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Abstract

So far, named entity recognition (NER) has been involved
with three major types, including flat, overlapped (aka.
nested), and discontinuous NER, which have mostly been
studied individually. Recently, a growing interest has been
built for unified NER, tackling the above three jobs concur-
rently with one single model. Current best-performing meth-
ods mainly include span-based and sequence-to-sequence
models, where unfortunately the former merely focus on
boundary identification and the latter may suffer from ex-
posure bias. In this work, we present a novel alterna-
tive by modeling the unified NER as word-word rela-
tion classification, namely W2NER. The architecture re-
solves the kernel bottleneck of unified NER by effec-
tively modeling the neighboring relations between en-
tity words with Next-Neighboring-Word (NNW) and
Tail-Head-Word-* (THW-*) relations. Based on the
W2NER scheme we develop a neural framework, in which
the unified NER is modeled as a 2D grid of word pairs. We
then propose multi-granularity 2D convolutions for better re-
fining the grid representations. Finally, a co-predictor is used
to sufficiently reason the word-word relations. We perform
extensive experiments on 14 widely-used benchmark datasets
for flat, overlapped, and discontinuous NER (8 English and
6 Chinese datasets), where our model beats all the current
top-performing baselines, pushing the state-of-the-art perfor-
mances of unified NER.

Introduction
Named entity recognition (NER) has long been a fundamen-
tal task in natural language processing (NLP) community,
due to its wide variety of knowledge-based applications,
e.g., relation extraction (Wei et al. 2020; Li et al. 2021b), en-
tity linking (Le and Titov 2018; Hou et al. 2020), etc. Studies
of NER have gradually evolved initially from the flat NER
(Lample et al. 2016; Strubell et al. 2017), late to the over-
lapped NER (Yu et al. 2020; Shen et al. 2021), and recently
to the discontinuous NER (Dai et al. 2020; Li et al. 2021a).
Specifically, flat NER simply detects the mention spans and
their semantic categories from text, while the problems in
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Figure 1: (a) An example to show three types of NER.
e1 is a flat entity overlapped with a discontinuous en-
tity e2 at the span “aching in”. (b) We formalize three
NER subtasks as word-word relation classification, where
the Next-Neighboring-Word (NNW) relation indi-
cates that a word pair are successively joint as a segment of
an entity (e.g., aching→in), and the Tail-Head-Word-*
(THW-*) relation implies the edges where the tail words
connect to the head words (e.g., legs→aching) as an entity
with “*” type (e.g., Symptom).

overlapped and discontinuous NER become more compli-
cated, i.e., overlapped entities contain the same tokens,1 and
discontinuous entities entail non-adjacent spans, as illus-
trated in Figure 1.

Previous methods for multi-type NER can be roughly
grouped into four major categories: 1) sequence labeling, 2)
hypergraph-based methods, 3) sequence-to-sequence meth-
ods and 4) span-based methods. A majority of initial work
formalizes NER as a sequence labeling problem (Lample
et al. 2016; Zheng et al. 2019; Tang et al. 2018; Straková
et al. 2019), assigning a tag to each token. However, it is
difficult to design one tagging scheme for all NER subtasks.
Then hypergraph-based models are proposed (Lu and Roth
2015; Wang and Lu 2018; Katiyar and Cardie 2018) to rep-
resent all entity spans, which however suffer from both the
spurious structure and structural ambiguity issue during in-
ference. Recently, Yan et al. (2021) propose a sequence-to-
sequence (Seq2Seq) model to directly generate various en-
tities, which unfortunately potentially suffers from the de-
coding efficiency problem and certain common shortages of
Seq2Seq architecture, e.g., exposure bias. Span-based meth-

1Without losing generality, “nested” can be seen as a special
case of “overlapped” (Zeng et al. 2018; Dai 2018; Fei et al. 2020).
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ods (Luan et al. 2019; Li et al. 2021a) are another state-of-
the-art (SoTA) approaches for unified NER, enumerating all
possible spans and conduct span-level classification. Yet the
span-based models can be subject to maximal span lengths
and lead to considerable model complexity due to the enu-
merating nature. Thus, designing an effective unified NER
system still remains challenging.

Most of the existing work has paid the major focus on
how to accurately identify the entity boundary, i.e., the ker-
nel problem of NER, especially for flat one (Straková et al.
2019; Fei et al. 2021). However, after carefully rethinking
the common characteristics of all three types of NER, we
find that the bottleneck of unified NER more lies in the
modeling of the neighboring relations between entity words.
Such adjacency correlations essentially describe the seman-
tic connectivity between the partial text segments, which es-
pecially plays the key role for the overlapping and discontin-
uous ones. As exemplified in Figure 1(a), it could be effort-
less to detect the flat mention “aching in legs”, since its con-
stituent words all are naturally adjacent. But, to detect out
the discontinuous entity “aching in shoulders”, effectively
capturing the semantic relations between the neighboring
segments of “aching in” and “shoulders” is indispensable.

On the basis of the above observation, we in this pa-
per investigate an alternative unified NER formalism with a
novel word-word relation classification architecture, namely
W2NER. Our method resolves the unified NER by effec-
tively modeling both the entity boundary identification as
well as the neighboring relations between entity words.
Specifically, W2NER makes predictions for two types
of relations, including the Next-Neighboring-Word
(NNW) and the Tail-Head-Word-* (THW-*), as illus-
trated in Figure 1(b). The NNW relation addresses entity
word identification, indicating if two argument words are ad-
jacent in an entity (e.g., aching→in), while the THW-* rela-
tion accounts for entity boundary and type detection, reveal-
ing if two argument words are the tail and head boundaries
respectively of “*” entity (e.g., legs→aching, Symptom).

Based on the W2NER scheme, we further present a neu-
ral framework for unified NER (cf. Figure 3). First, BERT
(Devlin et al. 2019) and BiLSTM (Lample et al. 2016) are
used to provide contextualized word representations, based
on which we construct a 2-dimensional (2D) grid for word
pairs. Afterwards, we design multi-granularity 2D convolu-
tions to refine the word-pair representations, effectively cap-
turing the interactions between both the close and distant
word pairs. A co-predictor finally reasons the word-word re-
lations and produces all possible entity mentions, in which
the biaffine and the multi-layer perceptron (MLP) classifiers
are jointly employed for the complementary benefits.

We conduct extensive experiments on 14 datasets, ranging
from 2 English and 4 Chinese datasets for flat NER, 3 En-
glish and 2 Chinese datasets for overlapped NER, 3 English
datasets for discontinuous NER. Compared with 12 base-
lines for flat NER, 7 baselines for overlapped NER, 7 base-
lines for discontinuous NER, our model achieves the best
performances on all the datasets, becoming the new SoTA
method of unified NER. Our contributions include:

• We present an innovative method that casts unified NER
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Figure 2: An example to show our relation classification
method for NER. We leverage a word-pair grid to vi-
sualize the relations between each word pair. NNW de-
notes the Next-Neighboring-Word relation and THW-
S denotes the Tail-Head-Word relation that exists in
a “Symptom” entity. To avoid the sparsity of relation in-
stances, NNW and THW relations are tagged in the upper
and lower triangular regions.

as word-word relation classification, where both the rela-
tions between boundary-words and inside-words of entities
are fully considered.

• We develop a neural framework for unified NER, in
which we newly propose a multi-granularity 2D convolution
method for sufficiently capturing the interactions between
close and distant words.

• Our model pushes current SoTA performances of NER
on total 14 datasets. Our code is available at https://github.
com/ljynlp/W2NER.

NER as Word-Word Relation Classification
Flat, overlapped, discontinuous NER can be formalized as
follows: given an input sentence consisting of N tokens or
words X = {x1, x2, ..., xN}, the task aims to extract the re-
lations R between each token pairs (xi, xj), where R is pre-
defined, including NONE, Next-Neighboring-Word
(NNW), and Tail-Head-Word-* (THW-*). These rela-
tions can be explained as below and we also give an example
as demonstrated in Figure 2 for better understanding.

• NONE, indicating that the word pair does not have any
relation defined in this paper.

• Next-Neighboring-Word: the NNW relation indi-
cates that the word pair belongs to an entity mention, and
the word in certain row of the grid has a successive word
in certain column of the grid.

• Tail-Head-Word-*: the THW relation indicates that
the word in certain row of the grid is the tail of an entity
mention, and the word in certain column of the grid is the
head of an entity mention. “*” indicates the entity type.

With such design, our framework is able to identify
flat, overlapped and discontinuous entities simultaneously.
As shown in Figure 2, it is effortless to decode out two
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Figure 3: Overall NER architecture. CLN and MLP represent conditional layer normalization and multi-layer perceptron.
⊕

and
⊗

represent element-wise addition and concatenation operations.

entities “aching in legs” and “aching in shoulders” by
NNW relations (aching→in), (in→legs), and (in→ shoul-
ders), and THW relations (legs→aching, Symptom) and
(shoulders→aching, Symptom). Moreover, NNW and THW
relations imply other effects for NER. For example, NNW
relations associate the segments of the same discontinuous
entity (e.g., “aching in” and “shoulders”), and they are also
beneficial for identifying entity words (neighbouring) and
non-entity words (non-neighbouring). THW relations help
identify the boundaries of entities, which plays an important
role reported in recent NER studies (Zheng et al. 2019; Fei
et al. 2021; Shen et al. 2021).

Unified NER Framework
The architecture of our framework is illustrated in Figure
3, which mainly consists of three components. First, the
widely-used pretrained language model, BERT (Devlin et al.
2019), and bi-directional LSTM (Lample et al. 2016) are
used as the encoder to yield contextualized word representa-
tions from input sentences. Then a convolution layer is used
to build and refine the representation of the word-pair grid
for later word-word relation classification. Afterward, a co-
predictor layer (Li et al. 2021b) that contains a biaffine clas-
sifier and a multi-layer perceptron is leveraged for jointly
reasoning the relations between all word pairs.

Encoder Layer
We leverage BERT (Devlin et al. 2019) as inputs for our
model since it has been demonstrated to be one of the state-
of-the-art models for representation learning in NER (Wang
et al. 2021) and relation classification (Li et al. 2021b).
Given an input sentence X = {x1, x2, ..., xN}, we con-
vert each token or word xi into word pieces and then feed
them into a pretrained BERT module. After the BERT cal-
culation, each sentential word may involve vectorial repre-
sentations of several pieces. Here we employ max pooling to
produce word representations based on the word piece repre-
sentations. To further enhance context modeling, we follow
prior work (Wadden et al. 2019; Li et al. 2021a), adopting a
bi-directional LSTM (Lample et al. 2016) to generate final

word representations, i.e., H = {h1,h2, ...,hN} ∈ RN×dh ,
where dh denotes the dimension of a word representation.

Convolution Layer
We adopt convolution neural networks (CNNs) as the rep-
resentation refiner, since CNNs are naturally suitable for 2-
D convolution on the grid, and also show the very promi-
nence on handling relation determination jobs (Zeng et al.
2014; Wang et al. 2016). Our convolution layer includes
three modules, including a condition layer with normaliza-
tion (Liu et al. 2021) for generating the representation of the
word-pair grid, a BERT-style grid representation build-up to
enrich the representation of the word-pair grid, and a multi-
granularity dilated convolution for capturing the interactions
between close and distant words.
Conditional Layer Normalization Since the goal of our
framework is to predict the relations between word pairs, it
is important to generate a high-quality representation of the
word-pair grid, which can be regarded as a 3-dimensional
matrix, V ∈ RN×N×dh , where Vij denotes the representa-
tion of the word pair (xi, xj). Because both NNW and THW
relations are directional, i.e., from a word xi in certain row
to a word xj in certain column as shown in Figure 2 (e.g.,
aching→in and legs→aching), the representation Vij of the
word pair (xi, xj) can be considered as a combination of the
representation hi of xi and hj of xj , where the combination
should imply that xj is conditioned on xi. Inspired by Liu
et al. (2021), we adopt the Conditional Layer Normalization
(CLN) mechanism to calculate Vij :

Vij = CLN(hi,hj) = γij ⊙ (
hj − µ

σ
) + λij , (1)

where hi is the condition to generate the gain parameter
γij = Wαhi + bα and bias λij = Wβhi + bβ of layer
normalization. µ and σ are the mean and standard deviation
across the elements of hj , denoted as:

µ =
1

dh

dh∑
k=1

hjk, σ =

√√√√ 1

dh

dh∑
k=1

(hjk − µ)2 . (2)

where hjk denotes the k-th dimension of hj .
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BERT-Style Grid Representation Build-Up As everyone
knows, the inputs of BERT (Devlin et al. 2019) consist of
three parts, namely token embeddings, position embeddings
and segment embeddings, which model word, position and
sentential information respectively. Motivated by BERT, we
enrich the representation of the word-pair grid using a sim-
ilar idea, where the tensor V ∈ RN×N×dh represents word
information, a tensor Ed ∈ RN×N×dEd represents the rel-
ative position information between each pair of words, and
a tensor Et ∈ RN×N×dEt represents the region informa-
tion for distinguishing lower and upper triangle regions in
the grid. We then concatenate three kinds of embeddings and
adopt a multi-layer perceptron (MLP) to reduce their dimen-
sions and mix these information to get the position-region-
aware representation of the grid C ∈ RN×N×dc . The overall
process can be formulated as:

C = MLP1([V;Ed;Et]) . (3)
Multi-Granularity Dilated Convolution Motivated by
TextCNN (Kim 2014), we adopt multiple 2-dimensional di-
lated convolutions (DConv) with different dilation rates l
(e.g., l ∈ [1, 2, 3]) to capture the interactions between the
words with different distances, because our model is to pre-
dict the relations between these words. The calculation in
one dilated convolution can be formulated as:

Ql = σ(DConvl(C)) , (4)
where Ql ∈ RN×N×dc denotes the output of the dilation
convolution with the dilation rate l, σ is the GELU acti-
vation function (Hendrycks and Gimpel 2016). After that,
we can obtain the final word-pair grid representation Q =
[Q1,Q2,Q3] ∈ RN×N×3dc .

Co-Predictor Layer
After the convolution layer, we obtain the word-pair grid
representations Q, which are used to predict the relation
between each pair of words using an MLP. However, prior
work (Li et al. 2021b) has shown that MLP predictor can be
enhanced by collaborating with a biaffine predictor for rela-
tion classification. We thus take these two predictors concur-
rently to calculate two separate relation distributions of word
pair (xi, xj), and combine them as the final prediction.
Biaffine Predictor The input of the biaffine predictor is the
output H = {h1,h2, ...,hN} ∈ RN×dh of the encoder
layer, which can be considered as a residual connection (He
et al. 2016) that is widely-used in current deep learning re-
search. Given the word representations H, we use two MLPs
to calculate the subject (xi) and object (xj) word represen-
tations, si and oj respectively. Then, a biaffine classifier
(Dozat and Manning 2017) is used to compute the relation
scores between a pair of subject and object words (xi, xj):

si = MLP2(hi) , (5)
oj = MLP3(hj) , (6)

y′
ij = si

⊤Uoj +W[si;oj ] + b , (7)
where U, W and b are trainable parameters, si and oj de-
note the subject and object representations of the i-th and
j-th word, respectively. Here y′

ij ∈ R|R| is the scores of the
relations pre-defined in R.
MLP Predictor Based on the word-pair grid representation

A B
D E

A B C D E(a) A B C D E(a)
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D E
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A B C
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Figure 4: Four decoding cases for the word sequence
“ABCDE”. (a) “AB” and “DE” are flat entities. (b) The flat
entity “BC” is nested in “ABC”. (c) The entity “ABC” is
overlapped with a discontinuous entity “ABD”. (d) Two dis-
continuous entities “ACD” and “BCE” are overlapped. The
blue and red arrows indicate NNW and THW relations.

Q, we adopt an MLP to calculate relations scores for word
pairs (xi, xj) using Qij :

y′′
ij = MLP(Qij) , (8)

where y′′
ij ∈ R|R| is the scores of the relations pre-defined

in R. The final relation probabilities yij for the word pair
(xi, xj) are calculated by combining the scores from the bi-
affine and MLP predictors:

yij = Softmax(y′
ij + y′′

ij) . (9)

Decoding
The predictions of our model are the words and their rela-
tions, which can be considered as a directional word graph.
The decoding object is to find certain paths from one word
to anther word in the graph using NNW relations. Each
path corresponds to an entity mention. Besides the type and
boundary identification for NER, THW relations can also be
used as auxiliary information for disambiguation. Figure 4
illustrates four cases for decoding from easy to difficult.
• In the example (a), two paths “A→B” and “D→E” cor-

respond to flat entities, and THW relations indicate their
boundaries and types.

• In the example (b), if there is no THW relation, we can
only find one path and thus “BC” is missing. In contrast,
with the help of THW relations, it is easy to identify that
“BC” is nested in “ABC”, which demonstrates the neces-
sity of THW relations.

• The case (c) shows how to identify discontinuous en-
tities. Two paths “A→B→C” and “A→B→D” can be
found, and the NNW relation contributes to connecting
the discontinuous spans “AB” and “D”.

• Considering a complex and rare case (d), it is impossi-
ble to decode correct entities “ACD” and “BCE” because
we can find 4 paths in this ambiguous case using only
NNW relations. In contrast, only using THW relations
will recognize continuous entities (e.g., “ABCD”) rather
than correct discontinuous entities (e.g., “ACD”). There-
fore, we can obtain correct answers by collaboratively
using both relations.

Learning
For each sentence X = {x1, x2, ..., xN}, our training tar-
get is to minimize the negative log-likelihood losses with
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CoNLL2003 OntoNotes 5.0

P R F1 P R F1

• Sequence Labeling Lample et al. (2016) - - 90.94 - - -
Strubell et al. (2017) - - 90.65 - - 86.84

• Span-based Yu et al. (2020) † 92.91 92.13 92.52 90.01 89.77 89.89
Shen et al. (2021) 92.13 93.73 92.94 - - -

• Hypergraph-based Wang and Lu (2018) - - 90.50 - - -

• Seq2Seq Straková et al. (2019) - - 92.98 - - -
Yan et al. (2021) † 92.56 93.56 93.05 89.62 90.92 90.27
W2NER (ours) 92.71 93.44 93.07 90.03 90.97 90.50

Table 1: Results for English flat NER datasets. “†” denotes our re-implementation via their code. We run our model for 5 times
and report averaged values.3

OntoNotes 4.0 MSRA Resume Weibo

P R F1 P R F1 P R F1 P R F1
Zhang and Yang (2018) 76.35 71.56 73.88 93.57 92.79 93.18 94.81 94.11 94.46 53.04 62.25 58.79
Yan et al. (2019) - - 72.43 - - 92.74 - - 95.00 - - 58.17
Gui et al. (2019) 76.40 72.60 74.45 94.50 92.93 93.71 95.37 94.84 95.11 57.14 66.67 59.92
Li et al. (2020b) - - 81.82 - - 96.09 - - 95.86 - - 68.55
Ma et al. (2020) 83.41 82.21 82.81 95.75 95.10 95.42 96.08 96.13 96.11 70.94 67.02 70.50
W2NER (ours) 82.31 83.36 83.08 96.12 96.08 96.10 96.96 96.35 96.65 70.84 73.87 72.32

Table 2: Results for Chinese flat NER datasets. All the baselines are sequence labeling methods or their variations.

ACE2004 ACE2005 GENIA

P R F1 P R F1 P R F1
• Sequence Labeling Ju et al. (2018) - - - 74.20 70.30 72.20 78.50 71.30 74.70

• Span-based
Wang et al. (2020) 86.08 86.48 86.28 83.95 85.39 84.66 79.45 78.94 79.19
Yu et al. (2020) 87.30 86.00 86.70 85.20 85.60 85.40 81.80 79.30 80.50
Shen et al. (2021) 87.44 87.38 87.41 86.09 87.27 86.67 80.19 80.89 80.54

• Hypergraph-based Wang and Lu (2018) 78.00 72.40 75.10 76.80 72.30 74.50 77.00 73.30 75.10

• Seq2Seq Straková et al. (2019) - - 84.33 - - 83.42 - - 78.20
Yan et al. (2021) 87.27 86.41 86.84 83.16 86.38 84.74 78.87 79.60 79.23
W2NER (ours) 87.33 87.71 87.52 85.03 88.62 86.79 83.10 79.76 81.39

Table 3: Results for English overlapped NER datasets.

regards to the corresponding gold labels, formalized as:

L = − 1

N2

N∑
i=1

N∑
j=1

|R|∑
r=1

ŷr
ij logyr

ij , (10)

where N it the number of words in the sentence, ŷij is the bi-
nary vector that denotes the gold relation labels for the word
pair (xi, xj), and yij are the predicted probability vector. r
indicates the r-th relation of the pre-defined relation set R.

Experimental Settings
Datasets
To evaluate our framework for three NER subtasks, we con-
ducted experiments on 14 datasets.
Flat NER Datasets We adopt CoNLL-2003 (Sang and
Meulder 2003) and OntoNotes 5.0 (Pradhan et al. 2013b)
in English, OntoNotes 4.0 (Weischedel et al. 2011), MSRA

3The results in Table 2-6 are also the averaged values.

(Levow 2006), Weibo (Peng and Dredze 2015; He and Sun
2017), and Resume (Zhang and Yang 2018) in Chinese. We
employ the same experimental settings in previous work
(Lample et al. 2016; Yan et al. 2021; Ma et al. 2020; Li et al.
2020b).
Overlapped NER Datasets We conduct experiments on
ACE 2004 (Doddington et al. 2004), ACE 2005 (Walker
et al. 2011), GENIA (Kim et al. 2003). For GENIA, we fol-
low Yan et al. (2021) to use five types of entities and split the
train/dev/test as 8.1:0.9:1.0. For ACE 2004 and ACE 2005 in
English, we use the same data split as Lu and Roth (2015);
Yu et al. (2020). For ACE 2004 and ACE 2005 in Chinese,
we split the train/dev/test as 8.0:1.0:1.0.
Discontinuous NER Datasets We experiment on three
datasets for discontinuous NER, namely CADEC (Karimi
et al. 2015), ShARe13 (Pradhan et al. 2013a) and ShARe14
(Mowery et al. 2014), all of which are derived from biomed-
ical or clinical domain documents. We use the preprocess-
ing scripts provided by Dai et al. (2020) for data splitting.
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CADEC ShARe13 ShARe14

P R F1 P R F1 P R F1
• Sequence Labeling Tang et al. (2018) 67.80 64.99 66.36 - - - - - -
• Span-based Li et al. (2021a) - - 69.90 - - 82.50 - - -
• Hypergraph-based Wang and Lu (2019) 72.10 48.40 58.00 83.80 60.40 70.30 79.10 70.70 74.70

• Seq2Seq Yan et al. (2021) 70.08 71.21 70.64 82.09 77.42 79.69 77.20 83.75 80.34
Fei et al. (2021) 75.50 71.80 72.40 87.90 77.20 80.30 - - -

• Others Dai et al. (2020) 68.90 69.00 69.00 80.50 75.00 77.70 78.10 81.20 79.60
Wang et al. (2021) 70.50 72.50 71.50 84.30 78.20 81.20 78.20 84.70 81.30
W2NER (ours) 74.09 72.35 73.21 85.57 79.68 82.52 79.88 83.71 81.75

Table 4: Results for discontinuous NER datasets.4

ACE2004 ACE2005
Yu et al. (2020) ⋆ 87.35 88.39
Shen et al. (2021) ⋆ 87.47 88.21
W2NER (ours) 88.00 88.81

Table 5: F1s for Chinese overlapped NER datasets. Models
with “⋆” are adapted to target datasets using their code.

Around 10% of entities in these datasets are discontinuous.

Baselines
Tagging-based methods, which assign a tag to every token
with different label schemes, such as BIO (Lample et al.
2016), BIOHD (Tang et al. 2018), and BIEOS (Li et al.
2020b; Ma et al. 2020). Span-based methods, which enu-
merate all possible spans and combine them into entities
(Yu et al. 2020; Li et al. 2021a). Hypergraph-based ap-
proaches, which utilize hypergraphs to represent and infer
entity mentions (Lu and Roth 2015; Wang and Lu 2018;
Katiyar and Cardie 2018). Seq2Seq methods, which gen-
erate entity label sequences (Strubell et al. 2017), index or
word sequences (Yan et al. 2021; Fei et al. 2021) at the
decoder side. Other methods, which is different from the
methods above, such as transition-based (Dai et al. 2020)
and clique-based (Wang et al. 2021) approaches.

Experimental Results
Results for Flat NER
We evaluate our framework on six datasets. As shown in
Table 1, Our model achieves the best performances with
93.07% F1 and 90.50% F1 on CoNLL 2003 and OntoNotes
5.0 datasets. Especially, our model outperforms another uni-
fied NER framework Yan et al. (2021) by 0.23% in terms
of F1 on OntoNotes 5.0. The results in Chinese datasets
are shown in Table 2, where baselines are all tagging-based
methods. We find that our model outperforms the previ-
ous SoTA results by 0.27%, 0.01%, 0.54% and 1.82% on
OntoNotes 4.0, MSRA, Resume and Weibo.
Results for Overlapped NER
Table 3 presents the results for three overlapped NER
datasets in English. Our W2NER model outperforms the pre-

4Note that discontinuous NER datasets include both flat and
overlapped entities as well.
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Figure 5: Results of overlapped (a) and discontinuous men-
tions (b) on ShARe14.

vious works, including tagging-based (Ju et al. 2018), span-
based (Wang et al. 2020; Yu et al. 2020; Shen et al. 2021),
hypergraph-based (Wang and Lu 2018) and sequence-to-
sequence (Straková et al. 2019; Yan et al. 2021) approaches,
and achieves the SoTA performances on F1 scores, with
87.52%, 86.79% and 81.39% on ACE2004, ACE2005 and
GENIA, respectively. For ACE2004 and ACE2005 corpora
in Chinese, we reproduce the SoTA models proposed by Yu
et al. (2020) and Shen et al. (2021), and list their results
in Table 5. Our model can significantly outperform the two
baselines by 0.53% and 0.42%.

Results for Discontinuous NER

Table 4 presents the comparisons between our model and
other baselines in three discontinuous NER datasets. As
seen, our model outperforms previous best model (Fei et al.
2021; Wang et al. 2021) by 0.81%, 0.02%, and 0.45% in
F1s in the CADEC, ShARe13 and ShARe14 datasets, re-
spectively, leading to new SoTA results.

Since the above datasets also include flat entities, we fur-
ther investigate the performances of our model on recogniz-
ing only overlapped or discontinuous entities, as shown in
Figure 5. We can learn that the clique-based model (Wang
et al. 2021) shows better performances than the Seq2Seq
model (Yan et al. 2021) and transition-based method (Dai
et al. 2020). Most importantly, our system achieves the best
results against all other baselines for both overlapped and
discontinuous NER.
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CoNLL2003 ACE2005 CADEC
Ours 93.07 86.79 73.21
- Region Emb. 92.80 (-0.27) 86.39 (-0.40) 72.56 (-0.65)
- Distance Emb. 92.89 (-0.18) 86.47 (-0.32) 72.66 (-0.55)
- All DConv 92.31 (-0.76) 86.07 (-0.72) 72.45 (-0.76)
- DConv(l=1) 93.05 (-0.02) 86.64 (-0.15) 73.12 (-0.09)
- DConv(l=2) 92.78 (-0.29) 86.58 (-0.21) 72.95 (-0.26)
- DConv(l=3) 92.82 (-0.25) 86.59 (-0.20) 73.10 (-0.11)
- Biaffine 93.02 (-0.05) 86.30 (-0.49) 72.71 (-0.50)
- MLP 91.87 (-1.20) 85.66 (-1.13) 68.04 (-5.17)
- NNW 92.65 (-0.42) 86.23 (-0.56) 69.01 (-4.20)

Table 6: Model ablation studies (F1s). DConv(l=1) denots
the convolution with the dilation rate 1.

Model Ablation Studies
We ablate each part of our model on the CoNLL2003,
ACE2005 and CADEC datasets, as shown in Table 6. First,
without region and distance embeddings, we observe slight
performance drops on the three datasets. By removing all
convolutions, the performance also drops obviously, which
verifies the usefulness of the multi-granularity dilated con-
volution. Furthermore, after removing convolutions with dif-
ferent dilation rate, the performance also decreases, espe-
cially for the convolution with the dilation rate 2.

Comparing the biaffine and MLP in the co-predictor layer,
we find that although the MLP plays a leading role, the bi-
affine also brings about 0.5% gains at most. At last, when the
NNW relation is removed, the F1s on all datasets drop, es-
pecially on the CADEC (4.2%). This is because the CADEC
dataset also contains discontinuous entities and without the
NNW relation, discontinuous spans will be incorrectly rec-
ognized as continuous ones, as shown in Figure 4(d). There-
fore, the results of ablation studies on the NNW relation
demonstrate its importance as we argued before.

Related Work on NER
Sequence Labeling Approaches NER is usually considered
as a sequence labeling problem, to assign each token a tag
from a pre-designed tagging scheme (e.g., BIO). Current
mainstream work combine the CRF (Lafferty et al. 2001;
Finkel et al. 2005) with neural architecture, such as CNN
(Collobert et al. 2011; Strubell et al. 2017), bi-directional
LSTM (Huang et al. 2015; Lample et al. 2016), and Trans-
former (Yan et al. 2019; Li et al. 2020b). However, these
methods fail to directly solve neither overlapped nor discon-
tinuous NER. Ju et al. (2018) propose a neural model for
nested NER by dynamically stacking flat NER layers. Tang
et al. (2018) extend the BIO label scheme to BIOHD to ad-
dress the problem of discontinuous mention.
Span-based Approaches There have been several studies
that cast NER as span-level classification, i.e., enumerating
all possible spans, and determining if they are valid mentions
and the types (Xu et al. 2017; Luan et al. 2019; Yamada et al.
2020). Yu et al. (2020) utilize biaffine attention (Dozat and
Manning 2017) to measure the possibility as a mention of a
text span. Li et al. (2020a) reformulate NER as a machine
reading comprehension (MRC) task and extract entities as

the answer spans. Shen et al. (2021) implement a two-stage
identifier to generate span proposals through a filter and a
regressor, and then classify them into the corresponding cat-
egories. Li et al. (2021a) convert the discontinuous NER to
find complete subgraphs from a span-based entity fragment
graph, and achieve competitive results. But, due to the ex-
haustively enumerating nature, those methods suffer from
maximal span lengths and considerable model complexity,
especially for long-span entities.
Hypergraph-based Approaches Lu and Roth (2015) first
propose the hypergraph model for overlapped NER, by ex-
ponentially representing possible mentions. The method is
then widely explored by follow-up work (Muis and Lu 2016;
Katiyar and Cardie 2018; Wang and Lu 2018). For instance,
Muis and Lu (2016) extend the method for discontinuous
NER, and Wang and Lu (2018) utilize deep neural networks
to enhance the hypergraph model.
Sequence-to-Sequence Approaches Gillick et al. (2016)
first apply the Seq2Seq model for NER, taking as inputs the
sentence, and outputting all the entity start positions, span
lengths and labels. Straková et al. (2019) use the Seq2Seq
architecture for overlapped NER with enhanced BILOU
scheme. Fei et al. (2021) employ Seq2Seq with pointer net-
work for discontinuous NER. The latest attempt in (Yan
et al. 2021) tackles the unified NER via a Seq2Seq model
with pointer network based-on BART (Lewis et al. 2020),
generating a sequence of all possible entity start-end indexes
and types. Seq2Seq architecture unfortunately suffers from
the potential decoding efficiency problem as well as the ex-
posure bias issue.
Differences between Our Approach and Previous Ap-
proaches Most of the existing NER work mainly con-
sider more accurate entity boundary identification. In this
work, we explore a different task modeling for unified NER,
i.e., a formalism as word-word relation classification. Our
method can effectively model the relations between both
the boundary-words and inside-words of entities. Also, our
method with 2D grid-tagging can substantially avoid the
drawbacks in current best-performing baselines, e.g., span-
based and sequence-to-sequence models.

Conclusion
In this paper, we propose a novel unified NER framework
based on word-word relation classification to address unified
NER concurrently. The relations between word pairs are pre-
defined as next-neighboring-word relations and tail-head-
word relations. We find that our framework is quite effective
for various NER, which achieves SoTA performances for 14
widely-used benchmark datasets. Moreover, we propose a
novel backbone model that consists of a BERT-BiLSTM en-
coder layer, a convolution layer for building and refining the
representation of the word-pair grid, and a co-predictor layer
for jointly reasoning relations. Through ablation studies, we
find that our convolution-centric model performs well and
several proposed modules such as the co-predictor and grid
representation enrichment are also effective. Our framework
and model are easy to follow, which will promote the devel-
opment of NER research.
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