
Bag of Tricks for Training Data Extraction from Language Models

Weichen Yu * 1 Tianyu Pang 2 Qian Liu 2 Chao Du 2 Bingyi Kang 2 Yan Huang 1 Min Lin 2 Shuicheng Yan 2

Abstract
With the advance of language models, privacy
protection is receiving more attention. Training
data extraction is therefore of great importance,
as it can serve as a potential tool to assess pri-
vacy leakage. However, due to the difficulty of
this task, most of the existing methods are proof-
of-concept and still not effective enough. In this
paper, we investigate and benchmark tricks for im-
proving training data extraction using a publicly
available dataset. Because most existing extrac-
tion methods use a pipeline of generating-then-
ranking, i.e., generating text candidates as poten-
tial training data and then ranking them based
on specific criteria, our research focuses on the
tricks for both text generation (e.g., sampling strat-
egy) and text ranking (e.g., token-level criteria).
The experimental results show that several pre-
viously overlooked tricks can be crucial to the
success of training data extraction. Based on the
GPT-Neo 1.3B evaluation results, our proposed
tricks outperform the baseline by a large margin
in most cases, providing a much stronger base-
line for future research. The code is available at
https://github.com/weichen-yu/LM-Extraction.

1. Introduction
Recent advances in language models (LMs) have led to im-
pressive performance in a variety of downstream language
tasks (Kenton & Toutanova, 2019; Brown et al., 2020). It
has been demonstrated, however, that training data can be
extracted from LMs due to the memorization effects (Ken-
ton & Toutanova, 2019; Carlini et al., 2019; Feldman, 2020;
Brown et al., 2020). These training data may contain sen-
sitive information such as names, email addresses, phone
numbers, and physical addresses, resulting in privacy leak-

∗Work done during an internship at Sea AI Lab. 1Institute of
Automation, Chinese Academy of Sciences. 2Sea AI Lab. Corre-
spondence to: Tianyu Pang <tianyupang@sea.com>, Qian Liu
<liuqian@sea.com>, Yan Huang <yhuang@nlpr.ia.ac.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

40.6

37.1

36.6

37.1

36.7

24.6

46.7

32.6

19.5

33.5

34.4

20.8

19.7

Sampling
Strategy
(Sec 5.1)

Prob. Dist.
Adjustment

(Sec 5.2)

Exp. Bias
Reduction

(Sec 5.3)
Look-ahead

(Sec 5.4)
Sen. Level
Criteria
(Sec 6.1)

Tok. Level
Criteria
(Sec 6.2) 10 20 30 40(%)

Figure 1. Overview for the bag of tricks explored in this work, with
an evaluation of precision (MP). Bars in pink denote the methods
in the improved suffix generation, and bars in orange denote the
methods in the improved suffix ranking. The dashed bars indicate
the best method in each category.

age that hinders the widespread adoption of LMs (Carlini
et al., 2021; 2022; Lehman et al., 2021).

As privacy security has been an important issue of public
concern, a crucial topic is to develop efficient methods for
evaluating privacy leakage. Thus, the focus of our research
is on the adversarial task of training data extraction from
LMs, a relatively new area of study (Carlini et al., 2021;
Lehman et al., 2021). Existing extraction methods have
yielded successful records, but there are instances in which
these methods are even less effective than simply selecting
the most popular entity based on prior score. In addition,
successful data extraction requires a high generation ratio,
i.e., the need to generate and rank a large number of candi-
dates in order to identify a single successful instance. These
suboptimal results suggest that, despite the viability of train-
ing data extraction and developed pioneering methods as
demonstrated in previous research, this task is still relatively
new with an abundance of problems to solve.

In this study, we aim to develop techniques for efficient
training data extraction. We adhere to the criteria of the
recent Training Data Extraction Challenge,1 which employs

1Website link of Training Data Extraction Challenge

1

https://github.com/weichen-yu/LM-Extraction
https://github.com/google-research/lm-extraction-benchmark

Bag of Tricks for Training Data Extraction from Language Models

a 1.3B parameter GPT-Neo model (Black et al., 2021) for
targeted extraction of 1-eidetic memorized data. Targeted
extraction refers to the scenario where a prefix of the data is
provided, such as ‘Yu’s phone number is’, and the adversary
attempts to recover the suffix ‘12345’. Accroding to Carlini
et al. (2021), κ-eidetic memorization is defined as the capac-
ity of a language model to memorize a string that appears
κ times in the training material. The targeted and 1-eidetic
extraction poses a greater risk and is more challenging than
non-targeted and κ-eidetic (for κ > 1) settings.

Through ablation studies, we assess a variety of simple
techniques in natural language processing (NLP) and empir-
ically evaluate their impact on successful extraction rates,
as in Figure 1. Our empirical analysis reveals that the ex-
traction performance may be sensitive to the experimental
setup. With proper settings, the results show that several
previously overlooked tricks can contribute to significant
improvements of training data extraction. Based on the GPT-
Neo 1.3B evaluation results, our proposed tricks outperform
the baseline by a large margin in most cases, providing a
much stronger baseline for future research. Nonetheless,
utilizing more than one training data extraction trick does
not necessarily boost the performance, and in some cases,
even shows incompatibility and results in inferior precision.
These findings suggest that judicious selection and combi-
nation of the tricks are essential for optimal performance.

2. Related Work
We briefly introduce training data extraction, membership
inference attacks, and other memorization-based attacks.

2.1. Training Data Extraction

The extraction of training data from a pretrained language
model, also referred to as language model data extraction,
is a method for recovering the examples used to train the
model. Despite being a relatively new task, many of the
underlying technologies and analysis methods, including
membership inference (Shokri et al., 2017) and leveraging
network memorization for attacks (Thomas et al., 2020;
Leino & Fredrikson, 2020), were introduced much earlier.

Carlini et al. (2021) were among the first to define the con-
cepts of model knowledge extraction and κ-eidetic memo-
rization, as well as to propose promising training strategies
for data extraction. Both the theoretical properties of memo-
rization and the application of model extraction in sensitive
fields, such as the analysis of clinical notes, have been the
focus of subsequent research in this field.

Recently, Kandpal et al. (2022) demonstrated that in lan-
guage models, the efficacy of data extraction is frequently
attributable to duplication in commonly used web-scraped
training sets. Using nondeterminism, Jagielski et al. (2022)

provided an explanation for forgetting memorized examples.
Carlini et al. (2022) analyzed three factors that affect the
memorization of training data. For natural data distributions,
Feldman (2020) showed that label memorization is required
to achieve near-optimal performance. In the application of
model extraction, Lehman et al. (2021) indicated that pre-
trained BERT, when trained on clinical notes, poses a risk
of sensitive data leakage, especially when the data exhibits
a high level of repetition or ‘note bloat’ (Liu et al., 2022).
Jayaraman et al. (2022) proposed an active extraction attack
that employs canonical patterns and differential privacy to
defend against pattern extraction attacks.

2.2. Membership Inference Attacks

The membership inference attack (MIA) (Shokri et al., 2017)
is another adversarial task in data protection that is closely
associated with training data extraction. It aims to deter-
mine whether a particular record is present in its training
dataset, given black-box access to a model. MIA has been
demonstrated to be effective on numerous machine learn-
ing tasks, including classification (Sablayrolles et al., 2019;
Choquette-Choo et al., 2021; Rezaei & Liu, 2021) and gen-
eration (Hayes et al., 2019; Hilprecht et al., 2019).

The methods utilized by MIA fall into two categories:
classifier-based methods and metric-based methods (Hu
et al., 2022). Classifier-based methods involve training a
binary classifier to recognize the complex relationship be-
tween members and non-members, with shadow training
being a commonly used technique (Shokri et al., 2017; He
et al., 2020; Wang et al., 2021). Metric-based methods, on
the other hand, make membership inferences by first calcu-
lating metrics on the model prediction vectors (Yeom et al.,
2018; Salem et al., 2018; Sablayrolles et al., 2019; Song &
Mittal, 2021; Choquette-Choo et al., 2021). Several defense
methods based on differential privacy (Leino & Fredrikson,
2020; Naseri et al., 2020; Choquette-Choo et al., 2021), data
pruning (Wang et al., 2021), data augmentation (Kaya &
Dumitras, 2021) and causal inference (Tople et al., 2020)
have been proposed to mitigate this vulnerability.

2.3. Other Memorization-Based Attacks

It has been discovered that large pretrained models are sus-
ceptible to memorizing information from the training data,
which can lead to a variety of attacks. In addition to training
data extraction and membership inference attacks, there are
other memorization-based attacks that target these models.

Model extraction attacks and the corresponding protection
methods (Tramèr et al., 2016; Juuti et al., 2019; Gong et al.,
2020; Wu et al., 2022) focus on the issue of duplicating the
functionality of a given model. In this type of attacks, the
adversary attempts to build a second model with a similar
predictive performance to the original black-box model.

2

Bag of Tricks for Training Data Extraction from Language Models

The objective of attribute inference attacks is to extract spe-
cific personal attributes such as locations, occupations, and
interests from the model (Fredrikson et al., 2015; Gong &
Liu, 2016; Ganju et al., 2018; Parisot et al., 2021). The ob-
jective of property inference attacks is to extract properties
of the training data that the model producer may not have
intended to share, such as the environment in which the data
was generated or the proportion of the data that belongs to
a particular class. The primary distinction between train-
ing data extraction attacks and attribute/property inference
attacks is that attribute/property inference attacks do not
require prior knowledge of the attributes or properties to be
extracted, whereas training data extraction attacks require
the generated information to be identical to the training data
at the sentence level, which is more difficult and dangerous.

3. Preliminary
We recap the basic setups employed in our study. These
setups mainly follow the guidelines of the Training Data
Extraction Challenge. We then define the threat model and
evaluation metrics.

3.1. Basic Setups

Dataset. The dataset used in this study is a subset of 20,000
examples from the Pile’s training dataset (Gao et al., 2020).
Each example consists of a 50-token prefix and a 50-token
suffix. The attacker’s task is to predict the suffix given
the prefix. All the 100-token long sentences in this dataset
appear only once in the training set. For the purposes of
this study, we divide the dataset into a training set of 19,000
samples and a testing set of 1,000 samples.

Language model. We employ the GPT-Neo 1.3B model im-
plemented on HuggingFace Transformers (Wolf et al., 2020),
which is a transformer model designed using EleutherAI’s
replication of the GPT-3 architecture (Brown et al., 2020),
and trained on the Pile dataset. GPT-Neo is an autoregres-
sive language model fθ parameterized by θ, which generates
a sequence of tokens x0, x1, · · · , xN via the chain rule

fθ (x0, x1, · · · , xN) =

N∏
n=0

fθ
(
xn|x[0,n−1]

)
, (1)

where x[0,n−1] = x<n = {x0, · · · , xn−1} for notation
compactness. At the sentence level, given a prefix p, we
denote the probability of generating a certain suffix s condi-
tional on the prefix p as fθ(s|p).

3.2. Threat Model

In this study, we focus on the threat model of targeted extrac-
tion of κ-eidetic memorized data, where we choose κ = 1.
According to the model knowledge extraction defined in

(Carlini et al., 2021), we assume the language model gen-
erates a suffix s by the most-likely criterion. Then we can
write a formal definition of targeted extraction as

Definition 1. (Targeted extraction) Given a prefix p con-
tained in the training data and a pretrained language
model fθ. Targeted extraction is to generate the suffix by
s = argmaxs′fθ(s

′|p).

As to κ-eidetic memorized data, we follow the definition
in Carlini et al. (2021) that the sentence [p, s] appears in at
most κ examples in the training data. In practice, the length
of the generated sentence is typically fixed using truncating
and concatenation techniques applied to the training dataset.
If a generated sentence is shorter than the specified length,
padding tokens are used to bring it up to the required length.
In this study, the generated sentence length is 100.

3.3. Evaluation Metrics

Non-targeted extraction has been evaluated using the num-
ber of memorized examples in previous studies (Carlini
et al., 2021). To evaluate more comprehensively, we use
three metrics to evaluate performance in this targeted data
extraction task, including precision MP, recall MR and
Hamming distance MH.

Precision MP. The proportion of correctly generated suf-
fixes over the total number of given prefixes is referred to
as precision MP. Notice that for a correct generation, the
suffix and ground truth must be identical in both sentence
length and generated tokens.

Recall MR. The proportion of correctly generated suffixes
over the total number of generated suffixes is indicated by
recall MR. The metric used in the Training Data Extrac-
tion Challenge is denoted by ej , which is defined as the
number of correctly recovered suffixes when the number
of incorrectly generated suffixes reaches a threshold of j.
ej can assess the effectiveness of the attack. We define
MR =

ej

ej+j , we will use MR instead of ej in the following
paragraphs. In our experiments, the value of j is chosen to
be proportional to the size of the test set, and it is set to 100
with a test set of 1,000 prefixes.

Hamming distance MH. The Hamming distance denotes
the difference between two equal-length strings, calculated
as the number of positions where the corresponding symbols
differ. We can quantitatively evaluate the similarity between
the generated suffixes and the ground truth using the average
Hamming distance, providing a token-level evaluation of the
extraction methods’ performance. MH = 1

N

∑
n xn ⊕ gtn,

where a⊕ b = 1 if a = b, else 0. N is the number of tokens
in a generated sentence, xn is the generated token, and gtn
is the corresponding ground truth token.

We would like to point out that the commonly used metrics

3

Bag of Tricks for Training Data Extraction from Language Models

that measure the repetition or quality of generated sentences,
e.g., the Zipfian coefficient and REP (Welleck et al., 2019),
may not be aligned with the goal of training data extrac-
tion. Thus, we propose the metrics listed above, which are
specifically designed to assess the efficacy of training data
extraction methods. These metrics, MP, MR, and MH, are
closely linked with the success rate of the extracted data
rather than the quality of generated language.

4. Pipeline Overview
A basic training data extraction pipeline can be divided into
two stages. The first stage is suffix generation, which means
coming up with a set of suffixes based on a prefix. The
autoregressive language model fθ computes the probability
of each token in a vocabulary list and generates the next
token by sampling from the probability distribution. A basic
strategy employed to control the number of generations is
limiting to the top-k tokens with k = 10, which means the
LMs only sample from the tokens with top-k probability.
The second stage is suffix ranking, which entails estimating
the likelihood of these suffixes and retaining only those with
a high probability. Typically this is accomplished through
the use of membership inference attacks, determined based
on the perplexity metric (Carlini et al., 2019; 2021) as

P = exp

(
− 1

N

N∑
n=0

log fθ(xn|x[0:n−1])

)
, (2)

where N is the number of tokens in a generated sentence.
Here, padding tokens are not included in the calculation.
We explore and evaluate various tricks for both stages. The
results for suffix generation are presented in Section 5, and
the results for suffix ranking are presented in Section 6.

5. Improved Suffix Generation
To improve suffix generation, we analyze the logits distri-
butions of both the ground-truth and generated tokens. As
shown in Figure 2, there is a significant difference between
the two distributions. To address this, we examine the effects
of a variety of NLP techniques, such as changes to sampling
strategies and probability distributions, as described below.

5.1. Sampling Strategy

The most popular decoding objective, especially for con-
ditional generation in NLP tasks, is maximization-based
decoding. Based on the provided prefix, it searches for the
suffix with the highest likelihood. It is also suited for our
training data extraction task since the models are directly
maximized for the likelihood of the training data. However,
finding the theoretically argmax sequence from models is
intractable (Holtzman et al., 2019). The common practice is
using beam search (Freitag & Al-Onaizan, 2017) instead.

Table 1. Results of MP, MR, and MH under different numbers of
beams in beam search. All results are reported on a single trial.

Beam Memory MP(%) ↑ MR(%) ↑ MH ↓
7 21531M 51.1 76.3 15.501
6 21379M 51.0 76.4 15.575
5 20731M 51.3 76.3 15.499
4 17051M 50.7 76.3 15.763
3 14333M 50.7 76.2 15.764
2 12023M 50.6 76.2 15.931
1 8783M 37.0 76.5 20.245

Figure 2. Histogram of token logits. The histogram depicts the
distribution of logit values obtained from 1,000 suffixes, each
containing 50 tokens. A spline interpolation technique is employed
to smooth the histogram, with the original histogram included in
the appendix for reference.

As an approximate solution, beam search only keeps a pre-
determined number of best partial solutions. Since it always
takes the top ones at each step, it is often criticized for
its lack of diversity (Holtzman et al., 2019). As shown in
Table 1, although the required memory is increasing, the per-
formance gain from a larger beam width diminishes quickly
when the beam width exceeds two. Due to the randomness
in generation, sampling methods always introduce more
diversity than beam search. Therefore, we mainly study
sampling strategies below, including top-k sampling, nu-
cleus sampling and typical sampling.

Top-k denotes the truncated sampling method with the
truncation set defined as the top-k highest-probability to-
kens (Fan et al., 2018; Holtzman et al., 2018; Radford et al.,
2019). Figure 3(a) demonstrates that a larger k may increase
the diversity of the generated sentences but also decrease
the precision and hamming distance. The result is consistent
with that observed in other NLP tasks Meister et al. (2022).

Nucleus-η (Holtzman et al., 2019) truncates the vocabulary
based on the summed probability. Namely, the smallest set
of the most likely tokens with total probabilities equal to
or greater than η are selected. Meister et al. (2022) demon-
strate that lower values of η are more conducive to story

4

Bag of Tricks for Training Data Extraction from Language Models

generation. In contrast, the extraction task is optimal at
η ≈ 0.6, which yields a 31% improvement in extraction
precision over the baseline. Larger or smaller η both shows
decreased performance (Figure 3(b)).

Typical-ϕ (Meister et al., 2022) recommends selecting a
token with information content similar to the expected infor-
mation content. Namely, it guarantees the probability mass
from the original distribution that will be taken into account
in typical decoding. This sampling strategy can improve
sentence consistency while reducing degenerate repetitions.
The typical-ϕ strategy is equivalent to a subset optimization
problem with an entropy rate constraint. Typical-ϕ exhibits
a non-monotonic tendency, which is similar to its effect on
abstract summary and story generation tasks.

5.2. Probability Distribution Adjustment

Besides the sampling strategies that truncate the sampling
distribution, we introduce in this section another strategy
that directly adjusts the probability distribution fθ (xn|x<n).
Below we introduce two tricks, adjusting the temperature
and repetition penalty, to refine the distribution. These tricks
bring nearly no additional computation cost but can still lead
to a performance improvement.

Temperature T (Hinton et al., 2015) is a technique of local
renormalization with an annealing term. A higher tempera-
ture T > 1 results in decreased confidence in the language
model’s predictions but may also increase the diversity of
the generated suffixes. The study conducted by Carlini
et al. (2021) found that gradually decreasing the temper-
ature throughout the generation process can be beneficial.
The effect of the temperature is presented in Table 2. It is
important to note that as the temperature is increased, the
number of generated suffixes required to include the ground
truth also increases, causing the efficiency to degrade. It is
important to find a balance between diversity and efficiency.

Repetition penalty is constructed on the conditional lan-
guage model (Keskar et al., 2019). A repetition penalty is
introduced by locally modifying the generation probability
of each token based on whether it is a repetition of the pre-
vious token. The logit of the repeated token is divided by
a value r before entering the softmax layer. Setting r > 1
penalizes repetition while r < 1 encourages it. Our results
in Table 3 show that repetition penalty has mostly negative
effects on the task of training data extraction.

5.3. Exposure Bias Reduction

For efficient vectorization, it is common practice to pack
multiple sentences into a fixed-length sequence when train-
ing language models. As an example, consider the sentence
‘The phone number of Yu is 12345’ may be truncated or
prefixed with another sentence in the training set, such as

0 10 20 30 40

37
38
39
40
41
42

(a) Top-k

Pr
ec

is
io

n
(%

)

19.6
19.8
20.0
20.2
20.4
20.6

MP MH

0 0.2 0.4 0.6 0.8 1

40
42
44
46
48
50
52

(b) Nucleus-η

Pr
ec

is
io

n
(%

)

16.5
17.0
17.5
18.0
18.5
19.0
19.5

0 0.2 0.4 0.6 0.8 1

37
40
43
46
49
52

(c) Typical-ϕ

Pr
ec

is
io

n
(%

)

16.5
17.5
18.5
19.5
20.5
21.5

10−1 100 101

0
10
20
30
40
50

(d) Temperature

Pr
ec

is
io

n
(%

)

10.0
18.0
26.0
34.0
42.0
50.0
58.0

Figure 3. Experimental results under different values of top-k,
nucleus-η, typical-ϕ and temperature T . All results are reported
on 5 trials. The y-axis left denotes precision (%)(↑), and right
denotes Hamming distance (↓).

0 5 10 15 20 25 30 35 40 45 50

30
40
50
60
70
80
90

Generated Token Length

To
ke

n
Pr

ec
is

io
n

(%
)

Figure 4. Generated token length w.r.t. token precision (%) for the
n-th generated token. The generated suffix length is 50.

‘number of Yu is 12345’ or ‘Yu’s address is at XXX. The
phone number of Yu is 12345’. The prefix in the training
set, as in Table 12, is not always a complete sentence. To
better mimic the training settings, we propose to adjust the
context window size and adjust the position shifting.

5.3.1. DYNAMIC CONTEXT WINDOW

The length of the training window may differ from the length
of the extraction window. As a result, we propose adjusting
the context window size, i.e. the number of previously
generated tokens, as shown in Eq. (3). Furthermore, we
encourage the results of different context window sizes to
collaborate in determining the next generated token as

fθ(xn;W)

=hW
(
fθ
(
xn|x[n−w1,n−1]

)
, ..., fθ

(
xn|x[n−wm,n−1]

))
,
(3)

where hW denotes the ensemble method, W denotes the
ensemble hyperparameter, including the number of different
context window sizes m and each window size wi. We use
m = 4 and wi ∈ {n, n− 1, n− 2, n− 3} in our methods.
Carefully chosen hyperparameters m and wi may improve
the performance even more.

5

Bag of Tricks for Training Data Extraction from Language Models

Figure 5. Histogram of the rank of the ground truth perplexity. The
x-axis represents the rank of the ground truth perplexity within a
list of 100 suffix perplexities.

We present two implementation options. The first option, as
specified in Eq. (4), entails computing the probabilities gen-
erated by utilizing various lengths of previously generated
tokens x[n−wi,n−1], and then producing the final probabili-
ties via a weighted average sum of these probabilities, as

fθ (xn;Ww) =

∑m
i=1 ϵifθ

(
xn|x[n−wi,n−1]

)∑m
i=1 ϵi

, (4)

where Ww denotes the hyperparameters in the solution,
comprising of m, wi and ϵi. ϵi denotes the weighting coef-
ficient of each probability. The second option as specified
in Eq. (5), is based on a voting mechanism, in which each
model trained with a distinct context window length casts
its vote for the tokens it is most confident in, formulated as

fθ(xn;Wv) =
1

m

m∑
i=1

V(fθ(xn|x[n−wi,n−1]); (5)

V(fθ(xn)) =

{
ρ−R(fθ(xn)), if R(fθ(xn)) ≤ ρ;
0, otherwise,

(6)

where V(·) denotes the voting function, R(·) denotes the
rank function, and it votes for the tokens that it has confi-
dence in. Wv denotes the hyperparameters in the solution,
comprising of wi, m and ρ.

It is stated in Carlini et al. (2022) that the proportion of ex-
tractable sequences increases log-linearly with the number
of context tokens. We observed a similar phenomenon in
our experiments, where the generation accuracy of a token
decreases as the prefix becomes shorter. However, we dis-
covered that combining multiple context window lengths
significantly improves accuracy. The probabilities produced
by different window lengths can be combined to signifi-
cantly improve extraction accuracy. Our implementation
of Ww employs the weighting coefficient ϵi = 0.9i, and
Wv assigns [5, 4, 3, 2, 1] points to its top-5 confident to-
kens, ρ = 5. The results presented in Table 4 show that

Table 2. Results of MP, MR, and MH under different temperature.
Temperature = 1 is the baseline. All results are reported on 5 trials.

Temperature MP (%)(↑) MR (%)(↑) MH (↓)
Varying 48.0 76.3 19.614

0.3 48.9 76.4 16.341
1 37.0 76.5 20.245

Table 3. Results of MP, MR, and MH under different repetition
penalty. Repetition penalty r = 1 is the baseline. All results are
reported on 5 trials.

Repetition penalty MP (%)(↑) MR (%)(↑) MH (↓)
0.9 19.8 66.4 27.927
1 37.0 76.5 19.614

1.1 37.3 76.5 20.181
1.2 37.1 76.5 20.323
1.3 36.7 76.4 20.332
1.5 34.7 75.7 21.154

ensemble methods can significantly improve on the base-
line approach, achieving improvements of 143% and 139%,
respectively, and we discovered that the weighted average
strategy performs slightly better than the voting strategy.
One common failure mode observed is that when a wrong
token is generated, it causes subsequent tokens to also be
wrong (exemplars shown in Table 12). The window size
ensemble introduced here can help reduce this problem.

5.3.2. DYNAMIC POSITION SHIFTING

Positional embeddings are added to the token feature in
models like GPT-Neo. During training, this is added per
batch of sentences, causing the same sentence to have dif-
ferent offsets in positional embedding in different training
batches and during generation. To improve the extraction
of memorized suffixes, we propose to recover the positions
used during training by evaluating different shifted positions
and selecting the ’best’ one. Specifically, for a given prefix
p, we evaluate different position C = ci, where ci is a list of
consecutive natural numbers, ci = {ci1, · · · }, s.t. |ci| = |p|
and calculate the corresponding perplexity values. The posi-
tion with the lowest perplexity value is then chosen as the
position from which to generate the suffix as

c = argmin
ci∈C

P(p, ci); ϕ̂(xi) = ψ(cn) + ϕ(xn), (7)

where ψ(·) denotes positional encoding layers, ϕ(·) denotes
the feature mapping function, ϕ̂ denotes the feature mapping
function consisting positional encoding, and P computes
the perplexity of the prefix. The experimental results are
presented in Table 4. C = {[0, 1, · · · , |p|], [1, 2, · · · , |p| +
1], · · · } is evaluated. The data show that, while using posi-

6

Bag of Tricks for Training Data Extraction from Language Models

Table 4. Results of MP, MR, and MH under context window
length adjustments. All results are reported on a single trial.

MP (%)(↑) MR (%)(↑) MH (↓)
Baseline 19.5 65.6 26.948

Context Win Ww 47.4 77.6 16.993
Context Win Wv 46.7 77.5 17.164

Position Shifting 16.4 39.0 21.154

Table 5. Results of MP, MR, and MH under auto-tuning. All
results are reported on 5 trials.

Strategy MP (%)(↑) MR (%)(↑) MH(↓)
Baseline 37.0 76.5 19.614
Manual selection 48.8 76.4 16.379
Auto-tuning 49.4 76.6 16.127

tion shifting improves the MH metric, it may have a nega-
tive impact on precision and recall.

5.4. Look-Ahead

Table 12 highlights a common issue encountered during the
training data extraction process, where only one or two to-
kens are incorrectly generated or placed in an inappropriate
position. To address this problem, we propose a technique
that involves looking ν steps ahead and using the probabil-
ity of the subsequent tokens to inform the generation of the
current token. The goal of look-ahead is to use the posterior
distribution to help compute the current token generation
probability. We begin by presenting the precise mathemati-
cal formulation of the optimal probability and then introduce
the implementation, which employs an estimation due to
efficiency considerations. The posterior is calculated as

fθ (xn|xn+1, x<n)

=
fθ (xn+1|xn, x<n) fθ (xn|x<n)∑
x′
n
fθ (xn+1|x′n, x<n) fθ (x′n|x<n)

.
(8)

More generally, let Track(xstart, xend|xcond) be the probabil-
ity product of the track starting from xstart and ending at xend,
conditioned on xcond. Then we can write ν-step posterior as

fθ (xn|xn+ν , x<n) =
Track(xn, xn+ν |x<n)∑
x′
n

Track(x′n, xn+ν |x<n)
, (9)

where Track is calculated as,

Track(xstart, xend|xcond)

=
∑

x′
start+1

∑
x′

start+2

...
∑
x′

end−1

fθ(xstart|xcond)

fθ(xstart+1|xcond, xstart)...

fθ(xend|xcond, xstart, x
′
start+1..., x

′
end−1).

(10)

Table 6. Hyper-parameters selection for auto-tuning. Multiple con-
figurations of final hyperparameters are found to yield equivalent
performances, and a representative example is presented.

Parameters Range Step Initial Final

Top-k [1, 50] 1 10 24
Nucleus-η [0.1, 1] 0.01 0.6 0.8
Typical-ϕ [0.1, 1] 0.01 0.6 0.9

Temperature T [0.1, 5] 0.1 0.3 0.58
Repetition Penalty [0.8, 1.3] 0.01 1 1.04

Table 7. Experimental results of MP, MR, and MH under look-
ahead. All results are reported on a single trial.

MP(%)(↑) MR(%)(↑) MH (↓)
Baseline 19.5 65.6 26.948

Look-ahead
λ=10 33.1 71.6 24.262
λ=20 35.5 72.6 22.157
λ=30 36.7 73.0 21.333

Based on the 1-step look-ahead formulation in Eq. (8), we
utilize the posterior probability to calculate the confidence of
the current token. However, due to the size of the vocabulary
list (more than 50,000), we only select λ tokens whose
probability fθ (x′n|x<n) ranks among the highest, as

X = {x′n|R(fθ (x
′
n|x<n)) ≥ λ}, (11)

where R(·) is the rank function. The experimental results,
as detailed in Table 4, show that using a look-ahead strategy
leads to a significant improvement in precision. Further-
more, an increase in the value of λ results in a correspond-
ing improvement in performance. It is important to note,
however, that increasing the value of λ also increases the
computational cost, with a complexity of O(λ ·N), where
N denotes the length of the generated tokens.

5.5. Hyperparameter Optimization

The aforementioned tricks in Section 5.1 involve various
hyperparameters, and simply using the best parameters is
usually suboptimal. Manually searching for the best hy-
perparameters, also known as ’babysitting,’ can be time-
consuming. We use a versatile architecture auto-tuning
method (Akiba et al., 2019), which incorporates efficient
search and pruning strategies, to determine the optimized
hyperparameters following advanced frameworks (Snoek
et al., 2012; Koch et al., 2018; Akiba et al., 2019). As the
search algorithm, we use covariance matrix adaptation evo-
lutionary strategies (CMA-ES) (Hansen et al., 2003). The
search objective in our experiment is set to MP, and the
parameters that are searched over include top-k, nucleus-η,
typical-ϕ, temperature T , and repetition penalty r.

7

Bag of Tricks for Training Data Extraction from Language Models

Table 8. Experimental results of precision, recall, and Hamming
distance under different ranking methods. All results are reported
on a single trial.

Method MP(%)(↑) MR(%)(↑) MH(↓)
Baseline 37.0 76.5 19.614

Perplexity÷Zlib 37.1 76.0 20.191
Perplexity×Zlib 37.1 76.3 20.368
Cumprod 36.6 39.8 20.127

High confidence 40.6 77.3 19.518
Surprised patterns 37.1 75.5 20.072

Table 9. Experimental results of precision, recall, and Hamming
distance for compatibility analysis. All results are reported on a
single trial.

MP(%) ↑ MR(%) ↑ MH ↓
Baseline(GPT-Neo 1.3B) 19.5 65.6 26.948
Context win + High confidence(GPT-Neo 1.3B) 46.8 77.5 17.144
Baseline(GPT-Neo 2.7B) 33.5 76.6 20.921
Context win + High confidence(GPT-Neo 2.7B) 54.8 81.5 13.621

Table 6 contains the detailed search parameter settings. We
also provide the baseline parameters as initial values to the
search algorithm to speed up convergence. The number of
search rounds is limited to 1,000. The experimental results
are shown in Table 5. Simply using the best parameters
outlined in Section. 5.1 with k=5, η=0.6, ϕ=0.6, T=0.4,
r=1 yields a precision of 48.8%. Implementing auto-tuning
results in a 37% improvement over baseline, and auto-tuning
performs slightly better than the hypermeter manual section.

6. Improved Suffix Ranking
Following the generation of multiple suffixes, a ranking pro-
cess is carried out in which less likely suffixes are eliminated
using perplexity P as a metric. However, our statistical anal-
ysis in Figure 5 reveals that the ground-truth sentences do
not consistently have the lowest perplexity values. Thus, we
propose additional ranking metrics to address this disparity.

6.1. Sentence-Level Criteria

Zlib. The entropy of a text, as determined by the Zlib
compression algorithm (Gailly & Adler, 2004) using the
number of bits, is a quantitative indicator of the sequence’s
information content. We use the ratio of the perplexity
of a given sentence as computed by the GPT-Neo model,
and the Zlib entropy of the same sentence as a metric for
membership inference, as outlined in the work of Carlini
et al. (2021). Besides, we investigate the potential utility
of producting perplexity and Zlib entropy, as both metrics
tend to decrease when the model shows a high degree of
confidence in its predictions. Both metrics produce only
a marginal improvement in the overall performance of the
membership inference task, as shown in Table 8.

Table 10. Experimental results of precision, recall, and Hamming
distance for compatibility analysis. All results are reported on a
single trial.

MP(%) ↑ MR(%) ↑ MH ↓
Context win + Beams=2 46.7 77.5 17.154
Auto-tuning + Beams=2 46.4 76.2 17.331
Context win + Auto-tuning 46.5 77.5 17.370
Context win + High confidence 46.8 77.5 17.144

Cumprod. We consider alternative metrics such as the
cumprod, which depicts the tandem probability of a gener-
ation sentence as Lc = (

∏N
n=0 log p(xn|x0, .., xn−1))

−N .
However, the effect of tandem probability on precision is
marginal and has a negative effect on MR.

6.2. Token-Level Criteria

Reward on high confidence. The presence of a high de-
gree of confidence in memorized data is one of the defining
features of the phenomenon known as the’memorization
effect’ (Goodfellow et al., 2016; Zhang et al., 2021; Arpit
et al., 2017). We propose implementing a strategy that re-
wards suffixes with high-confidence tokens based on this
insight. If the sentence contains confident tokens, the possi-
bility of the generated token is higher than a threshold, and
the difference between the generated token and other token
is higher than a threshold, we rank it higher. Specifically,
for the token xn in a generated suffix, if the probability of is
higher than a threshold 0.9, then we subtract a given number
0.1 from the score of suffix si (the original score for si is
its perplexity). This trick makes a noticeable improvement
as seen in Table 8.

Encouraging surprised patterns. According to recent
studies (Holtzman et al., 2019), human text generation fre-
quently exhibits a pattern in which tokens with high per-
plexity are intermittently included, as opposed to consis-
tently selecting tokens with low perplexity. To address this
problem, we propose a simple solution that encourages the
presence of surprised tokens (high perplexity tokens) by
calculating the perplexity of a generated prompt based on
only the majority tokens:

Ls =
1

|X̂ |

∑
xn∈X̂

log p(xn|x[0:n−1]),

X̂ = {xj |µ− 3σ < log p(xn|x[0:n−1])) < µ+ 3σ},

(12)

where µ and σ denotes the mean and standard of the
p(xn|x[0:n−1]) in a batch. The inclusion of surprised tokens
in a generation does not have a negative impact on overall
sentence perplexity when using this method, thereby in-
creasing the likelihood of their selection during membership
inference. As demonstrated in Table 8, the improvement is
relatively marginal.

8

Bag of Tricks for Training Data Extraction from Language Models

6.3. Compatibility Analysis

It has been discovered that accumulating the aforementioned
tricks does not always result in a proportionate increase in
performance. We investigate the interactive effects of com-
bining various techniques in a targeted and efficient manner,
in order to establish a viable baseline method. The results
are shown in Table 10. The application of multiple of the
aforementioned techniques yields no significant improve-
ment in performance. Even when using a beam width of 2
and maintaining the same settings as in the previous exper-
iments, the results do not show a significant improvement.
The empirical findings presented in this section suggest that
to achieve optimal results, a more deliberate and strategic
combination of various methods is required.

We also evaluate the methods on GPT-Neo 2.7B in Table 9
and draw the conclusion that a larger pre-trained model
yield better results.

7. Conclusion and Future Work
We investigate a dozen techniques for extracting training
data from LMs. These techniques make minor changes to
the generation strategies and ranking strategies. Our em-
pirical findings show that several of these tricks improve
significantly, while interactions between different tricks are
more subtle than expected. Besides, the empirical results
show that commonly used versatile methods for general
text generation are not always effective for extraction tasks.
In future works, explortion in developing compatible tech-
niques in data extraction is preferred. Techniques in both
suffix generation and ranking suffix may be combined and
explored in an end-to-end fashion. In addition, further in-
vestigation to gain a deeper understanding of the underlying
mechanisms that contribute to the superior performance of
certain techniques in this paper are encouraged.

References
Akiba, Takuya, Sano, Shotaro, Yanase, Toshihiko, Ohta,

Takeru, and Koyama, Masanori. Optuna: A next-
generation hyperparameter optimization framework. In
ACM International Conference on Knowledge Discovery
& Data Mining (KDD), 2019.

Arpit, Devansh, Jastrzkebski, Stanislaw, Ballas, Nicolas,
Krueger, David, Bengio, Emmanuel, Kanwal, Maxin-
der S., Maharaj, Tegan, Fischer, Asja, Courville, Aaron,
Bengio, Yoshua, and Lacoste-Julien, Simon. A closer
look at memorization in deep networks. In International
Conference on Machine Learning (ICML). PMLR, 2017.

Black, Sid, Gao, Leo, Wang, Phil, Leahy, Connor, and
Biderman, Stella. Gpt-neo: Large scale autoregressive
language modeling with mesh-tensorflow, 2021.

Brown, Tom, Mann, Benjamin, Ryder, Nick, Subbiah,
Melanie, Kaplan, Jared D, Dhariwal, Prafulla, Nee-
lakantan, Arvind, Shyam, Pranav, Sastry, Girish, Askell,
Amanda, et al. Language models are few-shot learners.
In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Carlini, Nicholas, Liu, Chang, Erlingsson, Úlfar, Kos, Jernej,
and Song, Dawn. The secret sharer: Evaluating and test-
ing unintended memorization in neural networks. In
Proceedings of the USENIX Conference on Security Sym-
posium (SEC), 2019.

Carlini, Nicholas, Tramer, Florian, Wallace, Eric, Jagielski,
Matthew, Herbert-Voss, Ariel, Lee, Katherine, Roberts,
Adam, Brown, Tom, Song, Dawn, Erlingsson, Ulfar, et al.
Extracting training data from large language models. In
Proceedings of the USENIX Conference on Security Sym-
posium (SEC), 2021.

Carlini, Nicholas, Ippolito, Daphne, Jagielski, Matthew,
Lee, Katherine, Tramer, Florian, and Zhang, Chiyuan.
Quantifying memorization across neural language models.
arXiv preprint arXiv:2202.07646, 2022.

Choquette-Choo, Christopher A, Tramer, Florian, Carlini,
Nicholas, and Papernot, Nicolas. Label-only member-
ship inference attacks. In International Conference on
Machine Learning (ICML). PMLR, 2021.

Fan, Angela, Lewis, Mike, and Dauphin, Yann. Hierarchical
neural story generation. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics
(ACL), 2018.

Feldman, Vitaly. Does learning require memorization? a
short tale about a long tail. In Proceedings of the ACM
SIGACT Symposium on Theory of Computing (STOC),
2020.

Fredrikson, Matt, Jha, Somesh, and Ristenpart, Thomas.
Model inversion attacks that exploit confidence informa-
tion and basic countermeasures. In Proceedings of the
ACM SIGSAC conference on computer and communica-
tions security (ACM CCS), 2015.

Freitag, Markus and Al-Onaizan, Yaser. Beam search strate-
gies for neural machine translation. In Proceedings of
the First Workshop on Neural Machine Translation, pp.
56–60, Vancouver, August 2017. Association for Compu-
tational Linguistics. doi: 10.18653/v1/W17-3207. URL
https://aclanthology.org/W17-3207.

Gailly, Jean-loup and Adler, Mark. Zlib compression library,
2004.

9

https://aclanthology.org/W17-3207

Bag of Tricks for Training Data Extraction from Language Models

Ganju, Karan, Wang, Qi, Yang, Wei, Gunter, Carl A, and
Borisov, Nikita. Property inference attacks on fully con-
nected neural networks using permutation invariant rep-
resentations. In Proceedings of the ACM SIGSAC con-
ference on computer and communications security (ACM
CCS), 2018.

Gao, Leo, Biderman, Stella, Black, Sid, Golding, Laurence,
Hoppe, Travis, Foster, Charles, Phang, Jason, He, Horace,
Thite, Anish, Nabeshima, Noa, et al. The pile: An 800gb
dataset of diverse text for language modeling. arXiv
preprint arXiv:2101.00027, 2020.

Gong, Neil Zhenqiang and Liu, Bin. You are who you
know and how you behave: attribute inference attacks via
users’ social friends and behaviors. In Proceedings of
the USENIX Conference on Security Symposium (SEC),
2016.

Gong, Xueluan, Wang, Qian, Chen, Yanjiao, Yang, Wang,
and Jiang, Xinchang. Model extraction attacks and de-
fenses on cloud-based machine learning models. IEEE
Communications Magazine, 58(12), 2020.

Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron.
Deep learning. MIT press, 2016.

Hansen, Nikolaus, Müller, Sibylle D, and Koumoutsakos,
Petros. Reducing the time complexity of the derandom-
ized evolution strategy with covariance matrix adaptation
(cma-es). Evolutionary computation, 11(1), 2003.

Hayes, J, Melis, L, Danezis, G, and De Cristofaro, E. Lo-
gan: membership inference attacks against generative
models. In Proceedings on Privacy Enhancing Technolo-
gies (PoPETs). De Gruyter, 2019.

He, Yang, Rahimian, Shadi, Schiele, Bernt, and Fritz, Mario.
Segmentations-leak: Membership inference attacks and
defenses in semantic image segmentation. In European
Conference on Computer Vision (ECCV). Springer, 2020.

Hilprecht, Benjamin, Härterich, Martin, and Bernau, Daniel.
Monte carlo and reconstruction membership inference
attacks against generative models. Proc. Priv. Enhancing
Technol., 2019(4), 2019.

Hinton, Geoffrey E., Vinyals, Oriol, and Dean, Jeffrey.
Distilling the knowledge in a neural network. CoRR,
abs/1503.02531, 2015. URL http://arxiv.org/
abs/1503.02531.

Holtzman, Ari, Buys, Jan, Forbes, Maxwell, Bosselut, An-
toine, Golub, David, and Choi, Yejin. Learning to write
with cooperative discriminators. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics (ACL), 2018.

Holtzman, Ari, Buys, Jan, Du, Li, Forbes, Maxwell, and
Choi, Yejin. The curious case of neural text degeneration.
In International Conference on Learning Representations
(ICLR), 2019.

Hu, Hongsheng, Salcic, Zoran, Sun, Lichao, Dobbie,
Gillian, Yu, Philip S, and Zhang, Xuyun. Membership
inference attacks on machine learning: A survey. ACM
Computing Surveys (CSUR), 54(11s), 2022.

Jagielski, Matthew, Thakkar, Om, Tramer, Florian, Ippolito,
Daphne, Lee, Katherine, Carlini, Nicholas, Wallace, Eric,
Song, Shuang, Thakurta, Abhradeep, Papernot, Nicolas,
et al. Measuring forgetting of memorized training exam-
ples. arXiv preprint arXiv:2207.00099, 2022.

Jayaraman, Bargav, Ghosh, Esha, Inan, Huseyin, Chase,
Melissa, Roy, Sambuddha, and Dai, Wei. Active data
pattern extraction attacks on generative language models.
arXiv preprint arXiv:2207.10802, 2022.

Juuti, Mika, Szyller, Sebastian, Marchal, Samuel, and
Asokan, N. Prada: protecting against dnn model stealing
attacks. In IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 2019.

Kandpal, Nikhil, Wallace, Eric, and Raffel, Colin. Dedupli-
cating training data mitigates privacy risks in language
models. arXiv preprint arXiv:2202.06539, 2022.

Kaya, Yigitcan and Dumitras, Tudor. When does data aug-
mentation help with membership inference attacks? In
International Conference on Machine Learning (ICML).
PMLR, 2021.

Kenton, Jacob Devlin Ming-Wei Chang and Toutanova,
Lee Kristina. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Conference
of the North American Chapter of the Association for
Computational Linguistics (NAACL), 2019.

Keskar, Nitish Shirish, McCann, Bryan, Varshney, Lav R,
Xiong, Caiming, and Socher, Richard. Ctrl: A conditional
transformer language model for controllable generation.
arXiv preprint arXiv:1909.05858, 2019.

Koch, Patrick, Golovidov, Oleg, Gardner, Steven, Wu-
jek, Brett, Griffin, Joshua, and Xu, Yan. Autotune: A
derivative-free optimization framework for hyperparame-
ter tuning. In ACM International Conference on Knowl-
edge Discovery & Data Mining (KDD), 2018.

Lehman, Eric, Jain, Sarthak, Pichotta, Karl, Goldberg, Yoav,
and Wallace, Byron C. Does bert pretrained on clinical
notes reveal sensitive data? In Conference of the North
American Chapter of the Association for Computational
Linguistics (NAACL), 2021.

10

http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531

Bag of Tricks for Training Data Extraction from Language Models

Leino, Klas and Fredrikson, Matt. Stolen memories: lever-
aging model memorization for calibrated white-box mem-
bership inference. In Proceedings of the USENIX Confer-
ence on Security Symposium (SEC), 2020.

Liu, Jinghui, Capurro, Daniel, Nguyen, Anthony, and Ver-
spoor, Karin. “note bloat” impacts deep learning-based
nlp models for clinical prediction tasks. Journal of
biomedical informatics (JBI), 133, 2022.

Meister, Clara, Pimentel, Tiago, Wiher, Gian, and Cotterell,
Ryan. Locally typical sampling. Transactions of the
Association for Computational Linguistics (TACL), 2022.

Naseri, Mohammad, Hayes, Jamie, and De Cristofaro, Emil-
iano. Toward robustness and privacy in federated learning:
Experimenting with local and central differential privacy.
arXiv e-prints, 2020.

Parisot, M, Spagnuelo, D, et al. Property inference attacks
on convolutional neural networks: Influence and impli-
cations of target model’s complexity. Proceedings of the
International Conference on Security and Cryptography,
2021.

Radford, Alec, Wu, Jeffrey, Child, Rewon, Luan, David,
Amodei, Dario, Sutskever, Ilya, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8),
2019.

Rezaei, Shahbaz and Liu, Xin. On the difficulty of member-
ship inference attacks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

Sablayrolles, Alexandre, Douze, Matthijs, Schmid, Cordelia,
Ollivier, Yann, and Jégou, Hervé. White-box vs black-
box: Bayes optimal strategies for membership infer-
ence. In International Conference on Machine Learning
(ICML). PMLR, 2019.

Salem, Ahmed, Zhang, Yang, Humbert, Mathias, Berrang,
Pascal, Fritz, Mario, and Backes, Michael. Ml-leaks:
Model and data independent membership inference at-
tacks and defenses on machine learning models. arXiv
preprint arXiv:1806.01246, 2018.

Shokri, Reza, Stronati, Marco, Song, Congzheng, and
Shmatikov, Vitaly. Membership inference attacks against
machine learning models. In IEEE symposium on security
and privacy (SP). IEEE, 2017.

Snoek, Jasper, Larochelle, Hugo, and Adams, Ryan P. Practi-
cal bayesian optimization of machine learning algorithms.
In Advances in Neural Information Processing Systems
(NeurIPS), volume 25, 2012.

Song, Liwei and Mittal, Prateek. Systematic evaluation of
privacy risks of machine learning models. In Proceedings
of the USENIX Conference on Security Symposium (SEC),
2021.

Thomas, Aleena, Adelani, David Ifeoluwa, Davody, Ali,
Mogadala, Aditya, and Klakow, Dietrich. Investigating
the impact of pre-trained word embeddings on memoriza-
tion in neural networks. In International Conference on
Text, Speech, and Dialogue (TSD). Springer, 2020.

Tople, Shruti, Sharma, Amit, and Nori, Aditya. Alleviat-
ing privacy attacks via causal learning. In International
Conference on Machine Learning (ICML). PMLR, 2020.

Tramèr, Florian, Zhang, Fan, Juels, Ari, Reiter, Michael K,
and Ristenpart, Thomas. Stealing machine learning mod-
els via prediction {APIs}. In Proceedings of the USENIX
Conference on Security Symposium (SEC), 2016.

Wang, Yijue, Wang, Chenghong, Wang, Zigeng, Zhou,
Shanglin, Liu, Hang, Bi, Jinbo, Ding, Caiwen, and Ra-
jasekaran, Sanguthevar. Against membership inference
attack: Pruning is all you need. In International Joint
Conferences on Artificial Intelligence (IJCAI), 2021.

Welleck, Sean, Kulikov, Ilia, Roller, Stephen, Dinan, Emily,
Cho, Kyunghyun, and Weston, Jason. Neural text genera-
tion with unlikelihood training. In International Confer-
ence on Learning Representations (ICLR), 2019.

Wolf, Thomas, Debut, Lysandre, Sanh, Victor, Chaumond,
Julien, Delangue, Clement, Moi, Anthony, Cistac, Pierric,
Rault, Tim, Louf, Rémi, Funtowicz, Morgan, et al. Trans-
formers: State-of-the-art natural language processing. In
Proceedings of the conference on empirical methods in
natural language processing (EMNLP), 2020.

Wu, Bang, Yang, Xiangwen, Pan, Shirui, and Yuan,
Xingliang. Model extraction attacks on graph neural
networks: Taxonomy and realisation. In Proceedings of
the ACM on Asia Conference on Computer and Commu-
nications Security (ACM ASIA-CCS), 2022.

Yeom, Samuel, Giacomelli, Irene, Fredrikson, Matt, and Jha,
Somesh. Privacy risk in machine learning: Analyzing
the connection to overfitting. In IEEE computer security
foundations symposium (CSF). IEEE, 2018.

Zhang, Chiyuan, Bengio, Samy, Hardt, Moritz, Recht, Ben-
jamin, and Vinyals, Oriol. Understanding deep learning
(still) requires rethinking generalization. Communica-
tions of the ACM, 64(3), 2021.

11

Bag of Tricks for Training Data Extraction from Language Models

A. Appendix
A.1. Guidelines

Recently, there has been a growing emphasis on the importance of extracting training data for language models. Through
our examination of various techniques in this paper, we have discovered that certain tricks do not yield as favorable results
as compared to the baseline approach, or may entail substantial computational expense. Therefore, we propose the following
guidelines for the development of data extraction methods for language models.

1. Usability: In order for a data extraction method to be considered practical, it is expected have a low threshold for
adoption and be easy to use. For example, not requiring additional datasets, having a straightforward implementation
without the need for complex modules, and being easily adaptable for various applications.

2. Effectiveness: The data extraction methods are expected to demonstrate a good performance on the given datasets.

3. Efficiency: It is essential that the methods are computationally efficient, utilizing limited computation cost. Additionally,
it is desirable for the methods to incorporate small yet effective modules. Extra LMs improve the performances, but we
expect the method to replace them with small modules without a noticeable performance trade-off.

4. Perniciousness. As an adversarial task to data protection, we expect data extraction methods from language models to
be pernicious since a pernicious strong extraction attack can better evaluate the risk of information leakage accurately,
equivalent to a higher lowerbound for potential leakage.

We would like to emphasize that the guidelines aim to enhance the success rate of the training data extraction methods and
thus provide a more accurate evaluation of the privacy information leakage of LMs, instead of posing pernicious attack
methods.

A.2. Typical Failure Cases of Training Data Extraction

In this section, we observe the classical instances of failures that occur in extracting training data and classify them into two
categories, as outlined in Table 12. The first category of failure pertains to instances where the generated suffix is incorrect
from the tokens in the middle portion, resulting in subsequent tokens being generated inaccurately. The second category of
failure pertains to instances where only a limited number of tokens in the suffix do not correspond with the ground truth and
the latter tokens are correctly generated.

The method of look-ahead is motivated by the second category of failure encountered during training data extraction. In
addition, it is evident from the examples of both successful and failure cases of data extraction that, both the prefix and the
suffix are not complete sentences. For instance, the prefix can begin with a punctuation mark ‘.’, or a broken sentence like
’WARRANTY OF ANY KIND’. It is due to the prevalent techniques of truncating and padding training language materials.
In light of this phenomenon, this paper presents the methods of dynamic context window and dynamic position shifting.

In contrast to failure cases, Table 11 presents a selection of successful examples of extraction. These examples may serve to
provide a tangible understanding of the task of training data extraction.

A.3. Histogram without Interploration

A.3.1. SENTENCE PERPLEXITY HISTOGRAM

To investigate the distribution of sentence perplexity of generated suffixes and ground truth suffixes, we use histograms
to visualize their discrepancies. We compute the sentence perplexity of both ground truth and multiple generated suffixes,
and then calculate the rank of ground truth perplexity and draw a histogram based on this in Figure 5, where the x-axis is
calculated as

S(Pgt, {Psi}), (13)

where S(a, b) returns the rank of a in a set b, Pgt is the perplexity of the ground truth suffix of a given prefix p, si denotes
the i-th generated suffix of a given prefix p.

12

Bag of Tricks for Training Data Extraction from Language Models

A.3.2. TOKEN LOGITS HISTOGRAM

To investigate the distribution of logits values between generated tokens and ground truth tokens, we use histograms to
visualize their discrepancies. A histogram of token logits for both ground truth suffixes and generated suffixes is presented
in Figure 6, wherein a clear discrepancy in the logits distribution can be observed. Furthermore, in order to gain insight into
the distribution of logits values across different positions, histograms of logits values for various positions are also provided
in Figure 7, 8, and 9.

Figure 6. Histogram of token logits. The histogram depicts
the distribution of logit values obtained from 1,000 suffixes,
each containing 50 tokens.

(a) (b) (c)
Figure 7. Logits values of 0-th (the first) generated token. The
histogram depicts the distribution of logit values obtained from
the 0-th token of 1,000 suffixes.

(a) (b) (c)Figure 8. Logits values of 24-th (the middle) generated token.
The histogram depicts the distribution of logit values obtained
from the 24-th token of 1,000 suffixes.

(a) (b) (c)
Figure 9. Logits values of 49-th (the last) generated token. The
histogram depicts the distribution of logit values obtained from
the 49-th token of 1,000 suffixes.

A.4. Takeaways

we conclude with some takeaways as follows,

1. In the two stages (suffix generation and suffix ranking) of training data extraction, suffix generation influences the
extraction precision more than suffix ranking.

2. Dynamic context window is a significantly more useful trick than others.

3. Sampling strategies are highly sensitive to hyperparameters.

4. We recommend using fewer than or equal to two beams, as the number of beams significantly increases memory
requirements but brings degressive precision improvements.

5. The look-ahead mechanisms augments the precision of the presently generated token, and the degree of enhancement is
contingent upon the number of future tokens taken into account.

13

Bag of Tricks for Training Data Extraction from Language Models

Table 11. Training data extraction successful cases. The generated suffix equals the ground truth suffix in both length and tokens.

Prefix

/*
* Copyright 2003-2006 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software;

Generated
Suffix

MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).

Prefix
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to

Generated
Suffix

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR

A.5. Negative Societal Impacts

In this study, various techniques for extracting training data are investigated. It is imperative to note that these methods
may be utilized for nefarious purposes. The focus of this paper is on a specific type of training data extraction, namely the
target training data extraction, which requires a prefix in the training dataset. If an attacker has access to the training data
of a language model or the ability to replicate similar sentences to the training data, it is possible for them to recover the
sentences of the training data, as demonstrated in Table 11.

We mitigate the negative ethics impacts in this work, where we focus on a specific LM GPT-Neo, which uses Pile as its
training dataset. Note that Pile is already a public dataset obtained from mainly academic or professional sources instead of
private sources.

The primary intended users of training data extraction include institutions and organizations that aim to investigate the
privacy and security characteristics of language models. However, it is crucial to acknowledge that these methods may also
be used by malicious attackers. In the short term, some LMs present a risk of leaking information. And in the long term,
we appeal to the language community to mitigate the risk and develop secure language models which exhibit resistance to
attacks including membership inference attacks, training data extraction attacks, etc.

14

Bag of Tricks for Training Data Extraction from Language Models

Table 12. Training data extraction examples. Red tokens indicate the mismatch tokens between the generated suffix and ground truth
suffix.

Prefix

.
//
// Copyright (c) 2008-2011 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Texas Instruments (TI) is supplying this software for use solely and
// exclusively on TI

Generated
Suffix

NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
// Redistribution and use insource and binary forms, with

Ground Truth
Suffix

NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIA

Prefix

.
No comments:
Friends
Dis-complainer
The Great Change is published whenever the spirit moves me. Writings on this site are purely the opinion
of Albert Bates and are subject to a Creative Commons Attribution Non-

Generated
Suffix

(NC): You may not use this work for commercial purposes. Commercial use is not permitted without the
express written consent of the copyright holder.

Ground Truth
Suffix

(NC): You may not use this work for commercial purposes. Share Alike (SA): If you alter, transform, or
build upon this work, you may distribute the resulting work only under the same or similar license to this
one. Nothing in

Prefix

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the ”Software”), to deal in the Software without
restriction,

Generated
Suffix

WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT

Ground Truth
Suffix

WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT

Prefix
////
//// THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY ////
//// EXPRESS OR IMPLIED WARRANTIES, INCLUDING

Generated
Suffix

DAMAGES ////
//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS ////
//// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUS

Ground Truth
Suffix

DAMAGES ////
//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ////
//// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;

15

