., 2020), as an SOTA unsupervised object-centric learning approach (Greff et al., 2020), has effectively emerged as a viable self-supervised solution. A Slot Attention module learns to group and encode spatial features into a set of low-dimensional distinct slots, with each slot representing a disentangled region and binding to an object (i.e., concept) in the image. To avoid additional learning of the encoder, the input to Slot Attention can be specified as semantic patch features provided by a pre-trained vision transformer (ViT), which also serves as the learner’s backbone. We present a preliminary experiment demonstrating that the learned Slot Attention module exhibits almost no forgetting across compositional tasks, as shown in Figure 2.

With the above method to extract the hidden concepts in images, the next step is to introduce concept learning into CL methods with FMs. The challenge is that there is no unified forwarding framework to organize all CL methods with FMs so that we can easily perform concept learning and assist vanilla learning processes of feature extractors. Hence, we propose regularizing the outputs of learners with **sample-wise similarity based on concepts**. This makes our approach a method-agnostic plugin for any CL method with FM. We first use a learnable aggregation mechanism based on attention to extract

108 class-relevant concepts (i.e., **primitives** (Zou et al., 2024)) as the weighted sum of slots based on their
 109 similarity to a learnable task key. The distance of primitives between two images carries information
 110 about the similarity in concept level. For example, a *Chihuahua* is close to other dog species (e.g.,
 111 *German Shepherd*) rather than cat species (e.g., *Siamese*) because they share considerably more
 112 concepts (e.g., *dog body*). Subsequently, we propose a method-agnostic primitive-logit alignment
 113 plugin to distill the learned sample-wise concept-level similarity into the outputs of models based
 114 on a contrastive loss. Our experiments demonstrate that the above procedures successfully select
 115 meaningful concepts in images as primitives and ultimately achieve a superior continual learning
 116 performance attributed to a better compositional generalization performance.

117 The contributions of this work are summarized as follows:

- 118 • We proposed **CompSLOT**, a method-agnostic plug-in comprising 1) a **concept learning module**
 119 that leverages Slot Attention and rich vision foundation models to extract *primitives*, and 2) a
 120 **concept knowledge distillation module** that enables learners to intentionally discover *shared and*
 121 *distinct concepts* among classes, thereby guiding the decision-making process of classifiers.
- 122 • We designed 1) a **primitive selection mechanism** with an additional **primitive loss** that effectively
 123 achieves *robust primitive extraction* across different examples of the same class, and 2) a **primitive-**
 124 **logit alignment loss** that *contrastively regularizes* the *sample-wise similarities* between continual
 125 learners' outputs.
- 126 • The experimental results demonstrate that CompSLOT successfully leverages **concept-wise com-**
 127 **positionality** to significantly enhance a **wide range** of continual learners.

129 2 RELATED WORKS

131 **Continual Learning of Foundation Models** Benefiting from the rich knowledge in large-scale
 132 pre-trained ViT, CL methods with FMs (Zhou et al., 2024a) greatly mitigate forgetting previously
 133 learned classification tasks and achieve fast adaptation to new ones. The community has mainly
 134 developed three families of approaches, according to the way of utilizing the pre-trained knowledge:
 135 1) *Prompt-based methods* (Gao et al., 2023; Smith et al., 2023; Wang et al., 2022c;b; Gao et al., 2024;
 136 Liang & Li, 2024; Le et al., 2024) efficiently tune prompts for tasks rather than fine-tune the backbone;
 137 2) *Representation-based methods* (Zhou et al., 2025; 2024b; McDonnell et al., 2023; Zhang et al.,
 138 2023) involve leveraging the advantages of representations from the pre-trained backbone with a class
 139 prototype-based classifier; 3) *Model-mixture-based methods* (Gao et al., 2023; Wang et al., 2024;
 140 Marouf et al., 2024) utilize hybrid techniques such as model fusion (Wang et al., 2024; Marouf et al.,
 141 2024) and model ensemble (Gao et al., 2023) to query a set of models, thus, making the prediction
 142 more robust; Moreover, *rehearsing old samples* is an effective way to alleviate forgetting old tasks.
 143 Several methods (Wang et al., 2022a; Yan et al., 2021; Zhou et al., 2023) contribute to efficient
 144 sample storage mechanisms and auxiliary supervision to address class imbalance, achieving a better
 145 stability-plasticity trade-off. However, the above methods ignore hidden conceptual relationships
 146 among classes, limiting their significance on handling compositionally relevant tasks.

147 **Compositionality** Compositionality has been extensively studied in natural language processing-
 148 (Biesialska et al., 2020; Kaushik & Martin, 2020; Lake & Baroni, 2018; Keysers et al., 2020).
 149 To achieve a compositional learner, methods include the introduction of sparse coding (Murphy
 150 et al., 2012), regularization (Sun et al., 2016; Luo et al., 2015), and applying independent component
 151 analysis (Musil & Mareček, 2022; Yamagiwa et al., 2023). In Hupkes et al. (2020), the authors sum-
 152 marize five types of tests for language compositionality, which are further extended to vision in Liao
 153 et al. (2024). Meanwhile, researchers in vision utilize compositional information between objects
 154 and attributes to boost zero-shot inference through regularization (Nagarajan & Grauman, 2018),
 155 separate learning (Ruis et al., 2021), causal reasoning (Atzmon et al., 2020), self-attention (Khan
 156 et al., 2023), and uniting energy-based modules (Wu et al., 2022). Common strategies to learn
 157 hidden concepts among continual tasks are external interpretability tools (Yang et al., 2024), learnable
 158 mapping (Lai et al., 2024), prototypes (Rymarczyk et al., 2023; Ahrens et al., 2023; Rymarczyk et al.,
 159 2021), CLIP (Kundargi et al., 2025) (Agrawal et al., 2025), ChatGPT (Yu et al., 2025), and assigning
 160 different module paths for tasks (Rajasegaran et al., 2019; Ostapenko et al., 2021). Our work, instead,
 161 leveraging Slot Attention, does not require prior concept-level supervision for training or an extra
 concept bottleneck model (Yu et al., 2025), making it more adaptable and easier to integrate with
 different methods.

162 **Object-centric Learning** We adopt object-centric learning to autonomously extract concept information directly from images. The introduction of Slot Attention (Locatello et al., 2020) marked the
 163 emergence of a new paradigm for disentangling objects (i.e., concepts) within a scene. Subsequent research has focused on improving its robustness in complex environments—primarily through encoder
 164 enhancements like covariance regularization (Stange et al., 2023) and bi-level optimization (Jia et al.,
 165 2023; Chang et al., 2022). Other efforts have explored advanced decoders to refine decomposition.
 166 For example, SLATE (Singh et al., 2022) uses an autoregressive transformer decoder, while Wu et al.
 167 (2023); Jiang et al. (2023) propose diffusion-based approaches. Kakogeorgiou et al. (2024) leverages
 168 distillation to refine object segmentation via decoder-guided encoder training, and Kori et al. (2023)
 169 introduces conditional Slot Attention with a foundational slot dictionary to address specialization
 170 limitations. Our method, instead, employs a lightweight MLP decoder to minimize computational
 171 cost while preserving effectiveness. Experiments show that this simple design can still significantly
 172 benefit continual learning.
 173

175 3 PRELIMINARIES

176 **Class-incremental vision continual classification tasks** We consider T sequential vision classification
 177 tasks with a dataset $\mathcal{D} = [\mathcal{D}^1, \dots, \mathcal{D}^T]$, where each \mathcal{D}^t consists of image samples $\mathbf{x} \in \mathcal{X}^t$ with corresponding labels $y \in \mathcal{Y}^t$. Here, \mathcal{Y}^t is a subset of the global label set \mathcal{Y} , and $\forall \mathcal{Y}^t \cap \mathcal{Y}^k = \emptyset$
 178 for $t \neq k$, with task identity unknown during inference, i.e., class-incremental learning (CIL) setting.
 179 A general model-based continual learner includes a Vision Transformer (ViT)-based backbone
 180 $f(\cdot | \theta_f)$ and classification heads $h_t(\cdot | \theta_{h_t})$, where t is the task identity. Each head is trained separately
 181 for the corresponding task, but the outputs from all heads are concatenated for final inference:
 182 $\mathbf{H}_{te} = f(\mathbf{x}_{te} | \theta_f)[0]$, where [0] indicates the [CLS] token (i.e., the first dimension of the output of f),
 183 and $\text{pred}(\mathbf{x}_{te}) = \arg \min [h_1(\mathbf{H}_{te} | \theta_{h_1}); \dots; h_T(\mathbf{H}_{te} | \theta_{h_T})]$, where $[\cdot; \cdot]$ denotes concatenation.
 184

185 **Slot attention (Locatello et al., 2020)** As the state-of-the-art object-centric plug-in, slot attention
 186 aims to decompose a single image into a set of K disentangled slots $\mathbf{S} \in \mathbb{R}^{K \times D_s}$, each encoding
 187 one compositional component of the image. D_s is the dimension of slot representation. The output
 188 $f(\mathbf{x} | \theta_f)$ from a pre-trained ViT backbone consists of two parts: the uninstructed image feature $\mathbf{H} =$
 189 $f(\mathbf{x} | \theta_f)[0] \in \mathbb{R}^D$ with the token [CLS] and the semantic patch features $\mathbf{E} = f(\mathbf{x} | \theta_f)[1:] \in \mathbb{R}^{N \times D}$,
 190 where N is the patch number. These N patches are further encoded into the slot space and refined
 191 into K slots through an iterative attention procedure. The K slots are first initialized with a learnable
 192 Gaussian distribution. In each refinement iteration, slots collect soft assignment information from each
 193 patch with an attention mask $\mathbf{A} \in \mathbb{R}_+^{K \times N}$. The weighted mean A is then computed along the patch
 194 dimension, and a Gated Recurrent Unit (GRU) (Cho et al., 2014) aggregates the patch information into
 195 the assigned slots, as follows: $\mathbf{A} = \sigma\left(\frac{q(\mathbf{S})k(\mathbf{E})^\top}{\sqrt{D_s}}\right)$, $A_{i,n} \leftarrow \frac{A_{i,n}}{\sum_{j=1}^N A_{i,j}}$, $\mathbf{S} \leftarrow \text{GRU}(\mathbf{S}, \mathbf{A}v(\mathbf{E}))$,
 196 where $q(\cdot)$, $k(\cdot)$, $v(\cdot)$ are learnable query, key, value projections, respectively, and $\sigma(\cdot)$ is the softmax
 197 function.
 198

200 4 METHODS

201 We present our CompSLOT framework in Figure 1. For each continual task \mathcal{D}^t , we first perform
 202 **concept learning** (detailed in section 4.1) through a **slot decomposition** and a **primitive selection**
 203 mechanism, and then distill the pair-wise similarity statistic of the extracted primitives to model
 204 outputs (detailed in section 4.2) in a method-agnostic manner.
 205

206 Unless otherwise stated, the proposed slot attention and primitive selection modules are **globally**
 207 **shared** across tasks, and no parameters except the ViT backbone are frozen. They are initialized at
 208 the beginning of the first CL task. In future CL tasks, their architectures (e.g., the number of slots)
 209 remain fixed, while parameters will be fine-tuned throughout all CL tasks. This design prevents
 210 parameter explosion and supports long-sequence tasks, as demonstrated in Figure 3b.
 211

212 4.1 CONCEPT LEARNING

213 Firstly, we define **concepts** as the ground truth slot decomposition of an image. Since slot attention
 214 exhibits permutation equivalence w.r.t. the order of the slots (and masks) (Locatello et al., 2020),
 215

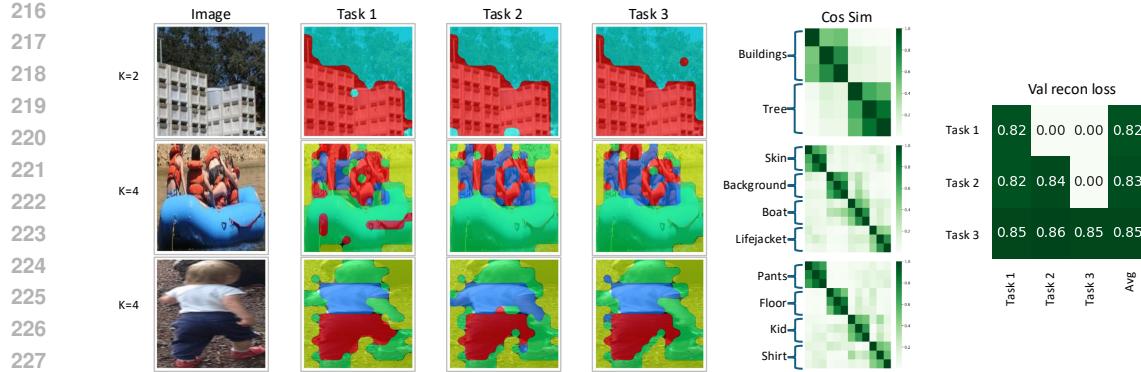


Figure 2: Examples of learned slots by continual COBJ reconstruction tasks and validation reconstruction losses. **Left:** slots are extracted for three example images from the first task on learners after training on the 1-st, 2-nd, and 3-nd tasks. Slots are masked with different colors. **Middle:** corresponding slot cosine similarity matrices grouped by correlated regions. Each group contains slots from three tasks and is identified by the Hungarian matching algorithm. **Right:** validation reconstruction loss matrix. Each row indicates a learner trained after a specific task and evaluated on all seen tasks, respectively. **Takeaway:** learned Slot Attention module enjoys almost no forgetting across compositional-relevant tasks.

we regard $\{\mathcal{S}, \mathcal{A}\}$ as the corresponding set representations of $\{\mathbf{S}, \mathbf{A}\}$, where $\mathcal{S} = \{s_i\}_{i=1}^K$ and $\mathcal{A} = \{a_i\}_{i=1}^K$, with $s_i \in \mathbb{R}^{D_s}$ and $a_i \in \mathbb{R}_+^N$ being the i -th row of \mathbf{S} and \mathbf{A} , respectively.

Definition 1 (Concept & Disentanglement). Let \mathbf{x} be an image, then $\{\mathcal{S}, \mathcal{A}\}$ is a *disentangled* decomposition of \mathbf{x} (a.k.a., *concepts* and corresponding *attention regions*), if 1) $a_i, a_j \in \mathcal{A}$, $a_i, a_j \in \mathbb{R}_+^N$, $a_i \perp a_j$, and 2) \mathcal{S} satisfies $\arg \min_{\mathcal{S}} \sum_{s_i, s_j \in \mathcal{S}} |\text{sim}(s_i, s_j)|$, where $s_i, s_j \in \mathbb{R}^{D_s}$, and $|\cdot|$ is the absolute value, \perp is orthogonal symbol, and $\text{sim}(\cdot, \cdot)$ is a similarity score function, e.g., cosine similarity.

Remark 1. The examples of concepts are *Chihuahua's head* w.r.t. *Chihuahua* objects in section 1 and *buildings* w.r.t. images in Figure 2. In Figure 2, \mathcal{A} corresponds to patch regions and \mathcal{S} corresponds to slot representations used to calculate cosine similarity.

To train the slot attention and primitive selection modules, we resort to continually reconstructing \mathcal{D} and an additional contrastive primitive loss.

Continual image reconstruction For clarity, we denote the forward path of slot attention as $\{\mathbf{S}, \mathbf{A}\} = s(\mathbf{E}|\theta_s)$, $\mathbf{S} \in \mathbb{R}^{K \times D_s}$, $\mathbf{A} \in \mathbb{R}^{K \times N}$. We augment the position embedding into slots \mathbf{S} when reconstructing the image, as the ViT does. $\mathbf{S}'_n = \mathbf{S} \oplus \mathbf{pos}_n$, where $\mathbf{pos}_n \in \mathbb{R}^{D_s}$ is the learnable position embedding at patch n and \oplus is the element-wise addition with broadcasting. Next, $\mathbf{S}' \in \mathbb{R}^{N \times K \times D_s}$, a collection of N position-augmented slots, are mapped back individually to the D -dim patch space with an MLP slot decoder $d(\cdot|\theta_d)$. Subsequently, we apply weighted-sum with the attention mask \mathbf{A} and finally get the reconstructed patch features $\tilde{\mathbf{E}}$. The reconstruction loss L_{re} is the MSE loss between the ground truth patch features \mathbf{E} and the reconstructed $\tilde{\mathbf{E}}$, as follows:

$$\tilde{\mathbf{E}} = \mathbf{A}^\top d(\mathbf{S}'|\theta_d) \in \mathbb{R}^{N \times D}, \quad L_{re} = \|\mathbf{E} - \tilde{\mathbf{E}}\|_2. \quad (1)$$

We present a preliminary experiment demonstrating that the learned Slot Attention module exhibits almost no forgetting across compositional tasks, as shown in Figure 2. Specifically, we train a Slot Attention module on COBJ 3-tasks as a continual reconstruction task (i.e., trained with reconstruction loss). We then extract slots for images from the first task using the modules after training on the first, second, and third tasks. We observe that each corresponding slot consistently represents a human-interpretable concept and remains stable after training on new tasks, maintaining a high cosine similarity.

Primitives When describing the object *Chihuahua*, some concepts (like *Chihuahua's head*) are class-relevant, while others (like *sky*) are class-irrelevant. We name such class-relevant concepts as **primitives**, containing information to identify the desired classes.

270 **Definition 2** (Primitives). Let $\mathcal{X}^y, \mathcal{S}^y$ be an image set labeled y and the corresponding set of concept
 271 sets, respectively, and $\mathcal{S} \in \mathcal{S}^y$, then a concept subset $\mathcal{P} \subset \mathcal{S}$ is *primitives* of \mathcal{S} , if $\forall \mathcal{S}' \in \mathcal{S}^y, \mathcal{P} \subset \mathcal{S}'$.
 272

273 Our goal is to **identify a unified primitive representation s^p** , which is regarded as the linear
 274 combination of concepts \mathcal{S} . The basic idea is that primitives have a higher probability appearing in
 275 \mathcal{X}^y and are likely to carry important information describing this class. Thus,
 276 we have the following two questions: 1) *How to represent the selected primitives s^p from \mathcal{S} ?* and 2)
 277 *How to minimize the distances among s^p 's extracted from the images in the same class?*

278 **Primitive selection** To answer the first question, we propose a learnable attention-based primitive
 279 selection mechanism to aggregate K slots. We use a linear module with layer norm and a tanh
 280 activation layer to map slots into a unified similarity space. The similarity to a learnable primitive
 281 key $\mathbf{K}^p \in \mathbb{R}^{D_s}$ measures the slot significance. Then this similarity \mathbf{w}_p weights the mapped slots and
 282 aggregates them into a single representation s^p (i.e., primitive representation), which is summarized
 283 as follows:

$$\bar{\mathbf{S}} = \tanh(\text{Linear}(\text{LN}(\mathbf{S}))), \quad \mathbf{w}_p = \sigma(\tau_t \bar{\mathbf{S}} \mathbf{K}^p), \quad s^p = \mathbf{w}_p^\top \bar{\mathbf{S}}, \quad (2)$$

284 where τ_t is a temperature coefficient controlling the sparsity of slot selection \mathbf{w}_p , which is set to
 285 $100/\sqrt{D_s}$ in practice. A larger τ_t indicates a smaller number of slots to be selected to represent this
 286 image \mathcal{X} .
 287

288 **Contrastive primitive loss** To answer the second question, we rewrite Definition 2 as follows:

289 **Theorem 1** (Intra-class consistency). Consider $\mathcal{S}_1, \mathcal{S}_2 \in \mathcal{S}^y$ and two corresponding **largest** primitive
 290 sets $\mathcal{P}_1 \subset \mathcal{S}_1, \mathcal{P}_2 \subset \mathcal{S}_2$ are identical, i.e., $\mathcal{P}_1 = \mathcal{P}_2$ and $\|\mathcal{P}_1\| = M$, where $\|\cdot\|$ is the cardinality
 291 of set. In other word, consider the pair-wise ordered sets $\{\mathcal{P}_1^\circ, \mathcal{P}_2^\circ\} = \text{match}(\mathcal{P}_1, \mathcal{P}_2)$, where
 292 $\text{match}(\cdot, \cdot)$ is a matching algorithm (without loss of generality, Hungarian algorithm (Kuhn, 1955)),
 293 then the corresponding matched concepts should be the same: $\mathcal{P}_1^\circ = \{s_i^1\}_{i=1}^M, \mathcal{P}_2^\circ = \{s_i^2\}_{i=1}^M$ and
 294 $\forall i \in \{1, \dots, M\}, \text{sim}(s_i^1, s_i^2) = 1$.
 295

296 This form of pair-wise primitive similarities from images within the same class motivates the use of
 297 label supervision and contrastive learning (Khosla et al., 2020; Chen et al., 2020b). We first collect
 298 the normalized similarity $d_{i,j}^y$ between one-hot label and the softmax similarity $d_{i,j}^s$ between s^p .
 299 Then, we use a mini-batch clustering loss that a small KL divergence between $d_{i,j}^y$ and $d_{i,j}^s$ means
 300 a small distance between s_i^p, s_j^p in the same class and a large distance between those in different
 301 classes. The primitive loss L_p is as follows:

$$d_{i,j}^y = \frac{\text{sim}(\mathbb{I}_i, \mathbb{I}_j)}{\sum_{\mathbf{x}_k \in B} \text{sim}(\mathbb{I}_i, \mathbb{I}_k)}, \quad d_{i,j}^s = \frac{\exp(\tau_p \text{sim}(s_i^p, s_j^p))}{\sum_{\mathbf{x}_k \in B} \exp(\tau_p \text{sim}(s_i^p, s_k^p))}, \quad L_p = \sum_{x_i, x_j \in B} d_{i,j}^y \log \frac{d_{i,j}^y}{d_{i,j}^s}, \quad (3)$$

302 where \mathbb{I}_i is the one-hot label for sample \mathcal{X}_i , and τ_p is a temperature coefficient controlling the strength
 303 of primitive loss. The learned slot visualizations in section K (including CGQA, COBJ, ImageNet-R,
 304 CIFAR-100) demonstrate that meaningful concepts (represented by primitives, third column “Sum”)
 305 remain stable across tasks for the same images. We attribute this robustness to “concept rehearsal”:
 306 although class labels change, many visual concepts are shared and recur across tasks, helping stabilize
 307 the primitive selection weights. Section K also visualizes the pair-wise primitive similarities, showing
 308 that concept relationships are preserved across images of the same class and shared concepts remain
 309 consistent even when images are from different tasks.

310 By jointly minimizing L_{re}, L_p , the learned slot attention module equips the abilities of extracting
 311 concepts, identifying primitives, and achieving intra-class primitive consistency. Specifically, we
 312 group these losses as $L_{slot} = L_{re} + \alpha L_p$, where α is a coefficient to balance the impact of L_p .
 313

314 4.2 METHOD-AGNOSTIC PRIMITIVE-LOGIT KNOWLEDGE DISTILLATION

315 The learned primitive s^p equips a superior property of aggregating important class-relevant concepts.
 316 Such understanding can be a self-supervision to regularize the output of the continual learner, i.e.,
 317 the distribution of logits. Thus, the model gives predictions based on the exact extracted concepts.
 318 For example, a *chihuahua* image should have relatively higher logits on other *dog* classes than
 319 logits on *cat* classes because they share similar concepts such as *dog body shapes*. Specifically, we

324 design a primitive-logit alignment loss to contrastively distill the learned primitive statistics to logit
 325 statistics, i.e., minimizing the KL divergence between softmax logit similarity d^l and previously
 326 learned primitive similarity d^s , as follows:

$$328 \quad d_{i,j}^s = \frac{\text{sim}_+(\mathbf{s}_i^p, \mathbf{s}_j^p)}{\sum_{\mathbf{x}_k \in B} \text{sim}_+(\mathbf{s}_i^p, \mathbf{s}_k^p)}, \quad d_{i,j}^l = \frac{\exp(\tau_a \text{sim}(\mathbf{l}_i, \mathbf{l}_j))}{\sum_{\mathbf{x}_k \in B} \exp(\tau_a \text{sim}(\mathbf{l}_i, \mathbf{l}_k))}, \quad L_a = \sum_{\mathbf{x}_i, \mathbf{x}_j \in B} d_{i,j}^s \log \frac{d_{i,j}^s}{d_{i,j}^l}, \quad (4)$$

331 where $\mathbf{l}_i = h_t(\mathbf{H}_i)$ is the logits of \mathbf{x}_i for the current task, $\text{sim}_+(\cdot, \cdot)$ is cosine similarity with min-max
 332 normalization, and τ_a is a temperature coefficient controlling the loss strength. We employ min-max
 333 normalization (instead of softmax) to sharpen slot supervision. Note that L_a is method-agnostic as
 334 long as the CL method has an FM backbone to support extracting semantic features. Finally with
 335 the cross-entropy task loss L_{ce} , the training loss is as $L_{tr} = L_{ce} + \beta L_a$, where β is a coefficient to
 336 balance the impact of L_a .

338 5 EXPERIMENTS

340 In the experiment part, we highlight the research question we will answer: *How and why does our*
 341 *CompSLOT benefit a large range of continual learning with foundation models?* To answer this, we
 342 compare algorithms with and without CompSLOT and perform ablation studies in section 5.2. We
 343 analyze the influences of hyperparameters in section H, investigate different backbones in section J,
 344 and visualize the slot extraction to analyze how CompSLOT enhances CL performance in section K.

346 5.1 EXPERIMENTAL SETTINGS

348 **Baselines** To verify the universality of the proposed CompSLOT, we adopt a wide range of SOTA
 349 continual learners with foundation models, including: 1) **prompt-based methods**: CPrompt (Gao
 350 et al., 2024); 2) **representation-based methods**: ADAM+adapter (Zhou et al., 2025), Ran-
 351 PAC (McDonnell et al., 2023), EASE (Zhou et al., 2024b); 3) **Model-mixture-based meth-
 352 ods**: CoFiMA (Marouf et al., 2024), FOSTER* (Wang et al., 2022a), DER* (Yan et al., 2021),
 353 MEMO* (Zhou et al., 2023). Methods with a “*” postfix indicate that they adopt a rehearsal process.
 354 Algorithms are implemented using the PILOT (Sun et al., 2025) platform with default hyperpa-
 355 rameters. Methods with CompSLOT are denoted with a postfix “†”. Unless otherwise stated, the
 356 backbone is ViT-B/16 backbone pretrained on ImageNet-21K, while we also investigate the effect of
 357 different backbone architectures in section J. We also compare recent concept bottleneck models for
 358 continual learning, including CLG-CBM (Yu et al., 2025), and another concept knowledge plugin,
 359 SACK (Kundargi et al., 2025) integrated with CODA-Prompt (Smith et al., 2023). In this experiment,
 360 we use CLIP ViT-B/16 (Radford et al., 2019) backbone for CompSLOT for fair comparison. For the
 361 details of the efforts we make to achieve a fair comparison, please refer to the discussion in section B
 362 and implementation details in section E.

363 **Benchmarks** We conduct experiments on compositional datasets, including CGQA and COBJ (Liao
 364 et al., 2024), and commonly used datasets, including ImageNet-R (Hendrycks et al., 2021). The
 365 former classification datasets contain a sufficient number of combinations of concepts, allowing
 366 for visual analysis and evaluating the compositionality. When comparing with other concept-based
 367 methods, we conduct experiments on CUB200 (Welinder et al., 2010) and CIFAR100 (Krizhevsky
 368 et al., 2009). We choose different continual task settings to evaluate different compositionality levels.
 369 Specifically, we denote “**F-S tasks**” as that the first task contains **F** classes and the following tasks
 370 contain **S** classes. For example, “50-10 tasks” means splitting 100 classes into six tasks with sequence
 371 of class numbers [50, 10, 10, 10, 10, 10]. In the main context, we report 10-10 tasks results for CGQA.
 372 For results on other benchmarks, please refer to section I. All the experiments are conducted on a
 373 single Tesla V100 GPU and we analyze the computational cost in section N.

374 **Metrics** For continual training stage, we report the average accuracy of all tasks after training
 375 the last task $\mathbf{AA} = \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{(x_{te}, y) \in \mathcal{D}_{te}^t} [\Delta(\text{pred}(x_{te} | P_T), y)]$, the average cumulative accuracy for
 376 each task $\mathbf{CA} = \frac{1}{T} \sum_{t=1}^T \frac{1}{T-t+1} \sum_{u=t}^T \mathbb{E}_{(x_{te}, y) \in \mathcal{D}_{te}^u} [\Delta(\text{pred}(x_{te} | P_t), y)]$, and average forgetting for
 377 each task $\mathbf{FF} = \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{(x_{te}, y) \in \mathcal{D}_{te}^t} [\Delta(\text{pred}(x_{te} | P_t), y)] - \mathbf{AA}$, where \mathcal{D}_{te}^t is the testing dataset

378
 379 Table 1: Main result on CGQA. Methods with CompSLOT are denoted with a postfix “†”. Methods
 380 rehearse old samples are denoted with a postfix “*”. We report results over 3 trials with (mean \pm 95%
 381 confidence interval). [We replace the backbones of all methods to Imagenet-21K-pretrained ViT-B/16.](#)

Methods	AA (%) \uparrow	Continual CA (%) \uparrow	FF (%) \downarrow	CFST Hn (%) \uparrow	R \uparrow
CPrompt	46.753 \pm 0.570	60.179 \pm 1.695	15.670\pm0.950	78.063 \pm 0.817	0.964
CPrompt †	48.537\pm0.427	61.483\pm1.645	18.315 \pm 1.111	79.091\pm1.086	0.969
ADAM + adapter	41.930 \pm 1.141	53.983 \pm 0.444	13.800 \pm 0.187	68.649 \pm 0.259	0.932
ADAM + adapter †	49.480\pm1.201	60.989\pm0.641	12.896\pm0.379	74.335\pm0.572	0.958
RanPAC	65.810 \pm 0.802	75.504 \pm 0.318	10.515 \pm 0.176	78.868 \pm 0.918	1.016
RanPAC †	66.753\pm0.867	76.584\pm0.603	10.219\pm0.281	79.815\pm0.829	1.032
EASE	47.657 \pm 1.494	59.475 \pm 2.574	18.215\pm0.107	79.713 \pm 0.449	0.996
EASE †	49.323\pm1.165	62.603\pm1.252	22.470 \pm 2.472	82.887\pm0.320	1.001
CoFiMA	65.107 \pm 0.508	73.227 \pm 1.047	15.248 \pm 0.542	86.711 \pm 0.483	1.011
CoFiMA †	66.170\pm0.578	74.322\pm0.463	14.204\pm0.880	88.297\pm0.278	1.017
FOSTER*	60.863 \pm 0.271	68.800 \pm 0.496	2.441\pm0.122	89.791 \pm 0.086	1.087
FOSTER* †	66.290\pm1.451	71.828\pm2.619	6.470 \pm 5.770	89.910\pm0.710	1.154
DER*	52.003 \pm 1.019	62.675 \pm 1.695	40.122 \pm 0.907	90.119\pm0.510	1.080
DER* †	54.900\pm1.093	66.020\pm1.049	38.941\pm0.995	88.986 \pm 0.129	1.096
MEMO*	56.553 \pm 1.804	66.462 \pm 0.702	9.289 \pm 0.326	82.425 \pm 1.282	1.029
MEMO* †	58.653\pm1.449	68.037\pm1.459	8.944\pm0.268	84.003\pm1.451	1.050

403 for task t and $\Delta(\cdot, \cdot)$ is the equal function. After training on all continual tasks, specifically for CGQA
 404 and COBJ, we perform CFST on five compositional test suites including **sys**, **pro**, **sub**, **non**, **noc**,
 405 which contain *novel recombinations*, *more combinations*, *shifting attributes*, *seen combinations*, *novel
 406 concepts* of testing samples, respectively. We generate 300 few-shot tasks for each test suite. For
 407 clarity, we calculate the Harmonic mean (i.e., $\mathbf{Hn} = 3/(1/\mathbf{sys} + 1/\mathbf{pro} + 1/\mathbf{sub})$, $\mathbf{Hr} = 2/(1/\mathbf{non} +$
 408 $1/\mathbf{noc})$, as suggested in Liao et al. (2024). Then we report \mathbf{Hn} and the ratio of \mathbf{Hn} and \mathbf{Hr} (i.e.,
 409 $\mathbf{R} = \mathbf{Hn}/\mathbf{Hr}$). For detailed results on each compositional test suite, please refer to section G. Larger
 410 \mathbf{Hn} and \mathbf{R} indicate that the extracted features have better compositional generalization performance.
 411

412 5.2 RESULTS

413 **Overall results** We report the statistical results in Table 1. Across all baselines, CompSLOT
 414 consistently enhances performance, with the most significant improvement observed in ADAM+adapter
 415 (absolute gain: +7.550 in AA). Notably, CA and FF demonstrate consistent superiority over other
 416 methods (except CPrompt and FOSTER, because the original methods do not perform well on
 417 the finished tasks, thus, forget less), indicates that our CompSLOT not only mitigates catastrophic
 418 forgetting of old tasks but also preserves strong forward adaptation to novel tasks. This robustness is
 419 primarily attributed to CompSLOT’s improved compositional generalization (manifested by higher
 420 \mathbf{Hn} and \mathbf{R} scores), confirming its ability to learn latent conceptual units and dynamically compose
 421 them for robust classification across diverse methodological frameworks.

422 **Learning curve** Figure 3a shows the learning curves of all methods on the 10-10 tasks from CGQA.
 423 We observe that concept learning significantly improves continual learning performance across the
 424 entire training process, demonstrating its ability to stabilize learning and mitigate forgetting.
 425

426 **Long task sequence** Figure 3b presents the comparative performance analysis across a challenging
 427 long-task sequence of 5-5 CGQA tasks. The results reveal that CompSLOT consistently enhances
 428 both continual learning accuracy and compositional generalization performance, even when the
 429 slot attention module globally shared across all continual tasks. This finding underscores the
 430 remarkable robustness of employing slot attention mechanisms for boosting concept learning in CL
 431 scenarios. Notably, the stable improvement suggests that CompSLOT effectively captures transferable

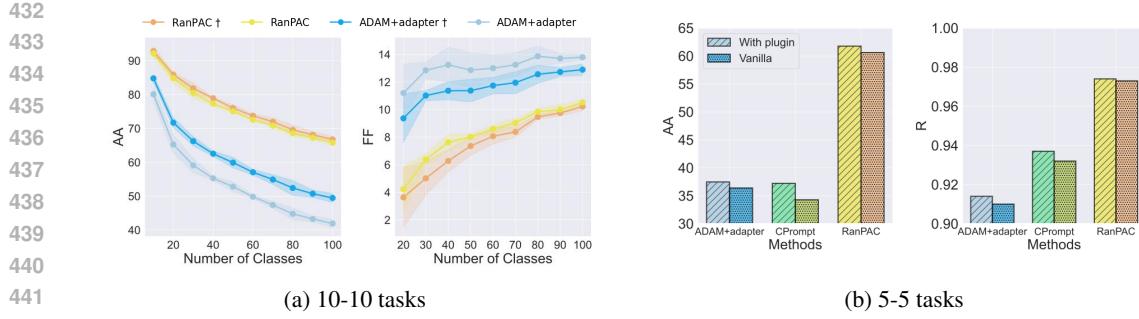


Figure 3: Learning curves and histograms of methods with and without CompSLOT on CGQA a) 10-10 tasks and b) 5-5 tasks. Slot is the case directly using the primitive representation and a cosine similarity classifier for the continual tasks.

compositional knowledge, enabling better adaptation across sequential tasks without task-specific customization.

Ablation studies To evaluate the contribution of each proposed component, we conduct comprehensive ablation experiments, with results presented in Table 2. First, to rule out the possibility that performance gains stem solely from **increased model capacity**, we expand the hidden representation dimensions (denoted as “+param”) in RanPAC and CPrompt (see section E for details) to match the parameter count of RanPAC † and CPrompt †, respectively. We further perform the following controlled experiments: 1) **Primitive loss ablation** (L_p): We remove the primitive loss term and replace the primitive selection mechanism with a simple slot averaging strategy (avg). 2) **Slot-selection function ablation**: We substitute the softmax operation in Equation 2 with alternative weighting methods, including: averaging (avg), sigmoid (sig), sign quantization (sign), and cosine similarity (cos). Across both methods, disabling L_p or altering the slot-selection mechanism leads to significant degradations in AA and R scores, demonstrating the critical importance of each component. 1) The primitive loss L_p ensures intra-class consistency, which is vital for reliable primitive selection and, consequently, improved concept-level class understanding. On the other hand, using all slots indiscriminately allows less relevant concepts (e.g., background) to dilute class-relevant ones, leading to confusion. 2) The softmax-based weighting (as formulated in Equation 2) provides a selection with a convex combination of slots in one image to ensure the primitive representations of images are within an appropriate range, which makes the training robust. A more comprehensive ablation study can be found in section L.

Concept learning and visualization To evaluate whether the learned concepts align with the ground truth, we establish evaluation experiments and design six metrics including the slot representation MAE and the slot mask mIOU. Due to page limit, we describe the details of the metrics and the experiments in section H. After that, we visualize the learned concepts and compare primitive similarity with ground truth concept similarity in Figure 4. We observe that CompoSLOT consistently identifies *Other shoes*, *Person*, and *Chair*, which are important concepts (primitives), in an unsupervised manner. The frequent existence of concepts between different tasks shows a *concept rehearsal* phenomenon: although class labels change, many visual concepts are shared and recur across tasks, helping stabilize the primitive selection. The learned primitives mimic concept statistics in terms of cosine similarity and the proposed primitive-logit alignment loss successfully distills pair-wise primitive similarity into logits, which demonstrate that the models make decisions by additionally

Table 2: Ablation results on CGQA.

Methods	L_p	L_a	AA (%) ↑	R↑
RanPAC	✗+param	✗	65.080	1.010
	✗avg	✓	58.220	0.969
	✓avg	✓	65.870	1.003
	✓sig	✓	65.950	1.020
	✓sign	✓	65.140	1.006
	✓cos	✓	63.910	0.989
	✓soft	✓	66.753	1.032
CPrompt	✗+param	✗	46.300	0.969
	✗avg	✓	40.230	0.952
	✓avg	✓	47.690	0.958
	✓sig	✓	48.080	0.961
	✓sign	✓	47.780	0.966
	✓cos	✓	47.410	0.964
	✓soft	✓	48.537	0.969

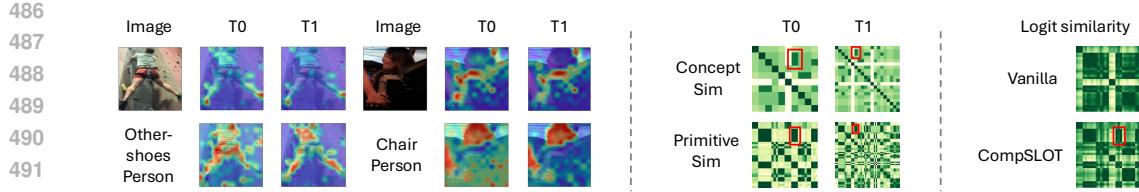


Figure 4: Concept learning visualization and fruits of primitive-logit knowledge distillation on COBJ. **Left:** Examples of visualization of learned slots that associated with the corresponding concepts after finish T0 and T1 tasks. Red color indicates a high value in slot attention masks. **Middle:** Primitive (comparing with ground truth concept) cosine similarity matrix for ADAM+adapter \dagger on 30 images in T0 (left) and on additional 30 images in T1(right). **Right:** Logit cosine similarity for ADAM+adapter with and without CompSLOT on 30 images in T0. **Takeaway:** The learned primitive successfully mimics concept statistics and CompSLOT successfully distills pair-wise primitive similarity into logits. Red box shows evidences.

considering low-dimensional concept combinations instead of only relying on high-dimensional features. For the details of concept and similarity visualization, please refer to section K.

Influences of hyperparameters CompSLOT introduces several hyperparameters mainly in the following three mechanisms: *concept learning stage*, *slot attention architecture*, and *primitive-logit knowledge distillation stage*. We conduct comprehensive experiments to investigate the influences of each hyperparameter in section H. Here we specifically showcase the effect of primitive-logit alignment loss coefficient β when continual training CPrompt on the first three tasks of the 10-10 CGQA as an example. The results are shown in Table 7. We observe that AA increases as β increases but decrease after a threshold (around 2). This indicates that an excessively large β hinders the effectiveness of CPrompt’s smooth regularization, leading to conflicts. However, within an appropriate range, our CompSLOT works effectively with CPrompt’s smooth regularization.

Comparing with other concept learning methods

This paragraph compares CompSLOT with other concept learning methods, i.e., CLG-CBM (Yu et al., 2025) and SACK (Kundargi et al., 2025). We conduct experiments on 10-10 tasks CUB200 and CIFAR100 to show the superiority of CompSLOT with RanPAC.

To achieve fair comparison, we replace the CompSLOT’s backbone to CLIP ViT-B/16. The results are shown in Table 3 with the top performance mentioned in their original papers. CompSLOT shows the best AA on both benchmarks, because of benefiting from slot attention to extract concept information and the plug-and-play property that can be applied to alternative CL algorithms. Most importantly, CompSLOT fully utilizes the capability of the CL backbone and does not need extra interpretable tools, like ChatGPT.

Table 3: AA results on 10-10 tasks CUB200 and CIFAR100.

Datasets	SACK	CLG-CBM	CompSLOT
CUB200	71.78	85.40	88.38
CIFAR100	87.26	84.49	89.57

6 CONCLUSION

This work propose **CompSLOT**, a framework introducing **concept learning** into the continual learning paradigm for foundation models. The proposed **primitive selection mechanism** effectively extracts class-relevant concepts while maintaining robustness across extended task sequences. Meanwhile, the **primitive-logit knowledge distillation** mechanism enforces concept-based sample similarity regularization, enabling lightweight adaptation to diverse CL methods with foundation models. Experimental results confirm that the performance improvements stem from enhanced **compositional generalization**, offering a novel **concept-level perspective** for the continual learning community. A limitation of our current approach is that concept learning must precede providing conceptual self-supervision to the CL task. Future work will explore end-to-end integration of our mechanism into the continual learning pipeline and study the joint effect when combining with regularization methods that also manipulating the logits. We hope this research inspires further advancements in developing resilient and interpretable vision models.

540 **7 ETHICS STATEMENT**
 541

542 We hereby affirm our strict adherence to the ICLR Code of Ethics. We have carefully considered the
 543 ethical implications of our research throughout the entire process of study design, data collection,
 544 experimentation, and manuscript preparation, and we confirm that our work does not violate any
 545 of the principles outlined in the ICLR Code of Ethics. All datasets used, including ImageNet-R,
 546 CIFAR100, CUB200, CGQA, COBJ, were sourced in compliance with relevant usage guidelines,
 547 ensuring no violation of privacy. No personally identifiable information was used, and no experiments
 548 were conducted that could raise privacy or security concerns. We are committed to maintaining
 549 transparency and integrity throughout the research process.

550
 551 **8 REPRODUCIBILITY STATEMENT**
 552

553 We are committed to ensuring the reproducibility of our research presented in this paper. To facilitate
 554 the replication of our results and the verification of our findings, we have provided comprehensive
 555 implementation details in section E. Additionally, the datasets we used, are publicly available,
 556 ensuring consistent and reproducible evaluation results.

557
 558 **REFERENCES**
 559

560 Alessandro Achille, Tom Eccles, Loic Matthey, Chris Burgess, Nicholas Watters, Alexander Lerch-
 561 ner, and Irina Higgins. Life-long disentangled representation learning with cross-domain latent
 562 homologies. *Advances in Neural Information Processing Systems*, 31, 2018.

563 Susmit Agrawal, Deepika Vemuri, Vineeth N Balasubramanian, et al. Walking the web of concept-
 564 class relationships in incrementally trained interpretable models. In *Proceedings of the AAAI
 565 Conference on Artificial Intelligence*, volume 39, pp. 15320–15329, 2025.

566 Kyra Ahrens, Hans Hergen Lehmann, Jae Hee Lee, and Stefan Wermter. Read between the lay-
 567 ers: Leveraging multi-layer representations for rehearsal-free continual learning with pre-trained
 568 models. *arXiv preprint arXiv:2312.08888*, 2023.

569 Yuval Atzmon, Felix Kreuk, Uri Shalit, and Gal Chechik. A causal view of compositional zero-shot
 570 recognition. *Advances in Neural Information Processing Systems*, 33:1462–1473, 2020.

571 Magdalena Biesialska, Katarzyna Biesialska, and Marta R Costa-Jussa. Continual lifelong learning
 572 in natural language processing: A survey. *arXiv preprint arXiv:2012.09823*, 2020.

573 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 574 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 575 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

576 Michael Chang, Tom Griffiths, and Sergey Levine. Object representations as fixed points: Training
 577 iterative refinement algorithms with implicit differentiation. *Advances in Neural Information
 578 Processing Systems*, 35:32694–32708, 2022.

579 Hung-Jen Chen, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, and Min Sun. Mitigating forgetting in
 580 online continual learning via instance-aware parameterization. *Advances in Neural Information
 581 Processing Systems*, 33:17466–17477, 2020a.

582 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 583 contrastive learning of visual representations. In *International conference on machine learning*, pp.
 584 1597–1607. PMLR, 2020b.

585 Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
 586 Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder
 587 for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans
 588 (eds.), *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
 589 (EMNLP)*, pp. 1724–1734, October 2014.

594 Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. Dytox: Transformers
 595 for continual learning with dynamic token expansion. In *Proceedings of the IEEE/CVF Conference*
 596 *on Computer Vision and Pattern Recognition (CVPR)*, pp. 9285–9295, 2022.

597 Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang. A
 598 unified continual learning framework with general parameter-efficient tuning. In *Proceedings of*
 599 *the IEEE/CVF International Conference on Computer Vision*, pp. 11483–11493, 2023.

600 Zhanxin Gao, Jun Cen, and Xiaobin Chang. Consistent prompting for rehearsal-free continual learning.
 601 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 602 28463–28473, 2024.

603 Alexander L Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. Differentiable programs
 604 with neural libraries. In *International Conference on Machine Learning*, pp. 1213–1222. PMLR,
 605 2017.

606 Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial
 607 neural networks. *arXiv preprint arXiv:2012.05208*, 2020.

608 Stephen T Grossberg. *Studies of mind and brain: Neural principles of learning, perception, development,*
 609 *cognition, and motor control*, volume 70. Springer Science & Business Media, 2012.

610 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 611 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
 612 analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF international*
 613 *conference on computer vision*, pp. 8340–8349, 2021.

614 Michael Hersche, Geethan Karunaratne, Giovanni Cherubini, Luca Benini, Abu Sebastian, and
 615 Abbas Rahimi. Constrained few-shot class-incremental learning. In *Proceedings of the IEEE/CVF*
 616 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 9057–9067, 2022.

617 Heike Hihn and Daniel A Braun. Hierarchically structured task-agnostic continual learning. *Machine*
 618 *Learning*, 112(2):655–686, 2023.

619 Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How
 620 do neural networks generalise? *Journal of Artificial Intelligence Research*, 67:757–795, 2020.

621 Baoxiong Jia, Yu Liu, and Siyuan Huang. Improving object-centric learning with query optimization.
 622 In *The Eleventh International Conference on Learning Representations*, 2023.

623 Jindong Jiang, Fei Deng, Gautam Singh, and Sungjin Ahn. Object-centric slot diffusion. In *Thirty-*
 624 *seventh Conference on Neural Information Processing Systems*, 2023.

625 Ioannis Kakogeorgiou, Spyros Gidaris, Konstantinos Karantzalos, and Nikos Komodakis. Spot: Self-
 626 training with patch-order permutation for object-centric learning with autoregressive transformers.
 627 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 628 pp. 22776–22786, June 2024.

629 Karthikeya Ramesh Kaushik and Andrea E Martin. Modelling compositionality and structure
 630 dependence in natural language. *arXiv preprint arXiv:2012.02038*, 2020.

631 Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
 632 Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
 633 Marc van Zee, and Olivier Bousquet. Measuring compositional generalization: A comprehensive
 634 method on realistic data. In *International Conference on Learning Representations*, 2020.

635 Muhammad Gul Zain Ali Khan, Muhammad Ferjad Naeem, Luc Van Gool, Alain Pagani, Didier
 636 Stricker, and Muhammad Zeshan Afzal. Learning attention propagation for compositional zero-
 637 shot learning. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer*
 638 *Vision*, pp. 3828–3837, 2023.

639 Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
 640 Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. *Advances in neural*
 641 *information processing systems*, 33:18661–18673, 2020.

648 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 649 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings*
 650 *of the IEEE/CVF International Conference on Computer Vision*, pp. 4015–4026, 2023.
 651

652 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 653 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
 654 catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*, 114
 655 (13):3521–3526, 2017.

656 Avinash Kori, Francesco Locatello, Fabio De Sousa Ribeiro, Francesca Toni, and Ben Glocker.
 657 Grounded object-centric learning. In *The Twelfth International Conference on Learning Representations*, 2023.
 658

660 Jonathan Krause, Hailin Jin, Jianchao Yang, and Li Fei-Fei. Fine-grained recognition without part
 661 annotations. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 662 pp. 5546–5555, 2015.

663 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 664 *Technical report*, 2009.
 665

666 Harold W Kuhn. The hungarian method for the assignment problem. *Naval research logistics
 667 quarterly*, 2(1-2):83–97, 1955.

668 Shivanand Kundargi, Kowshik Thopalli, and Tejas Gokhale. Sequentially acquiring concept knowl-
 669 edge to guide continual learning. In *Second Workshop on Visual Concepts, CVPR*, 2025.
 670

671 Songning Lai, Mingqian Liao, Zhangyi Hu, Jiayu Yang, Wenshuo Chen, Hongru Xiao, Jianheng
 672 Tang, Haicheng Liao, and Yutao Yue. Learning new concepts, remembering the old: Continual
 673 learning for multimodal concept bottleneck models. *arXiv*, 2024.

674 Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
 675 of sequence-to-sequence recurrent networks. In *International conference on machine learning*, pp.
 676 2873–2882. PMLR, 2018.
 677

678 Minh Le, Huy Nguyen, Trang Nguyen, Trang Pham, Linh Ngo, Nhat Ho, et al. Mixture of experts
 679 meets prompt-based continual learning. *Advances in Neural Information Processing Systems*, 37:
 680 119025–119062, 2024.

681 Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
 682 structure learning framework for overcoming catastrophic forgetting. In *International Conference
 683 on Machine Learning*, pp. 3925–3934. PMLR, 2019.
 684

685 Yuxiao Li, Eric J Michaud, David D Baek, Joshua Engels, Xiaoqing Sun, and Max Tegmark. The
 686 geometry of concepts: Sparse autoencoder feature structure. *Entropy*, 27(4):344, 2025.
 687

688 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern analysis
 689 and machine intelligence*, 40(12):2935–2947, 2017.

690 Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learning.
 691 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 692 23638–23647, 2024.

693 Weiduo Liao, Ying Wei, Mingchen Jiang, Qingfu Zhang, and Hisao Ishibuchi. Does continual
 694 learning meet compositionality? new benchmarks and an evaluation framework. *Advances in
 695 Neural Information Processing Systems*, 36, 2024.

696

697 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
 698 Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention.
 699 *Advances in neural information processing systems*, 33:11525–11538, 2020.
 700

701 David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
 702 *Advances in neural information processing systems*, 30, 2017.

702 Hongyin Luo, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. Online learning of interpretable word
 703 embeddings. In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language
 704 Processing*, pp. 1687–1692, 2015.

705 Arun Mallya and Svetlana Lazebnik. PackNet: Adding multiple tasks to a single network by iterative
 706 pruning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
 707 (CVPR)*, June 2018.

708 Imad Eddine Marouf, Subhankar Roy, Enzo Tartaglione, and Stéphane Lathuilière. Weighted
 709 ensemble models are strong continual learners. In *European Conference on Computer Vision*, pp.
 710 306–324. Springer, 2024.

711 Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
 712 sequential learning problem. In *Psychology of learning and motivation*, volume 24, pp. 109–165.
 Elsevier, 1989.

713 Mark D McDonnell, Dong Gong, Amin Parvaneh, Ehsan Abbasnejad, and Anton Van den Hengel.
 714 Ranpac: Random projections and pre-trained models for continual learning. *Advances in Neural
 715 Information Processing Systems*, 36:12022–12053, 2023.

716 Jorge A Mendez and ERIC EATON. Lifelong learning of compositional structures. In *International
 717 Conference on Learning Representations*, 2021.

718 Brian Murphy, Partha Talukdar, and Tom Mitchell. Learning effective and interpretable semantic
 719 models using non-negative sparse embedding. In *Proceedings of COLING 2012*, pp. 1933–1950,
 2012.

720 Tomáš Musil and David Mareček. Independent components of word embeddings represent semantic
 721 features. *arXiv preprint arXiv:2212.09580*, 2022.

722 Tushar Nagarajan and Kristen Grauman. Attributes as operators: Factorizing unseen attribute-object
 723 compositions. In *Proceedings of the European Conference on Computer Vision (ECCV)*, September
 724 2018.

725 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
 726 Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas
 727 Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
 728 Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut, Ar-
 729 mand Joulin, and Piotr Bojanowski. DINov2: Learning robust visual features without supervision.
 730 *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856.

731 Oleksiy Ostapenko, Pau Rodriguez, Massimo Caccia, and Laurent Charlin. Continual learning via
 732 local module composition. *Advances in Neural Information Processing Systems*, 34:30298–30312,
 2021.

733 Kiho Park, Yo Joong Choe, Yibo Jiang, and Victor Veitch. The geometry of categorical and
 734 hierarchical concepts in large language models. *arXiv preprint arXiv:2406.01506*, 2024.

735 Benliu Qiu, Hongliang Li, Haitao Wen, Heqian Qiu, Lanxiao Wang, Fanman Meng, Qingbo Wu, and
 736 Lili Pan. CafeBoost: Causal feature boost to eliminate task-induced bias for class incremental
 737 learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
 (CVPR)*, pp. 16016–16025, June 2023.

738 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 739 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

740 Ramesh Rahul and Chaudhari Pratik. Model Zoo: A growing brain that learns continually. In
 741 *International Conference on Learning Representations*, 2022.

742 Jathushan Rajasegaran, Munawar Hayat, Salman H Khan, Fahad Shahbaz Khan, and Ling Shao.
 743 Random path selection for continual learning. *Advances in Neural Information Processing Systems*,
 744 32, 2019.

756 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 757 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine*
 758 *learning*, pp. 8821–8831, 2021.

759

760 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 761 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev
 762 Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, and Christoph Feichtenhofer.
 763 SAM 2: Segment anything in images and videos. In *The Thirteenth International Conference on*
 764 *Learning Representations*, 2025.

765 Mark B Ring. Child: A first step towards continual learning. *Machine Learning*, 28(1):77–104, 1997.

766

767 David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
 768 replay for continual learning. *Advances in neural information processing systems*, 32, 2019.

769 Frank Ruis, Gertjan Burghouts, and Doina Bucur. Independent prototype propagation for zero-shot
 770 compositionality. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
 771 (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 10641–10653. Curran
 772 Associates, Inc., 2021.

773

774 Paul Ruvolo and Eric Eaton. ELLA: An efficient lifelong learning algorithm. In *International*
 775 *conference on machine learning*, pp. 507–515. PMLR, 2013.

776 Dawid Rymarczyk, Łukasz Struski, Jacek Tabor, and Bartosz Zieliński. Protopshare: Prototypical
 777 parts sharing for similarity discovery in interpretable image classification. In *Proceedings of the*
 778 *27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining*, pp. 1420–1430, 2021.

779

780 Dawid Rymarczyk, Joost Van De Weijer, Bartosz Zieliński, and Bartłomiej Twardowski. Icicle:
 781 Interpretable class incremental continual learning. In *Proceedings of the IEEE/CVF international*
 782 *conference on computer vision*, pp. 1887–1898, 2023.

783 Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate DALL-e learns to compose. In *International*
 784 *Conference on Learning Representations*, 2022.

785

786 James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
 787 Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
 788 attention-based prompting for rehearsal-free continual learning. In *Proceedings of the IEEE/CVF*
 789 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 11909–11919, June 2023.

790

791 Andrew Stange, Robert Lo, Abishek Sridhar, and Kousik Rajesh. Exploring the role of the bottleneck
 792 in slot-based models through covariance regularization. *arXiv preprint arXiv:2306.02577*, 2023.

793

794 Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi Cheng. Sparse word embeddings using 11 reg-
 795 ularized online learning. In *Twenty-Fifth International Joint Conference on Artificial Intelligence*,
 796 2016.

797

798 Hai-Long Sun, Da-Wei Zhou, De-Chuan Zhan, and Han-Jia Ye. Pilot: A pre-trained model-based
 799 continual learning toolbox. *SCIENCE CHINA Information Sciences*, 68(4):147101, 2025.

800

801 Qing Sun, Fan Lyu, Fanhua Shang, Wei Feng, and Liang Wan. Exploring example influence in
 802 continual learning. *Advances in Neural Information Processing Systems*, 35:27075–27086, 2022.

803

804 Zhicheng Sun, Yadong Mu, and Gang Hua. Regularizing second-order influences for continual
 805 learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 806 (*CVPR*), pp. 20166–20175, June 2023.

807

808 Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Foster: Feature boosting and
 809 compression for class-incremental learning. In *Proceedings of the European Conference on*
 810 *Computer Vision (ECCV)*, pp. 398–414, 2022a.

811

812 Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, and Jun Zhu. Hierarchical
 813 decomposition of prompt-based continual learning: Rethinking obscured sub-optimality. *Advances*
 814 *in Neural Information Processing Systems*, 36, 2024.

810 Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
 811 Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
 812 rehearsal-free continual learning. In *European Conference on Computer Vision*, pp. 631–648.
 813 Springer, 2022b.

814 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
 815 Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Proceedings
 816 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 139–149,
 817 2022c.

818 P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD
 819 Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.

820 Ross Wightman. Pytorch image models, 2019.

821 Tailin Wu, Megan Tjandrasuwita, Zhengxuan Wu, Xuelin Yang, Kevin Liu, Rok Sosič, and Jure
 822 Leskovec. ZeroC: A neuro-symbolic model for zero-shot concept recognition and acquisition at
 823 inference time. *arXiv preprint arXiv:2206.15049*, 2022.

824 Ziyi Wu, Jingyu Hu, Wuyue Lu, Igor Gilitschenski, and Animesh Garg. Slotdiffusion: Object-centric
 825 generative modeling with diffusion models. *Advances in Neural Information Processing Systems*,
 826 36:50932–50958, 2023.

827 Hiroaki Yamagawa, Momose Oyama, and Hidetoshi Shimodaira. Discovering universal geometry in
 828 embeddings with ICA. In *Proceedings of the 2023 Conference on Empirical Methods in Natural
 829 Language Processing*, pp. 4647–4675, 2023.

830 Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class
 831 incremental learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 832 recognition*, pp. 3014–3023, 2021.

833 Sin-Han Yang, Tuomas Oikarinen, and Tsui-Wei Weng. Concept-driven continual learning. *Transactions
 834 on Machine Learning Research*, 2024. ISSN 2835-8856.

835 Yutao Yang, Jie Zhou, Xuanwen Ding, Tianyu Huai, Shunyu Liu, Qin Chen, Yuan Xie, and Liang
 836 He. Recent advances of foundation language models-based continual learning: A survey. *ACM
 837 Computing Surveys*, 57(5):1–38, 2025.

838 Lu Yu, Haoyu Han, Zhe Tao, Hantao Yao, and Changsheng Xu. Language guided concept bottleneck
 839 models for interpretable continual learning. In *Proceedings of the Computer Vision and Pattern
 840 Recognition Conference*, pp. 14976–14986, 2025.

841 Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, and Yunchao Wei. Slca: Slow learner
 842 with classifier alignment for continual learning on a pre-trained model. In *Proceedings of the
 843 IEEE/CVF International Conference on Computer Vision*, pp. 19148–19158, 2023.

844 Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars: Towards
 845 memory-efficient class-incremental learning. In *ICLR*, 2023.

846 Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning with
 847 pre-trained models: A survey. In *Proceedings of the Thirty-Third International Joint Conference
 848 on Artificial Intelligence (IJCAI)*, 2024a.

849 Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensemble for
 850 pre-trained model-based class-incremental learning. In *Proceedings of the IEEE/CVF Conference
 851 on Computer Vision and Pattern Recognition*, pp. 23554–23564, 2024b.

852 Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Class-
 853 incremental learning: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 854 2024c.

855 Da-Wei Zhou, Zi-Wen Cai, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-incremental
 856 learning with pre-trained models: Generalizability and adaptivity are all you need. *International
 857 Journal of Computer Vision*, 133(3):1012–1032, 2025.

864 Yixiong Zou, Shanghang Zhang, Haichen Zhou, Yuhua Li, and Ruixuan Li. Compositional few-shot
 865 class-incremental learning. *arXiv preprint arXiv:2405.17022*, 2024.
 866
 867

868 A APPENDIX CONTENTS

869 CONTENTS

870	1
871	2
872	3
873	4
874	4
875	4
876	5
877	7
878	7
879	8
880	10
881	11
882	11
883	17
884	18
885	19
886	19
887	20
888	20
889	20
890	21
891	22
892	24
893	26
894	
895	
896	
897	
898	
899	
900	
901	
902	
903	
904	
905	
906	
907	
908	
909	
910	
911	
912	
913	
914	
915	
916	
917	

918	J Results on Other Backbones	26
919		
920	K Visualization	26
921		
922	L Additional Ablation Studies	31
923		
924	M Case Studies: the effect of CompSLOT on Finetuning	31
925		
926	N Algorithm Efficiency Analysis	32
927		
928	O Use of Large Language Models	33
929		
930		
931		
932	B DISCUSSIONS	
933		

Classification Bias from a Concept-Combination Perspective The root cause of compromised stability and plasticity often lies in sub-optimal classifier design, particularly when classifiers develop reliance on inaccurate or incomplete feature representations due to concept biases in training data. To illustrate, consider a scenario where the current vision task T_1 contains two specific classes (*a human standing by a tree* and *a human inside a boat*) alongside other classes that lack human-related concepts. In such cases, the learned classifier might develop an over-reliance on distinguishing these two classes based solely on *tree* and *boat* concepts while neglecting the more critical *human* attribute. This limited conceptual understanding creates significant generalization problems when encountering unseen concept combinations. For instance, during task T_2 , a novel image labeled *a pig inside a boat* would likely receive disproportionately high logits for the *human inside a boat* class due to the classifier's inability to properly disentangle object-class relationships from spatial-contextual cues. Conversely, a *human inside a boat* image might similarly activate the *pig inside a boat* class predictions. This conceptual entanglement manifests as catastrophic forgetting in T_1 (as evidenced by diminished global accuracies post-training on T_2) and severely hampers plasticity for T_2 through incorrect plastic responses to novel concept combinations.

Whether concept sharing is a common phenomenon in the real-world? In real-world scenarios, concept sharing is quite common, like, in fine-grained classification cases such as CUB200, and in images with massive objects such as COBJ. This phenomenon is also discussed in other works. For example, Welinder et al. (2010) claims that fine-grained bird classes share some basic parts, and Krause et al. (2015) claims that fine-grained categories share similar shapes. In the experimental results, CompSLOT consistently brings significant improvements to continual learning algorithms on these real-world cases. In contrast, datasets like CIFAR, which have relatively little concept sharing, are uncommon in complicated real-world scenarios.

Fairness issues To demonstrate the effectiveness of our CompSLOT, we list the actions to make the comparison as fair as possible:

1. When comparing with and without CompSLOT, e.g., in Table 1, we used exactly **the same backbone** for both **continual learners and the slot attention**, which was the ViT-B/16 backbone pretrained on ImageNet-21K sourced from the Python timm package. When comparing with other concept-based methods in Table 3, we used CLIP ViT-B/16 for CompSLOT to align with the baselines.
2. When training slot attention, we **DID NOT** introduce additional supervision, such as concept labels.
3. Most of the continual learner-related hyperparameters used their default settings, as suggested in the PILOT platform, while for the additional hyperparameters introduced in this work, please refer to section E.
4. To further ensure fairness and show that performance gains are not from the increased model capacity, we also compared with a case extending the number of parameters in an ablation study in section 5.

972 C ADDITIONAL RELATED WORKS 973

974 **Continual learning from scratch** To mitigate forgetting previously learned vision classification
975 tasks and achieve fast adaptation to new ones, the continual learning community has developed three
976 main families of approaches that do not utilize a pre-trained foundation model:
977

- 978 1. Rehearsal-based methods (Achille et al., 2018; Rolnick et al., 2019; Rahul & Pratik, 2022;
979 Hersche et al., 2022; Sun et al., 2022; Qiu et al., 2023; Sun et al., 2023) store memory-
980 efficient samples or features from past tasks for reviewing knowledge. However, such buffers
981 can cause significant memory overload as the number of tasks increases.
- 982 2. Regularization-based methods (Lopez-Paz & Ranzato, 2017; Li & Hoiem, 2017; Kirkpatrick
983 et al., 2017; Achille et al., 2018; Hersche et al., 2022) constrain gradient updates to preserve
984 important knowledge from old tasks, but this can limit the adaptation capability to new tasks.
- 985 3. Architecture-based methods (Mallya & Lazebnik, 2018; Douillard et al., 2022; Ring, 1997;
986 Ruvolo & Eaton, 2013; Gaunt et al., 2017; Li et al., 2019; Rajasegaran et al., 2019; Chen
987 et al., 2020a; Mendez & EATON, 2021; Ostapenko et al., 2021; Rahul & Pratik, 2022; Hihn
988 & Braun, 2023) aim to create new modules for upcoming tasks, making the determination
989 of module composition crucial for different tasks.

991 D THEOREM 992

994 Firstly, we define *concepts* as the ground truth slot decomposition of an image. Since slot attention
995 exhibits permutation equivalence w.r.t. the order of the slots (and masks) (Locatello et al., 2020),
996 we regard $\{\mathcal{S}, \mathcal{A}\}$ as the corresponding set representations of $\{\mathbf{S}, \mathbf{A}\}$, where $\mathcal{S} = \{s_i\}_{i=1}^K$ and
997 $\mathcal{A} = \{a_i\}_{i=1}^K$, with $s_i \in \mathbb{R}^{D_s}$ and $a_i \in \mathbb{R}_+^N$ being the i -th row of \mathbf{S} and \mathbf{A} , respectively.

998 **Definition 3** (Concept & Disentanglement, equivalent to Def. 1). Let \mathbf{x} be an image, then $\{\mathcal{S}, \mathcal{A}\}$
999 is a *disentangled* decomposition of \mathbf{x} (a.k.a., *concepts* and corresponding *attention regions*), if 1)
1000 $a_i, a_j \in \mathcal{A}, a_i \in \mathbb{R}_+^N, a_i \perp a_j$, and 2) \mathcal{S} satisfies $\arg \min_{\mathcal{S}} \sum_{s_i, s_j \in \mathcal{S}} |\text{sim}(s_i, s_j)|$, where $s_i \in$
1001 \mathbb{R}^{D_s} , and $|\cdot|$ is the absolute value, \perp is orthogonal symbol, and $\text{sim}(\cdot, \cdot)$ is an arbitrary similarity
1002 score function, e.g., cosine similarity.

1003 **Remark 2 (Requirement 1: Disentanglement).** The competitive spatial attention and the limited
1004 capability of a slot naturally achieve the orthogonality of \mathcal{A} . In practice, \mathcal{S} is encouraged to be
1005 orthogonal (slots bind to different concepts in \mathbf{x}) but not ideal since there are some semantically
1006 similar concepts, e.g., *grass* and *leaves*. Such a disentanglement structure is also mentioned in Park
1007 et al. (2024); Li et al. (2025).

1008 **Definition 4** (Primitives, equivalent to Def. 2). Let $\mathcal{X}^y, \mathcal{S}^y$ be an image set labeled y and the
1009 corresponding set of concept sets, and $\mathcal{S} \in \mathcal{S}^y$, then a concept subset $\mathcal{P} \subset \mathcal{S}$ is *primitives* of \mathcal{S} , if
1010 $\forall \mathcal{S}' \in \mathcal{S}^y, \mathcal{P} \subset \mathcal{S}'$.

1011 **Remark 3.** Although \mathcal{P} is defined at the image level, we can also say that it is unambiguously y 's
1012 primitive set, denoted \mathcal{P}^y . In general, $\mathcal{P} \neq \mathcal{S}$, because there are always image-specific concepts in
1013 the image, e.g., background.

1014 **Theorem 2 (Requirement 2: Intra-class consistency, equivalent to Theorem. 1).** Consider $\mathcal{S}_1, \mathcal{S}_2 \in$
1015 \mathcal{S}^y and two corresponding *largest* primitive sets $\mathcal{P}_1 \subset \mathcal{S}_1, \mathcal{P}_2 \subset \mathcal{S}_2$ are identical, i.e., $\mathcal{P}_1 = \mathcal{P}_2$ and
1016 $|\mathcal{P}_1| = M$, where $|\cdot|$ is the cardinality of set. In other word, consider the pair-wise ordered sets
1017 $\{\mathcal{P}_1^\circ, \mathcal{P}_2^\circ\} = \text{match}(\mathcal{P}_1, \mathcal{P}_2)$, where $\text{match}(\cdot, \cdot)$ is a matching algorithm (without loss of generality,
1018 Hungarian algorithm (Kuhn, 1955)), then the corresponding matched concepts should be the same:
1019 $\mathcal{P}_1^\circ = \{s_i^1\}_{i=1}^M, \mathcal{P}_2^\circ = \{s_i^2\}_{i=1}^M$ and $\forall i \in \{1, \dots, M\}, \text{sim}(s_i^1, s_i^2) = 1$.

1020 **Theorem 3 (Requirement 3: Inter-class concept sharing).** If there is a shared primitive subset
1021 between y_1, y_2 , all images in $\mathcal{X}^{y_1}, \mathcal{X}^{y_2}$ should contain this subset. If $\exists \mathcal{P} \subset \mathcal{P}^{y_1}, \mathcal{P} \subset \mathcal{P}^{y_2}, |\mathcal{P}| =$
1022 $M > 0$, then $\forall \mathcal{S}_1 \in \mathcal{S}^{y_1}, \mathcal{S}_2 \in \mathcal{S}^{y_2}, \mathcal{P} \subset \mathcal{S}_1, \mathcal{P} \subset \mathcal{S}_2$.

1023 **Remark 4 (Requirement 4: Inter-task consistency).** After trained on future tasks, the concept sets
1024 of the same \mathbf{x} should be not changed. In T CL tasks, $\forall \mathbf{x} \in \mathcal{X}^u, 1 \leq u < T$, consider the extracted
1025 concept sets $\{\mathcal{S}^t\}_{t=u}^T$ after task $t \in \{u, \dots, T\}$, then $\forall t_1, t_2 \in \{u, \dots, T\}, \mathcal{S}^{t_1} = \mathcal{S}^{t_2}$.

1026 CompSLOT implicitly encourages **Requirement 1** via slot attention’s soft-clustering and supports
 1027 **Requirements 3–4** empirically (Figure 2) and the visualization experiments in section K. **Requirement**
 1028 **2** is enforced through a primitive loss, described in Equation 3, ensuring slot stability across
 1029 class instances.

1030
 1031 **D.1 PROOF OF THEOREM 1**
 1032

1033 *Proof.* By the definition of $\mathcal{P}_1, \mathcal{P}_2$ as the *primitive* sets of $\mathcal{S}_1, \mathcal{S}_2$, respectively, and that $\mathcal{S}_1, \mathcal{S}_2 \in \mathcal{S}^y$,
 1034 without loss of generality, \mathcal{P}_2 is also a primitive set of \mathcal{S}_1 . Thus, $\mathcal{P}_2 \subset \mathcal{S}_1$. Assume, for the sake of
 1035 contradiction, that there exists a concept s , such that $s \in \mathcal{P}_2$ and $s \notin \mathcal{P}_1$, i.e., $\mathcal{P}_1 \neq \mathcal{P}_2$. Since \mathcal{P}_1 is
 1036 the **largest primitive** set of \mathcal{S}_1 , we must have $\mathcal{P}_2 \subseteq \mathcal{P}_1$ and $\forall \mathcal{P} \subseteq \mathcal{P}_1, s \notin \mathcal{P}$. This contradicts our
 1037 initial assumption that $s \in \mathcal{P}_2$.

1038 Therefore, the theorem holds. □
 1039

1040
 1041
 1042 *Remark 5.* The matching algorithm facilitates concept alignment across different sets, thereby en-
 1043 abling the computation of our proposed evaluation metrics in section H as well as supporting the
 1044 visualizations presented in section K. However, this alignment process introduces significant com-
 1045 putational overhead that renders it impractical for integration within our distillation framework. To
 1046 address this limitation, we propose an attention-based primitive selection mechanism (detailed in
 1047 section 4.1) that ensures permutation invariance to concept ordering in the extracted primitives, effec-
 1048 tively eliminating the need for explicit concept matching. This design choice maintains computational
 1049 efficiency while preserving the critical semantic relationships required for reliable evaluation and
 1050 visualization.

1051
 1052 **D.2 PROOF OF THEOREM 2**
 1053

1054 *Proof.* Assume, for the sake of contradiction, that there exists $\mathcal{P}', \mathcal{S}'$ and $\mathcal{P}' \subset \mathcal{P}^{y_1}, \mathcal{P}' \subset$
 1055 $\mathcal{P}^{y_2}, \|\mathcal{P}'\| = M > 0, \mathcal{S}' \in \mathcal{S}^{y_1}$ (or \mathcal{S}^{y_2}), such that $\mathcal{P}' \not\subseteq \mathcal{S}'$. By the definition of \mathcal{P}^{y_1} as the
 1056 primitive set for all $\mathcal{S} \in \mathcal{S}^{y_1}$, thus $\mathcal{P}' \subset \mathcal{S}'$. This contradicts our initial assumption that $\mathcal{P}' \not\subseteq \mathcal{S}'$.

1057 Therefore, the theorem holds. □
 1058

1059
 1060 **E HYPERPARAMETERS AND EXPERIMENTAL SETTINGS**
 1061

1062 The hyperparameter settings for the concept learning stage are summarized in Table 4, with key
 1063 values tuned through validation. For the concept knowledge distillation phase, we maintain fairness
 1064 in comparison by adopting the platform-default hyperparameters from the PILOT framework for both
 1065 standard CL baselines and CompSLOT-enhanced variants, with additional parameters introduced
 1066 in section 4.2 detailed in Table 5. All configurations employ an 80-20 train-validation split using a
 1067 randomly sampled validation set. To ensure consistent model capacity across methods, all algorithms
 1068 utilize the ViT-B/16 backbone pretrained on ImageNet-21K as the shared feature extractor unless
 1069 otherwise stated. [When comparing with other concept-based models in Table 3, we use CLIP ViT-B/16 as the CompSLOT’s backbone, suggested in Yu et al. \(2025\).](#) The backbone parameters are
 1070 sourced from the Python timm (Wightman, 2019) package. [For the compositional testing in CGQA and COBJ, we used randomly generated 300 few-shot tasks for each test suite, as suggested in Liao et al. \(2024\).](#)

1071 For ablation studies specifically examining CompSLOT’s impact, we appropriately scale model
 1072 capacities through expanded hidden representations: RanPAC: Increased feedforward layer width
 1073 (`ffn_num`) from 64 to 256; CPrompt: Extended prompt length (`prompt_len`) from 50 to 65 tokens.
 1074 These adjustments ensure fair comparison by matching representational capacity when introducing
 1075 our architectural modifications, enabling more reliable evaluation of CompSLOT’s actual contribution
 1076 beyond simple capacity increases.

1080 Table 4: Detail hyperparameters for **concept learning stage** in our main experiments.
1081

1082	Hyper-parameters	1083	Value
1084	Optimizer		Adam
1085	LR scheduler		Cosine
1086	LR (1-st task)		1e-4
1087	LR (others)		1e-5
1088	LR (min)		1e-8
1089	Batch size		256
1090	Weight decay		0
1091	Epoch		50
1092	D_s		128
1093	K		10
1094	Slot refinement iterations N_s		5
1095	Slot decoder hidden embedding dim		Linear with ReLU (128 → 256 → 256 → 768)
1096	τ_t		100
1097	α		10
	τ_p		10

1102 Table 5: Detail hyperparameters for **concept knowledge distillation stage** in our main experiments.
1103

1104	Methods	1105	β	1106	τ_a
1107	CPrompt	1108	10	0.05	
1109	ADAM + adapter	1110	10	0.5	
1111	RanPAC	1112	15	0.5	
1113	EASE	1114	10	0.1	
1115	CoFiMA	1116	1	0.001	
1117	FOSTER	1118	2	0.05	
1119	DER	1120	7	0.01	
1121	MEMO	1122	0.05	0.1	

F PSEUDO CODE

1123 In the main paper, we propose a two-stage procedure, including concept learning (aiming to extract
1124 concept-level representation by performing slot representation training and primitive selection) and
1125 concept knowledge distillation (aiming to distill sample-wise concept-based similarity into logits).
1126 We summarize the training framework of CompSLOT in Algorithm 1. Specifically, we perform
1127 concept learning in Lines 4-9. The slot attention and primitive selection module are initialized at
1128 first. For each batch of samples in task t , we perform Algorithm 2 and use the obtained primitive
1129 loss and reconstruction loss to train slot attention and primitive selection modules in Line 6. After E
1130 epochs of training, we perform concept knowledge distillation in Lines 11-18. We calculate pair-wise
1131 primitive similarity and obtain primitive-logit alignment loss with Equation 4 in Line 15. We detail
1132 the slot representation learning in Algorithm 2. Specifically, we first obtain semantic patch features
1133 in Line 3. Then, we use slot attention module to decompose it into a set of slots in Line 4. Next, we
reconstruct the patch feature and obtain the reconstruction loss in Lines 6-8. After that, we calculate
the primitives in Lines 10-12 and obtain primitive loss with Equation 3 in Lines 14-15.

1134

Algorithm 1 Continual Learning Framework

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

```

1: Input: # tasks  $T$ , tasks  $\mathcal{D}^1, \dots, \mathcal{D}^T$ , # epochs  $E$ , candidate CL method  $CL(\cdot | \theta_f, \theta_h)$ .
2: Initialize slot attention and primitive selection module.
3: for  $t$  from 1 to  $T$  do
4:   /* Concept Learning */
5:   for  $i$  from 1 to  $E$  do
6:     Sample a batch of images  $(x, y) \sim \mathcal{D}^t$ .
7:     Perform Algorithm 2 to obtain primitives  $s^p$ , contrastive primitive loss  $L_p$ , and reconstruction loss  $L_{re}$ .
8:      $L_{slot} = L_{re} + \alpha L_p$ .
9:     Backward loss and update.
10:    end for
11:   /* Concept Knowledge Distillation */
12:   for  $i$  from 1 to  $E$  do
13:     Sample a batch of images  $(x, y) \sim \mathcal{D}^t$ .
14:     Perform Algorithm 2 to obtain primitives  $s^p$  without collecting gradients.
15:     Perform CL method to obtain logits  $CL(x | \theta_f, \theta_h)$  and task loss  $L_{ce}$ .
16:     Calculate primitive-logit alignment loss  $L_a$ .
17:      $L_{tr} = L_{ce} + \beta L_a$ .
18:     Backward loss and update.
19:   end for
20: end for

```

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

Algorithm 2 Slot Representation Learning

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

```

1: Input: Image batch  $\{x_i\}_{i=1}^B$ , CL backbone  $\theta_f$ , # slots  $K$ , slot dimension  $D_s$ , # epochs  $E$ .
2: Output: Primitive  $s^p$ , contrastive primitive loss  $L_p$ , reconstruction loss  $L_{re}$ .
3: Obtain semantic patch features  $\mathbf{E} = f(x_i | \theta_f)[1 :]$ .
4: Obtain a set of  $K$  slots and the corresponding attentions  $\{\mathbf{S}, \mathbf{A}\}$ .
5: /* Reconstruction Loss */
6: Add position embedding for each patch:  $\mathbf{S}'_n = \mathbf{S} \oplus \mathbf{pos}_n$ .
7: Decode  $\mathbf{S}'$  and re-construct using  $\mathbf{A}$ :  $\tilde{\mathbf{E}} = \mathbf{A}^\top d(\mathbf{S}' | \theta_d)$ .
8:  $L_{re} = \|\mathbf{E} - \tilde{\mathbf{E}}\|_2$ .
9: /* Primitive Selection */
10: Obtain Mapped slots  $\tilde{\mathbf{S}} = \tanh(\text{Linear}(\text{LN}(\mathbf{S})))$ .
11: Obtain weights for each slot  $\mathbf{w}_p = \sigma(\tau_p \tilde{\mathbf{S}} \mathbf{K}^p)$ .
12: Obtain primitive  $s^p = \mathbf{w}_p^\top \tilde{\mathbf{S}}$ .
13: /* Contrastive Primitive Loss */
14: Obtain normalized similarity  $d_{i,j}^y$  and softmax primitive similarity  $d_{i,j}^s$  for image sample  $x_i, x_j$ .
15: Obtain primitive loss  $L_p$ .

```

1174

1175

G DETAIL CFST RESULTS

1176

1177

1178

1179

The statistical analysis of each compositional test suite for the 10-10 tasks CGQA benchmark is presented in Table 6. All accuracy metrics are reported with their corresponding $\pm 95\%$ confidence intervals to quantify statistical significance. The key metrics include:

1180

1181

1182

1183

1184

1185

1186

1187

- Hn: Harmonic mean of compositional testing metrics (systematicity **sys**, productivity **pro**, substitutivity **sub**);
- Hr: Harmonic mean of reference testing metrics (Non-novel **non**, Not compositional **noc**);
- Ha: Harmonic mean across all test types;
- R=Hn/Hr: Ratio measuring compositional generalization improvement.

The results consistently demonstrate superior performance in both R and Hn (except for DER \dagger), confirming CompSLOT's ability to enhance compositional generalization, particularly for system-

Table 6: Detail CFST results. We report the average with $\pm 95\%$ confidence interval.

Methods	sys	pro	sub	Hn
CPrompt	73.933 \pm 1.552	75.367 \pm 1.014	85.967\pm0.858	78.063 \pm 0.817
CPrompt †	75.133\pm1.835	78.133\pm0.971	84.600 \pm 0.514	79.091\pm1.086
ADAM + adapter	63.400 \pm 0.244	68.667 \pm 0.838	74.833 \pm 0.107	68.649 \pm 0.259
ADAM + adapter †	68.533\pm0.962	75.033\pm0.533	80.400\pm0.092	74.335\pm0.572
RanPAC	74.867 \pm 0.912	78.567 \pm 0.509	83.667\pm1.536	78.868 \pm 0.918
RanPAC †	75.833\pm1.764	80.600\pm0.800	83.433 \pm 1.783	79.815\pm0.829
EASE	74.900 \pm 0.423	80.567 \pm 0.629	84.233 \pm 0.282	79.713 \pm 0.449
EASE †	78.267\pm0.509	84.633\pm0.509	86.200\pm0.480	82.887\pm0.320
CoFiMA	83.100 \pm 1.135	86.767 \pm 0.267	90.600 \pm 0.606	86.711 \pm 0.483
CoFiMA †	84.467\pm0.324	88.967\pm0.373	91.767\pm0.141	88.297\pm0.278
FOSTER	86.900 \pm 0.514	91.400 \pm 0.489	91.233\pm0.971	89.791 \pm 0.086
FOSTER †	87.600\pm0.606	91.733\pm0.979	90.500 \pm 0.733	89.910\pm0.710
DER	87.700\pm0.160	91.733\pm0.838	91.033\pm0.828	90.119\pm0.510
DER †	86.567 \pm 0.509	90.300 \pm 0.666	90.200 \pm 0.320	88.986 \pm 0.129
MEMO	78.233 \pm 2.189	82.500 \pm 1.201	87.033 \pm 0.541	82.425 \pm 1.282
MEMO †	79.733\pm1.248	85.133\pm1.816	87.533\pm1.432	84.003\pm1.451
Methods	non	noc	Hr	R
CPrompt	76.400 \pm 0.973	86.033 \pm 0.437	80.926 \pm 0.360	0.964
CPrompt †	77.167\pm0.681	86.533\pm0.601	81.580\pm0.407	0.969
ADAM + adapter	66.167 \pm 0.930	82.867 \pm 0.615	73.580 \pm 0.809	0.932
ADAM + adapter †	71.267\pm0.417	84.967\pm0.192	77.516\pm0.323	0.958
RanPAC	75.267 \pm 1.063	80.033\pm0.833	77.574\pm0.813	1.016
RanPAC †	75.600\pm0.606	79.133 \pm 1.593	77.314 \pm 0.440	1.032
EASE	76.400 \pm 0.666	83.967 \pm 0.141	80.004 \pm 0.420	0.996
EASE †	79.900\pm0.185	85.867\pm0.541	82.775\pm0.255	1.001
CoFiMA	83.367 \pm 0.594	88.233 \pm 0.509	85.729 \pm 0.353	1.011
CoFiMA †	85.600\pm0.733	89.233\pm0.385	87.378\pm0.544	1.017
FOSTER	89.833\pm0.141	76.433\pm0.557	82.592\pm0.285	1.087
FOSTER †	89.700 \pm 1.543	68.767 \pm 2.199	77.847 \pm 1.992	1.154
DER	89.967\pm0.373	77.800\pm1.619	83.433\pm0.837	1.080
DER †	88.600 \pm 0.370	74.867 \pm 1.536	81.151 \pm 0.976	1.096
MEMO	80.533 \pm 1.802	79.600\pm0.489	80.053\pm0.790	1.029
MEMO †	82.433\pm2.214	77.700 \pm 2.080	79.985 \pm 1.847	1.050

aticity and productivity properties. This aligns with our hypothesis that the slot plugin improves compositional reasoning capabilities. However, as previously reported in Liao et al. (2024) for ViT-based architectures, we observe no significant improvement in substitutivity, suggesting inherent limitations of ViT feature extractors in dealing with attribute shifting (e.g., color).

Table 7: Varing β results on CPrompt 10-10 CGQA (the first three tasks).

β	0	0.1	0.5	1	2	5	10	50
AA (%) \uparrow	68.33	68.43	69.67	70.17	70.87	70.40	70.13	69.00

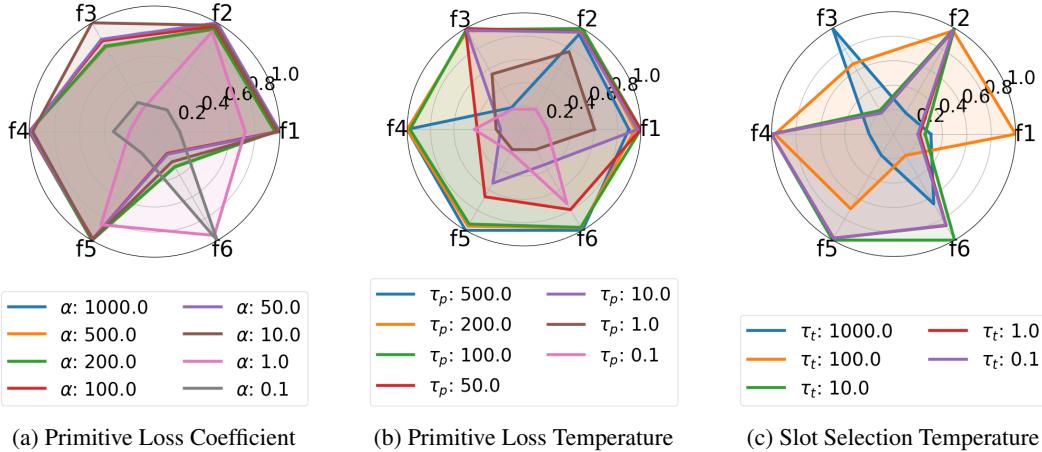


Figure 5: Radars of different hyperparameters in slot representation learning.

H INFLUENCES OF HYPERPARAMETERS

In this section, we investigate the effect of the introduced hyperparameters in the slot module w.r.t. the slot extraction performance and in the primitive-logit alignment loss. Without loss of generality, we report the model performance after training on the second task of 10-10 tasks CGQA in this section.

Metrics We learn slot representation S , attention mask A , and primitive representation s^t as intermediate products of the forwarding process. Thus, it is necessary to design quantitative metrics to represent the performance of the learned slot as follows:

- **Primitive-label matching score:** $\mathbf{f1} = -\text{MAE}(d^s, d^y)$, where d^s and d^y are described in Equation 3.
- **Primitive-concept matching score:** $\mathbf{f2} = -\text{MAE}(d^s, d^c)$, where d^c is similar with d^y but the one-hot label is replaced with the multi-hot concept label. Note that the concept label is only used to analyze the performance of the learned slots and is never seen during training.
- **Task-wise matched attention mask mIoU:** $\mathbf{f3} = \text{Mean}_t \{ \text{IoU}(\mathcal{A}_{t-1}^{\circ}, \mathcal{A}_t^{\circ}) \}$, where $\text{IoU}(\cdot, \cdot)$ is the intersection over union metric and $\mathcal{A}_{t-1}^{\circ}, \mathcal{A}_t^{\circ}$ are matched attention sets (by Hungarian algorithm) extracted from the same image by the learners trained after task $t-1$ and t , respectively.
- **Task-wise weighted attention mask mIoU:** $\mathbf{f4} = \text{Mean}_t \{ \text{IoU}(w_{p,t-1} \top A_{t-1}, w_{p,t}^{\top} A_t) \}$.
- **Task-wise matched slot matching score:** $\mathbf{f5} = -\text{MAE}(\mathcal{S}_{t-1}^{\circ}, \mathcal{S}_t^{\circ})$.
- **Task-wise primitive matching score:** $\mathbf{f6} = -\text{Mean}_x \{ \text{MAE}(s_x^{t-1}, s_x^t) \}$.

For clarity, the matching scores are normalized to $[0, 1]$ to align with the range of mIoU. A large value of any metric above indicates a better performance according to the corresponding assessment.

Slot representation learning First, fixing $\tau_p = 100, \tau_t = 100$, we vary the coefficient α as shown in Figure 5a. While smaller α values (e.g., 0.1) achieve marginally better f6 scores (indicating greater primitive stability across tasks), they significantly degrade other critical metrics, particularly f1 and f2. This trade-off suggests that excessively stable primitives may fail to adequately capture diverse label semantics necessary for effective primitive-logit alignment.

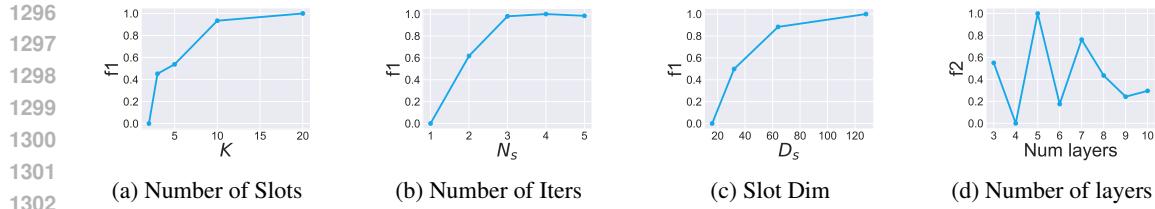


Figure 6: Line charts of different hyperparameters in slot attention architecture.

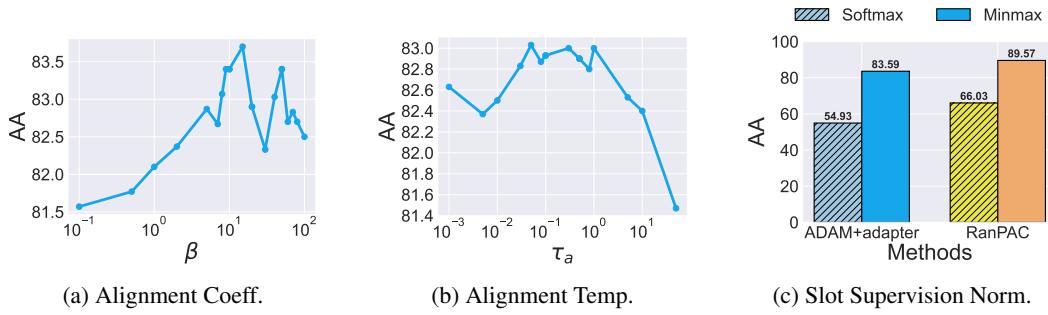


Figure 7: Line charts of different hyperparameters in primitive-logit knowledge distillation.

Next, we examine the temperature parameter τ_p by fixing $\alpha = 10, \tau_t = 100$ (Figure 5b). The radar chart demonstrates that $\tau_p = 100$ provides optimal balance across all metrics, confirming our hypothesis that moderate temperature settings enable better concept generalization while preventing over-regularization.

Finally, we analyze the task temperature τ_t with fixed $\alpha = 10, \tau_p = 100$ (Figure 5c). While no single τ_t value dominates across all metrics, we observe that $\tau_t = 100$ achieves the highest f1 score. Section K provides w_p visualizations showing that larger τ_t values produce sharper slot selection distributions for primitive construction, which benefits concept representation but may reduce flexibility in extreme cases.

Slot attention architecture Figure 6a examines the impact of increasing the number of slots (K). While higher K values initially improve slot performance by enabling representation of more concepts, we observe diminishing returns beyond $K = 10$. This saturation occurs due to two factors: (1) the limited number of visually discriminable concepts per image, and (2) the finite capacity of the slot attention mechanism. Redundant slots tend to converge to similar representations, creating a performance plateau. Our slot mask visualizations in section K confirm this phenomenon, showing that excessive slots merely replicate existing patterns rather than capturing novel information.

Figure 6b investigates the effect of refinement iterations (N_s) in the slot attention module. While increasing N_s enhances slot discriminability by promoting greater inter-slot differences, we find that three iterations ($N_s = 3$) achieve optimal performance. Further increases do not meaningfully improve results, suggesting that three iterations strike an effective balance between refinement and computational efficiency.

Figure 6c explores the relationship between slot dimensionality (capability) and performance. We observe that larger slot dimensions consistently improve f1 scores, indicating better concept representation. However, this comes at the cost of increased computational overhead, necessitating careful trade-off considerations for practical applications.

Finally, Figure 6d examines the impact of decoder architecture by varying MLP layer depth. Contrary to expectations, deeper decoders fail to improve extraction performance, suggesting that the current decoder architecture has sufficient capacity for the task.

1350 **Primitive-Logit knowledge distillation** We apply our learned slot attention mechanism to compute
 1351 concept-based sample-wise similarities on RanPAC, systematically evaluating key hyperparameters
 1352 in our primitive-logit knowledge distillation framework.

1353 Figure 7a demonstrates that increasing the coefficient β for L_a consistently improves CL accuracy
 1354 (AA). This indicates that stronger self-supervision from concept-based similarity effectively enhances
 1355 the model’s ability to preserve task-specific knowledge while adapting to new tasks.

1356 Figure 7b highlights the critical importance of properly tuning the temperature parameter τ_a . We
 1357 observe a performance plateau when τ_a is within an optimal range (approximately [0.1, 1.0]). Values
 1358 beyond this range exhibit clear trade-offs. This is because (1) Large $\tau_a (> 1.0)$ causes excessive
 1359 emphasis on sample-wise differences, undermining concept sharing; (2) Small $\tau_a (< 0.1)$ produces
 1360 overly smooth logit similarities, degrading classification performance.

1361 Regarding normalization strategies on primitives (Equation 5 min-max vs Equation 3 softmax),
 1362 Figure 7c shows that min-max normalization outperforms softmax normalization. This advantage
 1363 stems from min-max normalization’s ability to provide sharper supervision through its linear scaling
 1364 properties, and maintain better sensitivity to subtle concept differences between samples.

1366 I RESULTS ON OTHER BENCHMARKS

1367 **COBJ** The results in Table 8 clearly demonstrate that incorporating CompSLOT into CL methods
 1368 with FMs leads to significant performance improvements across various metrics. Specifically,
 1369 CompSLOT enhances compositional generalization ability, as evidenced by higher Hn and improved
 1370 R (most significant gain of Hn for ADAM + adapter from 57.793 to 61.581), which in turn drives better
 1371 overall CL performance (AA for ADAM + adapter improves from 45.75 to 50.15). CompSLOT’s
 1372 ability to strengthen compositional generalization appears to be the key factor behind these gains,
 1373 enabling the model to better handle complex concepts and retain knowledge more effectively across
 1374 tasks.

1375 **ImageNet-R** It can be seen that CompSLOT can generally improve the performance of CL methods
 1376 with FMs in Table 9. The improvement is likely due to the observation that the learned slot attention
 1377 can discover hidden concept sharing between images, as evidenced by the visualization analysis
 1378 in section K. Rehearsal methods (e.g., FOSTER* and MEMO*) achieve better performance in
 1379 terms of AA and CA, comparing with rehearsal-free methods. This is because rehearsal methods
 1380 can access old samples, thus, CompSLOT’s primitive-logit alignment loss can provide more pair-
 1381 wise contrastive self-supervision on concept sharing, which enhances the model’s compositional
 1382 generalization performance.

1386 J RESULTS ON OTHER BACKBONES

1387 This section is to answer: **Do better vision foundation models contribute to better concept
 1388 learning and continual learning performance?** We investigate the effect of model scaling via
 1389 increasing the size and depth of the ViT architecture (e.g., ViT-L16 vs ViT-B16), and the effect of
 1390 pretraining strategy via leveraging greater pretraining objectives, such as DINO (Oquab et al., 2024)
 1391 (e.g., ViT-B16-DINO) and SAM (Kirillov et al., 2023) (e.g., ViT-B16-SAM), which have been shown
 1392 to enhance semantic understanding, especially on segmentation and concept-rich tasks. We conduct
 1393 experiments along the two key dimensions above and report the results in Table 10. The results show
 1394 that ViT-L16 with larger model sizes demonstrates stronger representation modeling capabilities
 1395 compared to ViT-B16, thus further boosting the significance of our CompSLOT. ViT-B16-DINO and
 1396 ViT-B16-SAM with greater pre-training objectives exhibit better compositionality in decomposing
 1397 concepts and continual learning performance, as reflected by higher Hn values.

1399 K VISUALIZATION

1400 This section investigates how the CompSLOT framework enhances continual learning performance
 1401 by first demonstrating through slot attention mask visualizations across various benchmarks that
 1402 CompSLOT successfully identifies important concepts (primitives) in an unsupervised manner, and

Table 8: Main result on 10-10 tasks COBJ. We report the average accuracy after training the last task (AA), the cumulative average accuracy for each task (CA), and the final forgetting (FF). For CFST, we report the Harmonic mean of compositional testing (Hn) and the ratio of Hn and reference testing (R). Methods with CompSLOT are denoted with a postfix “ \dagger ”. Methods rehearse old samples are denoted with a postfix “*”. We report results over 3 trials with (mean \pm 95% confidence interval).

Methods	Continual			CFST	
	AA (%) \uparrow	CA (%) \uparrow	FF (%) \downarrow	Hn (%) \uparrow	R \uparrow
CPrompt	42.015 \pm 0.118	51.172 \pm 9.718	22.575 \pm 6.479	58.961 \pm 0.409	0.878
CPrompt \dagger	45.520\pm0.421	52.565\pm0.931	19.575\pm1.029	59.880\pm2.032	0.880
ADAM + adapter	45.750 \pm 0.346	52.800 \pm 6.121	12.175 \pm 1.836	57.793 \pm 1.388	0.914
ADAM + adapter \dagger	50.150\pm0.249	57.767\pm5.461	11.050\pm1.802	61.581\pm1.399	0.938
RanPAC	59.285 \pm 2.377	66.203 \pm 4.186	7.450\pm0.624	60.909 \pm 3.240	0.882
RanPAC \dagger	61.950\pm0.527	67.367\pm4.075	7.875 \pm 0.104	62.317\pm2.447	0.889
CoFiMA	57.330 \pm 0.139	64.252\pm5.763	17.375 \pm 0.035	66.998\pm2.112	0.890
CoFiMA \dagger	57.435\pm0.101	63.462 \pm 0.599	16.650\pm0.207	66.232 \pm 2.497	0.898
FOSTER*	47.800 \pm 0.542	53.741 \pm 0.290	10.575\pm0.759	62.750 \pm 0.337	0.852
FOSTER* \dagger	50.980\pm0.225	59.735\pm0.556	14.525 \pm 0.240	63.695\pm0.312	0.908
DER*	55.815 \pm 0.714	64.905 \pm 3.342	23.650\pm2.425	68.558 \pm 0.189	0.844
DER* \dagger	56.813\pm1.808	66.393\pm3.904	25.800 \pm 4.534	68.586\pm0.441	0.872

Table 9: Main result on 20-20 tasks ImageNet-R. We report the average accuracy after training the last task (AA), the cumulative average accuracy for each task (CA), and the final forgetting (FF). Methods with CompSLOT are denoted with a postfix “ \dagger ”. Methods rehearse old samples are denoted with a postfix “*”. The data for methods with citations is reported from the original paper. We report results over 3 trials with (mean \pm 95% confidence interval).

Methods	AA (%) \uparrow	CA (%) \uparrow	FF (%) \downarrow
CPrompt (Gao et al., 2024)	74.790 \pm 0.280	81.460\pm0.930	7.340 \pm 0.650
CPrompt \dagger	75.225\pm0.270	79.964 \pm 1.078	6.989\pm1.126
RanPAC	78.375 \pm 0.062	82.519 \pm 0.839	4.856\pm0.367
RanPAC \dagger	78.550\pm0.346	82.900\pm0.747	5.294 \pm 0.039
CoFiMA	80.025 \pm 0.146	83.927 \pm 1.421	7.614 \pm 0.142
CoFiMA \dagger	80.250\pm0.016	84.118\pm1.017	7.022\pm0.005
FOSTER*	76.001 \pm 0.243	80.974 \pm 1.083	2.259\pm0.526
FOSTER* \dagger	78.950\pm0.201	82.392\pm1.308	2.608 \pm 0.720
MEMO*	64.200 \pm 1.109	72.118 \pm 0.074	4.967\pm0.074
MEMO* \dagger	65.200\pm0.249	72.995\pm1.251	5.344 \pm 0.256

then by presenting similarity matrix visualizations of ground truth concepts/primitives/features/logits for specific algorithms to illustrate the regularization effects that improve model compositional generalization and stability during continual learning. We attribute this robustness to “concept rehearsal”: although class labels change, many visual concepts are shared and recur across tasks, helping stabilize the primitive selection weights. This is also discussed in Lai et al. (2024).

Concept learning We evaluate CompSLOT on CGQA, COBJ, ImageNet-R, and CIFAR100 benchmarks by randomly selecting three representative images from each class. The extracted slot masks are visualized in Figures 8, 9, 10, and 11, respectively.

On CGQA, the weighted slot masks (using weights w_p) effectively localize class-relevant concepts in each image. For instance, in the *Door Plate* class, slot 7 consistently captures the *Plate* concept

1458 Table 10: Varying backbone on 10-10 tasks CGQA. We report the average accuracy after training the
 1459 last task (AA), the cumulative average accuracy for each task (CA), and the final forgetting (FF). The
 1460 candidate CL algorithm is RanPAC. Methods with CompSLOT are denoted with a postfix “†”

1461

Backbone	AA (%) \uparrow	CA (%) \uparrow	FF (%) \downarrow	Hn \uparrow
ViT-B16	65.81	75.50	10.51	78.86
ViT-B16 †	66.75	76.58	10.21	79.81
ViT-B16-DINO †	66.58	76.62	10.24	80.39
ViT-B16-SAM †	67.30	77.76	9.67	81.22
ViT-L16 †	67.11	77.54	9.85	80.82

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

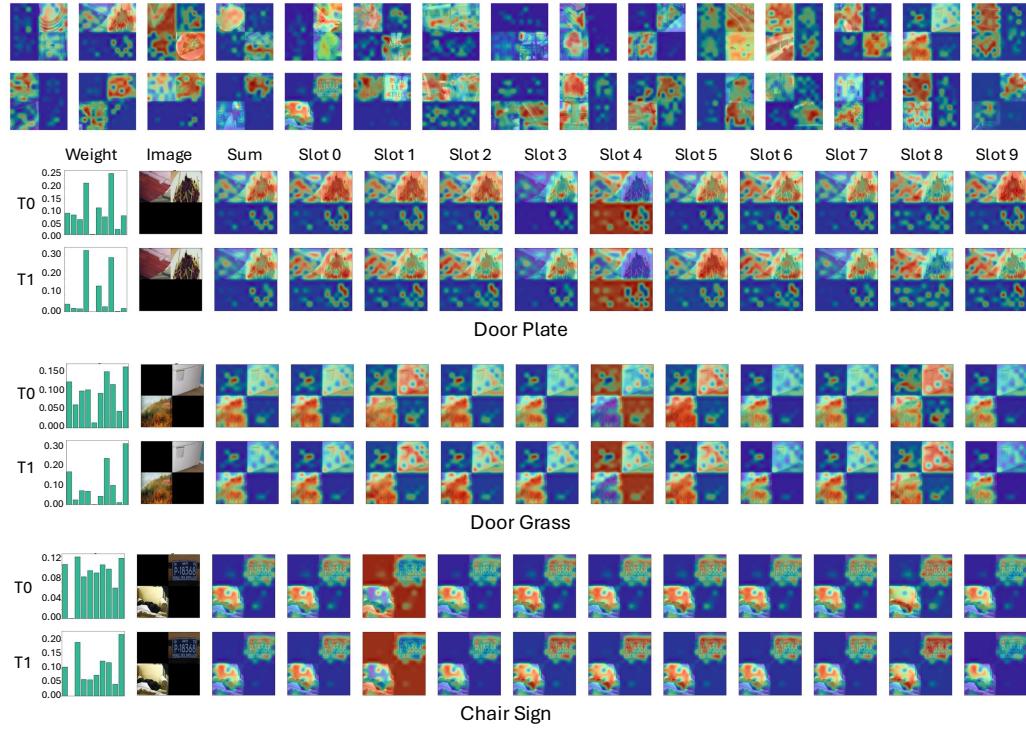
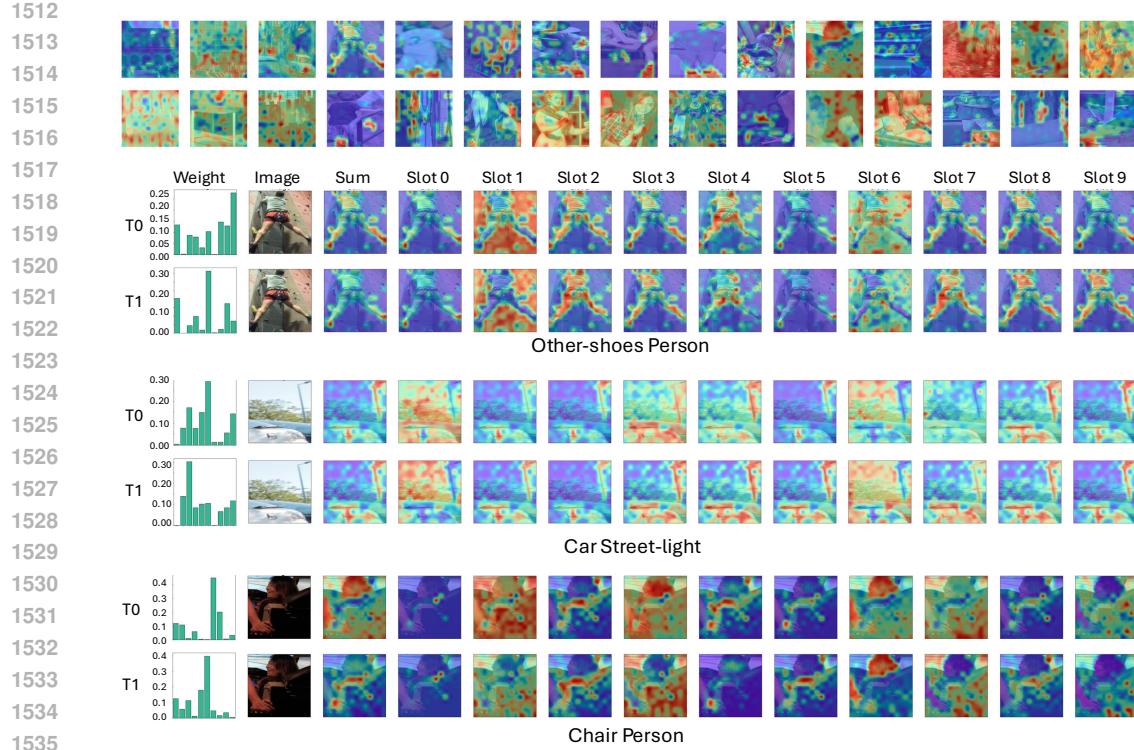
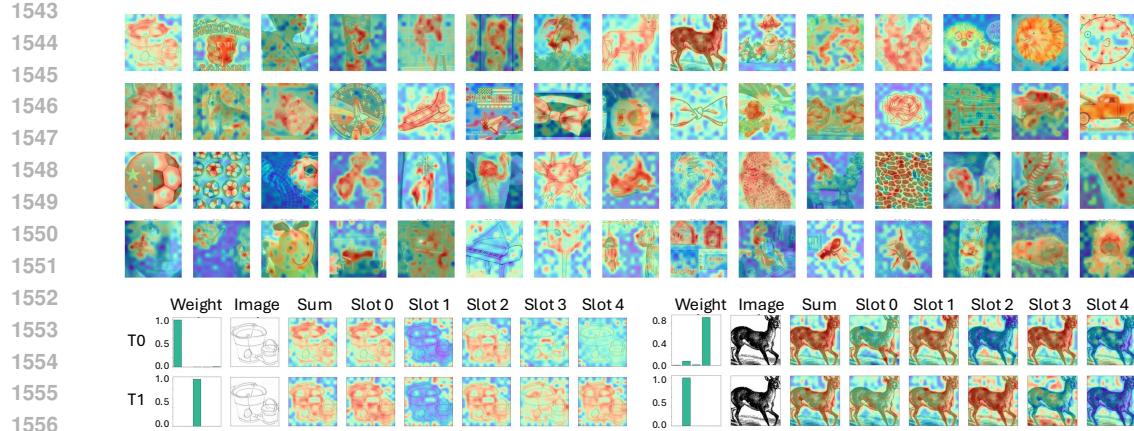


Figure 8: Visualization of learned slots on 30 randomly sampled images (3 images for each class in the first task of the 10-10 tasks) on CGQA. **Top row:** Primitives (weighted-sum of slot masks weighted by w_p) for 30 images. **Bottom 3 rows:** Three examples of images from classes (Door Plate), (Door Grass), and (Chair Sign) after being trained on the first task (T0) and on the second task (T1). **From left to right:** w_p , origin image, primitive (weighted-sum of slot masks), and 10 slot masks, respectively. **Takeaway:** CompSLOT successfully extracts primitives without any concept label.

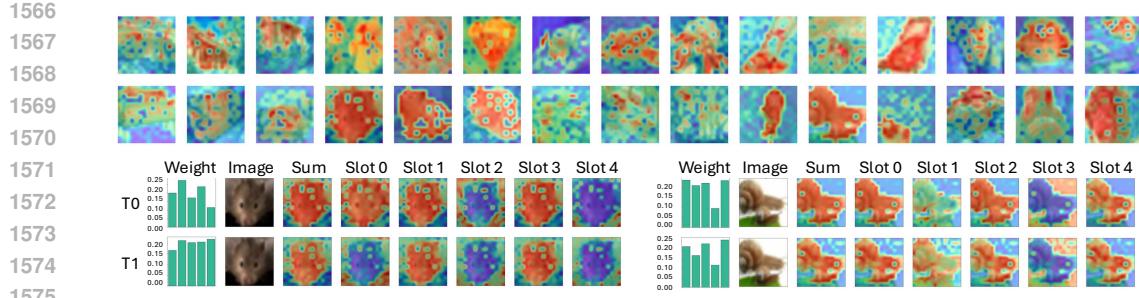
while slot 8 focuses on the *Door*, demonstrating precise concept disentanglement. Notably, the learned primitives maintain visual consistency across tasks, that the primitive representation after task T0 closely resembles that after T1, confirming the stability of CompSLOT. This phenomenon was similarly observed in Figure 2.

The more challenging COBJ benchmark presents similar results. For an image in the *Other-shoes Person* class, slot 5 accurately identifies the *Other-shoes* concept while slot 7 correctly localizes the *Person*, even in this complex compositional setting.

When examining ImageNet-R and CIFAR100 with $K = 5$ slots, we observe that the primary concept corresponding to each class label is reliably identified, and the representations maintain discriminative power while preserving semantic consistency. However, the concept sharing is visually rare between classes, as demonstrated by the distinct slot activation patterns for different classes.



Primitive-logit alignment We conduct in-depth visualization analysis to understand the performance improvement of CompSLOT on COBJ, using ADAM + adapter as a representative example.



1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Figure 11: Visualization of learned slots on 30 randomly sampled images (3 images for each class in the first task of the 10-10 tasks) on CIFAR100. **Top row:** Primitives (weighted-sum of slot masks weighted by w_p) for 30 images. **Bottom row:** Two examples of images after being trained on the first task (T0) and on the second task (T1). **From left to right:** w_p , origin image, primitive (weighted-sum of slot masks), and 5 slot masks, respectively. **Takeaway:** CompSLOT successfully extracts primitives without any concept label, and the concept sharing is rare between classes.

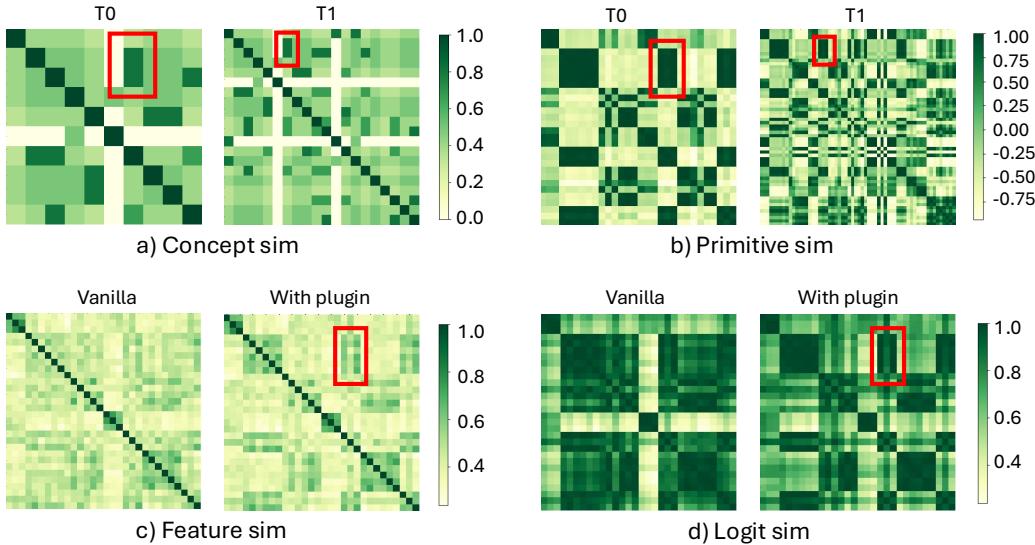


Figure 12: Visualization of a) concept; b) primitive; c) feature; d) logit cosine similarity matrices on sampled images (three images for each class in the first task T0 and second task T1 of the 10-10 tasks) on COBJ. a) **Left:** Multi-hot concept cosine similarity matrix of 30 images for T0; **right:** Multi-hot concept cosine similarity of 60 images (from the first-2 tasks T0 and T1). b) The primitive cosine similarity of the corresponding images. We use the learned pair-wise primitive similarity to mimic the statistics of the pair-wise concept similarity and regularize logits. c) **Left:** The learned feature cosine similarity matrix of 30 images in T0 for ADAM + adapter; **right:** The learned feature cosine similarity matrix of 30 images in T0 for ADAM + adapter \dagger . d) The logit cosine similarity of the corresponding images as in c). **Takeaway:** The learned primitive successfully mimics concept statistics without concept supervision, and our L_a successfully distills pair-wise primitive similarity into logits and affects the feature representations (as demonstrated with the regions marked with red box), while ADAM + adapter does not capture this concept sharing statistic.

We visualize 30 images for T0 and 60 images for T1 (10 old classes and 10 new classes). Figure 12 presents the cosine similarity matrix visualizations including: (a) Ground truth multi-hot concepts; (b) Extracted primitives; (c) Feature representations; (d) Final logits. The red boxes highlight two pairs of classes with concept sharing: (*Other-shoes Person*) and (*Other-shoes Person Sneaker*), as well as (*Person Sneaker*) and (*Other-shoes Person Sneaker*). CompSLOT successfully captures these shared concepts in the primitive representations (Figure 12b) and effectively distills them into the

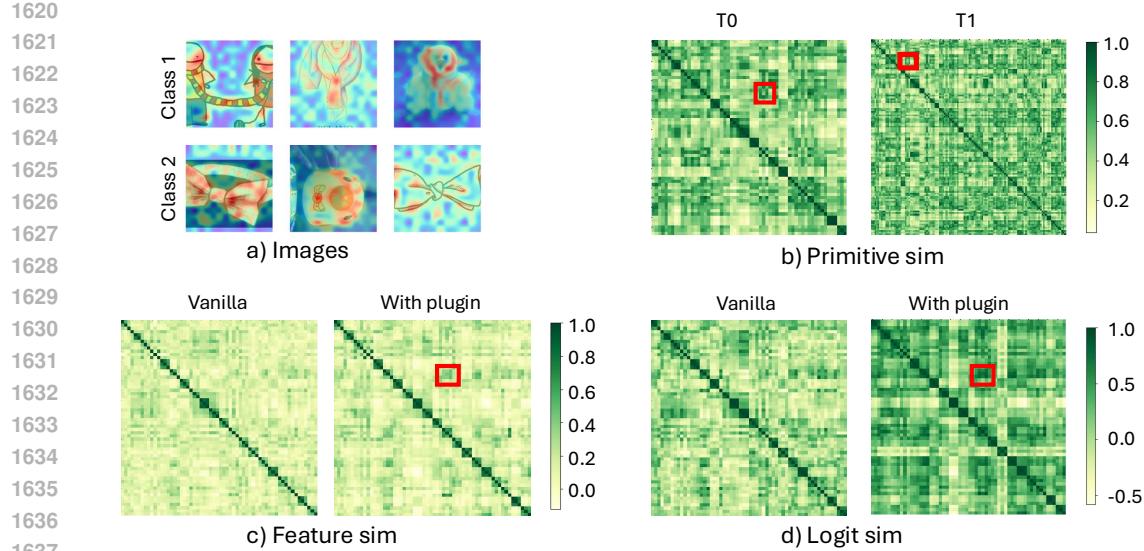


Figure 13: Visualization of a) images related to red box; b) primitive; c) feature; d) logit cosine similarity matrices on sampled images (three images for each class in the first task T0 and second task T1 of the 20-20 tasks) on ImageNet-R. a) Six images from two classes in T0 which corresponding to the red box. b) The primitive cosine similarity of the corresponding images. c) **Left:** The learned feature cosine similarity matrix of 60 images in T0 for FOSTER; **right:** The learned feature cosine similarity matrix of 60 images in T0 for FOSTER \dagger . d) The logit cosine similarity of the corresponding images as in c). **Takeaway:** The learned primitives show that CompSLOT discovers hidden relationships based on concept as demonstrated with the regions marked with red box, while FOSTER does not capture this concept sharing statistic.

final logits (Figure 12d). Notably, this alignment process also induces regularization at the feature level, as evidenced by the more coherent feature representations shown in Figure 12c.

We further validate CompSLOT on ImageNet-R, a standard CL benchmark without ground truth concept labels. Figure 13 shows the case performing CompSLOT on FOSTER. Our slot attention mechanism identifies shared concepts across six images (highlighted in red boxes), particularly revealing a consistent “Fabric” concept (Figure 13a). This automatic discovery of hidden relationships demonstrates CompSLOT’s ability to generalize concept learning across different benchmarks.

The consistent performance improvements reported in Sections 5 and I validate that CompSLOT effectively captures meaningful semantic relationships, leading to better generalization and compositional learning capabilities.

L ADDITIONAL ABLATION STUDIES

To clearly substantiate the contribution of slot attention in combination with primitive selection, we conduct an ablation study where we remove knowledge distillation and instead directly use the learned primitive representations with a cosine similarity classifier for continual tasks, as in SimpleCIL (Zhou et al., 2025). We also integrate this strategy into RanPAC and the results are shown in Table 11. This naive approach suffers from severe forgetting, confirming that primitive representations are insufficient for long-term retention when learning new tasks. In contrast, our alignment loss distills pair-wise relational information (i.e., a compact, low-dimensional encoding of concept combinations) rather than high-dimensional raw representations. This enables methods equipped with CompSLOT to maintain stable performance while accumulating higher accuracies over time, demonstrating the efficacy of CompSLOT in mitigating catastrophic forgetting.

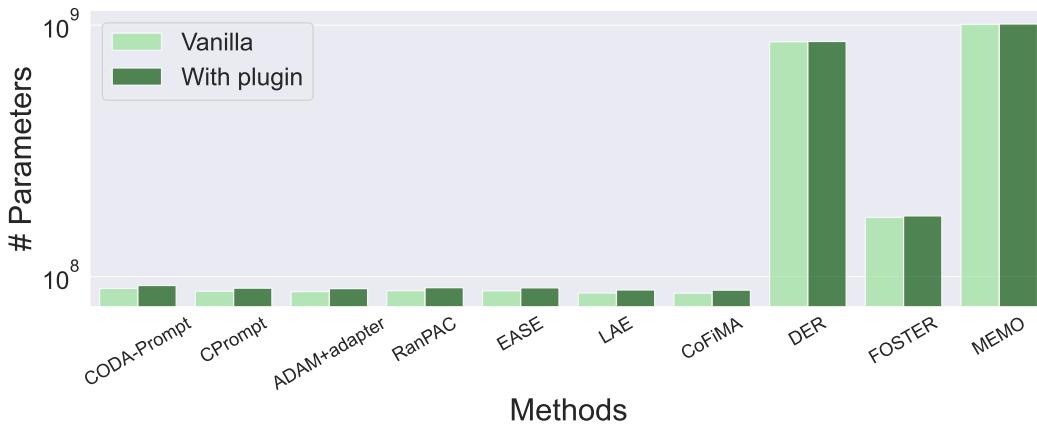
M CASE STUDIES: THE EFFECT OF COMPSLOT ON FINETUNING

Table 11: Additional ablation results on CGQA.

Methods	L_p	L_a	AA (%) \uparrow	FF (%) \downarrow
SimpleCIL	\times	\times	36.16	13.9
SimpleCIL	\checkmark	\times	24.71	22.93
RanPAC	\times	\times	65.81	10.51
RanPAC	\checkmark	\times	41.59	11.87

Table 12: Results on Finetuning on 10-10 CGQA. We report the average with \pm 95% confidence interval.

Methods	AA (%) \uparrow	CA (%) \uparrow	FF (%) \downarrow
Finetuning	29.91 ± 0.84	49.04 ± 0.39	58.36 ± 1.02
Finetuning \dagger	33.48 ± 0.04	52.43 ± 0.65	50.01 ± 2.13

Figure 14: Visualization of the parameter numbers for methods with and without the slot module. Note that the data are collected according to the default implementation in the PILOT (Sun et al., 2025) platform and after the training of the last 10-way CGQA continual task. **Takeaway:** CompSLOT requires a ViT backbone that is already in any model-based continual learner with a foundation model, thus, it is light-weight and free to be applied.

In this section, we answer that question: **Does CompSLOT itself benefit continual learners without associating with other continual learning algorithms?** We perform CompSLOT on a naive continual learner **finetuning**, which uses a frozen feature extractor backbone (ViT-B/16) and a extendable classifier. The results are shown in Table 12. We observe that CompSLOT successfully achieves higher AA with smaller FF. This observation indicates that CompSLOT itself, as a plug-in, benefits the continual learner without the need to combine other mechanisms.

N ALGORITHM EFFICIENCY ANALYSIS

Parameter overhead We evaluate the parameter overhead introduced by our slot attention module. As this module requires a pretrained ViT as its semantic feature extractor, which is a standard component in all continual learning of foundation models frameworks, the additional trainable parameters are negligible compared to the total model size, as illustrated in Figure 14. This makes our CompSLOT computationally efficient while delivering significant performance benefits.

Computation overhead In Table 13, we study the computational overhead introduced by the slot attention mechanism and primitive extraction. As an example, we choose FOSTER as a representative

1728
1729
1730
1731
1732
1733
1734
1735 Table 13: Computational overhead (h) on CGQA.
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749

Slot module	FOSTER	FOSTER \dagger
5.5	9.1	10.1

1735 baseline, since it achieves nearly top performance among others. We compare three cases: 1)
1736 Continual training of just our slot module plugin, including both slot attention and primitive selection
1737 components, without applying it to other continual learning algorithms; 2) Full continual training of
1738 FOSTER; 3) Full continual learning of FOSTER with a pretrained slot module plugin (FOSTER \dagger).
1739 We highlight that the slot module can be learned offline as a reusable component which only associated
1740 with the benchmark and is independent of algorithms. Once trained, it serves as a pretrained plugin
1741 that can be directly loaded for any continual learning algorithm with minimal additional overhead.
1742 It only requires adding alignment loss L_a for logit regularization and spending an additional 10%
1743 of total training time for FOSTER from 9.1h to 10.1h. This design is particularly beneficial when
1744 running multiple continual learning algorithms on the same data distribution.

1745 Importantly, we conduct an ablation study (Section 5), where we deliberately increase the parameter
1746 count of baseline CL methods to match our CompSLOT-enhanced models. The results demonstrate
1747 that the performance gains stem not from increased capacity, but from CompSLOT’s improved com-
1748 positional generalization capabilities. This confirms that CompSLOT provides genuine algorithmic
1749 advantages rather than simply benefiting from more parameters.

1750
1751

O USE OF LARGE LANGUAGE MODELS

1752 In the process of preparing this paper, we employed LLMs to polish the writing of the paper. The
1753 assistance provided by LLMs was mainly focused on improving the clarity, coherence, and overall
1754 quality of the language used in the manuscript. We input sections of the paper into the LLM and
1755 requested it to suggest rephrasings, correct grammar and spelling errors, and enhance the readability of
1756 the text. It is important to note that LLMs did not play a significant role in the research ideation. The
1757 core ideas, research questions, experimental designs, and methodological choices were independently
1758 conceived and developed by the human authors. The LLM was not involved in formulating the
1759 hypotheses, determining the research direction, or making decisions regarding the data collection and
1760 analysis methods.

1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781