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ABSTRACT

Vision learners often struggle with catastrophic forgetting due to their reliance on
class recognition by comparison, rather than understanding classes as compositions
of representative concepts. This limitation is prevalent even in state-of-the-art
continual learners with foundation models and worsens when current tasks con-
tain few classes. Inspired by the recent success of concept-level understanding
in mitigating forgetting, we design a universal framework CompSLOT to guide
concept learning across diverse continual learners. Leveraging the progress of
object-centric learning in parsing semantically meaningful slots from images, we
tackle the challenge of learning slot extraction from ImageNet-pretrained vision
transformers by analyzing meaningful concept properties. We further introduce a
primitive selection and aggregation mechanism to harness concept-level image un-
derstanding. Additionally, we propose a method-agnostic self-supervision approach
to distill sample-wise concept-based similarity information into the classifier, re-
ducing reliance on incorrect or partial concepts for classification. Experiments
show CompSLOT significantly enhances various continual learners and provides a
universal concept-level module for the community.

1 INTRODUCTION

Artificial intelligence systems mimic the learning behavior of human intelligence by collecting infor-
mation and managing knowledge pools from continually assigned tasks in the open world. This need
to handle non-independent and identically distributed training data has driven research in continual
learning (CL) (Zhou et al., [2024c:a; Biesialska et al., |2020), which aims to balance the objectives
of overcoming catastrophic forgetting (McCloskey & Cohen, [1989) of learned tasks and achiev-
ing efficient adaptation to future tasks, also known as the stability-plasticity dilemma (Grossberg,
2012). Leveraging a powerful pre-trained backbone to ensure a basic understanding of the world,
CL methods of foundation models (FMs), including prompt-based methods (Gao et al.l 2023; Smith
et al., 2023 |Wang et al., 2022clb; 2024} |Gao et al.,[2024), representation-based methods (Zhou et al.,
20255 [2024b; McDonnell et al., 2023; Zhang et al.,|2023)), and model-mixture-based methods (Gao
et al.| |2023; [Wang et al.| [2024; Marouf et al.| 2024), have emerged as a popular direction in this
field. However, FMs need to be updated when encountering out-of-distribution data in the upcoming
tasks (Yang et al.| [2025)).

The human brain exhibits compositionality (Hupkes et al.,|2020; [Liao et al.,2024) when comprehend-
ing the world, decomposing seen concrete objects into abstract concepts. For example, a Chihuahua
consists of general dog concepts such as body shapes and chihuahua-specific concepts like small size
and head shapes. This interpretability is intuitive to humans, enabling them to generalize novel dog
species by decomposing them into combinations of existing concepts while learning disentangled new
concepts to refine the knowledge base, thus, facilitating efficient reuse (Liao et al.,[2024). A common
strategy for existing CL methods for FMs to alleviate forgetting is to inherit parameters learned from
old tasks when initializing new tasks’ models, as done in Wang et al.|(2024); Gao et al.| (2024). These
state-of-the-art (SOTA) approaches generally do not fully exploit cross-task potential correlations (i.e.,
common concepts shared across tasks). In contrast, learning low-dimensional concept combinations
to understand classes does not require establishing class representations from the high-dimensional
feature level, as in traditional methods, thereby mitigating catastrophic forgetting and enabling rapid
adaptation to novel classes (Liao et al.,[2024; Yu et al., 2025} |Yang et al.,|2024; |Kundargi et al., 2025},
Lai et al.| [2024). Thus, a set of CL methods leverages interpretable tools, e.g., ChatGPT (Brown et al.,
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Figure 1: Proposed CompSLOT framework. Given an image batch, we extract primitives for each
image with a concept learning procedure. Then, we distill the sample-wise similarity from the
primitive representations of the image batch into logits. Takeaway: This conceptual pair-wise
similarity enables the model to make decisions by additionally considering low-dimensional concept
combinations, rather than relying solely on high-dimensional features.

2020), prototypes (Rymarczyk et al.l 2023 |Ahrens et al.,[2023)), and concept bottleneck models (Yu
et al.,|2025; [Yang et al., 2024} |Lai et al., |2024)) to bring attention to concepts within images, which
achieves great success on boosting CL performance. Another challenge is that canonical benchmarks,
such as Split-CIFAR100 (Krizhevsky et al.,|2009) and Split-ImageNet-R (Hendrycks et al.,2021)), are
not specifically designed to evaluate the compositionality of continual models. The CFST evaluation
framework (Liao et al.||2024) (including CGQA and COBJ) is the only work, to our knowledge, that
systematically studies the compositionality of a continual learner. CFST introduces two component-
relevant phases in which the data share a common concept set with different combinations. In the first
phase, the dataset is split into several continual tasks, aiming to train a continual learner. Subsequently,
the second phase is used to evaluate the learner’s compositional generalization performance on unseen
concept combinations.

Motivated by the above analysis, we pose the research question: Can the compositionality in concept
learning truly enhance the CL performances of SOTA continual learners with FMs? We propose
a Compositional Slot plug-in (CompSLOT) for continual learning to answer the above question,
which is illustrated in Figure[I] The first step involves extracting concepts from raw images, namely,
conducting concept learning. Several studies have shown significant progress in concept learning
by utilizing explicit concept-level supervision obtained from segmentation masks (Kirillov et al.,
2023; Ravi et al., [2025)) or natural language annotations (Ramesh et al., 2021} [Yu et al 2025).
Nevertheless, it is crucial to compare with SOTA CL methods of FMs, where only labels from the
current CL tasks are available as supervision. Consequently, Slot Attention (Locatello et al.|[2020), as
an SOTA unsupervised object-centric learning approach (Greft et al.l 2020), has effectively emerged
as a viable self-supervised solution. A Slot Attention module learns to group and encode spatial
features into a set of low-dimensional distinct slots, with each slot representing a disentangled region
and binding to an object (i.e., concept) in the image. To avoid additional learning of the encoder
, the input to Slot Attention can be specified as semantic patch features provided by a pre-trained
vision transformer (ViT), which also serves as the learner’s backbone. We present a preliminary
experiment demonstrating that the learned Slot Attention module exhibits almost no forgetting across
compositional tasks, as shown in Figure 2]

With the above method to extract the hidden concepts in images, the next step is to introduce concept
learning into CL methods with FMs. The challenge is that there is no unified forwarding framework
to organize all CL methods with FMs so that we can easily perform concept learning and assist vanilla
learning processes of feature extractors. Hence, we propose regularizing the outputs of learners with
sample-wise similarity based on concepts. This makes our approach a method-agnostic plugin for
any CL method with FM. We first use a learnable aggregation mechanism based on attention to extract
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class-relevant concepts (i.e., primitives (Zou et al.,2024))) as the weighted sum of slots based on their
similarity to a learnable task key. The distance of primitives between two images carries information
about the similarity in concept level. For example, a Chihuahua is close to other dog species (e.g.,
German Shepherd) rather than cat species (e.g., Siamese) because they share considerably more
concepts (e.g., dog body). Subsequently, we propose a method-agnostic primitive-logit alignment
plugin to distill the learned sample-wise concept-level similarity into the outputs of models based
on a contrastive loss. Our experiments demonstrate that the above procedures successfully select
meaningful concepts in images as primitives and ultimately achieve a superior continual learning
performance attributed to a better compositional generalization performance.

The contributions of this work are summarized as follows:

* We proposed CompSLOT, a method-agnostic plug-in comprising 1) a concept learning module
that leverages Slot Attention and rich vision foundation models to extract primitives, and 2) a
concept knowledge distillation module that enables learners to intentionally discover shared and
distinct concepts among classes, thereby guiding the decision-making process of classifiers.

* We designed 1) a primitive selection mechanism with an additional primitive loss that effectively
achieves robust primitive extraction across different examples of the same class, and 2) a primitive-
logit alignment loss that contrastively regularizes the sample-wise similarities between continual
learners’ outputs.

* The experimental results demonstrate that CompSLOT successfully leverages concept-wise com-
positionality to significantly enhance a wide range of continual learners.

2 RELATED WORKS

Continual Learning of Foundation Models Benefiting from the rich knowledge in large-scale
pre-trained ViT, CL methods with FMs (Zhou et al. 2024a) greatly mitigate forgetting previously
learned classification tasks and achieve fast adaptation to new ones. The community has mainly
developed three families of approaches, according to the way of utilizing the pre-trained knowledge:
1) Prompt-based methods (Gao et al.l 2023 |Smith et al.| [2023] Wang et al., [2022cibj |Gao et al., 2024
Liang & Lil[2024; |Le et al.l|2024) efficiently tune prompts for tasks rather than fine-tune the backbone;
2) Representation-based methods(Zhou et al.| 2025} 2024b; [McDonnell et al., 2023} |Zhang et al.,
2023)) involve leveraging the advantages of representations from the pre-trained backbone with a class
prototype-based classifier; 3) Model-mixture-based methods (Gao et al., 2023} [Wang et al., [2024;
Marouf et al., 2024 utilize hybrid techniques such as model fusion (Wang et al.| 2024; Marouf et al.|
2024) and model ensemble (Gao et al.,|2023)) to query a set of models, thus, making the prediction
more robust; Moreover, rehearsing old samples is an effective way to alleviate forgetting old tasks.
Several methods (Wang et al.| [2022a; |Yan et al., 2021; Zhou et al., [2023) contribute to efficient
sample storage mechanisms and auxiliary supervision to address class imbalance, achieving a better
stability-plasticity trade-off. However, the above methods ignore hidden conceptual relationships
among classes, limiting their significance on handling compositionally relevant tasks.

Compositionality Compositionality has been extensively studied in natural language process-
ing (Biesialska et al., [2020; Kaushik & Martin, [2020; |[Lake & Baroni, 2018} |Keysers et al., [2020).
To achieve a compositional learner, methods include the introduction of sparse coding (Murphy
et al., [2012)), regularization (Sun et al.,[2016} |Luo et al.,|2015)), and applying independent component
analysis (Musil & Marecek, 2022} |Yamagiwa et al.,[2023)). In|Hupkes et al.| (2020), the authors sum-
marize five types of tests for language compositionality, which are further extended to vision in|Liao
et al.| (2024). Meanwhile, researchers in vision utilize compositional information between objects
and attributes to boost zero-shot inference through regularization (Nagarajan & Grauman, 2018)),
separate learning (Ruis et al., [2021)), causal reasoning (Atzmon et al.| [2020), self-attention (Khan
et al) 2023), and uniting energy-based modules (Wu et al., [2022). Common strategies to learn
hidden concepts among continual tasks are external interpretability tools (Yang et al., 2024), learnable
mapping (Lai et al.,2024)), prototypes (Rymarczyk et al.l[2023]; |Ahrens et al.|[2023; Rymarczyk et al.|
2021), CLIP (Kundargi et al.,2025) (Agrawal et al.| [2025)), ChatGPT (Yu et al.| 2025), and assigning
different module paths for tasks (Rajasegaran et al.| [2019; Ostapenko et al., [2021). Our work, instead,
leveraging Slot Attention, does not require prior concept-level supervision for training or an extra
concept bottleneck model (Yu et al. 2025), making it more adaptable and easier to integrate with
different methods.



Under review as a conference paper at ICLR 2026

Object-centric Learning We adopt object-centric learning to autonomously extract concept infor-
mation directly from images. The introduction of Slot Attention (Locatello et al., |2020) marked the
emergence of a new paradigm for disentangling objects (i.e., concepts) within a scene. Subsequent re-
search has focused on improving its robustness in complex environments—primarily through encoder
enhancements like covariance regularization (Stange et al.,2023)) and bi-level optimization (Jia et al.,
2023} |Chang et al., 2022)). Other efforts have explored advanced decoders to refine decomposition.
For example, SLATE (Singh et al.,2022)) uses an autoregressive transformer decoder, while [Wu et al.
(2023); Jiang et al.| (2023) propose diffusion-based approaches. Kakogeorgiou et al.| (2024) leverages
distillation to refine object segmentation via decoder-guided encoder training, and Kor1 et al.|(2023)
introduces conditional Slot Attention with a foundational slot dictionary to address specialization
limitations. Our method, instead, employs a lightweight MLP decoder to minimize computational
cost while preserving effectiveness. Experiments show that this simple design can still significantly
benefit continual learning.

3 PRELIMINARIES

Class-incremental vision continual classification tasks We consider 7" sequential vision classi-
fication tasks with a dataset D = [D*, ..., DT], where each D! consists of image samples © € X
with corresponding labels iy € J*. Here, ) is a subset of the global label set ), and VY N V¥ = ()
for t # k, with task identity unknown during inference, i.e., class-incremental learning (CIL) set-
ting. A general model-based continual learner includes a Vision Transformer (ViT)-based backbone
f(-165) and classification heads h;(:|05,), where ¢ is the task identity. Each head is trained sepa-
rately for the corresponding task, but the outputs from all heads are concatenated for final inference:
H,. = f(xe|0¢)[0], where [0] indicates the [CLS] token (i.e., the first dimension of the output of f),
and pred(z¢e) = argmin [hy (Htel0n,) ;- - ; hr (Hte|On, )], where [-; -] denotes concatenation.

Slot attention (Locatello et al., 2020) As the state-of-the-art object-centric plug-in, slot attention
aims to decompose a single image into a set of K disentangled slots § € RX*Ds_each encoding
one compositional component of the image. D is the dimension of slot representation. The output
f(x|6y) from a pre-trained ViT backbone consists of two parts: the uninstructed image feature H =
f(x]07)[0] € RP with the token [CLS] and the semantic patch features E = f(z|0f)[1 :] € RV*P,
where N is the patch number. These N patches are further encoded into the slot space and refined
into K slots through an iterative attention procedure. The K slots are first initialized with a learnable
Gaussian distribution. In each refinement iteration, slots collect soft assignment information from each
patch with an attention mask A € Rf *N The weighted mean A is then computed along the patch
dimension, and a Gated Recurrent Unit (GRU) (Cho et al.,[2014) aggregates the patch information into
the assigned slots, as follows: A = ¢ (%) JAin — ﬁ, S «+ GRU(S, Av(E)),
where ¢(-), k(-), v(-) are learnable query, key, value projections, respectively, and o () is the softmax
function.

4 METHODS

We present our CompSLOT framework in Figure m For each continual task D¢, we first perform
concept learning (detailed in section through a slot decomposition and a primitive selection
mechanism, and then distill the pair-wise similarity statistic of the extracted primitives to model
outputs (detailed in section[4.2)) in a method-agnostic manner.

Unless otherwise stated, the proposed slot attention and primitive selection modules are globally
shared across tasks, and no parameters except the ViT backbone are frozen. They are initialized at
the beginning of the first CL task. In future CL tasks, their architectures (e.g., the number of slots)
remain fixed, while parameters will be fine-tuned throughout all CL tasks. This design prevents
parameter explosion and supports long-sequence tasks, as demonstrated in Figure [3b]

4.1 CONCEPT LEARNING

Firstly, we define concepts as the ground truth slot decomposition of an image. Since slot attention
exhibits permutation equivalence w.r.t. the order of the slots (and masks) (Locatello et al., [2020),
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Figure 2: Examples of learned slots by continual COBJ reconstruction tasks and validation recon-
struction losses. Left: slots are extracted for three example images from the first task on learners
after training on the 1-st, 2-nd, and 3-rd tasks. Slots are masked with different colors. Middle:
corresponding slot cosine similarity matrices grouped by correlated regions. Each group contains
slots from three tasks and is identified by the Hungarian matching algorithm. Right: validation
reconstruction loss matrix. Each row indicates a learner trained after a specific task and evaluated on
all seen tasks, respectively. Takeaway: learned Slot Attention module enjoys almost no forgetting
across compositional-relevant tasks.
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we regard {S, A} as the corresponding set representations of {S, A}, where S = {s;}X, and
A={a;}E . with s; € RP: and a; € RY being the i-th row of S and A, respectively.

Definition 1 (Concept & Disentanglement). Let « be an image, then {S, A} is a disentangled
decomposition of « (a.k.a., concepts and corresponding attention regions), if 1) a;, aj € A, a;, a; €
RY,a; L aj,, and 2) S satisfies arg ming Z%Sjes |sim(s;, s;)|, where s;,s; € RP=, and | - | is
the absolute value, L is orthogonal symbol, and sim(, -) is a similarity score function, e.g., cosine
similarity.

Remark 1. The examples of concepts are Chihuahua’s head w.r.t. Chihuahua objects in section[I]and
buildings w.r.t. images in Figure[2] In Figure2] A corresponds to patch regions and S corresponds to
slot representations used to calculate cosine similarity.

To train the slot attention and primitive selection modules, we resort to continually reconstructing D
and an additional contrastive primitive loss.

Continual image reconstruction For clarity, we denote the forward path of slot attention as
{8, A} = 5(E|9,),S € REXDPs A ¢ REXN We augment the position embedding into slots S
when reconstructing the image, as the ViT does. S/, = S & pos,,, where pos,, € RP: is the
learnable position embedding at patch n and & is the element-wise addition with broadcasting. Next,
S’ € RVXEXDs "3 collection of N position-augmented slots, are mapped back individually to the
D-dim patch space with an MLP slot decoder d(-|6;). Subsequently, we apply weighted-sum with
the attention mask A and finally get the reconstructed patch features E. The reconstruction loss L,..
is the MSE loss between the ground truth patch features E and the reconstructed E, as follows:

E=A"d(S'04) e RN*P L,.=||E — E||. 1)

We present a preliminary experiment demonstrating that the learned Slot Attention module exhibits
almost no forgetting across compositional tasks, as shown in Figure[2] Specifically, we train a Slot
Attention module on COBJ 3-tasks as a continual reconstruction task (i.e., trained with reconstruction
loss). We then extract slots for images from the first task using the modules after training on the
first, second, and third tasks. We observe that each corresponding slot consistently represents a
human-interpretable concept and remains stable after training on new tasks, maintaining a high cosine
similarity.

Primitives When describing the object Chihuahua, some concepts (like Chihuahua’s head) are
class-relevant, while others (like sky) are class-irrelevant. We name such class-relevant concepts as
primitives, containing information to identify the desired classes.
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Definition 2 (Primitives). Let XY, SY be an image set labeled y and the corresponding set of concept
sets, respectively, and S € §Y, then a concept subset P C S is primitives of S, if VS’ € SY, P C §'.

Our goal is to identify a unified primitive representation sP, which is regarded as the linear
combination of concepts S. The basic idea is that primitives have a higher probability appearing in
as from the same class XY and are likely to carry important information describing this class. Thus,
we have the following two questions: 1) How to represent the selected primitives sP from S? and 2)
How to minimize the distances among sPs extracted from the images in the same class?

Primitive selection To answer the first question, we propose a learnable attention-based primitive
selection mechanism to aggregate K slots. We use a linear module with layer norm and a tanh
activation layer to map slots into a unified similarity space. The similarity to a learnable primitive
key KP € RPs measures the slot significance. Then this similarity wyp, weights the mapped slots and
aggregates them into a single representation sP (i.e., primitive representation), which is summarized
as follows: B ~ B

S = tanh(Linear(LN(S))), wp =0c(nSKP), sP= w;S, )
where 7; is a temperature coefficient controlling the sparsity of slot selection wy,, which is set to
100/+/Dy in practice. A larger 7; indicates a smaller number of slots to be selected to represent this
image x.

Contrastive primitive loss To answer the second question, we rewrite Definition [2] as follows:

Theorem 1 (Intra-class consistency). Consider S1,So € SY and two corresponding largest primitive
sets Py C 81, P2 C Sy are identical, i.e., Py = Pa and ||P1|| = M, where || - || is the cardinality
of set. In other word, consider the pair-wise ordered sets { Py, PS} = match(Py, Ps), where
match(-, -) is a matching algorithm (without loss of generality, Hungarian algorithm (Kuhn| |1955))),

then the correspondzng matched concepts should be the same: P{ = {s}}M | PS = {s2}M, and
Vie{l,...,M},sim(s},s?) =1

This form of pair-wise primitive similarities from images within the same class motivates the use of
label supervision and contrastive learning (Khosla et al.,|2020; |Chen et al., 2020b). We first collect
the normalized similarity dy between one-hot label and the softmax similarity d; ; between sP.

Then, we use a mini-batch clusterlng loss that a small KL divergence between dy and d; ; means
a small distance between s?, s P in the same class and a large distance between those in dlfferent
classes. The primitive loss L, is as follows:

exp(7psim(s?, s?))

sim(]li s ]Ij ) j

> aen Sim(li, i)’ i > aen exXp(Tpsim(sy, s7))’

S

Yy
dj; =

= > dwogds,

r;,x;EB
(3)

where I; is the one-hot label for sample x;, and 7, is a temperature coefficient controlling the strength
of primitive loss. The learned slot visualizations in section [K|(including CGQA, COBJ, ImageNet-R,
CIFAR-100) demonstrate that meaningful concepts (represented by primitives, third column “Sum”)
remain stable across tasks for the same images. We attribute this robustness to “concept rehearsal’:
although class labels change, many visual concepts are shared and recur across tasks, helping stabilize
the primitive selection weights. Section [K]also visualizes the pair-wise primitive similarities, showing
that concept relationships are preserved across images of the same class and shared concepts remain
consistent even when images are from different tasks.

By jointly minimizing L,., L,, the learned slot attention module equips the abilities of extracting
concepts, identifying primitives, and achieving intra-class primitive consistency. Specifically, we
group these losses as Lot = Ly + Ly, where a is a coefficient to balance the impact of L,,.

4.2 METHOD-AGNOSTIC PRIMITIVE-LOGIT KNOWLEDGE DISTILLATION

The learned primitive sP equips a superior property of aggregating important class-relevant concepts.
Such understanding can be a self-supervision to regularize the output of the continual learner, i.e.,
the distribution of logits. Thus, the model gives predictions based on the exact extracted concepts.
For example, a chihuahua image should have relatively higher logits on other dog classes than
logits on cat classes because they share similar concepts such as dog body shapes. Specifically, we
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design a primitive-logit alignment loss to contrastively distill the learned primitive statistics to logit
statistics, i.e., minimizing the KL divergence between softmax logit similarity d' and previously
learned primitive similarity d®, as follows:

sim (7, s) ;o exp(resim(ly, 1)) di,j

S
" s .= - , L. = d‘?«log 7],
kaeB Slm"!‘(s']i)? SZ) 27] ZwkeB eXp(TaSIm(li7 lk)) ¢ migeB “ d7l,,]
)

where l; = h(H;) is the logits of «; for the current task, sim (-, -) is cosine similarity with min-max
normalization, and 7, is a temperature coefficient controlling the loss strength. We employ min-max
normalization (instead of softmax) to sharpen slot supervision. Note that L, is method-agnostic as
long as the CL method has an FM backbone to support extracting semantic features. Finally with
the cross-entropy task loss L., the training loss is as L. = L. + 8L, where f3 is a coefficient to
balance the impact of L,.

s __
di ;=

5 EXPERIMENTS

In the experiment part, we highlight the research question we will answer: How and why does our
CompSLOT benefit a large range of continual learning with foundation models? To answer this, we
compare algorithms with and without CompSLOT and perform ablation studies in section[5.2} We
analyze the influences of hyperparameters in section |H investigate different backbones in section
and visualize the slot extraction to analyze how CompSLOT enhances CL performance in section K|

5.1 EXPERIMENTAL SETTINGS

Baselines To verify the universality of the proposed CompSLOT, we adopt a wide range of SOTA
continual learners with foundation models, including: 1) prompt-based methods: CPrompt (Gao
et al., 2024); 2) representation-based methods: ADAM-+adapter (Zhou et al., 2025), Ran-
PAC (McDonnell et al.l [2023), EASE (Zhou et al.l 2024b); 3) Model-mixture-based meth-
ods: CoFiMA (Marouf et al., [2024), FOSTER* (Wang et al., 2022a)), DER* (Yan et al., [2021)),
MEMO* (Zhou et al., 2023). Methods with a “*” postfix indicate that they adopt a rehearsal process.
Algorithms are implemented using the PILOT (Sun et al., [2025) platform with default hyperpa-
rameters. Methods with CompSLOT are denoted with a postfix “1”. Unless otherwise stated, the
backbone is ViT-B/16 backbone pretrained on ImageNet-21K, while we also investigate the effect of
different backbone architectures in section[J] We also compare recent concept bottleneck models for
continual learning, including CLG-CBM (Yu et al., 2025)), and another concept knowledge plugin,
SACK (Kundargi et al.| 2025)) integrated with CODA-Prompt (Smith et al.,[2023). In this experiment,
we use CLIP ViT-B/16 (Radford et al., 2019) backbone for CompSLOT for fair comparison. For the
details of the efforts we make to achieve a fair comparison, please refer to the discussion in section [B]
and implementation details in section

Benchmarks We conduct experiments on compositional datasets, including CGQA and COBJ (Liao
et al.| |2024), and commonly used datasets, including ImageNet-R (Hendrycks et al., 2021). The
former classification datasets contain a sufficient number of combinations of concepts, allowing
for visual analysis and evaluating the compositionality. When comparing with other concept-based
methods, we conduct experiments on CUB200 (Welinder et al.,2010) and CIFAR100 (Krizhevsky
et al.,[2009). We choose different continual task settings to evaluate different compositionality levels.
Specifically, we denote “F-S tasks” as that the first task contains F classes and the following tasks
contain S classes. For example, “50-10 tasks” means splitting 100 classes into six tasks with sequence
of class numbers [50, 10, 10, 10, 10, 10]. In the main context, we report 10-10 tasks results for CGQA.
For results on other benchmarks, please refer to section [} All the experiments are conducted on a
single Tesla V100 GPU and we analyze the computational cost in section [N}

Metrics For continual training stage, we report the average accuracy of all tasks after training
the last task AA = £ Zthl E(z,..pept, [A(pred(zie| Pr), y)], the average cumulative accuracy for
eachtask CA = L S°7 = e By yyeny [A(pred(zie| Py), )], and average forgetting for
each task FF = Zthl E(s,. yyent, [Alpred(zic| Pr), y)] — AA, where Dy, is the testing dataset

Tte Y
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Table 1: Main result on CGQA. Methods with CompSLOT are denoted with a postfix “4”. Methods
rehearse old samples are denoted with a postfix “*”. We report results over 3 trials with (mean & 95%
confidence interval). We replace the backbones of all methods to Imagenet-21K-pretrained ViT-B/16.

Continual CFST

Methods AA (%) T CA (%) 1 FF (%) | Hn (%) 1 Rt

CPrompt 46.753+0.570  60.179+1.695 15.670+0.950 78.063+0.817 0.964
CPrompt T 48.537+0.427 61.483+1.645 18.315+1.111 79.091+1.086 0.969
ADAM + adapter 41.930+1.141 53.9834+0.444 13.800+0.187 68.649+0.259 0.932
ADAM + adapter T | 49.480+1.201 60.989+0.641 12.896+0.379 74.335+0.572 0.958
RanPAC 65.810+0.802  75.50440.318 10.51540.176  78.868+0.918 1.016
RanPAC 66.753+0.867 76.584+0.603 10.219+0.281 79.815+0.829 1.032
EASE 47.657+1.494 59.475+2.574 18.215+0.107 79.713+0.449  0.996
EASE 7 49.323+1.165 62.603+1.252 22.470+2.472 82.887+0.320 1.001
CoFiMA 65.107+0.508 73.227+1.047 15.248+0.542 86.711+0.483 1.011
CoFiMA { 66.170+0.578 74.3224+0.463 14.204+0.880 88.297+0.278 1.017
FOSTER* 60.863+0.271 68.800+0.496  2.441+0.122  89.791+0.086 1.087
FOSTER* 66.290+1.451 71.828+2.619 6.470+£5.770  89.910+0.710 1.154
DER* 52.003+1.019 62.6754+1.695 40.122+0.907 90.119+0.510 1.080
DER* 54.900+1.093 66.020+1.049 38.941+0.995 88.986+0.129 1.096
MEMO#* 56.553+1.804 66.4624+0.702  9.2894+0.326  82.425+1.282 1.029
MEMO* 58.653+1.449 68.037+1.459 8.94440.268 84.003+1.451 1.050

for task ¢ and A(+, -) is the equal function. After training on all continual tasks, specifically for CGQA
and COBJ, we perform CFST on five compositional test suites including sys, pro, sub, non, noc,
which contain novel recombinations, more combinations, shifting attributes, seen combinations, novel
concepts of testing samples, respectively. We generate 300 few-shot tasks for each test suite. For
clarity, we calculate the Harmonic mean (i.e., Hn = 3/(1/sys+1/pro+1/sub), Hr = 2/(1/non+
1/noc), as suggested in [Liao et al. (2024). Then we report Hn and the ratio of Hn and Hr (i.e.,
R = Hn/Hr). For detailed results on each compositional test suite, please refer to section Larger
Hn and R indicate that the extracted features have better compositional generalization performance.

5.2 RESULTS

Overall results We report the statistical results in Table|l} Across all baselines, CompSLOT con-
sistently enhances performance, with the most significant improvement observed in ADAM-+adapter
(absolute gain: +7.550 in AA). Notably, CA and FF demonstrate consistent superiority over other
methods (except CPrompt and FOSTER, because the original methods do not perform well on
the finished tasks, thus, forget less), indicates that our CompSLOT not only mitigates catastrophic
forgetting of old tasks but also preserves strong forward adaptation to novel tasks. This robustness is
primarily attributed to CompSLOT’s improved compositional generalization (manifested by higher
Hn and R scores), confirming its ability to learn latent conceptual units and dynamically compose
them for robust classification across diverse methodological frameworks.

Learning curve Figure[3ashows the learning curves of all methods on the 10-10 tasks from CGQA.
We observe that concept learning significantly improves continual learning performance across the
entire training process, demonstrating its ability to stabilize learning and mitigate forgetting.

Long task sequence Figure [3b|presents the comparative performance analysis across a challenging
long-task sequence of 5-5 CGQA tasks. The results reveal that CompSLOT consistently enhances
both continual learning accuracy and compositional generalization performance, even when the
slot attention module globally shared across all continual tasks. This finding underscores the
remarkable robustness of employing slot attention mechanisms for boosting concept learning in CL
scenarios. Notably, the stable improvement suggests that CompSLOT effectively captures transferable
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Figure 3: Learning curves and histograms of methods with and without CompSLOT on CGQA a)
10-10 tasks and b) 5-5 tasks. Slot is the case directly using the primitive representation and a cosine
similarity classifier for the continual tasks.

compositional knowledge, enabling better adaptation across sequential tasks without task-specific
customization.

Ablation studies To evaluate the contribution
of each proposed component, we conduct com- Table 2: Ablation results on CGQA.
prehensive ablation experiments, with results
presented in Table @ First, to rule out the

possibility that performance gains stem solely Methods | Ly Lo | AA(B)T  RY
from increased model capacity, we expand the X+param X 65.080 1.010
hidden representation dimensions (denoted as Xavg 4 58220  0.969
“4param”) in RanPAC and CPrompt (see sec- vavg v 65.870  1.003
tion [E]for details) to match the parameter count RanPAC | /sig 4 65.950  1.020
of RanPAC 7 and CPrompt 1, respectively. We ;Slgn ; gg éi‘g (l)ggg
further perform the following controlled exper- /(s:(());t v 66.753 1.032
iments: 1) Primitive loss ablation (L,): We . .
remove the primitive loss term and replace the X+param X 46.300  0.969
primitive selection mechanism with a simple Xavg 4 40.230 0.952
slot averaging strategy (avg). 2) Slot-selection vavg v 47.690 0958
function ablation: We substitute the softmax ~ CPrompt | v'sig v 48.080  0.961
operation in Equation [2] with alternative weight- jzloin ; i;ﬁg 8322
ing methods, including: averaging (avg), sig- Vsoft Y 48.537 0.969

moid (sig), sign quantization (sign), and cosine
similarity (cos). Across both methods, disabling
L, or altering the slot-selection mechanism leads to significant degradations in AA and R scores,
demonstrating the critical importance of each component. 1) The primitive loss L,, ensures intra-class
consistency, which is vital for reliable primitive selection and, consequently, improved concept-level
class understanding. On the other hand, using all slots indiscriminately allows less relevant concepts
(e.g., background) to dilute class-relevant ones, leading to confusion. 2) The softmax-based weighting
(as formulated in Equation [2)) provides a selection with a convex combination of slots in one image
to ensure the primitive representations of images are within an appropriate range, which makes the
training robust. A more comprehensive ablation study can be found in section|[]

Concept learning and visualization To evaluate whether the learned concepts align with the
ground truth, we establish evaluation experiments and design six metrics including the slot represen-
tation MAE and the slot mask mIOU. Due to page limit, we describe the details of the metrics and
the experiments in section[H] After that, we visualize the learned concepts and compare primitive
similarity with ground truth concept similarity in Figure[f] We observe that CompoSLOT consistently
identifies Other shoes, Person, and Chair, which are important concepts (primitives), in an unsuper-
vised manner. The frequent existence of concepts between different tasks shows a concept rehearsal
phenomenon: although class labels change, many visual concepts are shared and recur across tasks,
helping stabilize the primitive selection. The learned primitives mimic concept statistics in terms
of cosine similarity and the proposed primitive-logit alignment loss successfully distills pair-wise
primitive similarity into logits, which demonstrate that the models make decisions by additionally
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Figure 4: Concept learning visualization and fruits of primitive-logit knowledge distillation on COBJ.
Left: Examples of visualization of learned slots that associated with the corresponding concepts after
finish TO and T1 tasks. Red color indicates a high value in slot attention masks. Middle: Primitive
(comparing with ground truth concept) cosine similarity matrix for ADAM-+adapter T on 30 images in
TO (left) and on additional 30 images in T1(right). Right: Logit cosine similarity for ADAM+adapter
with and without CompSLOT on 30 images in TO. Takeaway: The learned primitive successfully
mimics concept statistics and CompSLOT successfully distills pair-wise primitive similarity into
logits. Red box shows evidences.

considering low-dimensional concept combinations instead of only relying on high-dimensional
features. For the details of concept and similarity visualization, please refer to section[K]

Influences of hyperparameters CompSLOT introduces several hyperparameters mainly in the
following three mechanisms: concept learning stage, slot attention architecture, and primitive-logit
knowledge distillation stage. We conduct comprehensive experiments to investigate the influences
of each hyperparameter in section [H] Here we specifically showcase the effect of primitive-logit
alignment loss coefficient  when continual training CPrompt on the first three tasks of the 10-10
CGQA as an example. The results are shown in Table m We observe that AA increases as (3
increases but decrease after a threshold (around 2). This indicates that an excessively large 3 hinders
the effectiveness of CPrompt’s smooth regularization, leading to conflicts. However, within an
appropriate range, our CompSLOT works effectively with CPrompt’s smooth regularization.

Comparing with other concept learning methods
This [I))aragrgph compares Comp%LOT witl%other con- Table 3: AA results on 10-10 tasks CUB2060
cept learning methods, i.e., CLG-CBM and CIFART00.

2025) and SACK (Kundargi et al}[2025). We conduct ~ Datasets | SACK CLG-CBM  CompSLOT
experiments on 10-10 tasks CUB200 and CIFAR100 CUB200 ‘ 71.78 85.40 88.38

to show the superiority of CompSLOT with RanPAC.
To achieve fair comparison, we replace the Comp-
SLOT’s backbone to CLIP ViT-B/16. The results are shown in Table [3 with the top performance
mentioned in their original papers. CompSLOT shows the best AA on both benchmarks, because of
benefiting from slot attention to extract concept information and the plug-and-play property that can
be applied to alternative CL algorithms. Most importantly, CompSLOT fully utilizes the capability of
the CL backbone and does not need extra interpretable tools, like ChatGPT.

CIFARI00 | 87.26 84.49 89.57

6 CONCLUSION

This work propose CompSLOT, a framework introducing concept learning into the continual
learning paradigm for foundation models. The proposed primitive selection mechanism effec-
tively extracts class-relevant concepts while maintaining robustness across extended task sequences.
Meanwhile, the primitive-logit knowledge distillation mechanism enforces concept-based sample
similarity regularization, enabling lightweight adaptation to diverse CL methods with foundation
models. Experimental results confirm that the performance improvements stem from enhanced
compositional generalization, offering a novel concept-level perspective for the continual learning
community. A limitation of our current approach is that concept learning must precede providing
conceptual self-supervision to the CL task. Future work will explore end-to-end integration of our
mechanism into the continual learning pipeline and study the joint effect when combining with
regularization methods that also manipulating the logits. We hope this research inspires further
advancements in developing resilient and interpretable vision models.
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B DISCUSSIONS

Classification Bias from a Concept-Combination Perspective The root cause of compromised
stability and plasticity often lies in sub-optimal classifier design, particularly when classifiers develop
reliance on inaccurate or incomplete feature representations due to concept biases in training data.
To illustrate, consider a scenario where the current vision task 77 contains two specific classes (a
human standing by a tree and a human inside a boat) alongside other classes that lack human-related
concepts. In such cases, the learned classifier might develop an over-reliance on distinguishing these
two classes based solely on free and boat concepts while neglecting the more critical human attribute.
This limited conceptual understanding creates significant generalization problems when encountering
unseen concept combinations. For instance, during task 75, a novel image labeled a pig inside a
boat would likely receive disproportionately high logits for the human inside a boat class due to
the classifier’s inability to properly disentangle object-class relationships from spatial-contextual
cues. Conversely, a human inside a boat image might similarly activate the pig inside a boat class
predictions. This conceptual entanglement manifests as catastrophic forgetting in 7} (as evidenced
by diminished global accuracies post-training on 75) and severely hampers plasticity for 75 through
incorrect plastic responses to novel concept combinations.

Whether concept sharing is a common phenomenon in the real-world? In real-world scenarios,
concept sharing is quite common, like, in fine-grained classification cases such as CUB200, and in
images with massive objects such as COBJ. This phenomenon is also discussed in other works. For
example, [Welinder et al.[(2010) claims that fine-grained bird classes share some basic parts, and
Krause et al.| (2015) claims that fine-grained categories share similar shapes. In the experimental
results, CompSLOT consistently brings significant improvements to continual learning algorithms on
these real-world cases. In contrast, datasets like CIFAR, which have relatively little concept sharing,
are uncommon in complicated real-world scenarios.

Fairness issues To demonstrate the effectiveness of our CompSLOT, we list the actions to make
the comparison as fair as possible:

1. When comparing with and without CompSLOT, e.g., in Table[T] we used exactly the same
backbone for both continual learners and the slot attention, which was the ViT-B/16
backbone pretrained on ImageNet-21K sourced from the Python timm package. When
comparing with other concept-based methods in Table [3] we used CLIP ViT-B/16 for
CompSLOT to align with the baselines.

2. When training slot attention, we DID NOT introduce additional supervision, such as concept
labels.

3. Most of the continual learner-related hyperparameters used their default settings, as sug-
gested in the PILOT platform, while for the additional hyperparameters introduced in this
work, please refer to section

4. To further ensure fairness and show that performance gains are not from the increased model
capacity, we also compared with a case extending the number of parameters in an ablation
study in section 3}
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C ADDITIONAL RELATED WORKS

Continual learning from scratch To mitigate forgetting previously learned vision classification
tasks and achieve fast adaptation to new ones, the continual learning community has developed three
main families of approaches that do not utilize a pre-trained foundation model:

1. Rehearsal-based methods (Achille et al., | 2018; |[Rolnick et al.,[2019; Rahul & Pratik, 2022;
Hersche et al.| [2022; [Sun et al.| [2022; |Q1u et al., 2023} [Sun et al.l |2023) store memory-
efficient samples or features from past tasks for reviewing knowledge. However, such buffers
can cause significant memory overload as the number of tasks increases.

2. Regularization-based methods (Lopez-Paz & Ranzatol [2017}|Li & Hoiem) 2017; |Kirkpatrick
et al.} 2017} |Achille et al.,|2018j Hersche et al.,2022) constrain gradient updates to preserve
important knowledge from old tasks, but this can limit the adaptation capability to new tasks.

3. Architecture-based methods (Mallya & Lazebnik, 2018} |Douillard et al., [2022; Ring}, 1997}
Ruvolo & Eaton, |2013; |Gaunt et al.} 2017} |L1 et al.,|2019; |Rajasegaran et al., [2019; |Chen
et al., [2020a; Mendez & EATON], 2021} |Ostapenko et al., 2021; Rahul & Pratik, [2022} |[Hihn!
& Braun, 2023)) aim to create new modules for upcoming tasks, making the determination
of module composition crucial for different tasks.

D THEOREM

Firstly, we define concepts as the ground truth slot decomposition of an image. Since slot attention
exhibits permutation equivalence w.r.t. the order of the slots (and masks) (Locatello et al., [2020)),
we regard {S, A} as the corresponding set representations of {S, A}, where S = {s;}X | and
A ={a;}X,, with s; € RP+ and a; € RY being the i-th row of S and A, respectively.

Definition 3 (Concept & Disentanglement, equivalent to Def. 1). Let « be an image, then {S, A}
is a disentangled decomposition of x (a.k.a., concepts and corresponding attention regions), if 1)
a;,aj € A, a; € Rf, a; L aj,, and 2) S satisfies arg ming Zsi s;€8 |sim(s;, s;)|, wheres; €
RPs, and | - | is the absolute value, | is orthogonal symbol, and sim(-, -) is an arbitrary similarity
score function, e.g., cosine similarity.

Remark 2 (Requirement 1: Disentanglement). The competitive spatial attention and the limited
capability of a slot naturally achieve the orthogonality of A. In practice, S is encouraged to be
orthogonal (slots bind to different concepts in x) but not ideal since there are some semantically
similar concepts, e.g., grass and leaves. Such a disentanglement structure is also mentioned in |Park
et al.| (2024); L1 et al.| (2025)).

Definition 4 (Primitives, equivalent to Def. 2). Let XY, SY be an image set labeled y and the
corresponding set of concept sets, and S € SY, then a concept subset P C S is primitives of S, if

VS e SY,PCS.

Remark 3. Although P is defined at the image level, we can also say that it is unambiguously ¥’s
primitive set, denoted PY. In general, P # S, because there are always image-specific concepts in
the image, e.g., background.

Theorem 2 (Requirement 2: Intra-class consistency, equivalent to Theorem. 1). Consider S1, S5 €
SY and two corresponding largest primitive sets Py C S1, P2 C Sy are identical, i.e., Py = Po and
[|P1l| = M, where || - || is the cardinality of set. In other word, consider the pair-wise ordered sets
{P;,Ps} = match(Py, Ps), where match(-, ) is a matching algorithm (without loss of generality,
Hungarian algorithm (Kuhn| |1955)), then the corresponding matched concepts should be the same:
Py = {sH}M, PS = {s2}M, and Vi € {1,..., M}, sim(s}, s?) = 1.

Theorem 3 (Requirement 3: Inter-class concept sharing). If there is a shared primitive subset
between yy, Yo, all images in XY*, X2 should contain this subset. If 3P C PY1, P C P¥2,||P|| =
M >0, thenVS; € SY', S, € S, P C §1,P C Ss.

Remark 4 (Requirement 4: Inter-task consistency). After trained on future tasks, the concept sets
of the same « should be not changed. In T" CL tasks, V& € X", 1 < u < T, consider the extracted
concept sets {S*}L_, after task t € {u, ..., T}, then Vt,,t5 € {u,..., T}, S = St2.
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CompSLOT implicitly encourages Requirement 1 via slot attention’s soft-clustering and supports
Requirements 3—4 empirically (Figure 2) and the visualization experiments in section [K] Require-
ment 2 is enforced through a primitive loss, described in Equation 3] ensuring slot stability across
class instances.

D.1 PROOF OF THEOREM 1

Proof. By the definition of Py, Ps as the primitive sets of S1, So, respectively, and that S1, 52 € SY,
without loss of generality, P is also a primitive set of S;. Thus, Py C S;1. Assume, for the sake of
contradiction, that there exists a concept s, such that s € P, and s ¢ Py, i.e., P1 # Pa. Since P; is
the largest primitive set of S;, we must have P, C Py and VP C Py, s ¢ P. This contradicts our
initial assumption that s € Ps.

Therefore, the theorem holds.
O

Remark 5. The matching algorithm facilitates concept alignment across different sets, thereby en-
abling the computation of our proposed evaluation metrics in section [H| as well as supporting the
visualizations presented in section Kl However, this alignment process introduces significant com-
putational overhead that renders it impractical for integration within our distillation framework. To
address this limitation, we propose an attention-based primitive selection mechanism (detailed in
section 4.1) that ensures permutation invariance to concept ordering in the extracted primitives, effec-
tively eliminating the need for explicit concept matching. This design choice maintains computational
efficiency while preserving the critical semantic relationships required for reliable evaluation and
visualization.

D.2 PROOF OF THEOREM 2

Proof. Assume, for the sake of contradiction, that there exists P', S’ and P’ C P¥, P’ C
Py ||P'|| = M > 0,8 € 8 (or §¥), such that P’ ¢ S’. By the definition of P¥' as the
primitive set for all S € S¥1, thus P’ C &’. This contradicts our initial assumption that P’ ¢ S’.

Therefore, the theorem holds.

E HYPERPARAMETERS AND EXPERIMENTAL SETTINGS

The hyperparameter settings for the concept learning stage are summarized in Table [4] with key
values tuned through validation. For the concept knowledge distillation phase, we maintain fairness
in comparison by adopting the platform-default hyperparameters from the PILOT framework for both
standard CL baselines and CompSLOT-enhanced variants, with additional parameters introduced
in section[4.2] detailed in Table[5] All configurations employ an 80-20 train-validation split using a
randomly sampled validation set. To ensure consistent model capacity across methods, all algorithms
utilize the ViT-B/16 backbone pretrained on ImageNet-21K as the shared feature extractor unless
otherwise stated. When comparing with other concept-based models in Table[3] we use CLIP ViT-
B/16 as the CompSLOT’s backbone, suggested in|Yu et al.| (2025). The backbone parameters are
sourced from the Python timm (Wightmanl| 2019) package. For the compositional testing in CGQA
and COBJ, we used randomly generated 300 few-shot tasks for each test suite, as suggested in|Liao
et al.[(2024).

For ablation studies specifically examining CompSLOT’s impact, we appropriately scale model
capacities through expanded hidden representations: RanPAC: Increased feedforward layer width
(ffn_num) from 64 to 256; CPrompt: Extended prompt length (prompt_len) from 50 to 65 tokens.
These adjustments ensure fair comparison by matching representational capacity when introducing
our architectural modifications, enabling more reliable evaluation of CompSLOT’s actual contribution
beyond simple capacity increases.
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Table 4: Detail hyperparameters for concept learning stage in our main experiments.

Hyper-parameters | Value
Optimizer Adam
LR scheduler Cosine
LR (1-st task) le-4
LR (others) le-5
LR (min) le-8
Batch size 256
Weight decay 0
Epoch 50
D 128
K 10
Slot refinemnt iterations NV 5
Slot decoder hidden embedding dim | Linear with ReLU (128—256—256—768)
T 100
«a 10
Tp 10

Table 5: Detail hyperparameters for concept knowledge distillation stage in our main experiments.

Methods | Ta

CPrompt | 10 0.05
ADAM + adapter | 10 0.5
RanPAC | 15 0.5
EASE | 10 0.1
CoFiMA 1 0.001
FOSTER | 2 0.05
DER | 7 0.01
MEMO | 0.05 0.1

F PsSeupo CODE

In the main paper, we propose a two-stage procedure, including concept learning (aiming to extract
concept-level representation by performing slot representation training and primitive selection) and
concept knowledge distillation (aiming to distill sample-wise concept-based similarity into logits).
We summarize the training framework of CompSLOT in Algorithm |I} Specifically, we perform
concept learning in Lines 4-9. The slot attention and primitive selection module are initialized at
first. For each batch of samples in task ¢, we perform Algorithm [2]and use the obtained primitive
loss and reconstruction loss to train slot attention and primitive selection modules in Line 6. After £
epochs of training, we perform concept knowledge distillation in Lines 11-18. We calculate pair-wise
primitive similarity and obtain primitive-logit alignment loss with Equationd]in Line 15. We detail
the slot representation learning in Algorithm[2] Specifically, we first obtain semantic patch features
in Line 3. Then, we use slot attention module to decompose it into a set of slots in Line 4. Next, we
reconstruct the patch feature and obtain the reconstruction loss in Lines 6-8. After that, we calculate
the primitives in Lines 10-12 and obtain primitive loss with Equation [3|in Lines 14-15.
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Algorithm 1 Continual Learning Framework

1: Input: # tasks 7', tasks D', ..., DT, # epochs E, candidate CL method CL(:|6,6},).
2: Initialize slot attention and primitive selection module.
3: for ¢ from 1 to 7" do

4:  [* Concept Learning */
5.  forifrom1to E do
6: Sample a batch of images (x, y) ~ D*.
7: Perform Algorithm 2] to obtain primitives s?, contrastive primitive loss L, and reconstruc-
tion loss L.
8: Lot = Lye + oLy,
9: Backward loss and update.
10:  end for
11:  /* Concept Knowledge Distillation */
12 for i from 1 to E do
13: Sample a batch of images (x,y) ~ D*.
14: Perform Algorithm [2]to obtain primitives s” without collecting gradients.
15: Perform CL method to obtain logits CL(x|6y, 85,) and task loss L.
16: Calculate primitive-logit alignment loss L.
17: Ly = Lee + BL,.
18: Backward loss and update.
19:  end for
20: end for

Algorithm 2 Slot Representation Learning

1: Input: Image batch {z; f;l, CL backbone 0, # slots K, slot dimension Dy, # epochs E, .
2: Output: Primitive s?, contrastive primitive loss L,,, reconstruction loss L,..
3: Obtain semantic patch features E = f(x;]0)[1 :].
4: Obtain a set of K slots and the corresponding attentions {S, A}.
5: /* Reconstruction Loss */
6: Add position embedding for each patch: S}, = S @ posy,.
7: Decode S’ and re-construct using A: E = ATd(S’|6,).
8: L. =||E — E||.
9: /* Primitive Selection */
10: Obtain Mapped slots S’ = tanh(Linear(LN(.S))).
11: Obtain weights for each slot wy, = (7, SKP).
12: Obtain primitive sP = 'w; S.
13: /* Contrastive Primitive Loss */
14: Obtain normalized similarity d;" ; and softmax primitive similarity d; ; for image sample x;, ;.
15: Obtain primitive loss L.
G DETAIL CFST RESULTS

The statistical analysis of each compositional test suite for the 10-10 tasks CGQA benchmark is
presented in Table[] All accuracy metrics are reported with their corresponding +95% confidence
intervals to quantify statistical significance. The key metrics include:

* Hn: Harmonic mean of compositional testing metrics (systematicity sys, productivity pro,
substitutivity sub);

e Hr: Harmonic mean of reference testing metrics (Non-novel non, Not compositional noc);
* Ha: Harmonic mean across all test types;

* R=Hn/Hr: Ratio measuring compositional generalization improvement.

The results consistently demonstrate superior performance in both R and Hn (except for DER 7),
confirming CompSLOT’s ability to enhance compositional generalization, particularly for system-
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Table 6: Detail CEST results. We report the average with + 95% confidence interval.

Methods | sys pro sub Hn
CPrompt 73.933+1.552  75.367+£1.014 85.9671+-0.858 78.063+0.817
CPrompt t 75.133+1.835 78.133+0.971 84.600+0.514  79.0911+-1.086
ADAM + adapter 63.400+£0.244  68.667+0.838  74.8334+0.107 68.649+0.259
ADAM + adapter T | 68.533+0.962 75.033+0.533  80.400+£0.092 74.335+0.572
RanPAC 74.867+£0.912  78.567+0.509 83.667+1.536 78.868+0.918
RanPAC f 75.833+£1.764 80.600+0.800 83.4331+1.783 79.815+0.829
EASE 74.900+£0.423  80.567£0.629  84.2334+0.282  79.713+0.449
EASE § 78.267+£0.509 84.633+0.509 86.200+-0.480 82.887+0.320
CoFiMA 83.100+1.135 86.767+£0.267 90.60040.606  86.71140.483
CoFiMA 84.467+0.324 88.967+0.373 91.767+0.141 88.297+0.278
FOSTER 86.900+0.514 91.400+£0.489 91.2334+0.971 89.79110.086
FOSTER ¢ 87.600+£0.606 91.733+0.979 90.500+0.733  89.910+0.710
DER 87.700+0.160 91.733+0.838 91.033+-0.828 90.119+0.510
DER 7 86.567+0.509  90.300£0.666  90.2004+0.320  88.986+0.129
MEMO 78.233+2.189  82.500+1.201 87.033+0.541  82.42541.282
MEMO { 79.733+1.248 85.133+1.816 87.533+1.432 84.003+1.451
Methods | non noc Hr R
CPrompt 76.400£0.973  86.033£0.437  80.926%0.360 0.964
CPrompt t 77.167+0.681 86.533+0.601 81.580+0.407 0.969
ADAM + adapter 66.167£0.930 82.867+0.615  73.580+0.809 0.932
ADAM + adapter t | 71.267+0.417 84.967+0.192 77.516+0.323 0.958
RanPAC 75.267+£1.063  80.033+0.833 77.574+0.813 1.016
RanPAC 75.600+0.606 79.133+1.593  77.3144-0.440 1.032
EASE 76.400+£0.666  83.967£0.141  80.00440.420 0.996
EASE 7 79.900+0.185 85.867+0.541 82.775+0.255 1.001
CoFiIMA 83.367+0.594  88.233+0.509  85.72940.353 1.011
CoFiMA 85.600+0.733  89.233+0.385 87.378+0.544 1.017
FOSTER 89.833+0.141 76.433+0.557 82.592+0.285 1.087
FOSTER ¢ 89.7004+1.543  68.7674+2.199  77.84741.992 1.154
DER 89.967+£0.373 77.800+1.619 83.433+0.837 1.080
DER t 88.6004+0.370 74.8674+1.536 81.1514+0.976 1.096
MEMO 80.533+1.802  79.600+£0.489 80.053+0.790 1.029
MEMO t 82.433+2.214 77.7001+2.080  79.985+1.847 1.050

aticity and productivity properties. This aligns with our hypothesis that the slot plugin improves
compositional reasoning capabilities. However, as previously reported in [Liao et al.| (2024) for
ViT-based architectures, we observe no significant improvement in substitutivity, suggesting inherent
limitations of ViT feature extractors in dealing with attribute shifting (e.g., color).
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Table 7: Varing § results on CPrompt 10-10 CGQA (the first three tasks).

B | 0 0.1 0.5 1 2 5 10 50
AA (%) 1 | 6833 6843 69.67 70.17 70.87 70.40 70.13  69.00

— @:1000.0 — a:50.0 T %5000 == 7 10.0

@ 500.0 —— a:10.0 i 2000 —— T2 1.0 — 7:10000 — T: 1.0
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(a) Primitive Loss Coefficient (b) Primitive Loss Temperature (c) Slot Selection Temperature

Figure 5: Radars of different hyperparameters in slot representation learning.

H INFLUENCES OF HYPERPARAMETERS

In this section, we investigate the effect of the introduced hyperparameters in the slot module w.r.t.
the slot extraction performance and in the primitive-logit alignment loss. Without loss of generality,
we report the model performance after training on the second task of 10-10 tasks CGQA in this
section.

Metrics We learn slot representation S, attention mask A, and primitive representation s® as
intermediate products of the forwarding process. Thus, it is necessary to design quantitative metrics
to represent the performance of the learned slot as follows:

* Primitive-label matching score: f1 = —MAE(d?®, d¥), where d® and d¥ are described in
Equation 3.
* Primitive-concept matching score: f2 = —MAE(d?, d°), where d° is similar with d¥ but

the one-hot label is replaced with the multi-hot concept label. Note that the concept label is
only used to analyze the performance of the learned slots and is never seen during training.

* Task-wise matched attention mask mIoU: f3 = Mean;{IoU(A;_,, A7)}, where IoU(, )
is the intersection over union metric and A§_,, A7 are matched attention sets (by Hungarian
algorithm) extracted from the same image by the learners trained after task ¢ — 1 and ¢,
respectively.

* Task-wise weighted attention mask mIoU: f4 = Mean, {IoU(w, ;—1 T A;_1, w; A}
* Task-wise matched slot matching score: f5 = —MAE(Sy_,S7)).

* Task-wise primitive matching score: f6 = —Mean, {MAE(s, "1, s!)}.
For clarity, the matching scores are normalized to [0, 1] to align with the range of mloU. A large
value of any metric above indicates a better performance according to the corresponding assessment.

Slot representation learning First, fixing 7, = 100, 7, = 100, we vary the coefficient v as shown
in Figure[5a] While smaller « values (e.g., 0.1) achieve marginally better f6 scores (indicating greater
primitive stability across tasks), they significantly degrade other critical metrics, particularly f1 and
f2. This trade-off suggests that excessively stable primitives may fail to adequately capture diverse
label semantics necessary for effective primitive-logit alignment.
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Figure 6: Line charts of different hyperparameters in slot attention architecture.
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Figure 7: Line charts of different hyperparameters in primitive-logit knowledge distillation.

Next, we examine the temperature parameter 7, by fixing = 10,7, = 100 (Figure @) The
radar chart demonstrates that 7, = 100 provides optimal balance across all metrics, confirming our
hypothesis that moderate temperature settings enable better concept generalization while preventing
over-regularization.

Finally, we analyze the task temperature 7; with fixed o = 10,7, = 100 (Figure . While no
single 7, value dominates across all metrics, we observe that 7, = 100 achieves the highest f1
score. Section |K| provides w,, visualizations showing that larger 7, values produce sharper slot
selection distributions for primitive construction, which benefits concept representation but may
reduce flexibility in extreme cases.

Slot attention architecture Figure [6a] examines the impact of increasing the number of slots
(K). While higher K values initially improve slot performance by enabling representation of more
concepts, we observe diminishing returns beyond K = 10. This saturation occurs due to two factors:
(1) the limited number of visually discriminable concepts per image, and (2) the finite capacity of
the slot attention mechanism. Redundant slots tend to converge to similar representations, creating a
performance plateau. Our slot mask visualizations in section K| confirm this phenomenon, showing
that excessive slots merely replicate existing patterns rather than capturing novel information.

Figure |3_5| investigates the effect of refinement iterations (V) in the slot attention module. While
increasing N enhances slot discriminability by promoting greater inter-slot differences, we find
that three iterations (/N; = 3) achieve optimal performance. Further increases do not meaningfully
improve results, suggesting that three iterations strike an effective balance between refinement and
computational efficiency.

Figure [6c|explores the relationship between slot dimensionality (capability) and performance. We
observe that larger slot dimensions consistently improve f1 scores, indicating better concept represen-
tation. However, this comes at the cost of increased computational overhead, necessitating careful
trade-off considerations for practical applications.

Finally, Figure [6d|examines the impact of decoder architecture by varying MLP layer depth. Contrary
to expectations, deeper decoders fail to improve extraction performance, suggesting that the current
decoder architecture has sufficient capacity for the task.
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Primitive-Logit knowledge distillation We apply our learned slot attention mechanism to compute
concept-based sample-wise similarities on RanPAC, systematically evaluating key hyperparameters
in our primitive-logit knowledge distillation framework.

Figure [7al demonstrates that increasing the coefficient 3 for L, consistently improves CL accuracy
(AA). This indicates that stronger self-supervision from concept-based similarity effectively enhances
the model’s ability to preserve task-specific knowledge while adapting to new tasks.

Figure [7b] highlights the critical importance of properly tuning the temperature parameter 7,. We
observe a performance plateau when 7, is within an optimal range (approximately [0.1, 1.0]). Values
beyond this range exhibit clear trade-offs. This is because (1) Large 7,(> 1.0) causes excessive
emphasis on sample-wise differences, undermining concept sharing; (2) Small 7,(< 0.1) produces
overly smooth logit similarities, degrading classification performance.

Regarding normalization strategies on primitives (Equation 5 min-max vs Equation 3 softmax),
Figure[/c|shows that min-max normalization outperforms softmax normalization. This advantage
stems from min-max normalization’s ability to provide sharper supervision through its linear scaling
properties, and maintain better sensitivity to subtle concept differences between samples.

I RESULTS ON OTHER BENCHMARKS

COBJ The results in Table [§|clearly demonstrate that incorporating CompSLOT into CL methods
with FMs leads to significant performance improvements across various metrics. Specifically,
CompSLOT enhances compositional generalization ability, as evidenced by higher Hn and improved
R (most significant gain of Hn for ADAM + adapter from 57.793 to 61.581), which in turn drives better
overall CL performance (AA for ADAM + adapter improves from 45.75 to 50.15). CompSLOT’s
ability to strengthen compositional generalization appears to be the key factor behind these gains,
enabling the model to better handle complex concepts and retain knowledge more effectively across
tasks.

ImageNet-R It can be seen that CompSLOT can generally improve the performance of CL methods
with FMs in Table[9] The improvement is likely due to the observation that the learned slot attention
can discover hidden concept sharing between images, as evidenced by the visualization analysis
in section [K] Rehearsal methods (e.g., FOSTER* and MEMO¥*) achieve better performance in
terms of AA and CA, comparing with rehearsal-free methods. This is because rehearsal methods
can access old samples, thus, CompSLOT’s primitive-logit alignment loss can provide more pair-
wise contrastive self-supervision on concept sharing, which enhances the model’s compositional
generalization performance.

J RESULTS ON OTHER BACKBONES

This section is to answer: Do better vision foundation models contribute to better concept
learning and continual learning performance? We investigate the effect of model scaling via
increasing the size and depth of the ViT architecture (e.g., ViT-L16 vs ViT-B16), and the effect of
pretraining strategy via leveraging greater pretraining objectives, such as DINO (Oquab et al., [2024)
(e.g., ViT-B16-DINO) and SAM (Kirillov et al., 2023) (e.g., ViT-B16-SAM), which have been shown
to enhance semantic understanding, especially on segmentation and concept-rich tasks. We conduct
experiments along the two key dimensions above and report the results in Table[T0] The results show
that ViT-L16 with larger model sizes demonstrates stronger representation modeling capabilities
compared to ViT-B16, thus further boosting the significance of our CompSLOT. ViT-B16-DINO and
ViT-B16-SAM with greater pre-training objectives exhibit better compositionality in decomposing
concepts and continual learning performance, as reflected by higher Hn values.

K VISUALIZATION

This section investigates how the CompSLOT framework enhances continual learning performance
by first demonstrating through slot attention mask visualizations across various benchmarks that
CompSLOT successfully identifies important concepts (primitives) in an unsupervised manner, and
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Table 8: Main result on 10-10 tasks COBJ. We report the average accuracy after training the last task
(AA), the cumulative average accuracy for each task (CA), and the final forgetting (FF). For CFST,
we report the Harmonic mean of compositional testing (Hn) and the ratio of Hn and reference testing
(R). Methods with CompSLOT are denoted with a postfix “{”. Methods rehearse old samples are

denoted with a postfix “*”. We report results over 3 trials with (mean £ 95% confidence interval).

Continual CEST

Methods AA (%) T CA (%) 1 FF (%) | Hn (%) 1 R1

CPrompt 42.015+0.118 51.172+9.718 22.575+6.479 58.961+0.409 0.878
CPrompt 1 45.5201+-0.421 52.565+0.931 19.575+1.029 59.880+2.032 0.880
ADAM + adapter 45.750+0.346  52.800+6.121 12.1754+1.836 57.793+1.388 0.914
ADAM + adapter T | 50.150+0.249 57.767+5.461 11.050+1.802 61.581+1.399 0.938
RanPAC 59.285+2.377 66.203+4.186  7.4504+0.624  60.909+3.240 0.882
RanPAC 61.9501+0.527 67.367+4.075  7.8754+0.104  62.317+2.447 0.889
CoFiMA 57.3304+0.139 64.252+5.763 17.375+0.035 66.998+2.112 0.890
CoFiMA 7 57.435+0.101 63.4624+0.599 16.650+0.207 66.232+2.497 0.898
FOSTER* 47.800+£0.542 53.741+0.290 10.5754+0.759 62.750+0.337 0.852
FOSTER* 50.980+0.225 59.7354+0.556 14.5254+0.240 63.695+0.312 0.908
DER* 55.815+0.714 64.9054+3.342  23.650+2.425 68.558+0.189 0.844
DER* ¢ 56.813+1.808 66.3931+3.904 25.800+4.534 68.586+0.441 0.872

Table 9: Main result on 20-20 tasks ImageNet-R. We report the average accuracy after training the
last task (AA), the cumulative average accuracy for each task (CA), and the final forgetting (FF).
Methods with CompSLOT are denoted with a postfix “t”. Methods rehearse old samples are denoted
with a postfix “*”. The data for methods with citations is reported from the original paper. We report

results over 3 trials with (mean + 95% confidence interval).

Methods |  AA (%) 7T CA (%) 1 FF (%) |

CPrompt (Gao et al.|[2024) | 74.790+0.280 81.460+0.930 7.340+0.650
CPrompt | 75.2254+0.270 79.964+1.078 6.989+1.126
RanPAC 78.375£0.062  82.519+0.839  4.856+0.367
RanPAC f 78.550+0.346  82.900+£0.747 5.294+0.039
CoFIMA 80.025+0.146  83.927+1.421 7.614+£0.142
CoFiMA 80.250+0.016 84.118+1.017  7.022+0.005
FOSTER* 76.001+0.243  80.974£1.083  2.25940.526
FOSTER* 78.950+0.201  82.392+1.308 2.608+0.720
MEMO* 64.200+1.109  72.1184+0.074  4.96710.074
MEMO#* 65.200+0.249 72.995+1.251 5.344+0.256

then by presenting similarity matrix visualizations of ground truth concepts/primitives/features/logits
for specific algorithms to illustrate the regularization effects that improve model compositional
generalization and stability during continual learning. We attribute this robustness to “concept
rehearsal”: although class labels change, many visual concepts are shared and recur across tasks,
helping stabilize the primitive selection weights. This is also discussed in|Lai et al.|(2024).

Concept learning We evaluate CompSLOT on CGQA, COBJ, ImageNet-R, and CIFAR100 bench-
marks by randomly selecting three representative images from each class. The extracted slot masks
are visualized in Figures 8] [O] [I0] and[TT] respectively.

On CGQA, the weighted slot masks (using weights w,,) effectively localize class-relevant concepts
in each image. For instance, in the Door Plate class, slot 7 consistently captures the Plate concept
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Table 10: Varying backbone on 10-10 tasks CGQA. We report the average accuracy after training the
last task (AA), the cumulative average accuracy for each task (CA), and the final forgetting (FF). The
candidate CL algorithm is RanPAC. Methods with CompSLOT are denoted with a postfix “}”

Backbone | AA(%)t CA (%)t FF(%)) Hnt
ViT-B16 65.81 75.50 1051  78.86
VIiT-B16 66.75 76.58 1021 79.81
ViT-B16-DINO | 66.58 76.62 1024  80.39
ViT-B16-SAM t 67.30 71.76 9.67  81.22
ViT-L16 { 67.11 77.54 9.85 80.82
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Figure 8: Visualization of learned slots on 30 randomly sampled images (3 images for each class
in the first task of the 10-10 tasks) on CGQA. Top row: Primitives (weighted-sum of slot masks
weighted by w,,) for 30 images. Bottom 3 rows: Three examples of images from classes (Door Plate),
(Door Grass), and (Chair Sign) after being trained on the first task (T0) and on the second task (T1).
From left to right: w,, origin image, primitive (weighted-sum of slot masks), and 10 slot masks,
respectively. Takeaway: CompSLOT successfully extracts primitives without any concept label.
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while slot 8 focuses on the Door, demonstrating precise concept disentanglement. Notably, the
learned primitives maintain visual consistency across tasks, that the primitive representation after
task TO closely resembles that after T1, confirming the stability of CompSLOT. This phenomenon
was similarly observed in Figure 2]

The more challenging COBJ benchmark presents similar results. For an image in the Other-shoes
Person class, slot 5 accurately identifies the Other-shoes concept while slot 7 correctly localizes the
Person, even in this complex compositional setting.

When examining ImageNet-R and CIFAR100 with K = 5 slots, we observe that the primary concept
corresponding to each class label is reliably identified, and the representations maintain discriminative
power while preserving semantic consistency. However, the concept sharing is visually rare between
classes, as demonstrated by the distinct slot activation patterns for different classes.
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Figure 9: Visualization of learned slots on 30 randomly sampled images (3 images for each class
in the first task of the 10-10 tasks) on COBJ. Top row: Primitives (weighted-sum of slot masks
weighted by w,,) for 30 images. Bottom 3 rows: Three examples of images from classes (Door Plate),
(Door Grass), and (Chair Sign) after being trained on the first task (TO) and on the second task (T1).
From left to right: w,, origin image, primitive (weighted-sum of slot masks), and 10 slot masks,
respectively. Takeaway: CompSLOT successfully extracts primitives without any concept label.
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Figure 10: Visualization of learned slots on 60 randomly sampled images (3 images for each class
in the first task of the 20-20 tasks) on ImageNet-R. Top row: Primitives (weighted-sum of slot
masks weighted by w,,) for 60 images. Bottom row: Two examples of images after being trained
on the first task (T0) and on the second task (T1). From left to right: w,,, origin image, primitive
(weighted-sum of slot masks), and 5 slot masks, respectively. Takeaway: CompSLOT successfully
extracts primitives without any concept label, and the concept sharing is rare between classes.

T

o

Primitive-logit alignment We conduct in-depth visualization analysis to understand the perfor-
mance improvement of CompSLOT on COBJ, using ADAM + adapter as a representative example.
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Figure 11: Visualization of learned slots on 30 randomly sampled images (3 images for each class
in the first task of the 10-10 tasks) on CIFAR100. Top row: Primitives (weighted-sum of slot
masks weighted by wj,) for 30 images. Bottom row: Two examples of images after being trained
on the first task (T0) and on the second task (T1). From left to right: w,, origin image, primitive
(weighted-sum of slot masks), and 5 slot masks, respectively. Takeaway: CompSLOT successfully
extracts primitives without any concept label, and the concept sharing is rare between classes.
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Figure 12: Visualization of a) concept; b) primitive; c) feature; d) logit cosine similarity matrices
on sampled images (three images for each class in the first task TO and second task T1 of the 10-10
tasks) on COBJ. a) Left: Multi-hot concept cosine similarity matrix of 30 images for TO; right:
Multi-hot concept cosine similarity of 60 images (from the first-2 tasks TO and T1). b) The primitive
cosine similarity of the corresponding images. We use the learned pair-wise primitive similarity to
mimic the statistics of the pair-wise concept similarity and regularize logits. c) Left: The learned
feature cosine similarity matrix of 30 images in TO for ADAM + adapter; right: The learned feature
cosine similarity matrix of 30 images in TO for ADAM + adapter t. d) The logit cosine similarity of
the corresponding images as in c). Takeaway: The learned primitive successfully mimics concept
statistics without concept supervision, and our L, successfully distills pair-wise primitive similarity
into logits and affects the feature representations (as demonstrated with the regions marked with red
box), while ADAM + adapter does not capture this concept sharing statistic.

We visualize 30 images for TO and 60 images for T1 (10 old classes and 10 new classes). Figure [12]
presents the cosine similarity matrix visualizations including: (a) Ground truth multi-hot concepts;
(b) Extracted primitives; (c) Feature representations; (d) Final logits. The red boxes highlight two
pairs of classes with concept sharing: (Other-shoes Person) and (Other-shoes Person Sneaker), as
well as (Person Sneaker) and (Other-shoes Person Sneaker). CompSLOT successfully captures these
shared concepts in the primitive representations (Figure [I2p) and effectively distills them into the
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Figure 13: Visualization of a) images related to red box; b) primitive; c) feature; d) logit cosine
similarity matrices on sampled images (three images for each class in the first task TO and second task
T1 of the 20-20 tasks) on ImageNet-R. a) Six images from two classes in TO which corresponding
to the red box. b) The primitive cosine similarity of the corresponding images. c) Left: The
learned feature cosine similarity matrix of 60 images in TO for FOSTER; right: The learned feature
cosine similarity matrix of 60 images in TO for FOSTER }. d) The logit cosine similarity of the
corresponding images as in ¢). Takeaway: The learned primitives show that CompSLOT discovers
hidden relationships based on concept as demonstrated with the regions marked with red box, while
FOSTER does not capture this concept sharing statistic.

final logits (Figure [T2[d). Notably, this alignment process also induces regularization at the feature
level, as evidenced by the more coherent feature representations shown in Figure [[2k.

We further validate CompSLOT on ImageNet-R, a standard CL benchmark without ground truth
concept labels. Figure [T3]shows the case performing CompSLOT on FOSTER. Our slot attention
mechanism identifies shared concepts across six images (highlighted in red boxes), particularly
revealing a consistent “Fabric” concept (Figure[I3p). This automatic discovery of hidden relationships
demonstrates CompSLOT’s ability to generalize concept learning across different benchmarks.

The consistent performance improvements reported in Sections 5 and[[ validate that CompSLOT effec-
tively captures meaningful semantic relationships, leading to better generalization and compositional
learning capabilities.

L ADDITIONAL ABLATION STUDIES

To clearly substantiate the contribution of slot attention in combination with primitive selection, we
conduct an ablation study where we remove knowledge distillation and instead directly use the learned
primitive representations with a cosine similarity classifier for continual tasks, as in SimpleCIL (Zhoul
[2025). We also integrate this strategy into RanPAC and the results are shown in Table [11]
This naive approach suffers from severe forgetting, confirming that primitive representations are
insufficient for long-term retention when learning new tasks. In contrast, our alignment loss distills
pair-wise relational information (i.e., a compact, low-dimensional encoding of concept combinations)
rather than high-dimensional raw representations. This enables methods equipped with CompSLOT
to maintain stable performance while accumulating higher accuracies over time, demonstrating the
efficacy of CompSLOT in mitigating catastrophic forgetting.

M CASE STUDIES: THE EFFECT OF COMPSLOT ON FINETUNING
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Table 11: Additional ablation results on CGQA.

Methods | L, La | AA(%) 1 FF(%) .
SimpleCIL | X X 36.16 13.9
SimpleCIL | v X 24.71 22.93
RanPAC | X X 65.81 10.51
RanPAC | v X 41.59 11.87

Table 12: Results on Finetuning on 10-10 CGQA. We report the average with + 95% confidence
interval.

Methods \ AA (%) 1 CA (%) t \ FF (%) |

Finetuning 2991 £0.84 49.04 +0.39 | 58.36 = 1.02

Finetuning ¥ | 33.48 £0.04 52.43 + 0.65 | 50.01 + 2.13
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Figure 14: Visualization of the parameter numbers for methods with and without the slot module.
Note that the data are collected according to the default implementation in the PILOT
platform and after the training of the last 10-way CGQA continual task. Takeaway: CompSLOT
requires a ViT backbone that is already in any model-based continual learner with a foundation model,
thus, it is light-weight and free to be applied.

In this section, we answer that question: Does CompSLOT itself benefit continual learners
without associating with other continual learning algorithms? We perform CompSLOT on a
naive continual learner finetuning, which uses a frozen feature extractor backbone (ViT-B/16) and a
extendable classifier. The results are shown in Table[T2] We observe that CompSLOT successfully
achieves higher AA with smaller FF. This observation indicates that CompSLOT itself, as a plug-in,
benefits the continual learner without the need to combine other mechanisms.

N ALGORITHM EFFICIENCY ANALYSIS

Parameter overhead We evaluate the parameter overhead introduced by our slot attention module.
As this module requires a pretrained ViT as its semantic feature extractor, which is a standard
component in all continual learning of foundation models frameworks, the additional trainable
parameters are negligible compared to the total model size, as illustrated in Figure[T4] This makes
our CompSLOT computationally efficient while delivering significant performance benefits.

Computation overhead In Table[I3] we study the computational overhead introduced by the slot
attention mechanism and primitive extraction. As an example, we choose FOSTER as a representative
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Table 13: Computational overhead (h) on CGQA.

Slot module FOSTER FOSTER t
55 9.1 10.1

baseline, since it achieves nearly top performance among others. We compare three cases: 1)
Continual training of just our slot module plugin, including both slot attention and primitive selection
components, without applying it to other continual learning algorithms; 2) Full continual training of
FOSTER; 3) Full continual learning of FOSTER with a pretrained slot module plugin (FOSTER 7).
We highlight that the slot module can be learned offline as a reusable component which only associated
with the benchmark and is independent of algorithms. Once trained, it serves as a pretrained plugin
that can be directly loaded for any continual learning algorithm with minimal additional overhead.
It only requires adding alignment loss L, for logit regularization and spending an additional 10%
of total training time for FOSTER from 9.1h to 10.1h. This design is particularly beneficial when
running multiple continual learning algorithms on the same data distribution.

Importantly, we conduct an ablation study (Section 5), where we deliberately increase the parameter
count of baseline CL methods to match our CompSLOT-enhanced models. The results demonstrate
that the performance gains stem not from increased capacity, but from CompSLOT’s improved com-
positional generalization capabilities. This confirms that CompSLOT provides genuine algorithmic
advantages rather than simply benefiting from more parameters.

O USE OF LARGE LANGUAGE MODELS

In the process of preparing this paper, we employed LLMs to polish the writing of the paper. The
assistance provided by LLMs was mainly focused on improving the clarity, coherence, and overall
quality of the language used in the manuscript. We input sections of the paper into the LLM and
requested it to suggest rephrasings, correct grammar and spelling errors, and enhance the readability of
the text. It is important to note that LLMs did not play a significant role in the research ideation. The
core ideas, research questions, experimental designs, and methodological choices were independently
conceived and developed by the human authors. The LLM was not involved in formulating the
hypotheses, determining the research direction, or making decisions regarding the data collection and
analysis methods.
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