Zebra: In-Context Generative Pretraining for Solving Parametric PDEs

1 1

Louis Serrano ' Armand Kassai Koupai

Abstract

Solving time-dependent parametric partial differ-
ential equations (PDEs) is challenging for data-
driven methods, as these models must adapt to
variations in parameters such as coefficients, forc-
ing terms, and initial conditions. State-of-the-
art neural surrogates perform adaptation through
gradient-based optimization and meta-learning to
implicitly encode the variety of dynamics from
observations. This often comes with increased in-
ference complexity. Inspired by the in-context
learning capabilities of large language models
(LLMs), we introduce Zebra, a novel genera-
tive auto-regressive transformer designed to solve
parametric PDEs without requiring gradient adap-
tation at inference. By leveraging in-context in-
formation during both pre-training and inference,
Zebra dynamically adapts to new tasks by con-
ditioning on input sequences that incorporate con-
text example trajectories. As a generative model,
Zebra can be used to generate new trajecto-
ries and allows quantifying the uncertainty of the
predictions. We evaluate Zebra across a vari-
ety of challenging PDE scenarios, demonstrating
its adaptability, robustness, and superior perfor-
mance compared to existing approaches.

1. Introduction

A major challenge for training neural solvers for time depen-
dent partial differential equations (PDEs) or more generally
for modeling spatio-temporal dynamics is to capture the
variety of behaviors arising from complex physical phenom-
ena. In particular, neural solvers, trained from a limited
number of situations often fail to generalize to new physmal
contexts and situations ( s ; s ;
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We address the parametric PDE problem ( ,

), where the goal is to train models on a limited set
of scenarios representing a given physical phenomenon so
that they can generalize across a wide range of new con-
texts, including different PDE parameters. These parameters
may encompass initial and boundary conditions, physical
coefficients, and forcing terms. In this work, we focus on
purely data-driven approaches that do not incorporate prior
knowledge of the underlying equations.

A basic approach to this problem is to sample from the
distribution of physical parameters, i.e., to train on differ-
ent instances of a PDE characterized by varying parameter
values, with the goal of generalizing to unseen instances.
This approach relies on an i.i.d. assumption and requires
a training set that adequately represents the distribution of
the underlying dynamical system—a condition that is of-
ten difficult to satisfy in practice due to the complexity of
physical phenomena. Other approaches explicitly condi-
tion on specific PDE parameters ( s ;

, ), relying on the availability of such
prior knowledge. This assumes that a physical model of
the observed system is known, making the incorporation
of PDE parameters into neural solvers challenging beyond
physical quantities. Moreover, in many cases, this prior
knowledge is incomplete or entirely unknown.

An alternative approach involves adaptation to new PDE in-
stances by leveraging observations from novel environments.
Here we consider that an environment is characterized by
a set of parameters. For data-driven models, adaptation is
often performed through fine tuning, which usually requires
a significant amount of examples for the new environment.
This is for example the setting adopted in many recent de-
velopment of foundation models ( , ;

, ; s ). This involves train-
ing a large model on a variety of physics-based numerical
simulations, each requiring a large amount of simulations
with the expectation that it will generalize.

More principled frameworks for adaptation leverage meta-
learning, where the model is trained on simulations cor-
responding to different environments—i.e., varying PDE
parameter values—so that it can quickly adapt to new and
unseen PDE simulation instances using a few trajectory ex-
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amples ( , ; ) ; )
). These flexible methods rely on gradient updates for
adaptation, adding computational overhead.

We explore a new direction for adaptation inspired by the
successes of in-context learning (ICL) in natural language
processing (NLP) and its demonstrated ability to generalize
to downstream tasks without retraining ( , ;

s ). We propose a framework, denoted
Zebra, relying on ICL for solving parametric PDEs with
new parameter values, without any additional update of the
model parameters.

As for ICL in NLP, the model is trained to generate appro-
priate responses given context examples and a query. The
context examples will be trajectories from the same dynam-
ics starting from different initial conditions. The query will
consist for example of a new initial state condition, that
will serve as inference starting point for the new forecast.
The proposed model is inspired from NLP approaches: it
is a causal generative model that processes discrete token
sequences encoding observations. It is trained to model the
trajectory distributions of parameteric PDEs. This approach
offers key advantages and greater flexibility compared to
existing methods. It can leverage contexts of different types
and sizes, requires only a few context examples to adapt
to new dynamics, and allows us to cover a wide range of
situations. It provides enhanced capabilities compared to
more classical deterministic forecasting models. Notably,
generative probabilistic models have been developed for
physical problems such as weather forecasting ( ,

; , ) and even PDE solving (

, ), demonstrating superior performance and capa-
bilities over their deterministic counterparts. However, their
setting is different, as they rely on diffusion models and are
neither designed for adaptation nor intended to address the
parametric PDE problem.

Some recent works have also explored adaptation through
in-context learning for dynamics modeling. The closest to
ours is probably ( , ), which also targets adap-
tation to multiple environments of an underlying physical
dynamics through prompting with examples. Their model
employs a specific deterministic encoder-decoder architec-
ture and is limited to 1D ODEs or sparse 2D data due to
scalability issues. More details and further references are
provided in Appendix A.

On the technical side, Zebra introduces a novel gener-
ative autoregressive solver for parametric PDEs. It em-
ploys an encode-generate-decode framework: first, a vector-
quantized variational auto-encoder (VQ-VAE) ( ,

) is learned to compress physical states into discrete
tokens and to decode it back to the original physical space.
Next, a generative autoregressive transformer is pre-trained
with arbitrary size context examples of trajectories using

a next token objective. At inference, Zebra can handle
varying context sizes for conditioning and supports uncer-
tainty quantification, enabling generalization to unseen PDE
parameters without gradient updates.

Our main contributions include:

* We introduce a generative autoregressive transformer
for modeling physical dynamics. It operates on com-
pact discretized representations of physical state obser-
vations. This framework represents the first successful
application of causal generative modeling using quan-
tized representations of physical systems.

* To harness the in-context learning strengths of autore-
gressive transformers, we develop a new pretraining
strategy that conditions the model on example trajec-
tories with similar underlying dynamics but different
initial conditions.

* Our generative model predicts trajectory distributions.
This provides a richer information than deterministic
auto-regressive models. This comes with enhanced
capabilities including more accurate predictions, uncer-
tainty measures, or the ability to sample and generate
new trajectories conditioned on some examples.

* We propose an accelerated inference procedure that
is orders of magnitude faster than existing adaptation
methods.

* We evaluate Zebra in a one-shot adaptation setting,
where it must infer the dynamics from a single context
trajectory and unroll the dynamics from a new query
initial condition (i.e., a single snapshot). The predicted
trajectory is compared to a target trajectory governed
by the same underlying dynamics as the context but
starting from the query initial condition. Zebra’s per-
formance is benchmarked against domain adaptation
baselines specifically trained for this task, and it consis-
tently outperforms gradient-based adaptation methods
on 2D datasets.

2. Problem setting
2.1. Solving parametric PDEs

We aim to solve parametric time-dependent PDEs beyond
the typical variation in initial conditions. Our goal is to
train models capable of generalizing across a wide range of
PDE parameters. To this end, we consider time-dependent
PDEs with different initial conditions, and with additional
degrees of freedom, namely: (1) coefficient parameters —
such as fluid viscosity or advection speed — denoted by
vector (4 ; (2) boundary conditions 5, e.g. Neumann or
Dirichlet; (3) forcing terms ¢, including damping param-
eter or sinusoidal forcing with different frequencies. We
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denote & := {u, B, 6} and we define F as the set of PDE
solutions corresponding to the PDE parameters p, bound-
ary conditions B and forcing term ¢, and refer to F¢ as a
PDE environment. Formally, a solution w(x, t) within F¢
satisfies:

ou ou 0%u
i (6u,txua 6‘z2"“)’
Ve e Q,Vt € (0,T] 1)
B(u)(z,t) =0, Vae€ dQ,Vte (0,T)

u(0,z) =u’, VreQ

where F' is a function of the solution w and its spatial deriva-
tives on the domain €2, and also includes the forcing term §
; B is the boundary condition constraint (e.g., spatial peri-
odicity, Dirichlet, or Neumann) that must be satisfied at the
boundary of the domain 9€2; and 0 is the initial condition
sampled with a probability measure u® ~ p°(.).

2.2. Adaptation for parametric PDE

Solving time-dependent parametric PDEs requires devel-
oping neural solvers capable of generalizing to a whole
distribution of PDE parameters. In practice, changes in the
PDE parameters often lead to distribution shifts in the tra-
jectories which makes the problem challenging. Different
directions are currently being explored and are briefly re-
viewed below. We focus on pure data-driven approaches that
do not make use of any prior knowledge on the equations.
We make the assumption that the models are learned from
numerical simulations so that it is possible to generate from
multiple parameters. This emulates real situations where for
example, a physical phenomenon is observed in different
contexts.

Fine tuning pre-trained models The classical strategy
for adapting to new settings is to fine tune models that have
been pretrained on a distribution of the PDE parameters.
This approach often relies on large fine tuning samples and
involves updatmg all or a subset of parameters (

s s ). We do not consider
this option that has been shown to underperform SOTA
adaptation approaches ( , ).

Gradient-based adaptation A more flexible approach
relies on adaptation at inference time through meta-learning.
It posits that a set of environments e are available from
which trajectories are sampled, each environment e being
defined by specific PDE parameter values ( ,

; s ). The model is trained from
a sampling from the environments distribution to adapt fast
to a new environment. The usual formulation is to learn
shared and specific environment parameters Gg ¢, , where 6

and 0 are respectively the shared and specific parameters.
At inference, for a new environment, only a small number
of parameters 0¢ is adapted from a small sample of observa-
tions. This family of method will be our reference baseline
in the following.

3. Zebra Framework

We introduce Zebra, a novel framework designed to solve
parametric PDEs through in-context learning and flexible
conditioning. Zebra utilizes a generative autoregressive
transformer to model partial differential equations (PDEs)
within a compact, discrete latent space. A spatial CNN
encoder is employed to map physical spatial observations
into these latent representations, while a CNN decoder accu-
rately reconstructs them. Our pretraining pipeline consists
of two key stages: 1) Learning a finite vocabulary of phys-
ical phenomena, and 2) Training the transformer using an
in-context pretraining strategy, enabling the model to effec-
tively condition on contextual information. At inference,
Zebra allows to perform in-context learning from context
trajectories as illustrated in Figure 1.

3.1. Learning a finite vocabulary of physical phenomena

In order to leverage the auto-regressive transformer archi-
tecture and adopt a next-token generative pretraining, we
need to convert physical observations into discrete represen-
tations. We do not quantize the observations directly but
rather quantize compressed latent representations by em-
ploying a VQVAE ( , ), an encoder-decoder
architecture with a quantizer component. Our encoder spa-
tially compresses the input function u? through a convo-
lutional model &,,, which maps the input to a continuous
latent variable z' = £, (u!). The latent variables are then
quantized to a vector of discrete codes zfl using a codebook
Z of size K = | Z| through the quantization component g.
For each spatial code z’fi il in zfl, the nearest codebook entry
2y, is selected. The decoder Dy, reconstructs the signal
from the quantized latent codes ifl. Both models are jointly
trained to minimize the reconstruction error between the
function w! and its reconstruction @ = Dy, 0 g 0 &, (u').

Once this training step is done, we can tokenize a trajec-
tory ut*+t™At by applying our encoder in parallel on each
timestamp to obtain vectors of discrete codes z/**™4 and
retrieve the corresponding index entries s***"A* from the
codebook Z. Similarly, we detokenize discrete indices with
the decoder. We provide a brief description of the VQVAE

model and details on its architecture in Appendix C.

3.2. In-context modeling

We design sequences that enable Zebra to perform in-
context learning on trajectories that share underlying dy-
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Figure 1. Zebra’s inference pipeline from context trajectories. The model is provided with a set of example trajectories (u1 and u2) that
share the same underlying dynamics (e.g., identical PDE parameters) but differ in initial conditions. Given a new query initial condition
u?, Zebra aims to generate the corresponding trajectory that follows the same physical behavior. Each trajectory and initial condition is
first tokenized into flattened index sequences s1, s2, and s9, which are concatenated using a specific formatting scheme. The transformer
then autoregressively generates the remaining tokens to obtain a plausible prediction. Finally, the generated indices are detokenized to

reconstruct the trajectory in physical space.

namics with different initial states. To incorporate varying
amounts of contextual information, we draw a number n €
{1, nmax }, then sample n trajectories sharing the same dy-
namics, each with m snapshots starting from time ¢, denoted
as (ultTmAL | qlt+mAL) - These trajectories are tok-
enized into index representations (i FmAL [ gtttmAL)
which are flattened into sequences s1, . . ., S,,, maintaining
the temporal order from left to right. In practice, we fix
Nmax = 6 and m = 9.

Since our model operates on tokens from a codebook, we
found it advantageous to introduce special tokens to struc-
ture the sequences. The tokens <bot > (beginning of trajec-
tory) and <eot> (end of trajectory) define the boundaries
of each trajectory within the sequence. Furthermore, as we
sample sequences with varying context sizes, we maximize
the utilization of the transformer’s context window by stack-
ing sequences that could also represent different dynamics.
To signal that these sequences should not influence each
other, we use the special tokens <bos> (beginning of se-
quence) and <eos> (end of sequence). The final sequence
design is:

S = <bot>[s1]<eot>...<bot>[s,]<eot>

And our pretraining dataset is structured as follows:

<bos>[S1]<eos>...<bos>[S]<eos>

3.3. Next-token pretraining

The transformer is trained using self-supervised learning on
a next-token prediction task with teacher forcing (Radford

et al., 2018). Given a sequence S of discrete tokens of
length IV, the model is optimized to minimize the negative
log-likelihood (cross-entropy loss):

N
ETransformer = 7ES Z log p(s[z] |S[i’<i])a

=1

where the model learns to predict each token Sj;; condi-
tioned on all previous tokens Sj; ;. Due to the trans-
former’s causal structure, earlier tokens in the sequence
are not influenced by later ones, while later tokens benefit
from more context, allowing for more accurate predictions.
This structure naturally supports both generation in a one-
shot and few-shot setting within a unified framework. Our
transformer implementation is based on the Llama archi-
tecture (Touvron et al., 2023). Additional details can be
found in Appendix C. Up to our knowledge, this is the first
adaptation of generative auto-regressive transformers to the
modeling of physical dynamics.

3.4. Flexible inference: prompting and sampling

In this section, we outline the inference pipeline for Zebra
across various scenarios. For simplicity, we assume that
all observations have already been tokenized and omit the
detokenization process. Let s, represent the target token
sequence to be predicted.

e Prompting with n examples and an initial
condition: The prompt is structured as S =
<bos><bot>[s§mAt] | [s9mAt<eot><bot>[sY],
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allowing the model to adapt based on the provided
examples and initial condition.

* Prompting with n examples and ¢ frames: This setup
combines context from multiple trajectories with the
initial timestamps, structured as

S = <bos> <bot> [s{MAY

[SQ:IZAt]

[Sg:mAt] <eot>

<bot>

At inference, we adjust the temperature parameter T of the
classifier layer to calibrate the level of diversity of the next-
token distributions. The temperature 7 scales the logits y;
before the softmax function :

p(Sp) = k[S[ir <)) = softmax (zi—k) = ﬁ

When 7 > 1, the distribution becomes more uniform, en-
couraging exploration, whereas 7 < 1 sharpens the dis-
tribution, favoring more deterministic predictions. During
training, it is kept fixed at 7 = 1.

4. Experiments

In this section, we experimentally validate that our frame-
work enables one-shot adaptation at inference. We follow
the pretraining procedure outlined in Section 3 for each
dataset described in Section 4.1 and evaluate Zebra across
distinct scenarios. We first assess its performance in the
one-shot setting for in-distribution parameters, comparing
it to adaptation-based baselines (Section 4.2). We then ex-
amine its generalization in out-of-distribution settings in
Section 4.3. Next we illustrate and analyze the generative
abilities of Zebra through two example tasks: uncertainty
quantification and new trajectory generation in Section 4.4,
with further analysis in Appendix D.2 and Appendix D.3. Fi-
nally, in Section 4.5, we show how we can drastically accel-
erate the adaptation at inference compared to gradient-based
methods. More results are provided in Appendix D, includ-
ing: deterministic pretraining (Appendix D.1), scaling be-
havior with the number of training samples (Appendix D.4),
the effect of codebook size (Appendix D.6), reconstruction
capabilities (Appendix D.7), and the impact of the number
of context examples (Appendix D.8).

4.1. Datasets details

As in ( ), we generate data in batches,
where each batch of trajectories corresponds to a single envi-
ronment and shares the same PDE parameters while having
different initial conditions. We consider various factors of
variation across multiple datasets. To assess the generaliza-
tion ability of our model across a wide range of scenarios,
we use a significantly larger number of environments—far

exceeding those in previous studies and available simula-
tion datasets ( ( ), ( ),

( ), ( )). We con-
duct experiments across seven datasets: five 1D—Advection,
Heat, Burgers, Wave-b, Combined—and two 2D—Wave 2D,
Vorticity 2D. These datasets were selected to encompass
different physical phenomena and test generalization under
changes to various types of PDE parameters, as described
below. The spatial resolution is set to 256 for 1D datasets
and 64 x 64 for 2D datasets. We subsample each trajectory
to keep 10 snapshots, except for the Wave-b dataset, where
we retain 15.

Varying PDE coefficients The changing factor is the set
of coefficients p in Equation (1). For Burgers, Heat, and
Vorticity 2D equations, the viscosity coefficient v varies
across environments. For Advection, the advection speed 3
changes. In Wave-c and Wave-2D, the wave’s celerity c is
unique to each environment, and the damping coefficient k&
varies across environments in Wave-2D. In the Combined
equation, three coefficients («, 3, ) vary, each influencing
different derivative terms respectively: — 8{;;2 ,+ gi’; = gz’;
on the right-hand side of Equation (1).

Varying boundary conditions In this case, the vary-
ing parameter is the boundary condition B from Equation
(1). For Wave-b, we explore two types of boundary condi-
tions—Dirichlet and Neumann—applied independently to
each boundary, resulting in four distinct environments.

Varying forcing term The varying parameter is the forc-
ing term § in Equation (1). In Burgers and Heat, the forcing
terms vary by the amplitude, frequency, and shift coeffi-

cients: §(t,x) = Z?:1 Ajsin <wjt + 277%1c + ¢j)~

A detailed description of the datasets is provided in Ap-
pendix B, while Table 6 summarizes the number of envi-
ronments used during training, the number of trajectories
sharing the same dynamics, and the varying PDE parameters
across environments. For testing, all methods are evaluated
on trajectories with new initial conditions in previously un-
seen environments. These unseen environments include
trajectories with both novel initial conditions and varying
parameters, which remain within the training distribution
for in-distribution evaluation and extend beyond it for out-
of-distribution testing. For each testing, we use 120 unseen
environments for the 2D datasets and 12 for the 1D datasets,
with each environment containing 10 trajectories.

Regarding computational resources, training the VQ-VAE
in 1D takes approximately 4 hours on an RTX 24 GB GPU,
while the transformer component requires around 15 hours.
In the 2D setting, both training times increase to approxi-
mately 20 hours each on a single A100 80 GB GPU.
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Table 1. One-shot adaptation. Conditioning from a similar trajectory. Test results in relative L2 on the trajectory. ‘—* indicates inference

has diverged.
Advection ~ Heat  Burgers Waveb  Combined Wave 2D  Vorticity 2D
CAPE 0.00941 0223  0.213 0.978 0.00857 - -
CODA 0.00687 0.546  0.767 1.020 0.0120 0.777 0.678
[CLS] ViT 0.140 0.136 0.116 0.971 0.0446 0.271 0.972
ViT-in-context 0.0902 0472  0.582 0.472 0.0885 0.390 0.173
Zebra 0.00794  0.154  0.115 0.245 0.00965 0.207 0.119

4.2. In-distribution generalization

Setting We evaluate Zebra’s ability to perform in-
context learning by leveraging example trajectories that
follow the same underlying dynamics as the target. For-
mally, in the n-shot adaptation setting, we assume access
to a set of n context trajectories {ul™At ... w9 mAtY at
inference time, all of which belong to the same dynamical
system F¢. The goal of the adaptation task is to accurately
predict a future trajectory u2tA* from a new initial con-
dition u?, knowing that the underlying target dynamics is
shared with the provided context example trajectories.

Sampling For Zebra, we use here a random sampling
procedure at inference for generating the next tokens for all
datasets, setting a low temperature (7 = 0.1) to prioritize
accuracy over diversity. Predictions are generated using a
single sample under this configuration.

Baselines We evaluate Zebra against 4 baselines, CODA
( , ) and CAPE ( ,

), two SOTA adaptation methods. We also compare
to two specifically designed ViT architectures: [CLS] ViT
that performs adaptation by learning a [CLS] embedding
and ViT-in-context designed for in-context training.
CODA is a meta-learning framework designed for learning
parametric PDEs. It leverages common knowledge from
multiple environments where trajectories from a same en-
vironment e share the same PDE parameter values. CODA
training performs adaptation in the parameter space by learn-
ing shared parameters across all environments and a con-
text vector c® specific to each environment. At inference,
CODA adapts to a new environment by tuning ¢® with sev-
eral gradient steps. CAPE was not designed to perform
adaptation via extra-trajectories, but instead needs the cor-
rect parameter values as input to condition a neural solver.
We adapt it to our setting, by learning a context c® instead
of using the real parameter values. During adaptation, we
only tune this context c¢® via gradient updates. [CLS] ViT
is a specifically designed baseline based on a vision trans-
former ( s ), integrating a [CLS] token
that serves as a learned parameter for each environment.
This token lets the model handle different dynamics, and
during inference, we adapt the [CLS] vector via gradient

updates, following the same approach used in CODA and
CAPE. ViT-in-context is a transformer with separate
temporal and spatial attention ( s ), where we
stack context examples and preceding target frames in the
temporal axis to provide in-context examples. Note that all
these baselines are deterministic.

Metrics We evaluate the performance using the Rel-

ative LQ' norm between the predicted rollout trajec-
tory Y and the ground truth wy¥**Y: L2 =

| Iﬂlfaiscloly _uf;ajeclory | |2

1 J
Niest Zj Etest

trajectory
;™12

Results As evidenced in Table 5, Zebra demonstrates
strong overall performance in the one-shot adaptation set-
ting, often surpassing gradient-based adaptation methods.
For the more challenging datasets, such as Burgers, Wave-
b, and the 2D cases, Zebra consistently achieves lower
relative L2 errors, highlighting its capacity to model com-
plex dynamics effectively. Notably, Zebra excels in 2D
environments, outperforming both CODA and [CLS] ViT
and avoiding the divergence issues encountered by CAPE.
While Zebra performs comparably to CODA on simpler
datasets like Advection and Combined, its overall stability
and versatility across a range of scenarios, particularly in
2D settings, highlight its competitiveness. Overall, Zebra
stands out as a reliable and scalable solution for adaptation
for solving parametric PDEs, demonstrating that in-context
learning offers a robust alternative to existing gradient-based
adaptation methods. The ablation study (see Appendix D.1)
highlights an important advantage of Zebra’s generative
capabilities. When trained deterministically to predict the
conditional expectation of the next token, the model accumu-
lates significant error during the autoregressive rollout. In
contrast, Zebra, trained to model trajectory distributions,
can sample from this distribution at inference time, resulting
in predictions that are more robust to error accumulation.

4.3. Out-of-distribution generalization

Datasets We evaluate our models on new PDE instances
under the following distribution shifts: (i) Heat: We mod-
ify the forcing term parameterization. Wide Forcing: The
forcing coefficients are varied from Appendix B.3, with
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Figure 2. One-shot prediction on Vorticity in the turbulent OoD regime v € [le — 5, 1le — 4]. Top-row is the example given in context,
mid-row is the ground truth trajectory, and the bottom-row is the generation with Zebra.

parameters sampled as A; € [-1.0,1.0], w; € [-0.8,0.8]
compared to the training ranges [—0.5, 0.5] and [—0.4, 0.4].

Gaussian: §(t,x) = 2?21 Ajexp <— (w;;g)Z)) sin (w;t),
introducing smooth, localized excitations. this results in
solutions similar to the homogeneous case away from peaks.
S(t,z) = Z?Zl Aj;sin (wjt + 27‘(% + ¢j>,
which preserves the parameterization but introduces dis-
continuities and high-frequency content, resulting in a more
challenging OoD scenario. (ii) Vorticity: In the close setting,
viscosity is sampled from [5 x 10~%,10~?], while the train-
ing range is [1073,1072]. The far setting corresponds to
a turbulent regime with viscosity in [107°, 10~4]; see Fig-
ure 2 for a qualitative example. (iii) Wave 2D: We increase
both the wave celerity and damping beyond the training
distribution. The wave celerity c is sampled from [500, 550]
vs. [100, 500] during training, and the damping term & from
[50, 60] vs. [0,50] in training.

Square:

Setting We evaluate all the models in a one-shot setting on
trajectories with out-of-distribution PDE parameters on new
initial conditions, making this a particularly challenging test
of generalization.

Results We report the scores in Table 2. Overall, all meth-
ods experience performance degradation due to the distri-
bution shift, with Zebra achieving the best results in three
out of four experiments, while CODA and CAPE perform
the worst. This poor performance for CAPE and CODA is
expected on the 2D datasets, as they already struggled to
generalize within the training distribution. However, for the
Heat equation, errors for CAPE and CODA double, whereas
Zebra maintains similar accuracy, demonstrating greater
robustness to distribution shifts. Comparing Zebra and
ViT-in-context to CAPE and CODA, it is remarkable
that adaptation through in-context learning appears to be a
more effective alternative than gradient-based adaptation for
out-of-distribution generalization.

Out-of-distribution generalization remains a challenging
task, particularly under strong shifts. On the Vorticity
dataset, Zebra adapts to large shifts in viscosity and pre-
dicts the large-scale component of the dynamics. As shown

in Figure 2, the predictions are not as sharp as the ground
truths, as the VQVAE was not explicitly trained to capture
the part of the spectrum present in turbulent trajectories.

Table 2. Out-of-distribution results. Test results in relative L2 on
the trajectory. ‘—‘ indicates inference has diverged. n/a indicates
that the model was not evaluated in this setting.

Heat Wave 2D Vorticity 2D
Wide  Gaussian — Square close  far
CAPE 047 n/a n/a - - -
CODA 1.03 n/a n/a 1.51 1.71 -
ViT-in-context  0.52 0.40 0.66 0.68 0.30 0.37
Zebra 0.15 0.32 0.36 0.68 024 032

4.4. Generative ability of the model

The evaluation in Section 4.2 already shows that as a gener-
ative model, Zebra is less prone to error accumulation that
deterministic auto-regressive models. We illustrate here ad-
ditional benefits from the generative capabilities of Zebra
through two example tasks: uncertainty quantification and
new trajectory generation. Further analysis of the behavior
of Zebra is provided in Appendix D.2 and Appendix D.3.

Uncertainty quantification Given a context example and
an initial condition, Zebra can generate multiple trajecto-
ries thanks to the sampling operation at the classifier level.
Statistics can then be derived from this sample of the trajec-
tory distribution in order to assess for example the uncer-
tainty associated to a prediction. An illustration is provided
in Figure 3, the red curve represents the ground truth, the
blue curve is the predicted mean and the blue shading indi-
cates the empirical confidence interval (3 x standard devia-
tion). Mean and standard deviation are calculated pointwise.
We provide a more detailed analysis in Appendix D.2. In
particular, it shows as expected that (i) uncertainty can be
calibrated via the temperature parameter 7 (Figure 17), and
(ii) it decreases with additional context (Table 9).

New trajectory generation As a second illustration, we
assess Zebra’s ability to generate relevant new trajecto-
ries conditioned on in-context examples alone, i.e. without
prompting with an initial state query. This is similar to
conditional image or text generation in LLMs. The gen-
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Mean prediction and confidence interval

2.01

Figure 3. Uncertainty quantification with Zebra in a one-shot
setting on Heat equation.

erated trajectories are sampled conditioned on a context
trajectory from a new unseen environment. The key finding
here is that Zebra effectively generates faithful trajectory
distributions that closely match the real simulated trajectory
distribution. Hence, given some examples from an unknown
environment, Zebra could be used to generate trajecto-
ries that comply with the distribution in this environment.
Qualitatively, Figure 4 illustrates how the real (from a held
out sample) and the generated distributions match at two
different time steps (¢ = 0,t = 9): the PCA projection,
indicates a strong alignment. Quantitatively, Table 3 shows
that the Wasserstein distance of the generated trajectories
is comparable to the Wasserstein distance between valida-
tion and test samples. As a calibration measure, we also
provide in Table 3 the Wasserstein distance between the real
distribution and a Gaussian distribution. Further details are
provided in Appendix D.3.

PCA at time t=0 PCA at time t=9

PCA Cor

PCA Component T

b)t=09.

Figure 4. PCA Visualization of generated (blue) vs. real (orange)
trajectories on Combined Equation

4.5. Accelerating inference

Since Zebra requires no gradient steps at inference, it is
already faster than gradient-based adaptation (see Table 4).
However, its autoregressive nature introduces significant
overhead at inference: generating trajectories token by to-
ken increases solver calls by one to two orders of magnitude

Table 3. Comparison of distributions using the Wasserstein dis-
tance between generated trajectories and real trajectories.

Distance Metric Advection Combined Equation
Gaussian noise vs. real data 18.22 16.15
Validation data vs. test data 5.11 1.87

Zebra-generated data vs. real data 5.57 2.21

compared to direct surrogate modeling, making inference
costly. To address this, we propose a fast inference method
that accelerates inference by orders of magnitude relative
to both the original model and gradient-based adaptation
(Table 4). Instead of token-wise autoregressive generation,
we predict entire frames at once. This is achieved by re-
placing the token-wise autoregressive generation process
with a frame-wise autoregressive surrogate, implemented
as a UNet. The UNet, conditioned on a context embedding
output by the transformer, takes frame u® as input and pre-
dicts 'A%, A crucial component is the context embedding,
which captures underlying dynamics from example trajec-
tories. This is learned by introducing a new token, [DYN],
at the transformer’s input, analogous to [CLS] in BERT,
allowing attention to encode context dynamics effectively.
The implementation is detailed in Appendix C and in Fig-
ure 7. Table 4 shows that this reduces inference time by one
to two orders of magnitude, making Zebra highly efficient.

Table 4. Inference times for one-shot adaptation. Average time in
seconds to predict a single trajectory given a context trajectory
and an initial condition. Times include adaptation and forecast
for CODA and CAPE, while for Zebra, they include encoding,
autoregressive prediction, and decoding.

Advection  Vorticity 2D
CAPE 18s 23s
CODA 31s 28s
Zebra 3s 21s
Zebra + UNet 0.10s 0.14s

As shown in Table 5, this framework matches or outperforms
pretrained Zebra in most cases. The dynamics embedding
captures meaningful context, enabling efficient UNet train-
ing. In contrast, methods like CAPE and CODA must learn
both model weights and environment embeddings simulta-
neously, making training less efficient.

Table 5. Zebra vs Zebra + UNet, for the in-distribution one-shot
setting. Test results in relative L2 error.

Advection  Combined ~ Wave 2D  Vorticity 2D
Zebra 0.00794 0.00965 0.207 0.119
Zebra+UNet 0.0072 0.0138 0.150 0.0869
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5. Limitations

Reconstruction quality The fidelity of the generated tra-
jectories is constrained by the decoder’s ability to recon-
struct fine details from the quantized latent space. While
the reconstruction quality is sufficient for the applications
considered in this study, it may be inadequate for systems
characterized by high-frequency physical phenomena. To
address this limitation, scaling the codebook size ( s

; s ) or exploring alternatives to
vector quantization ( s ) could improve recon-
struction accuracy—provided that the model’s in-context
learning capabilities are preserved.

Irregular grids Our current encoder and decoder rely on
convolutional blocks, which limits the architecture to data
defined on regular grids. Adopting more flexible encoding
and decoding schemes—such as those proposed in

( )—could enable support for irregularly sampled
inputs or more complex geometric domains.

Data requirements Our data scaling analysis indicates
that the framework requires a large number of training trajec-
tories to generalize effectively. As such, the current method
is not well suited for data-scarce regimes and depends on
significant diversity in the parameter space. A more thor-
ough investigation is needed to determine the minimal level
of parameter variability required to ensure generalization in
or close to the training distribution of PDE parameters.

Scalability and complexity The transformer in our ar-
chitecture applies causal attention across the full se-
quence—comprising the number of context examples N,
time steps 7', and spatial tokens per frame h x w. Extend-
ing to 3D data with a third spatial dimension d increases
the complexity to O(NThwd)?. This quadratic growth can
lead to prohibitively long sequences in higher-dimensional
settings, and may necessitate architectural changes such as
axial or factorized attention mechanisms.

6. Conclusion

This study introduces Zebra, a novel generative model that
adapts language model pretraining techniques for solving
parametric PDEs. We propose a pretraining strategy that
enables Zebra to develop in-context learning capabilities.
Our experiments demonstrate that the pretrained model per-
forms competitively against specialized baselines across var-
ious scenarios. Additionally, as a generative model, Zebra
facilitates uncertainty quantification and can generate new
trajectories, providing valuable flexibility in applications.
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A. Related Work

A.1. Learning parametric PDEs

The classical ML paradigm The classical ML paradigm for solving parametric PDEs consists in sampling from the PDE
parameter distribution trajectories to generalize to new PDE parameter values. It is the classical ERM approach. The natural
way for generalizing to new PDE parameters is to explicitly embed them in the neural network ( , ).
( , ) proposed a channel-attention mechanism to guide neural solvers with the physical coefficients given
as input; it requires complete knowledge of the physical system and are not designed for other PDE parameter values, e.g.,
boundary conditions. It is commonly assumed that prior knowledge are not available, but instead rely on past states of
trajectories for inferring the dynamics. Neural solvers and operators learn parametric PDEs by stacking the past states as
channel information as done in ( , ), or by creating additional temporal dimension as done in video prediction
contexts ( , ; , ). Their performance drops when shifts occur in the data distribution, which is
often met with parametric PDESs, as small changes in the PDE parameters can lead to various dynamics. To better generalize
to new PDE parameter values, ( , ) instead leverages fine-tuning from pretrained models to generalize
to new PDE parameters. It however often necessitates a relatively large number of fine tuning samples to effectively adapt to
new PDE parameter values, by updating all or a subset of parameters ( , ; , ).

Gradient-based adaptation To better adapt to new PDE parameters values at inference, several works have explored
learning on multiple environments. During training, a limited number of environments are available, each corresponding to
a specific PDE instance. ( s ) introduced LEADS, a multi-task framework for learning parametric PDEs, where
a shared model from all environments and a model specific to each environment are learned jointly. At inference, for a new
PDE instance, the shared model remain frozen and only a model specific to that environment is learned. ( s

) proposed to perform adaptive conditioning in the parameter space; the framework adapts the weights of a model to
each environment via a hyper-network conditioned by a context vector c© specific to each environment. At inference, the
model adapts to a new environment by only tuning c®. ( , ) bridged the gap from the classical gradient-based
meta- learmng approaches by addressing the limitations of second-order optimization of MAML and its variants ( ,

; , ). Other works have also extended these frameworks to quantify uncertainty of the predictions :
( , ) proposed a conditional neural process to capture uncertainty in the context of multiple environments with
sparse trajectories, while ( , ) leveraged information from multiple environments to enable more robust
predictions and uncertainty quantification.

In-context learning for PDE Inspired by the in-context learning (ICL) paradigm in large language models (LLMs), recent
works have explored adapting this approach for solving PDEs and modeling dynamical systems. One of the earliest efforts
in this direction is ( ), which aims to learn operators capable of adapting to different physical scenarios by
leveraging in-context examples. Their approach utilizes an encoder-decoder transformer, where the transformer encodes
the context prompt. This prompt, together with a query, is then passed to the decoder, which predicts the corresponding
output values of the state vector. However, since functions are represented as scattered point tokens, the model encounters
computational complexity challenges and is primarily limited to 1D ODE:s or sparse 2D data. VICON ( , )
extends this framework by leveraging vision transformers (ViTs) that operate on image patches. However, the two approaches
further differ in their problem settings: while our method focuses on adapting a surrogate model using a small number
of context trajectories and then unrolling from an initial condition,as traditional PDE solvers do, VICON is designed
for future-state forecasting based on access to past trajectory history. Our ViT In-Context baseline already captures an
architecture that is structurally similar to VICON, but tailored to our adaptation formulation, thereby offering an implicit
point of comparison.

( ) takes a different approach, focusing on unsupervised pretraining for operator learning. Their method
involves pretraining the encoder-decoder of neural operators on proxy tasks (such as masked prediction or super-resolution)
that require only snapshots of the dynamics rather than full simulation data, followed by fine-tuning on target dynamics. In
this case, ICL is used only at inference time, where context examples similar to a query input are retrieved from the training
set, and their solutions are aggregated and averaged to form the final prediction. This setting differs significantly from
ours. Notably, all these approaches rely on deterministic ViT-like architectures, whereas our method employs a generative
stochastic model.

Note that in-context learning is still a not well understood phenomenon and that different hypotheses are being explored
which attempt to fill this gap ( , ). Two prevalent explanations come from a Bayesian perspective on ICL as
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introduced in a popular paper ( , ) and the gradient descent view as introduced e.g. in ( ) that
identied a dual form between transformer attention and gradient descent highlighting relations between GPT-based ICL and
expicit fine tuning.

A.2. Generative models

Auto-regressive Transformers for Images and Videos Recent works have explored combining language modeling
techniques with image and video generation, typically using a VQ-VAE ( , ) paired with a causal transformer
( , ) or a bidirectional transformer ( , ). VQGAN ( , ) has become the
leading framework by incorporating perceptual and adversarial losses to improve the visual realism of decoder outputs
from quantized latent representations. However, while these methods succeed in generating visually plausible images, they
introduce a bias—driven by perceptual and adversarial losses—that leads the network to prioritize perceptual similarity
and realism, often causing reconstructions to deviate from the true input. In contrast, Zebra focuses on maximizing
reconstruction accuracy, and we did not observe benefits from using adversarial or perceptual losses during training.

In video generation, models like Magvit ( , ) and Magvit2 ( , ) adopt similar strategies, using 3D
CNN encoders to compress sequences of video frames into spatiotemporal latent representations by exploiting the structural
similarities between successive frames in a video. However, such temporal compression is unsuitable for modeling partial
differential equations (PDEs), where temporal dynamics can vary significantly between frames depending on the temporal
resolution. With Zebra, we spatially compress observations using the encoder and learn the temporal dynamics with an
auto-regressive transformer, avoiding temporal compression.

Generative PDE surrogate models Recent advances have leveraged diffusion-based generative models for surrogate
modeling of PDEs. ( ) introduce DiffusionPDE, which employs a diffusion model to complete partial
observations and solve PDEs under limited supervision. ( ) propose the Wavelet Diffusion Neural Operator
(WDNO), which performs diffusion in the wavelet domain and uses multi-resolution training to capture sharp features and
generalize across spatial scales, with a focus on long-term simulation and control. ( ) develop a diffusion
graph network that learns full solution distributions of complex fluids; it enables direct sampling of equilibrium states on
unstructured meshes, facilitating efficient estimation of turbulent statistics. Finally, ( ) present DPOT, an
autoregressive transformer pre-trained with noise-perturbed inputs on a large collection of PDE simulations.

B. Dataset details
Table 6. Dataset Summary
Dataset Name Number of env.  Trajectories per env. Main parameters
Advection 1200 10 Advection speed
Heat 1200 10 Diffusion and forcing
Burgers 1200 10 Diffusion and forcing
Wave boundary 4 3000 Boundary conditions
Combined equation 1200 10 a, B,y
Wave 2D 1200 10 Wave celerity and damping
Vorticity 2D 1200 10 Diffusion
B.1. Advection

We consider a 1D advection equation with advection speed parameter 3:

Oiu+ BOyu =0

For each environment, we sample § with a uniform distribution in [0, 4]. We sample 1200 parameters, and 10 trajectories
per parameter, constituting a training set of 12000 trajectories. At test time, we draw 12 new parameters and evaluate the
performance on 10 trajectories each.

We fix the size of the domain L = 128 and draw initial conditions as described in Equation (3) in appendix B.5 and generate
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solutions with the method of lines and the pseudo-spectral solver described in ( , ). We take 140
snapshots along a 100s long simulations, which we downsample to 14 timestamps for training. We used a spatial resolution
of 256.

B.2. Burgers

We consider the Burgers equation as a special case of the combined equation described in Appendix B.5 and initially
in ( ), with fixed v = 0 and @ = 0.5. However, in this setting, we include a forcing term
o(t,x) = Z] 1A sm(wjt +2ml;x/L + ¢;) that can vary across different environments. We fix J = 5, L = 16. We draw
initial conditions as described in Equation (3).

For each environment, we sample  with a log-uniform distribution in [le — 3, 5], and sample the forcing term coefficients
uniformly: A; € [-0.5,0.5], w; € [-0.4,—-0.4], ¢; € {1,2,3}, ¢; € [0,27]. We create a dataset of 1200 environments
with 10 trajectories for training, and 12 environments with 10 trajectories for testing.

We use the solver from ( , ), and take 250 snapshots along the 4s of the generations. We employ a
spatial resolution of 256 and downsample the temporal resolution to 25 frames.

B.3. Heat

We consider the heat equation as a special case of the combined equation described in Appendix B.5 and initially in
( , ), with fixed 7 = 0 and @« = 0. However, in this setting, we include a forcing term 0(¢, ) =
Z}Izl Ajsin(w;t + 2mljx/L + ¢;) that can vary across different environments. We fix J = 5, L = 16. We draw initial
conditions as described in Equation (3).

For each environment, we sample  with a log-uniform distribution in [le — 3, 5], and sample the forcing term coefficients
uniformly: A; € [-0.5,0.5], w; € [-0.4,—0.4], ¢; € {1,2,3}, ¢; € [0, 27]. We create a dataset of 1200 environments
with 10 trajectories for training, and 12 environments with 10 trajectories for testing.

We use the solver from ( , ), and take 250 snapshots along the 4s of the generations. We employ a
spatial resolution of 256 and downsample the temporal resolution to 25 frames.
B.4. Wave boundary
We consider a 1D wave equation as in ( R ).
Ot — 0peu =0, x € [—8,8]
where c is the wave velocity (¢ = 2 in our experiments). We consider Dirichlet 5[u] = u = 0 and Neumann Blu] = 0,u = 0

boundary conditions.

We consider 4 different environments as each boundary can either respect Neumann or Dirichlet conditions, and sample
3000 trajectories for each environment. This results in 12000 trajectories for training. For the test set, we sample 30 new
trajectories from these 4 environments resulting in 120 test trajectories.

The initial condition is a Gaussian pulse with a peak at a random location. Numerical ground truth is generated with the
solver proposed in ( , ). We obtain ground truth trajectories with resolution (n,, n) = (256, 250),
and downsample the temporal resolution to obtain trajectories of shape (256, 60).

B.5. Combined equation

We used the setting introduced in ( s ), but with the exception that we do not include a forcing term.
The combined equation is thus described by the following PDE:

[Oyu + 0y (qu? — BOu + YOpeu)(t, ) = 6(t, ), )
J
§(t,x) =0, wo(x)= ZAj sin(2ml;x/L + ¢;). 3)
j=1
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For training, we sampled 1200 triplets of parameters uniformly within the ranges « € [0, 1], 8 € [0,0.4], and v € [0, 1]. For
each parameter instance, we sample 10 trajectories, resulting in 12000 trajectories for training and 120 trajectories for testing.
We used the solver proposed in ( , ) to generate the solutions. The trajectories were generated with a
spatial resolution of 256 for 10 seconds, along which 140 snapshots are taken. We downsample the temporal resolution to
obtain trajectories with shape (256, 14).

B.6. Vorticity

We propose a 2D turbulence equation. We focus on analyzing the dynamics of the vorticity variable. The vorticity, denoted
by w, is a vector field that characterizes the local rotation of fluid elements, defined as w = V x u. The vorticity equation is

expressed as:
Ow

- +

ot
Here, u represents the fluid velocity field, v is the kinematic viscosity with v = 1/Re. For the vorticity equation, the
parametric problem consists in learning dynamical systems with changes in the viscosity term.

(u-V)w—vViw =0 “)

For training, we sampled 1200 PDE parameter values in the range v = [le — 3, le — 2]. For test, we evaluate our model
on 120 new parameters not seen during training in the same paramter range. For each parameter instance, we sample 10
trajectory, resulting in 12000 trajectories for training and 1200 for test.

Data generation For the data generation, we use a 5 point stencil for the classical central difference scheme of the
Laplacian operator. For the Jacobian, we use a second order accurate scheme proposed by Arakawa that preserves the energy,
enstrophy and skew symmetry ( , ). Finally for solving the Poisson equation, we use a Fast Fourier Transform
based solver. We discretize a periodic domain into 512 x 512 points for the DNS and uses a RK4 solver with At = le — 3
on a temporal horizon [0, 2]. We then perform a temporal and spatial down-sample operation, thus obtaining trajectories
composed of 10 states on a 64 x 64 grid.

We consider the following initial conditions:

-3 (&) o (- (4))

E(k
wik) = /W) ©)
wk
B.7. Wave 2D
We propose a 2D damped wave equation, defined by
Pw Ow
_2A v 7
G ¢ Aw +k 5 0 0

where c is the wave speed and & is the damping coefficient. We are only interested in learning w. To tackle the parametric
problem, we sample 1200 parameters in the range ¢ = [0, 50] and k& = [100, 500]. For validation, we evaluate our model
on 120 new parameters not seen during training in the same paramter range. For each parameter instance, we sample 10
trajectory, resulting in 12000 trajectories for training and 1200 for validation.

Data generation For the data generation, we consider a compact spatial domain (2 represented as a 64 x 64 grid and
discretize the Laplacian operator similarly. A is implemented using a 5 x 5 discrete Laplace operator in simulation. For
boundary conditions, null neumann boundary conditions are imposed. We set At = 6.25¢ — 6 and generate trajectories on
the temporal horizon [0, 5¢ — 3]. The simulation was integrated using a fourth order runge-kutta schema from an initial
condition corresponding to a sum of gaussians:

wolz,y) = C’Zexp (_ (x—2:)*+ (y — y,)Z) "

2
20;
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where we choose p = 5 gaussians with o; ~ U|.025,0.1]» i ~ Ujo,1]> Yi ~ UJo.,1]- We fixed C to 1 here. Thus, all initial
conditions correspond to a sum of gaussians of varying amplitudes.

C. Architecture details

C.1. Baseline implementations

For all baselines, we followed the recommendations given by the authors. We report here the architectures used for each
baseline:

* CODA: For CODA, we implemented a U-Net ( s ) and a FNO ( s ) as the neural
network decoder. For all the different experiments, we reported in the results the best score among the two backbones
used. We trained the different models in the same manner as Zebra, i.e. via teacher forcing ( , ). The

model is adapted to each environment using a context vector specific to each environment. For the size of the context
vector, we followed the authors recommendation and chose a context size equals to the number of degrees of freedom
used to define each environment for each dataset. At inference, we adapt to a new environment using 250 gradient
steps.

* CAPE: For CAPE ( , ), we adapted the method to an adaptation setting. Instead of giving true
physical coefficients as input, we learn to auto-decode a context vector c® as in CODA, which implicitly embeds the
specific characteristics of each environment. During inference, we only adapt ¢® with 250 gradient steps. For the
architectures, we use UNET and FNO as the backbones, and reported the best results among the two architectures for
all settings.

e [CLS] ViT: For the ViT, we use a simple vision transformer architecture ( s ), but adaptitto a
meta-learning setting where the CLS token encodes the specific variations of each environment. At inference, the CLS
token is adapted to a new environment with 100 gradient steps.

e ViT-in-context: We implement ViT-in-context using a standard transformer architecture with separate
temporal and spatial attention mechanisms, following ( ). During both training and inference, context
examples are stacked along the temporal dimension. The model is trained to predict the next frame in the target
sequence, conditioned on both the context examples and the preceding frames of the target sequence.

C.2. Zebra additional details

Zebra We describe the pretraining strategy in Section 3, and provide details on the architecture and its hyperparameters in
Appendix C. The datasets used are described in Appendix B. We plan to release the code, the weights of the models, and the
datasets used in this study upon acceptance.

For clarity, we outline the pretraining steps of Zebra in Figure 5 illustrated with the vorticity 2D dataset.

We also provide illustrations of our inference pipeline in Figure 6. We finally include a schematic view of the different
generation possibilities with Zebra in Figure 8, using the sequence design adopted during pretraining.

Zebra + UNet Zebra is competitive both in-distribution and out-of-distribution, while also enabling uncertainty quantifi-
cation due to its generative nature. Additionally, Zebra can generate novel trajectories and initial conditions, providing a
way to sample complex initial states. As such Zebra is already faster than gradient-based adaptation methods, but since the
model generates trajectory solutions token by token, the number of calls to the transformer increases by one or two orders of
magnitude compared to direct surrogate modeling, making the process costly.

In this section, we propose a hybrid approach that leverages Zebra’s pretrained knowledge in combination with a
conventional neural surrogate model. The objective is to develop a framework that encodes context trajectories into an
embedding vector, which then conditions a neural surrogate, similar to classical adaptation methods such as CODA and
CAPE.

To achieve this, we finetune Zebra as an encoder to adapt a conditional surrogate model, such as a UNet (
, ). We introduce a [DYN] token (short for dynamics), which is appended to the right of the context sequence
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Figure 5. Zebra’s pretraining includes two stages. 1) A finite vocabulary of physical phenomena is learned by training a VQ-VAE on
spatial representations. 2) During the pretraining, multiple trajectories sharing the same dynamics are tokenized and concatenated into a
common sequence S. The transformer is trained to predict the next-token by minimizing the cross-entropy loss.

18



Zebra: In-Context Generative Pretraining for Solving Parametric PDEs

'\ Generated Trajectory

Context trajectory

Initial condition

4—{ DeTokenize J

|
|
|
|
|
|
I

e

generated tokens

Toenize | | Tokenize | me

) ) Ao Tt gbneraton

T e

<eot> <boi>[ 32 ‘ =5
N I ......... '

Figure 6. Zebra’s inference pipeline from context trajectory. The context trajectory and initial conditions are tokenized into index
sequences that are concatenated according to the sequence design adopted during pretraining. The transformer then generates the next
tokens to complete the sequence. We detokenize these indices to get back to the physical space.

during both training and inference. This allows Zebra to extract a dynamics embedding from the transformer’s output,
defined as:
&g = Transformer (S, [DYN])

where S represents a sequence of tokens encoding the context trajectories. The embedding £g captures key properties of the
dynamics and is mapped to the conditioning space of a UNet, which adapts the model to each specific dynamics. Following
Gupta & Brandstetter (2022), the UNet conditioning modifies the network’s biases. Once the dynamics embedding is
extracted, the UNet can directly predict the next state from the current state :

a'TA = UNet(u!, £5).

With this architecture, we effectively extract the key dynamics from example trajectories and use this information to adapt a
neural surrogate, significantly accelerating inference. The complete pipeline at inference is illustrated in Figure 7.

To efficiently finetune Zebra, we apply LoRA (Hu et al., 2021), keeping the transformer’s weights frozen while learning
low-rank updates. This setup enables the UNet to leverage Zebra’s pre-learned representations while achieving a substantial
speedup. Compared to standalone Zebra, integrating a UNet improves inference speed by a factor of x30 in 1D and x150
in 2D. The method is also considerably faster than CODA and CAPE while maintaining competitive performance across
tasks. The inference times are summarized in Table 4.

Finally we illustrate the inference pipeline for accelerating the inference of Zebra with the UNet in Figure 7.

C.3. Auto-regressive transformer

Zebra’s transformer is based on Llama’s architecture, which we describe informally in Figure 9. We use the implementation
provided by HuggingFace (Wolf, 2019) and the hyperparameters from Table 7 in our experiments. For training the
transformer, we used a single NVIDIA TITAN RTX for the 1D experiments and used a single A100 for training the model
on the 2D datasets. Training the transformer on 2D datasets took 20h on a single A100 and it took 15h on a single RTX for
the 1d dataset.

C4. VQVAE

The quantizer used at the token level is a VQVAE model (Oord et al., 2017). As illustrated in Figure 10 this is an
encoder-decoder architecture with an intermediate quantizer component.
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Example Trajectory 1 Example Trajectory 2

Figure 7. Zebra + UNet inference pipeline. Zebra serves as an encoder, utilizing the special token [DYN] to generate a dynamics
embedding £ from the context example trajectories. Once this embedding is obtained, the UNet can autoregressively forecast the sequence
significantly faster than a next-token transformer.

Table 7. Hyperparameters for Zebra’s Transformer

Hyperparameters Advection  Heat Burgers Waveb Combined Vorticity 2D Wave 2D
max_context_size 2048 2048 2048 2048 2048 8192 8192
batch_size 4 4 4 4 4 2 2
num_gradient_accumulations 1 1 1 1 1 4 4
hidden _size 256 256 256 256 256 384 512
mlp_ratio 4.0 4.0 4.0 4.0 4.0 4.0 4.0
depth 8 8 8 8 8 8 8
num_heads 8 8 8 8 8 8 8
vocabulary _size 264 264 264 264 264 2056 2056
start learning_rate le-4 le-4 le-4 le-4 le-4 le-4 le-4
weight_decay le-4 le-4 le-4 le-4 le-4 le-4 le-4
scheduler Cosine Cosine  Cosine  Cosine Cosine Cosine Cosine
num_epochs 100 100 100 100 100 30 30
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Figure 8. Generation possibilities with Zebra.
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Figure 9. Zebra’s transformer architecture is based on Llama (Touvron et al., 2023).
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The encoder spatially compresses the input function u! by reducing its spatial resolution H x W to a lower resolution
h x w while increasing the channel dimension to d. This is achieved through a convolutional model £,,, which maps the
input to a continuous latent variable z‘ = &, (u'), where z* € R"*®“*d_ The latent variables are then quantized to discrete
codes zf] using a codebook Z of size K = | Z| and through the quantization step ¢. For each spatial code zfij], the nearest
codebook entry zy, is selected:
t _ oy . : t
Zq.[ij] = Q(Z[ij]) ‘= arg Zﬂklé% Hz[ij] 2 |-

The decoder Dy, reconstructs the signal 4" from the quantized latent codes if]. Both models are jointly trained to minimize
the reconstruction error between the function u' and its reconstruction @’ = Dy, o g o &, (u'). The codebook Z is updated
using an exponential moving average (EMA) strategy, which stabilizes training and ensures high codebook occupancy.

The training objective is:
[uf —af]l t NI
Lvq = o talselzg] - Eu(ul)]z,
[ ]|
where the first term is the Relative L2 loss commonly used in PDE modeling, and the second term is the commitment loss,
ensuring encoder outputs are close to the codebook entries. The parameter «, set to 0.25, balances the two components.

Here, sg denotes the stop-gradient operation that detaches a tensor from the computational graph.

We provide a schematic view of the VQVAE framework in Figure 10 and detail the architectures used for the encoder and
decoder on the 1D and 2D datasets respectively in Figure 11 and Figure 12. As detailed, we use residual blocks to process
latent representations, and downsampling and upsampling block for decreasing / increasing the spatial resolutions. We
provide the full details of the hyperparameters used during the experiments in Table 8. For training the VQVAE, we used
a single NVIDIA TITAN RTX for the 1D experiments and used a single V100 for training the model on the 2D datasets.
Training the encoder-decoder on 2D datasets took 20h on a single V100 and it took 4h on a single RTX for 1D dataset.

Output: reconstruction

codes quantized codes

quantization

Decoder
/| CNN

. t
T argmin [2;; — zi|

Codebook Z

Figure 10. zebra’s VQVAE is used to obtain compressed and discretized latent representation. By retrieving the codebok index for each
discrete representation, we can obtain discrete tokens encoding physical observations that can be mapped back to the physical space with
high fidelity.
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Figure 11. Architecture of Zebra’s VQVAE for 1D datasets. Each convolution acts only on the spatial dimension and uses a kernel of
size 3. The Residual Blocks are used to process information and increase or decrease the channel dimensions, while the Up and Down
blocks respectively up-sample and down-sample the resolution of the inputs. In 1D, we used a spatial compression factor of 16 on all
datasets. Every downsampling results in a doubling of the number of channels, and likewise, every upsampling is followed by a reduction
of the number of channels by 2. We choose a maximum number of channels of 256.
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Figure 12. Architecture of Zebra’s VQVAE for 2D datasets. Each convolution acts only on the spatial dimensions and uses a kernel of size
3. The Residual Blocks are used to process information and increase or decrease the channel dimensions, while the Up and Down blocks
respectively up-sample and down-sample the resolution of the inputs. In 2D, we used a spatial compression factor of 4 for Vorticity, and
8 for Wave2D. Every downsampling results in a doubling of the number of channels, and likewise, every upsampling is followed by a
reduction of the number of channels by 2. We choose a maximum number of channels of 1024.
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Table 8. Hyperparameters for Zebra’s VQVAE

Hyperparameters  Advection = Heat  Burgers Waveb Combined Vorticity ~Wave 2D

start_hidden_size 64 64 64 64 64 128 128
max_hidden_size 256 256 256 256 256 1024 1024
num_down_blocks 4 4 4 4 4 2 3
codebook_size 256 256 256 256 256 2048 2048
code_dim 64 64 64 64 64 16 16
num_codebooks 2 2 2 2 2 1 2
shared_codebook True True True True True True True
tokens_per_frame 32 32 32 32 32 256 128
start learning_rate 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
weight_decay le-4 le-4 le-4 le-4 le-4 le-4 le-4
scheduler Cosine Cosine  Cosine  Cosine Cosine Cosine Cosine
num_epochs 1000 1000 1000 1000 1000 300 300

D. Additional Quantitative results
D.1. Alternative pretrainings

We experimented with different pretraining strategies before settling on the pretraining approach proposed in Zebra. The
most intuitive way to adapt the next-token prediction objective for dynamics modeling is to operate in a continuous latent
space, omitting the quantization step used in Zebra and therefore using a deterministic transformer instead of a generative
model. As shown in previous studies ( s ; , ), we obtained better reconstruction results using
an autoencoder instead of a VQVAE.

However, we encountered two critical challenges with this approach. First, the training loss plateaued quickly, as illustrated
in Figure 13. Compared to training a generative transformer (with the negative log-likelihood) as in Zebra, the deterministic
variant trained with MSE loss exhibited instability and failed to improve over training steps.

3x10° —o— NLL MSE

2x10°
100 4

Train Loss
Train Loss

100 4

0 1000 2000 3000 4000 0 1000 2000 3000 4000
Step Step

(a) Training loss (negative log-likelihood) with Zebra (b) Training loss (MSE) with deterministic transformer

Figure 13. Comparison of the training process between the Zebra transformer and a deterministic transformer on Advection. In both
cases, the model is trained to predict the next token. Zebra utilizes a discrete vocabulary and learns a probability distribution over the
next token, whereas the deterministic transformer is optimized to predict the mean using MSE loss.

Second, while the model was able to predict the next token at inference, it could not generate an entire trajectory. It
performed particularly poorly in the one-shot adaptation setting. As demonstrated in Figure 14, errors accumulated quickly
during inference, leading to rapid divergence from the ground truth. This ultimately resulted in poor reconstructions when
feeding the predicted tokens into the decoder, as seen in Figure 15.
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Figure 14. When trained with MSE for next-token prediction, inference suffers from instabilities, causing errors to grow exponentially
Here, we show the evolution over the sequence tokens of a particular channel to illustrate the phenomenon. The dashed lines show the
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Figure 15. The deterministic transformer, trained with the next-token objective, performs poorly in the one-shot adaptation task.
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These observations highlight the importance of the generative aspect when adopting a next-token objective. For this reason,
we opted for a quantized representation combined with a transformer modeling a discrete distribution, a standard approach
in image and video generation, but which has never been explored for modeling physical phenomena. While alternative
strategies exist ( , ), they involve non-trivial extensions and are left for future works.

That said, next-token prediction pretraining may not be the only viable framework for developing in-context capabilities. To
explore this, we experimented with a direct next-frame prediction approach using a deterministic setup trained with relative
L2 loss. This method, which we called VIT-in—-context serves as a baseline for evaluating other in-context pretrainings.
It is based on a video transformer operating on patches with bidirectional attention. While its training behavior was more
stable, inference results remained unsatisfactory.

D.2. Uncertainty quantification

Mean prediction and confidence interval
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Figure 16. Uncertainty quantification with Zebra in a one-shot setting on Heat equation

Setting Since Zebra is a generative model, it allows us to sample multiple plausible trajectories for the same conditioning
input, enabling the computation of key statistics across different generations. By calculating the pointwise mean and standard
deviation, we can effectively visualize the model’s uncertainty in its predictions. In Figure 16, the red curve represents the
ground truth, the blue curve is the predicted mean and the blue shading indicates the empirical confidence interval (3 X
standard deviation).

Metrics Motivated by this observation, we investigate how varying the model’s temperature parameter 7 affects its
predictions; specifically in the one-shot adaptation setting described in Section 4.2. By adjusting 7, we aim to assess its
impact on both the accuracy and variability of the predictions. We generate 10 different trajectories and use them to compute
several metrics. We employ four metrics to evaluate the model’s uncertainty:

1. Relative L? loss: This assesses the accuracy of the generated trajectories by measuring the bias of the predictions
relative to the ground truth.

2. Relative standard deviation: We estimate the variability of the predictions using the formula: Relative Std = \‘\‘gz* ||||22

where M., and &, represent the empirical mean and standard deviation of the predictions, computed pointwise across
10 generations.

28



Zebra: In-Context Generative Pretraining for Solving Parametric PDEs

3. Confidence level: We create pointwise empirical confidence intervals CI(x) = [ (x) — 364 (x), M (x) + 35.(x)]
and compute the confidence level as: Confidence level = ni > 2 Lu.(@)eci(z)- This score indicates how often the
ground truth falls within the empirical confidence interval generated from sampling multiple trajectories.

4. Continuous Ranked Probability Score (CRPS, ( ) ) is a proper scoring rule that measures the
accuracy of a probabilistic forecast by quantifying the difference between the predicted cumulative distribution function
(CDF) and the empirical CDF of the observed value, with lower values indicating better calibration and sharpness.

5. Root Mean Squared Calibration Error (RMSCE, ( )) quantifies the discrepancy between
predicted confidence and actual accuracy at a given confidence level.

Results When modeling uncertainty, the model achieves a tradeoff between the quality of the mean prediction approxima-
tion and the guarantee for this prediction to be in the corresponding confidence interval. Figure 17 illustrates the trade-off
between mean prediction accuracy and uncertainty calibration. At lower temperatures, we achieve the most accurate
predictions, but with lower variance, i.e. with no guarantee that the target value is within the confidence interval around the
predicted mean. Across most datasets, the confidence level then remains low (less than 80% for 7 < 0.25), indicating that
the true solutions are not reliably captured within the empirical confidence intervals. Conversely, increasing the temperature
results in less accurate mean predictions and higher relative standard deviations, but the confidence intervals become more
reliable, with levels exceeding 95% for 7 > 0.5. Therefore, the temperature can be calibrated depending on whether the
focus is on accurate point estimates or reliable uncertainty bounds.

To better calibrate this temperature, we can therefore use a proper scroring metric such as the CRPS, and we can pick the
temperature parameter that has the lowest CRPS value for a given value (see Figure 17). We can see that Zebra models
really well the distribution for Combined and Advection and not so much for Burgers and Heat somehow.

Finally, we examine how the model’s uncertainty evolves as additional information is provided as input. Specifically, we
compare Zebra’s average error and relative uncertainty when conditioned on one example trajectory, with one or two frames
as initial conditions. Table 9 reports the relative L2 loss and relative standard deviation for both scenarios. The results
clearly show that including the first two frames as initial conditions reduces both the error and the relative standard deviation
consistently. This indicates that, while some of the uncertainty remains aleatoric, the epistemic uncertainty is reduced as
more input information becomes available.

Table 9. Uncertainty quantification in the one-shot setting. Conditioning from a trajectory example and 1 frame or 2 frames as initial
conditions. Metrics include relative L? loss (average accuracy) and relative standard deviation (average spread around the average
prediction). The temperature is fixed at 0.1.

Advection  Heat  Burgers Waveb  Combined

Rel. L2 1 frame 0.006 0.156  0.115 0.154 0.008
Rel. L? 2 frames 0.004 0.047  0.052 0.075 0.005

Rel. Std. 1 frame 0.003 0.062  0.048 0.074 0.005
Rel. Std. 2 frames 0.002 0.019  0.018 0.040 0.003

Comparison with ViT-in-Context We quantitatively evaluate the uncertainty using CRPS and RMSCE in the one-shot
prediction task, as reported in Table 10, comparing Zebra with ViT-in-Context. Since ViT-in-Context is a deterministic
model, we introduce stochasticity by: (1) adding Gaussian noise with a small standard deviation (¢ = 0.1) to the input,
thereby perturbing the input; and (2) enabling stochastic depth at inference time by keeping the DropPath mechanism
( , ). Across all settings, Zebra consistently outperforms these simpler baselines, often by an order of
magnitude in both CRPS and RMSCE.

Uncertainty over time Finally, we illustrate in Table 11 how CRPS and RMSCE evolve over successive autoregressive
steps in the predicted trajectory for Zebra on the Burgers equation. As expected, CRPS increases over time due to error
accumulation during rollout. In contrast, RMSCE remains stable, indicating that the model maintains consistent calibration
throughout the prediction.
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Figure 17. Uncertainty quantification with Zebra. The main parameter of this study is the temperature (x-axis). We then look from
left to right at (1) The rollout loss, i.e. the relative L? loss between the predictions and the ground truth; (2) The relative standard
deviation to quantify the spread around the mean; (3) The confidence level, that measures the frequency of observations that lie within the
empirical confidence interval. (4) The CRPS that measures the quality of the uncertainty, can be used to pick the temperature with the

most calibrated uncertaity.
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Table 10. CRPS and RMSCE results across PDE benchmarks. Lower is better.
Metric  Model Advection  Heat  Burgers Waveb Combined

ViT + noise 0.0705 0.176  0.227 0.093 0.098
CRPS ViT Dropout  0.0363 0.213  0.196 0.024 0.024
Zebra 0.0026  0.043  0.020 0.0129 0.0018

ViT + noise 0.132 0.241  0.265 0.249 0.045
RMSCE  ViT Dropout 0.386 0.547  0.529 0.340 0.064
Zebra 0.074 0.055  0.048 0.124 0.074

Table 11. CRPS and RMSCE over time for Zebra on the Burgers dataset.
Metric t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9

CRPS 0.0057 0.0106 0.0148 0.0184 0.0216 0.0244 0.0271 0.0296 0.0320
RMSCE 0.0511 0.0513 0.0505 0.0487 0.0483 0.0489 0.0467 0.0457 0.0457

D.3. Analysis of the generation

Zebra is capable of generating completely novel trajectories for new environments, including the initial conditions. An
example of a generated trajectory for Vorticity 2D is shown in Figure 18, where the top row shows the context trajectory
used to guide the generation, and the bottom row displays the model’s generated trajectory, including the initial condition.
In this section, we evaluate on Combined and Advection the quality of the generated trajectories with Zebra.

Figure 18. Unconditional generation on Vorticity 2D. The top-row is the example used to guide the generation, and the bottom-row is the
generated example. The model also generates the initial condition.

Setting We evaluate whether our pretrained model can generate new samples conditioned on a trajectory observed in a
previously unseen test environment. Unlike previous settings, the transformer is not explicitly conditioned on tokens derived
from a real initial condition. Instead, we expect it to generate trajectories, including their initial conditions, that follow the
same dynamics as the observed context.

Our evaluation focuses on four key aspects. First, we assess whether the generated trajectories faithfully follow the dynamics
of the context. Second, we analyze the diversity of the generated trajectories to determine if they are significantly different
from one another. Third, we compare the generated samples with those produced by numerical solvers to evaluate whether
their distributions align. Finally, we examine the types of initial conditions generated by Zebra.

Metrics To assess fidelity, we generate ground truth trajectories using the physical solver originally used to construct the
dataset. These simulations start from the initial conditions generated by Zebra, using ground truth environment parameters
that Zebra itself does not have access to. We then compute the L? distance between the generated trajectories and those
obtained from the physical solver.
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For diversity, we measure the average pairwise L? distance between different trajectories generated by Zebra. The results
for both fidelity and diversity are reported in Table 12 for the Advection and Combined Equations.

To compare the distribution of generated trajectories with that of numerical solvers, we compute the Wasserstein distance
using the Sinkhorn algorithm ( , ). As baselines, we compare against two references. First, we compute the
Wasserstein distance with purely random samples drawn from Gaussian noise, providing an upper bound on the problem.
Second, we measure the Wasserstein distance between two independent sets of numerical solver trajectories (the validation
and test sets), allowing us to quantify the variability inherent in the dataset itself.

Finally, as a qualitative analysis, we perform a principal component analysis on the trajectories generated by Zebra and
visualize the first two principal components in Figure 19 for Combined.

Sampling We use a default temperature of 7 = 1.0. For each context trajectory, we sample 10 new trajectories in parallel.

Results Table 12 shows that Zebra generates new initial conditions and trajectories that respect the same physical laws
as the given context. The model seems to have learned the statistical relationships between initial conditions and later
timestamps. The high average L? distance between samples indicates that the generated trajectories are diverse. This can
also be observed in Figure 19, where the generated samples effectively cover the distribution of real samples.

Table 12. Fidelity and diversity metrics. The L? distance measures fidelity to the context dynamics, while the average L? quantifies
sample diversity.

Model L? Average L? between samples
Advection 0.0185 1.57
Combined Equation  0.0136 1.59

To further assess distribution alignment, we compute the Wasserstein distance between the generated trajectories and
those obtained with numerical solvers. The results in Table 13 indicate that Zebra achieves lower Wasserstein distances
than Gaussian noise but remains slightly above the cross-distribution baseline (which compares the validation and test
distributions), suggesting reasonable alignment with the true data distribution.

Table 13. Comparison of distributions using the Wasserstein distance between Zebra-generated trajectories and numerical solver samples.

Distance Metric Advection Combined Equation
Gaussian noise vs. real data 18.22 16.15
Validation data vs. test data 5.11 1.87

Zebra-generated data vs. real data 5.57 221

D.4. Dataset scaling analysis

We investigate how the one-shot error on the test set evolves as we vary the size of the training dataset. To this end, we
train the auto-regressive transformer on datasets containing 10, 100, 1000, and 12,000 trajectories and evaluate Zebra’s
generations on the test set, starting with two frames as inputs. The training time is proportional to the dataset size: for
example, the number of training steps for 1,000 trajectories is 10 times the number of steps for 100 trajectories. The results
are presented in Figure 20.

First, we observe that Zebra requires a substantial amount of data to generalize effectively to different parameter values,
even within the training distribution. This aligns with findings in the literature that transformers, especially auto-regressive
transformers, excel at scaling —performing well on very large datasets and for larger model architectures. However, for
smaller datasets, this approach may not be the most efficient. We believe that Zebra’s potential resides when applied to large
amounts of data, making it an ideal candidate for scenarios involving large-scale training.

Second, for the Combined equation, we notice that performance plateaus between 100 and 1,000 trajectories. This may
be due to insufficient training or a lack of diverse examples, as the Combined equation is more challenging compared to
the Advection equation, whose performance follows a more log-linear trend. This suggests that additional data or targeted
training strategies might be needed to achieve better generalization for more complex equations.
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D.5. Inference time comparison

Table 14 compares the inference time for one-shot adaptation across different methods when predicting a single trajectory
given a context trajectory and an initial condition. For Zebra, the inference process, which includes encoding, auto-
regressive prediction, and decoding, is much faster in 1D and slightly faster in 2D. With Zebra, the bottleneck at inference
is the autoregressive generation of tokens, which speed is about 128 tokens per second on a V100 for 2D and an RTX for 1D.
The decoding is fast and can be done in parallel for the trajectory in one forward pass. In contrast, for CODA and CAPE,
the majority of the inference time is spent on adaptation and gradient-based steps. Here the times were reported with 100
gradient steps, note that we used 250 for the rest of the experiments. We believe Zebra’s inference time could be further
optimized by (1) improving the optimization code and leveraging specialized hardware such as H100 (for flash attention)
and LPUs (which show significant speed-ups against GPUs), and (2) increasing the number of tokens sampled per step (as
in e.g. next-scale prediction ( s ).

However, we have shown that it is possible to greatly accelerate inference by employing a deterministic neural surrogate
on top of Zebra, which acts as a dynamic encoder. This framework is order of magnitudes faster than gradient-based
adaptation methods.

Table 14. Inference times for one-shot adaptation. Average time in seconds to predict a single trajectory given a context trajectory and an
initial condition. Times include adaptation and forecast for CODA and CAPE, while it includes encoding, auto-regressive prediction and
decoding for Zebra.

Advection  Vorticity 2D

CAPE 18s 23s

CODA 31s 28s

Zebra 3s 21s
Zebra + UNet 0.10s 0.14s

D.6. Influence of the codebook size

The codebook size K is a crucial hyperparameter. It directly affects the quality of the reconstructions, since a larger
codebook can improve the reconstructions quality. However, it also impacts the dynamics modeling stage: the smaller
the codebook, the easier it is for the transformer to learn the statistical correlations between similar trajectories. To have
a sense of this trade-off, we report the relative reconstruction errors and the one-shot prediction errors in Table 15. The
reconstruction error decreases when the codebook size increases. However, the one-shot prediction error decreases from 32
to 64 codes but then gradually increases from 64 to 512. We can see that it follows a U-curve in Figure 21. This phenomenon
was observed in a different context in ( , ).

Table 15. Influence of the codebook size. Reconstruction error and one-shot prediction error on Burgers for different codebook sizes.
Errors in relative L2.

Codebook Size Reconstruction One-shot Prediction

32 0.0087 0.116
64 0.0043 0.097
128 0.0024 0.124
256 0.0019 0.163
512 0.0015 1.093
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Figure 21. One-shot accuracy vs codebook size. One-shot prediction error on the test set for various codebook sizes. Error in relative L2.

D.7. Reconstruction errors

We report the accuracy of the reconstructions from our encoder-decoder for different datasets in Table 16. Here, no dynamics
is involved, we simply evaluate the quality of the encoding and of the decoding. On 1D and 2D datasets, the decoding errors
are respectively of 0.1 % and 1% on the test set.

Table 16. Reconstruction errors. Test relative L2 loss between reconstructions from Zebra’s VQVAE and the ground truths.
Advection ~ Heat  Burgers Waveb  Combined Wave 2D  Vorticity 2D
VQVAE of Zebra 0.0003 0.0019  0.0016  0.0011 0.0022 0.010 0.017

To assess how faithful signal encoding and deconding influences prediction accuracy, we evaluate Zebra in an out-of-
distribution setting on the Vorticity 2D dataset across several viscosity ranges. As viscosity decreases and departs from the
training distribution, both the context and target trajectories exhibit increasingly high-frequency components which were not
seen by the VQVAE. We report reconstruction scores alongside one-shot prediction errors in Table 17.

Table 17. Impact of encoding and decoding quality on prediction accuracy. Reconstruction and one-shot prediction error with Zebra.
Metric is relative L2.

Viscosity Range Type Reconstruction One-shot Prediction
[1073,1072] In-distribution 0.02 0.12
[5x107%,1073]  Close OoD 0.13 0.24
[107°,107%] Far OoD 0.22 0.32

As the viscosity decreases and deviates from the training distribution, the reconstruction error increases, which is expected
since the VQVAE was not exposed to these regimes. However, the one-shot prediction error remains stable. This suggests
that the encoder continues to capture the essential characteristics of the context dynamics in this one-shot OoD setting,
enabling the transformer to leverage these sequence indices for accurate forecasting of the low-frequency components.

D.8. Influence of the number of context examples

While all models were evaluated on a one-shot adaptation task, Zebra was trained with up to 5 context examples as input.
This allows us to analyze the impact of context size on prediction accuracy. As shown in Table 18, performance saturates
after approximately 3 in-context examples.
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Table 18. Effect of number of context example. Few-shot prediction error (relative L2) on 1D datasets as a function of the number of
context examples.

# Examples Advection  Heat  Burgers Combined

0.0074 0.1563  0.1150 0.0095
0.0077 0.1310  0.1020 0.0074
0.0072 0.1272  0.1000 0.0078
0.0071 0.1272  0.0990 0.0075
0.0071 0.1310  0.1000 0.0073

whn W=

E. Qualitative results

We provide visualizations of the trajectories generated with Zebra under different settings in the following figures. One-
shot prediction: Figure 22, Figure 24, Figure 26, Figure 28, Figure 30, Figure 35, Figure 38. Uncertainty quantification:
Figure 23, Figure 25, Figure 27, Figure 29, Figure 27.
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Figure 23. Uncertainty quantification on Advection
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Figure 29. Uncertainty quantification on Wave b
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Zebra: In-Context Generative Pretraining for Solving Parametric PDEs
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Figure 31. Uncertainty quantification on Combined equation

46



Zebra: In-Context Generative Pretraining for Solving Parametric PDEs

o e
E.6. Vorticity 2D
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Figure 32. One-shot adaptation on Vorticity 2D. Example 1.
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Figure 33. One-shot adaptation on Vorticity 2D. Example 2.
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Figure 34. One-shot adaptation on Vorticity 2D. Example 3.
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Zebra: In-Context Generative Pretraining for Solving Parametric PDEs

E.6.1. OUT-OF-DISTRIBUTION
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Figure 35. One-shot OoD adaptation on Vorticity 2D. Example 1.
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Figure 36. One-shot OoD adaptation on Vorticity 2D. Example 2.
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Figure 37. One-shot OoD adaptation on Vorticity 2D. Example 3.
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E.7. Wave 2D
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Figure 38. One-shot adaptation on Wave 2D. Example 1.
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Figure 39. One-shot adaptation on Wave 2D. Example 2.
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Figure 40. One-shot adaptation on Wave 2D. Example 3.
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