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Abstract

Safe reinforcement learning (RL) studies problems where an intelligent agent
has to not only maximize reward but also avoid exploring unsafe areas. In this
study, we propose CUP, a novel policy optimization method based on Constrained
Update Projection framework that enjoys rigorous safety guarantee. Central to
our CUP development is the newly proposed surrogate functions along with the
performance bound. Compared to previous safe reinforcement learning meth-
ods, CUP enjoys the benefits of 1) CUP generalizes the surrogate functions to
generalized advantage estimator (GAE), leading to strong empirical performance.
2) CUP unifies performance bounds, providing a better understanding and in-
terpretability for some existing algorithms; 3) CUP provides a non-convex im-
plementation via only first-order optimizers, which does not require any strong
approximation on the convexity of the objectives. To validate our CUP method,
we compared CUP against a comprehensive list of safe RL baselines on a wide
range of tasks. Experiments show the effectiveness of CUP both in terms of reward
and safety constraint satisfaction. We have opened the source code of CUP at
https://github.com/zmsn-2077/CUP-safe-rl.

1 Introduction

Reinforcement learning (RL) [Sutton and Barto, 1998] has achieved significant successes in many
fields (e.g., [Mnih et al., 2015; Silver et al., 2017; OpenAl, 2019; Afsar et al., 2021; Yang et al.,
2022]). However, most RL algorithms improve the performance under the assumption that an agent
is free to explore any behaviors. In real-world applications, only considering return maximization
is not enough, and we also need to consider safe behaviors. For example, a robot agent should
avoid playing actions that irrevocably harm its hardware, and a recommender system should avoid
presenting offending items to users. Thus, it is crucial to consider safe exploration for RL, which is
usually formulated as constrained Markov decision processes (CMDP) [Altman, 1999].

It is challenging to solve CMDP since traditional approaches (e.g., Q-learning [Watkins, 1989] &
policy gradient [Williams, 1992]) usually violate the safe exploration constraints, which is undesirable
for safe RL. Recently, Achiam et al. [2017]; Yang et al. [2020]; Bharadhwaj et al. [2021] suggest to
use some surrogate functions to replace the objective and constraints. However, their implementations
involve some convex approximations to the non-convex objective and safe constraints, which leads to
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many error sources and troubles. Concretely, Achiam et al. [2017]; Yang et al. [2020]; Bharadhwaj et
al. [2021] approximate the non-convex objective (or constraints) with first-order or second Taylor
expansion, but their implementations still lack a theory to show the error difference between the
original objective (or constraints) and its convex approximations. Besides, their approaches involve
the inverse of a high-dimension inverse Fisher information matrix, which causes their algorithms
require a costly computation for each update when solving high-dimensional RL problems.

To address the above problems, we propose the constrained update projection (CUP) algorithm with
a theoretical safety guarantee. We derive the CUP bases on the newly proposed surrogate functions
with respect to objectives and safety constraints, and provide a practical implementation of CUP that
does not depend on any convex approximation to adapt high-dimensional safe RL.

Concretely, in Section 3, Theorem 1 shows generalized difference bounds between two arbitrary
policies for the objective and constraints. Those bounds provide principled approximations to the
objective and constraints, which are theoretical foundations for us to use those bounds as surrogate
functions to replace objective and constraints to design algorithms. Although using difference bounds
as surrogate functions to replace the objective has appeared in previous works (e.g., [Schulman et
al., 2015; Achiam et al., 2017]), Theorem 1 refines those bounds (or surrogate functions) at least
two aspects: (i) Firstly, our rigorous theoretical analysis shows a bound with respect to generalized
advantage estimator (GAE) [Schulman et al., 2016]. GAE significantly reduces variance empirically
while maintaining a tolerable level of bias, the proposed bound involves GAE is one of the critical
steps for us to design efficient algorithms. (ii) Our new bounds unify the classic result of CPO
Achiam et al. [2017], i.e., the classic performance bound of CPO is a special case of our bounds.
Although existing work (e.g., Zhang et al. [2020]; Kang ef al. [2021]) has applied the key idea of
CPO with GAE to solve safe RL problems, their approaches are all empirical and lack a theoretical
analysis. Thus, the proposed newly bound partially explains the effectiveness of the above safe
RL algorithms. Finally, we should emphasize that although GAE has been empirically applied to
extensive reinforcement learning tasks, this work is the first to show a rigorous theoretical analysis to
extend the surrogate functions with respect to GAE.

In Section 4, we provide the necessary details of the proposed CUP. The CUP contains two steps: it
first performs a policy improvement, which may produce a temporary policy violates the constraint.
Then in the second step, CUP projects the policy back onto the safe region to reconcile the constraint
violation. Theorem 2 shows the worst-case performance degradation guarantee and approximate
satisfaction of safety constraints of CUP, result shows that with a relatively small parameter that
controls the penalty of the distance between the old policy and current policy, CUP shares a desirable
toleration for both policy improvements and safety constraints. Furthermore, we provide a practical
implementation of sample-based CUP. This implementation allows us to use deep neural networks to
train a model, which is an efficient iteration without strongly convex approximation of the objective
or constraints (e.g., [Achiam et al., 2017; Yang et al., 2020]), and it optimizes the policy according
to the first-order optimizer. Finally, extensive high-dimensional experiments on continuous control
tasks show the effectiveness of CUP where the agent satisfies safe constraints.

2 Preliminaries

Reinforcement learning (RL) [Sutton and Barto, 1998] is often formulated as a Markov decision
process (MDP) [Puterman, 2014] that is a tuple M = (S, A, P, r, pg,v). Here S is state space,

A is action space. P(s'|s,a) is probability of state transition from s to s~ after playing a. r(-) :
S xS xA— R,and r(s'|s, a) denotes the reward that the agent observes when state transition from

sto s after it plays a. po(-) : S — [0,1] is the initial state distribution and € (0, 1).

A stationary parameterized policy 7g is a probability distribution defined on S X A, 7g(a|s) denotes
the probability of playing a in state s. We use Ilg to denote the set of all stationary policies, where
Mg = {mg : @ € RP}, and @ is a parameter needed to be learned. Let P, € RISI*ISI be a state
transition probability matrix, and their components are: P, [s,s'] = > . 4 mo(a|s)P(s']s,a) =:
P, (s/ |s), which denotes one-step state transformation probability from s to s by executing 7g.
Let 7 = {s¢, a4, 741 }t>0 ~ g be a trajectory generated by mg, where so ~ po(-), a; ~ ma(+|s¢),
Se1 ~ P(-|s¢,ap), and 7oy 1 = 7(s41]5¢, ar). We use Py, (s, = s |s) to denote the probability of
visiting the state s after ¢ time steps from the state s by executing mg. Due to the Markov property in



MDP, P, (s; = s |s) is (s, s )-th component of the matrix P%_, i.e., Pry(s; = s |s) = P _[s,5].
Finally, let d5° (s) = (1 — ) > 7' Pr, (st = s|so) be the stationary state distribution of the
Markov chain (starting at sg) induced by policy mg. We define d29 (s) = Eg () [d53, (5)] as the

discounted state visitation distribution on initial distribution pg(-).

The state value function of g is defined as Vi, (s) = Er,[> ;oo ¥'ri41]|s0 = s], where E,[-|]
denotes a conditional expectation on actions which are selected by mg. Its state-action value
function is Qry(s,a) = Eqp[> ;2 ¥'ri41]80 = 8, a0 = al, and advantage function is A, (s, a) =
Qe (5,a) — Vrg(s). The goal of reinforcement learning is to maximize J(7g) = By () [Virg (5)]-

2.1 Policy Gradient and Generalized Advantage Estimator (GAE)

Policy gradient [Williams, 1992; Sutton et al., 2000] is widely used to solve policy optimization,
which maximizes the expected total reward by repeatedly estimating the gradient g = VJ(7g).
Schulman et al. [2016] summarize several different related expressions for the policy gradient:

g=VJ(mg) =E Z\I/tVIOgWQ(at|st) , ()
t=0

where U, can be total discounted reward of the trajectory, value function, advantage function or
temporal difference (TD) error. As stated by Schulman et al. [2016], the choice ¥; = A(s;, a;) yields
almost the lowest possible variance, which is consistent with the theoretical analysis [Greensmith
et al., 2004; Wu et al., 2018]. Furthermore, Schulman et al. [2016] propose generalized advantage

estimator (GAE) A?AE(%’\) (8¢, az) to replace Wy: for any A € [0, 1],

o0

A?AE(’Y,A)(St’ at) — Z(’y)‘)gdt‘;é? 2)
£=0

where 6 = 1441 + YV (s¢41) — V(s¢) is TD error, and V() is an estimator of value function. GAE
is an efficient technique for data efficiency and reliable performance of reinforcement learning.

2.2 Safe Reinforcement Learning

Safe RL is often formulated as a constrained MDP (CMDP) M U C [Altman, 1999], which is
a standard MDP M augmented with an additional constraint set C. The set C = {(c¢;, b;)} 4,
where ¢; are cost functions: ¢; : S x A — R, and limits are b;, i = 1,-,m. The cost-return
is defined as: J(mg) = Er, [> 1007 ci(st,as)], then we define the feasible policy set Il¢ as:
IIe =N, {mg € Ilg and J(mg)<b;}. The goal of CMDP is to search the optimal policy :

. = arg max J(mg). 3)
mo Ellc
Furthermore, we define value functions, action-value functions, and advantage functions for the
auxiliary costs in analogy to V;,, Qr,, and A.,, with ¢, replacing r respectively, we denote them
as Vi, Qg and A%t For example, Vi (s) = Enx, [32,2) 7 ci(se, ar)|so = s]. Without loss of
generality, we will restrict our discussion to the case of one constraint with a cost function ¢ and
upper bound b. Finally, we extend the GAE with respect to auxiliary cost function c:

oo

ASETN (s0,a) = 3 (W06, 4)
=0

where ¢ = 7441 +vC(s411) — C(s¢) is TD error, and C(-) is an estimator of cost function c.

3 Generalized Policy Performance Difference Bounds

In this section, we show some generalized policy optimization performance bounds for J(mg) and
J¢(mg). The proposed bounds provide some new surrogate functions with respect to the objective and
cost function, which are theoretical foundations for us to design efficient algorithms to improve policy



performance and satisfy constraints. Before we present the new performance difference bounds, let
us revisit a classic performance difference from Kakade and Langford [2002],

J(ng) — J(’]TGI) = (1 — 7)71Es~d00 (-),a~me(:|5) |:A-n—9, (S, CL):| . (5)
Eq.(5) shows a difference between two arbitrary policies mg and 7, with different parameters € and
0. According to (5), we rewrite the policy optimization (3) as follows

T = arg max B g0 () oro()s) [Aﬂe, (s, a)] . (6)

mg€lle
However, Eq.(5) or (6) is very intractable for sampling-based policy optimization since it requires the

data comes from the (unknown) policy g that needed to be learned. In this section, we provide a
bound refines the result (5), which provide the sights for surrogate functions to solve problem (3).

3.1 Some Additional Notations

We use a bold lowercase letter to denote a vector, e.g., a = (a1, a2, - ,ay,), and its i-th element
afi] =: a;. Let p(-) : S — R be a function defined on S, 87 = r(s¢41|s¢, ar) + ’ytp(st_H) —(st)
is TD error with respect to ¢(-). For two arbitrary policies mg and 7y, we denote 97, ;(s) as the
expectation of TD error, and define Af (g, 7, ) as the difference between 67, () and 57r ,i(8):

5t~ Prg (-|5) o (at|st)
ay~mo(-|st) ap~m s (+|se)
se41~P(+]s¢,ar) o

)= | B A= | B (2 ).
stw,‘.e,'s

stp1~P(+|s¢,a¢)

Furthermore, we introduce two vectors 87 ,, AY (19, 7y ) € R!S!, and their components are:

e ,t?

o7 [ ] = 63:9,75(5)7 At (WG’WG/)[S] = Af(ﬂ'g,ﬂ‘e/,s). (7N

ot

Let matrix P$) = (1 — v)) e oY) PLEL, where A € [0,1]. It is similar to the normalized

T

discounted distribution d?9 (s), we extend it to A-version and denote it as dyy, (s):

d;\re(s) =Egynpo(y (1= Z st = slso)| ,

7( ) , the probability P )(st = $|sg) is the (s, s)-th component of the matrix product

where 7 =

(PSTJ) . Finally, we introduce a vector d, € RISl and its components are: d}}, [s] = d2, (s).

3.2 Main Results

Theorem 1 (Generalized Policy Performance Difference). For any function ¢() : S — R, for two
arbitrary policies mg and Ty, for any p, q € [1,00) such that % + % = 1, we define two error terms:

e )<w9 )= [, — A [, 18%, g, ®)

Ly (mo, mgr) = Eonay () [Af(w(a,w,s)i i (momg)| . ©

P 5
Then, the following bound with respect to policy performance difference J(mg) — J(my) holds:

Ly, (mg, mgr) < J(mg) — J(mgr) < Ll‘i’;(ﬂg,wel). (10)

Proof. See Appendix E. O

The bound (10) is well-defined, i.e., if 9 = 7y, all the three terms in Eq.(10) are zero identically.
From Eq.(9), we know the performance difference bound L7 (7rg, Ty ) (10) can be interpreted by

two distinct difference parts: (i) the first difference part, i.e., the expectation A (7g, 7y, s), which



is determined by the difference between TD errors of mg and - ; (ii) the second difference part,

i.e., the discounted distribution difference GZ ’;At) (mg, Ty ), which is determined by the gap between

the normalized discounted distribution of ﬂé and mg . Thus, the difference of both TD errors and
discounted distribution determine the policy difference J(mg) — J (g ).

The different choices of p and ¢ lead Eq.(10) to be different bounds. If p = 1, ¢ = oo, we denote
€rot = 1105, tllg = maxs,es Ba, g (lse),ser1i~P(-|se.a0) [|0F ], then, according to Lemma 2 (see

e,t
Appendix F.2), when p = 1, ¢ = oo, then error e;f”é’);) (mg, g ) is reduced to:

) YOS = 1) + 1) e,
bt (7070 ) pmr o S T gy ) Bty () 2D1v (e To)ls]

where Dy (my , mg)[s] is the total variational divergence between action distributions at state s, i.e.,

2Dy (ngr,m0)[s] = ) |mgr (als) — me(als)].
acA
Finally, let o = V”e" the left side of (10) in Theorem 1 implies a lower bound of performance
difference, which illustrates the worse case of approximation error, we present it in Proposition 1.
Proposition 1. For any two policies w9 and my:, let €} (mgr) =: sup,cy+ {e, ;1 ¢ = Va i} then

1
J(mo) = J(mg') 2 T—=Bonar () anmo(ls) ASECA) (5, a)
i /y 9/ ]

2SI = D) + D) e, (my)
(L= (1 =)

The refined bound (11) contains GAE technique that significantly reduces variance while maintaining
a tolerable level of bias empirically [Schulman et al., 2016], which implies using the bound (11) as
a surrogate function could improve performance potentially for practice. Although GAE has been
empirically applied to extensive reinforcement learning tasks, to the best of our knowledge, the result
(11) is the first to show a rigorous theoretical analysis to extend the surrogate functions to GAE.

Remark 1 (Unification of [Achiam et al., 2017]). If A — O, then the distribution d;\re, (+) is reduced
to dfr(;, () and the bound (11) is reduced to

1 Y
J(me) — J(mg) = ﬁESNdﬁg, (Va~ma(ls) | Amy (8,0) — 29 767‘7/9 (mg ) Drv (g, mo)[s] |
(12)
which matches the result of [Achiam et al., 2017, Corollary 1]. That is to say the proposed bound
(11) unifies the classic bound (12)

Dy (my,me)[s]|. (11)

Letp = V° , Theorem 1 implies an upper bound of cost function as presented in the next Proposition
e
2, we will use it to make guarantee for safe policy optimization.
Proposition 2. For any two policies wg and 7y, let ege (mgr) =: supsen+{€n, ¢ ¢ = Vi<, }, then
it o

1

Ti(me) = T (o) < T Baniy , ().ammo(ls) AN (s, 0)

7T9/,C

27 (YA(IS] = 1) + 1) €5, (mg')
1-3)(1 A

(s, a) according to the data sampled from Ty and the estimator (4).

DT\/(ﬂ'el,ﬂ'g)[S] . (13)

GAE(7y,\)

where we calculate A’Te/ e,

All above bound results (11) and (13) can be extended for a total variational divergence to KL-
divergence between policies, which are desirable for policy optimization.

Proposition 3. All the bounds in (11) and (13) hold if we make the following substitution:

1
Esvar () [Drv(mg,me)[s]] < \/QESN@ () [KL(mgr, o) [s]],
e e

where KL(-, -) is KL-divergence, and KL(my , mg)[s] = KL(mg (+|s), mo(:|9)).



4 CUP: Constrained Update Projection

It is challenging to implement CMDP (3) directly since it requires us to judge whether a proposed
policy 7 is in the feasible region II. According to the bounds in Proposition 1-3, we develop new
surrogate functions to replace the objective and constraints. We propose the CUP (constrained update
projection) algorithm that is a two-step approach contains performance improvement and projection.
Due to the limitation of space, we present all the details of the implementation in Appendix C and
Algorithm 1.

4.1 Algorithm

Step 1: Performance Improvement. According to Proposition 1 and Proposition 3, for an appropri-
ate coefficient o, we update policy as:

o

= arg max E MAGAE(% )(s7a)} - ak\/ESNd% () [KL(7e, , mo)[s]]
k

m+d mo€lly | snax, () L7y (als) "%

a~me, (-|s)

(14)

This step is a typical minimization-maximization (MM) algorithm [Hunter and Lange, 2004], it
includes return maximization and minimization the distance between old policy and new policy. the
expectation (14) by sample averages according to the trajectories collected by g, .

Step 2: Projection. According to Proposition 2 and Proposition 3, for an appropriate coefficient S,
we project the policy g, , 1 ONto the safe constraint set,
T2

T, = arg min D (7T9,7T9 ) s 8.t Crg (7, Br) < b, (15)

meEllg

where D(-, ) (e.g., KL divergence or {2-norm) measures distance between T, 1 and 7g,
T2

c 1
Cra, (70,8) = (R0 == Buar, aerotle [Arnie (50|48 B, () KL (o, o) 5]

1

Until now, the particular choice of surrogate function is heuristically motivated, we show the worst-
case performance degradation guarantee and approximate satisfaction of safety constraints of CUP in
Theorem 2, and its proof is shown in Appendix G.

Theorem 2. Let xj = Eswd%k(.)[KL(W(;NWOH%)[S]], L= % If mg,, and Ty, ., are
generated according to (14)-(15), then the lower bound on policy improvement, and upper bound on
constraint violation are

Lok 2Xk v

1— fy ”9k+1

LBrv/2Xk c

1— ﬁ/ Tk 1

J(W9k+1) - J(ﬂ-ek) > = (ﬂ-ek)’ JC(W9k+1) <b+ (ﬂ-ak)'

Remark 2 (Asymptotic Safety Guarantee). Let ay — 0, B — 0 as k — oo, Theorem 2 implies a
monotonic policy improvement with an asymptotic safety guarantee.

4.2 Practical Implementation

Now, we present our sample-based implementation for CUP (14)-(15). Our main idea is to estimate
the objective and constraints in (14)-(15) with samples collected by current policy 7g, , then solving
its optimization problem via first-order optimizer.

Let {(s¢, @z, Te41, Ce1) iy ~ g, , we denote the empirical KL-divergence with respect to g and
Ty as:

DKL (mo, mg) L(me(atlst), mr (at|st)).

uMﬂ



We update performance improvement (14) step as follows,

T
1 7r9(at|st) ~ ~
= arg ma, — Z — Ay —agn/ D )
Moy = 418 T8, {T — o, (ai|st) ¢~ ary/ Dict.(me,,mo) o

GAE(W A)(

where Ay is an estimator of A% S, a).

Then we update the projection step by replacing the distance D by KL-divergence, the next Theorem
3 (for its proof, see Appendix C.2) provides a fundamental way for us to solve projection step (15).

Theorem 3. The constrained problem (40) is equivalent to the following primal-dual problem:

max min {D (7r9, ﬂ'ngr%) +v (Omak (79, 8) — b) } .

v>0 mg€llg
According to Theorem 3, we solve the constraint problem (15) by the following primal-dual approach,

(T6,1s Vi1) = arg min max {DKL(T"GH_% ,mg) + vC(me, wek)}

where C(mg, g, ) = JC + + 25 - L ﬂe(a(;tllb;t))AC+ﬂk\/f)KL(7TGk>7r9)_b7 JCnd Af are

estimators for cost-return and cost-advantage.

Finally, let

L. (We,ﬂek,ek-%, V) =: ﬁKL(W0k+%7W0) +vC(mg,m,), (16)
we update the parameters (0.1, x+1) as follows,
0 4
01 0 —npLe (mo.m0, 0 V) | a”
9 .
— 7‘6 ( ) a0 1, )‘ ) 18
Vk41 {VIH-U&/ c\To: o Vrr sV ) o g N (18)

where 1 > 0 is step-size, {-} denotes the positive part, i.e., if x < 0, {z}; = 0, else {z}, = x.
We have shown all the details of the implementation in Algorithm 1.

5 Related Work

Due to the limitation of space, for more discussions and comparisons, see Appendix B and Table 2.

5.1 Local Policy Search and Lagrangian Approach

A direct way to solve CMDP (3) is to apply local policy search [Peters and Schaal, 2008; Pirotta et
al., 2013] over the policy space Il¢, i.e.,

MOy, = argwrgleaﬁ{e J(mg), s.t. J¢(mg) < b, and D(mg, 7, ) < 0, (19)
where 4 is a positive scalar, D(+, -) is some distance measure. For practice, the local policy search (19)
is challenging to implement because it requires evaluation of the constraint function c to determine
whether a proposed point 7 is feasible [Zhang et al., 2020]. Besides, Li and Belta [2019]; Cheng et
al. [2019]; Liu et al. [2020] provide a local policy search via the barrier function. The key idea of the
proposed CUP is parallel to Barrier functions. When updating policy according to samples, local
policy search (19) requires off-policy evaluation [Achiam et al., 2017], which is very challenging for
high-dimension control problem [Duan et al., 2016; Yang et al., 2018, 2021a].

A way to solve CMDP (3) is Lagrangian approach that is also known as primal-dual problem:
o Ax) = i J —A(JC -0)}. 20
(™ Av) = argmin max {J(mg) — A(J(7p) — )} (20)

Although extensive canonical algorithms are proposed to solve problem (20), e.g., [Liang et al., 2018;
Tessler et al., 2019; Paternain et al., 2019; Le et al., 2019; Russel et al., 2020; Satija et al., 2020;



Chen et al., 2021], the policy updated by Lagrangian approach may be infeasible w.r.t. CMDP (3).
This is hazardous in reinforcement learning when one needs to execute the intermediate policy (which
may be unsafe) during training [Chow et al., 2018].

Constrained Policy Optimization (CPO). Recently, Achiam et al. [2017] suggest to replace the
cost constraint with a surrogate cost function which evaluates the constraint J¢(7g) according to
the samples collected from the current policy 7y, , see Eq.(21)-(23). For a given policy 7y, , CPO
[Achiam et al., 2017] updates new policy g, , as follows:

MOy — AIg Wr;lgﬁie Eswdﬁ%k (-),a~me(+|s) |:A7rek (57 a)} (21)
c 1 c

s.t. J (ng) + ﬁEswdf‘%k (),a~me(-]3) |:A7T9k (s,a)] S b, (22)

DKL(FQ, 7T9k) = Eswdﬁ%k ) [KL(ﬂ'g, ng)[sﬂ < é. (23)

Existing recent works (e.g., [Achiam et al., 2017; Vuong et al., 2019; Yang et al., 2020; Han et
al., 2020; Bisi et al., 2020; Bharadhwaj et al., 2021]) try to find some convex approximations to
replace the term Ar, (s,a) and Dxy(mg, g, ) in Eq.(24)-(26). Such first-order and second-order
approximations turn a non-convex problem (24)-(26) to be a convex problem, it seems to make a
simple solution, but this approach results in many error sources and troubles in practice. Firstly, it
still lacks a theory analysis to show the difference between the non-convex problem (24)-(26) and its
convex approximation. Policy optimization is a typical non-convex problem [Yang et al., 2021b];
its convex approximation may introduce some error for its original issue. Secondly, CPO updates
parameters according to conjugate gradient [Siili and Mayers, 2003], and its solution involves the
inverse Fisher information matrix, which requires expensive computation for each update.

Instead of using a convex approximation for the objective function, the proposed CUP algorithm
improves CPO and PCPO at least two aspects. Firstly, the CUP directly optimizes the surrogate
objective function via the first-order method, and it does not depend on any convex approximation.
Thus, the CUP effectively avoids the expensive computation for the inverse Fisher information matrix.
Secondly, CUP extends the surrogate objective function to GAE. Although Zhang et al. [2020]
has used the GAE technique in experiments, to the best of our knowledge, it still lacks a rigorous
theoretical analysis involved GAE before we propose CUP.

6 Experiment

In this section, we aim to answer the following three issues:

* Does CUP satisfy the safety constraints in different environments? Does CUP performs well
with different cost limits?

* How does CUP compare to the state-of-the-art safe RL algorithms?
* Does CUP play a sensibility during the hyper-parameters in the tuning processing?

We train different robotic agents using five MuJoCo physical simulators [Todorov et al., 2012] which
are open by OpenAl Gym API [Brockman et al., 2016], and Safety Gym [Ray ef al., 2019]. For
more details, see Appendix H.2. Baselines includes CPO [Achiam et al., 2017], PCPO [Yang et al.,
2020], TRPO Lagrangian (TRPO-L), PPO Lagrangian (PPO-L) and FOCOPS [Zhang et al., 2020].
TRPO-L and PPO-L are improved by [Chow ef al., 2018; Ray et al., 2019], which are based on TRPO
[Schulman et al., 2015] and PPO [Schulman et al., 2017]. These two algorithms use the Lagrangian
method [Bertsekas, 1997], which applies adaptive penalty coefficients to satisfy the constraint.

6.1 Evaluation CUP and Comparison Analysis

We have shown the Learning curves for CUP, and other baselines in Figure 1-2, and Table 1 sum-
marizes the performance of all algorithms. Results show that CUP quickly stabilizes the constraint
return around the limit value while converging the objective return to higher values faster. In most
cases, the traces of constraint from CUP almost coincide with the dashed black line of the limit. By
contrast, the baseline algorithms frequently suffer from over or under the correction.
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Figure 1: Comparison of CUP to baseline algorithms over 10 seeds on Mujoco.
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Figure 2: Comparison of CUP to to baseline algorithms over 3 seeds on Satety-Gym.

From Figure 1, we know initial policies of the baseline algorithms are not guaranteed to be feasible,
such as in Swimmer-v3, while CUP performs the best and keeps safety learning in Swimmer-v3 tasks.
In the HumanoidCircle task, all the algorithms learn steadily to obtain a safe policy, except PPO-L.
Additionally, we observed that CUP brings the policy back to the feasible range faster than other
baselines in the HumanoidCircle task. In the Ant-v3 task, only the FOCOPS and the proposed CUP
learn safely, and both CPO and TRPO-L violate the safety constraints significantly. Besides, although
FOCOPS and CUP converge to a safe policy, CUP obtains a better reward performance than FOCOPS
in the Ant-v3 task. The result of Figure 2 is relatively complex, the initial policies of the CPO and
PCPO are not guaranteed to be feasible on both Safexp-PointGoall-v0 and Safexp-PointButton1-vO0.
We think it is not accidental, but it partially provides corroboration of the previous discussions in
Appendix B. Both CPO and PCPO use first-order and second-order approximation to approximate a
non-convex problem as a convex problem, which inevitably produces a significant deviation from the
original RL problem, and it is more serious in large-scale and complex control systems.

From Table 1, we know although PPO-L achieves a reward of 35.58 & 5.68 outperforms CUP in
Swimmer-v3, PPO-L obtains a cost of 54.91 £ 3.93 that violates the cost limit of 24.5 significantly,
which implies PPO-L learns a dangerous policy under this setting. On the other hand, Figure 1
has shown that CUP generally gains higher returns than different baselines while enforcing the
cost constraint. Mainly, CUP achieves a reward performance of 2025.56 & 122.35 that significantly
outperforms all the baseline algorithms. Additionally, after equal iterations, CUP performs a greater
speed of stabilizing the constraint return around the limit value and is quicker to find feasible policies
to gain a more significant objective return.

6.2 Sensitivity Analysis for Hyper-Parameters Tuning

Hyper-parameters tuning is necessary to achieve efficient policy improvement and enforce constraints.
We investigate the performance with respect to the parameters: v, step-size «, and cost limit b. From
Figure 3 (a), we know if the estimated cost under the target threshold b, then v keeps calm, which
implies v is not activated. Such an empirical phenomenon gives significant expression to the Ant-v3,



Environment CPO TRPO-L PPO-L PCPO FOCOPS cup
Ant-v3 Return 1030.17 £ 8.15 | 480.86 +161.05 | 1012.02 £17.26 | 90.83 & 17.66 1662.53 £+ 17.40 1743.66 £ 40.5
cost limit: 103 Constraint | 120.76 4 4.80 131.07 £ 67.9 112.45 4 15.48 174.80 4 5.53 101.31 £ 0.41 99.11 £ 0.93
Hopper-v3 Return 875.89 £285.17 | 1025.49 £ 10.68 | 1010.2 £61.48 | 214.90 £ 101.22 | 1687.72 £ 24.38 | 2025.56 £ 122.35
cost limit: 83 Constraint 76.6 £10.62 40.36 £4.75 83.28 £ 31.19 36.63 £ 12.54 102.3 £ 1.455 79.98 £ 2.306
Swimmer-v3 Return 18.77 £ 6.56 27.35 £10.07 35.58 £5.68 37.73 £ 3.56 28.15£4.30 33.38 £0.54
cost limit: 24.5  Constraint 42.07 £ 3.31 49.58 £ 7.46 54.91 £ 3.93 74.39 +22.71 26.54 +4.16 23.31 £ 0.052
Humanoid-v3 Return 326.95 £16.00 | 307.71 £24.71 322,11 £25.54 | 962.13 £57.94 542.5 £4.76 1066.83 £ 266.12
cost limit: 20.0  Constraint 26.13 £2.13 18.22 + 3.04 22.94 £4.54 48.66 £ 3.52 20.04 £0.19 19.91 £ 0.36
Humanoid-Circle Return 237.54+£23.20 | 384.45+£47.66 | 243.35+£37.90 | 525.23 £ 48.32 713.04 £9.25 768.65 £ 63.70
cost limit: 50.0 ~ Constraint 43.64 +1.91 53.77£1.48 41.17£3.98 50.80 £4.57 47.73 £0.64 48.23 £0.65

Table 1: Average results for baseline algorithms and CUP over 10 seeds the last 500 iterations.
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Figure 3: Sensitivity analysis for hyper-parameters tuning with respect to v/, o and cost limit.

Humanoid-v3, and Hopper-v3 environments. While if the estimated cost exceeds the target threshold
b, v will be activated, which requires the agent to play a policy on the safe region. Those empirical
results are consistent with the update rule of v: vy, = {v + n(JS — b)}, which implies the
projection of CUP plays an important role for the agent to learn a safe policy. Additionally, Figure 3
(a) provides a visualization way to show the difficulty of different tasks, where the task actives much
quantification of v, such a task is more challenging to obtain a safe policy. Furthermore, Figure 3 (b)
shows that the performance of CUP is still very stable for different settings of «, and the constraint
value of CUP also still fluctuates around the target value. The different value achieved by CUP in
different setting « is affected by the simulated environment and constraint thresholds, which are
easy to control. Finally, Figure 3 (c) shows that CUP learns safe policies stably under the cost limit
thresholds. We compare policy performance and cost under different cost limit settings. For example,
in the Swimmer-v3, we set cost limit b among {10, 15, 20, 25, 30}. Different cost limit setting implies
different difficulty for learning, results show that CUP is scalable to various complex tasks, which
means CUP is robust to different cost limit settings for various safe RL tasks.

7 Conclusion

This paper proposes the CUP algorithm with a theoretical safety guarantee. We derive the CUP based
on the newly proposed surrogate functions with respect to objectives and constraints and provide a
practical implementation of CUP that does not depend on any convex approximation. We compared
CUP against a comprehensive list of safe RL baselines on a wide range of tasks, which shows the
effectiveness of CUP where the agent satisfies safe constraints.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section ??.

* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [IN/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Abstract and Section 1.

(b) Did you describe the limitations of your work?

(c) Did you discuss any potential negative societal impacts of your work?

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We ensure our paper to conform to the ethics review guidelines.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3
and Section 4.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix E and
Appendix G.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See the URL in
the supplementary material for the code, and see H for environments of experiments.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix H

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Appendix H

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix H

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We provide the code for our implementation of CUP in the supplemental material.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We use open source safe reinforcement learning environments,
see Appendix H.2

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Our data does not contain any personally
identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |
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