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Abstract

Individualized treatment rules/recommendations
(ITRs) aim to improve patient outcomes by tai-
loring treatments to the characteristics of each
individual. However, when there are many treat-
ment groups, existing methods face significant
challenges due to data sparsity within treatment
groups and highly unbalanced covariate distribu-
tions across groups. To address these challenges,
we propose a novel calibration-weighted treat-
ment fusion procedure that robustly balances co-
variates across treatment groups and fuses similar
treatments using a penalized working model. The
fusion procedure ensures the recovery of latent
treatment group structures when either the calibra-
tion model or the outcome model is correctly spec-
ified. In the fused treatment space, practitioners
can seamlessly apply state-of-the-art ITR learning
methods with the flexibility to utilize a subset of
covariates, thereby achieving robustness while ad-
dressing practical concerns such as fairness. We
establish theoretical guarantees, including consis-
tency, the oracle property of treatment fusion, and
regret bounds when integrated with multi-armed
ITR learning methods such as policy trees. Simu-
lation studies show superior group recovery and
policy value compared to existing approaches. We
illustrate the practical utility of our method using
a nationwide electronic health record-derived de-
identified database containing data from patients
with Chronic Lymphocytic Leukemia and Small
Lymphocytic Lymphoma.
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1. Introduction
In precision medicine, individualized treatment rules (ITRs)
aim to optimize patient outcomes by tailoring treatment
recommendations to individuals based on their character-
istics. This personalization is essential because treatment
effects can vary across individuals. Developing a rule that
recommends the most effective treatment for each person
requires accounting for these variations in a systematic and
data-driven manner. For settings with two or multiple treat-
ments, numerous machine learning approaches have been
developed for estimating ITRs, commonly referred to as ITR
learning or policy learning. These methods can be broadly
classified into two categories. The first involves modeling
treatment outcomes, as in Q-learning (Watkins & Dayan,
1992; Qian & Murphy, 2011; Song et al., 2015), A-learning
(Murphy, 2003; Shi et al., 2018), or D-learning (Qi & Liu,
2018), where the focus is on estimating the expected out-
come under each treatment to derive the optimal rule. The
second class of methods directly optimizes the value func-
tion, which measures the expected outcome under a given
decision rule (Zhang et al., 2012; Zhao et al., 2012; Athey
& Wager, 2021). In these methods, inverse propensity score
weighting (IPW) or augmented IPW (AIPW) estimators are
employed to evaluate the value function, and the optimal
rule is identified by maximizing the value function over a
class of decision functions, such as linear ITRs (Zhang et al.,
2012; Zhao et al., 2012) or tree-based ITRs (Zhang et al.,
2015; Laber & Zhao, 2015; Athey & Wager, 2021).

However, these approaches encounter significant challenges
when the number of treatment levels becomes large (Rashid
et al., 2021). When treatment levels are numerous, data is
often sparse within each treatment group, making it diffi-
cult to estimate treatment effects accurately. Additionally,
covariate shifts across treatment groups exacerbate insta-
bility, particularly when balancing methods like IPW are
used. This instability is further amplified in underrepre-
sented treatment groups, where propensity scores are small
and highly variable.

A key insight to address these challenges lies in recogniz-
ing that many treatments share commonalities (Ma et al.,
2022; 2023). For example, different pharmaceutical com-
panies may develop treatments targeting the same disease
mechanisms or symptoms, resulting in similar effects across
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treatments. By grouping such treatments into clusters, we
can reduce the effective dimensionality of the treatment
space. Treatments within the same group can be treated as
equivalent, enabling the application of efficient multi-armed
ITR learning methods to the grouped treatments.

Despite its potential, the task of treatment fusion introduces
its own challenges due to sparse data and unbalanced covari-
ate distributions. Sparse data within treatment groups neces-
sitates the use of simple linear working models to prevent
overfitting. However, these models risk misspecification,
which can lead to biased fusion results. Additionally, severe
covariate shifts across groups make traditional balancing
methods like IPW unreliable, especially for treatments with
very small sample sizes.

To overcome these difficulties, we propose a novel pro-
cedure called calibration-weighted treatment fusion. This
method uses calibration weighting (Lee et al., 2023; Wu &
Yang, 2023) to robustly balance covariates across treatment
groups, addressing the instability of traditional balancing
techniques. The calibrated weights are then used in a pe-
nalized working model with fused Lasso (Tibshirani et al.,
2005) to group treatments based on their effects. Our pro-
cedure is doubly robust, meaning that the true latent group
structure can be recovered as long as either the calibra-
tion weighting model or the outcome model is correctly
specified. This robustness significantly enhances both the
efficiency and reliability of treatment fusion compared to
existing methods.

After performing data-driven fusion, practitioners can trans-
parently review the grouping results and seamlessly apply
state-of-the-art multi-armed ITR learning methods on the
grouped treatments, such as policy trees (Zhou et al., 2023),
to align with their application contexts. This approach not
only robustly reduces the dimensionality of the treatment
space but also ensures flexibility, interpretability, and im-
proved policy learning outcomes. By addressing the chal-
lenges of many treatments, our method provides a robust
and practical framework for advancing precision medicine.

1.1. Related work

In this paper, we study settings with a large action space
induced by a single discrete treatment variable with many
levels (Saito & Joachims, 2022; Saito et al., 2023; Peng
et al., 2023; Sachdeva et al., 2024; Aouali et al., 2024).
Related work considers policy evaluation or learning under
alternative treatment structures.

Combination treatments. Some studies consider treat-
ments formed by combinations of multiple variables (Liang
et al., 2018; Agarwal et al., 2023; Xu et al., 2024a;b). Agar-
wal et al. (2023) propose synthetic combinations that impute
counterfactuals via low-rank matrix completion under struc-

tural assumptions. Gao et al. (2024) used a low-rank tensor
with block structure to fuse treatments. In contrast, we
assume a group structure among treatment levels and ap-
ply calibration-weighted fused lasso. These approaches are
complementary, targeting different structural assumptions.

Continuous treatments. Other methods focus on continu-
ous treatments (e.g., Chernozhukov et al., 2019; Cai et al.,
2021). Cai et al. (2021) also explores action grouping in a
continuous setting. These approaches differ methodologi-
cally from ours, which focuses on discrete actions.

Complex treatments. Recent work studies complex treat-
ment types such as images, text, or chemical structures (Kad-
dour et al., 2021; Nilforoshan et al., 2023; Schweisthal et al.,
2023; Marmarelis et al., 2024). Schweisthal et al. (2023)
address large treatment spaces induced by high-dimensional
continuous variables using neural networks and constrained
optimization, focusing on regions with sufficient overlap. In
contrast, our method targets the entire population, is easy to
implement, compatible with existing algorithms, and inter-
pretable.

2. Preliminaries
We consider a K-armed setting where the treatment

A ∈ A := {1, 2, . . . ,K}.

Let X ∈ X ⊆ Rp denote a vector of covariates, and Y ∈
R denote the observed outcome of interest. We assume
that larger values of Y are preferred by convention. The
observed data (Yi, Ai, Xi) are assumed to be independent
and identically distributed. The potential outcomes Y (a),
a ∈ A, represent the outcomes that would be observed
if a subject received treatment a. The following standard
assumptions in causal inference are made (Rubin, 1978).
Assumption 2.1 (Identification). (i) Consistency: Y =
Y (A). (ii) Unconfoundedness: Y (a)⊥⊥A | X , ∀a ∈ A.
(iii) Positivity: 0 < P(A = a | X = x) < 1 for all a ∈ A.

An individualized treatment rule (ITR) is a decision func-
tion d(·) : X → A, which maps the covariate space to the
treatment space. For any arbitrary ITR d(·), the correspond-
ing potential outcome is defined as Y (d(X)), which would
be observed if a randomly chosen individual were assigned
treatment according to d(·), i.e., A = d(X). The value
function under d(·) is then defined as the expectation of
Y (d(X)), i.e., V (d) := E{Y (d(X))}. Let the propensity
score be

πa(x) = P(A = a | X = x),

and the outcome mean function be

µa(x) = E{Y (a) | X = x}.

Under Assumption 2.1, the value function V (d) can be iden-
tified using observed data through inverse propensity score
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weighting (IPW): V (d) = E
[
Y I{A = d(X)}π−1

A (X)
]
.

Suppose D is a class of ITRs of interest, such as linear
ITRs (Zhang et al., 2012; Zhao et al., 2012; Cheng & Yang,
2024) or tree-based ITRs (Zhang et al., 2015; Laber & Zhao,
2015; Athey & Wager, 2021). The optimal ITR is defined
as d∗(X) := argmaxd∈D V (d). The complexity of D in-
creases exponentially with K. Consequently, existing lit-
erature often assumes that K is fixed (Zhou et al., 2023).
However, in practice, the treatment dimension K may be
high (Rashid et al., 2021), making the task of learning d∗(X)
significantly more challenging.

To address this challenge, a key insight is that certain treat-
ments, such as those in drug development targeting similar
disease symptoms and mechanisms, may yield compara-
ble or identical outcomes (Ma et al., 2022; 2023). This
observation suggests a group structure.

Definition 2.2 (Oracle group structure). A = ∪M
b=1G∗

b ,
where G∗

b ’s are disjoint sets satisfying: (i) µa(X) = µa′(X)
for a, a′ ∈ G∗

b and (ii) µa(X) ̸= µa′(X) for a ∈ G∗
b ,

a′ ∈ G∗
b′ with b ̸= b′.

Remark 2.3. We define the oracle group structure by exact
equality of µa(X) to ensure identifiability and interpretabil-
ity. While seemingly restrictive, this serves as a natural basis
for grouping similar treatments and enables formal guaran-
tees. In practice, the fused lasso penalization we use allows
for grouping treatments with approximately equal effects
by tolerating small differences due to sampling variability.
The explicit gap tolerance required for recovery is provided
in Remark 3.11. Overall, when no exact group structure
exists, fusion trades variance for bias, and this trade-off can
improve performance when data are limited.

Motivated by this latent structure, we can first learn a group
mapping δ : A → B := {1, 2, . . . ,M}, and subsequently
learn the grouped ITR dB(·) : X → B by using established
multi-armed policy learning methods. Since M is smaller
than K after grouping, learning the grouped optimal ITR
dB∗ := argmaxdB∈DB V (d) becomes more efficient, where
DB is a class of ITRs dB. After obtaining d̂B, for any X
such that d̂B(X) = b, we define d̂(X) as randomly selecting
one a such that a ∈ G∗

b .

Therefore, the primary objective of this paper is to recover
the true group structure ∪M

b=1G∗
b through data-driven fusion.

This task is particularly challenging due to the sparsity of
data within treatment groups caused by a large K, which
hinders the accurate estimation of µa(X) using complex
models beyond linear ones. Additionally, some treatment
groups have very low propensity scores, leading to high vari-
ability in conventional inverse propensity score balancing
methods. Both model misspecification and covariate shifts
can introduce bias, resulting in poor treatment fusion and
suboptimal policy learning. To address these challenges, we
propose a calibration weighting method that robustly bal-

ances covariates across treatments. Since µa(x) = µa′(x)
implies that the linear projections of Y (a) and Y (a′) are
equal, we employ a penalized linear working model to per-
form treatment fusion, achieving double robustness when
combined with calibration weighting. After treatment group-
ing, any state-of-the-art ITR learning method, such as policy
trees, can be adopted, allowing for flexible outcome model-
ing and superior policy learning.

3. Methodology
3.1. Calibration-Weighted Treatment Fusion

Since the number of groups M and the group structure
∪M
b=1G∗

b are both unknown, we employ fused Lasso to
jointly determine M and the partition. Specifically, we
consider the following working linear model:

Y =M0(X) +
∑
a∈A

I(A = a)X⊤ζa + ϵ,

s.t.
∑
a∈A

I(A = a)X⊤ζa = 0,

where the redundant function M0(X) represents the main ef-
fect of treatments, and X⊤ζa captures the interaction effect
between treatment a and the covariates. The sum-to-zero
constraint on the interaction terms ensures the identifiability
of the regression function. The main effect function M0(X)
can be estimated using weighted parametric or nonparamet-
ric regression models. As this is not the focus of our paper,
we assume it has been accurately estimated and define the
transformed outcome as Ỹ = Y −M0(X).

To estimate and group ζa’s, we consider the following opti-
mization problem, which imposes a pairwise fusion penalty
on each pair of treatment-specific parameters:

min
ζ

{
1

n

∑
a∈A

∑
i:Ai=a

L
(
Ỹi, X

⊤
i ζa

)
+

∑
1⩽a<a′⩽K

pλn
(∥ζa − ζa′∥1)

}
, (1)

where L(·, ·) is a prespecified loss function that measures
the goodness of fit, ∥ · ∥1 denotes the ℓ1 norm of a vector,
pλn is a penalty function that encourages the fusion of ζ̂a’s
into groups, and λn is the tuning parameter, which can
be selected by multiple model selection criteria, such as
Bayesian information criterion (BIC) (Schwarz, 1978) or
extended BIC (EBIC) (Chen & Chen, 2008).

However, the applicability of the objective function (1) is
limited to scenarios where either (i) the true outcome func-
tion µa(x) is linear or (ii) the covariate distributions are
identical across all treatment groups. In cases where these
conditions do not hold, the estimated ζa’s obtained from
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(1) may deviate from the true group structure ∪M
b=1G∗

b . In
observational studies, variations in covariate distributions
across different treatment groups often prevent these groups
from accurately representing the entire population. To miti-
gate this issue, a preliminary step involves reweighting the
samples within each treatment group so that the weighted
samples better reflect the overall population. To achieve this,
we propose the following calibration weighting approach.

For each treatment group a, we aim to assign weights {wi :
Ai = a} to calibrate the covariate distribution of the group
to match the overall sample mean X̄ . This is achieved by
solving the following optimization problem for each a ∈ A:

min
wi,i:Ai=a

∑
i:Ai=a

hγ (wi) ,

s.t.
∑

i:Ai=a

wiXi = X̄,
∑

i:Ai=a

wi = 1, (2)

where hγ(w) quantifies the discrepancy between the cali-
bration weights and the uniform distribution na

−1, with na

denoting the sample size of treatment group a. The function
hγ(w) can be chosen from the Cressie and Read family of
discrepancies (Cressie & Read, 1984), defined as:∑
i:Ai=a

hγ (wi) =
∑

i:Ai=a

{γ(γ + 1)}−1{(nawi)
γ+1 − 1}.

For example, minimizing
∑

i:Ai=a h−1(wi) is equivalent
to maximizing

∑
i:Ai=a log(wi), leading to the maxi-

mum empirical log-likelihood objective function. Min-
imizing

∑
i:Ai=a h0(wi) is equivalent to maximizing

−
∑

i:Ai=a wi log(wi), leading to the maximum empirical
exponential likelihood or entropy.

Let ŵi denote the calibrated weights solved by (2) for in-
dividual i. Using these weights, the calibrated objective
function becomes:

min
ζ

{
1

n

∑
a∈A

∑
i:Ai=a

ŵiL
(
Ỹi, X

⊤
i ζa

)
+

∑
1⩽a<a′⩽K

pλn (∥ζa − ζa′∥1)

}
. (3)

The entire procedure is summarized in Algorithm 1, consid-
ering the least squares loss function as an example.

3.2. Double Robustness of Treatment Fusion

Theory roadmap. This section provides theoretical guar-
antees for Algorithm 1. In Section 3.2.1, we represent the
oracle group structure ∪M

b=1G∗
b via the linear projection of

potential outcomes onto the covariate space, without requir-
ing the linear model to be correctly specified. Under the
completeness Assumption 3.1, recovering the oracle group

Algorithm 1: Calibration-Weighted Treatment Fusion
Input: Data {(Xi, Ai, Yi)}ni=1.
for a = 1, . . . ,K do

Solve calibration weights ŵi by optimizing:

min
wi,i:Ai=a

∑
i:Ai=a

hγ (wi) ,

s.t.
∑

i:Ai=a

wiXi = X̄,
∑

i:Ai=a

wi = 1,

Solve ζ̂ by weighted fused Lasso:

min
ζ=(ζ⊤

1 ,...,ζ⊤
K)⊤∈RKp

{Ln(ζ) + Pn(ζ)} ,

Ln(ζ) =
1

2n

∑
a∈A

∑
i:Ai=a

ŵi

(
Ỹi −X⊤

i ζa

)2
,

Pn(ζ) =
∑

1⩽a<a′⩽K

pλn
(∥ζa − ζa′∥1) .

Forming groups δ(a) = δ(a′) if ζ̂a = ζ̂a′ .
Output: Group mapping δ : A → B.

structure is equivalent to recovering the projection vectors.
In Section 3.2.2, we establish the convergence of the oracle
estimator for the projection vectors under doubly robust and
regularity conditions (Theorem 3.8). In Section 3.2.3, we
show that the oracle estimator is a local minimizer of the
objective function in Algorithm 1 (Theorem 3.12). Taken
together, these results imply that Algorithm 1 consistently
recovers the oracle group structure. Technical clarifications
are provided in remarks and can be skipped by readers less
interested in such details.

3.2.1. REPRESENTATION OF ORACLE GROUP
STRUCTURE

For a ∈ A, let Ỹ (a) := Y (a) −M0(X) denote the trans-
formed potential outcome. We project Ỹ (a) onto the linear
space spanned by X and denote the projection vector by

ζ∗
a := argmin

ζ∈Rp

E
{
Ỹ (a)−X⊤ζ

}2

, (4)

where X includes the intercept term. Solving (4) yields:

E
[
X⊤

{
Ỹ (a)−X⊤ζ∗

a

}]
= 0. (5)

We define the projection residual by

ε(a) := Ỹ (a)−X⊤ζ∗
a. (6)

By (5) and (6), we have

Ỹ (a) = X⊤ζ∗
a + ε(a), E

{
X⊤ε(a)

}
= 0. (7)
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From the above derivation, condition (7) does not assume
a linear relationship between Ỹ (a) and X; it holds solely
due to the projection (4) and the definition of ε(a). Con-
dition (7) alone is generally insufficient to guarantee the
consistency of the estimated projection vector derived from
the unweighted working linear model (1). Ma et al. (2022)
assumes a linear relationship between Ỹ (a) and X , which
essentially imposes a stronger condition:

Ỹ (a) = X⊤ζ∗
a + ε(a), E{ε(a) | X} = 0. (8)

In the following, we show that by using calibration-weighted
treatment fusion (3), the consistency results hold if either
the calibration weighting (2) is correctly specified or the
outcome model (8) is correctly specified, but not necessarily
both. Consequently, our approach provides a more robust
fusion method against model misspecification.

Since X includes the intercept term, and from (7), we have
E{ε(a)} = 0. Therefore,

a, a′ ∈ G∗
b ⇔ µa(X) = µa′(X) ⇒ ζ∗

a = ζ∗
a′ . (9)

To ensure the reverse direction of (9) holds, we impose the
following assumption.

Assumption 3.1 (Completeness). For any function h(·), if
EXh(X) = 0, then h(X) = 0 almost surely.

Under Assumption 3.1, we have

ζ∗
a = ζ∗

a′ ⇒ µa(X) = µa′(X),

which ensures that identifying ζ∗
a recovers the oracle group-

ing.

We denote the group-shared projection vector as β∗
b := ζ∗

a,
∀a ∈ G∗

b . The transformed potential outcome can then be
expressed as:

Ỹ (a) = X⊤ζ∗
a + ε(a) = X⊤β∗

b + ε(a). (10)

If the true group structure ∪M
b=1G∗

b is known, the data within
each group can be pooled to estimate the group-shared pro-
jection vector as

β̂b = min
βm∈Rp

1

2n

n∑
i=1

∑
a∈G∗

b

I(Ai = a)ŵi

(
Ỹi −X⊤

i βm

)2
.

Then, the oracle estimator for the projection vector ζ∗ =

(ζ∗
1
⊤
, . . . , ζ∗

K
⊤
)⊤ can be obtained by expanding β̂b, such

that ζ̂
or

= (ζ̂
or⊤
1 , . . . , ζ̂

or⊤
K )⊤, where ζ̂

or

a ≡ β̂b for all
a ∈ G∗

b . In practice, since the true group structure is un-
known, the estimated projection vector ζ̂ is obtained using
Algorithm 1. Define the objective function as Qn(ζ) =
Ln(ζ) + Pn(ζ).

3.2.2. CONSISTENCY OF ORACLE ESTIMATOR

We establish the convergence of ζ̂
or

to ζ∗ under the assump-
tions stated below. Let C1, C2, C3, and C4 denote positive
constants. We allow K, M , and p to grow with n, omitting
their dependence on n for notational simplicity. We write
an ≫ bn to denote bn = o(an).
Assumption 3.2 (Convergence of calibration weight). ∀i =
1, . . . , n, ŵi = w∗

i +OP(1/
√
n) and C1 ≤ w∗

i ≤ C2.
Assumption 3.3 (Doubly robust model assumption). One
of the following conditions holds: (i) (Correct calibration
weighting) w∗

i = 1/πAi(Xi), or (ii) (Correct outcome
model) E{ε(a) | X} = E{Ỹ (a)−X⊤ζ∗

a | X} = 0 for any
a ∈ A.
Remark 3.4. Assumption 3.2 requires the

√
n-convergence

of the working weights ŵi to bounded limits w∗
i , which

are not necessarily the true inverse propensity scores. This
typically holds under mild conditions for posited parametric
models for weighting, such as the entropy balancing method
(see Section A.1 for details). The convergence rate require-
ment for the weights in the fusion stage may be relaxed by
using undersmoothed estimators or advanced doubly robust
methods (Chambaz et al., 2012; Ertefaie et al., 2023; Bruns-
Smith et al., 2025). Assumption 3.3 requires only that either
the calibration weighting model or the outcome model is
correctly specified, highlighting the double robustness of
our results.
Assumption 3.5 (Regularity condition for X). For any
j = 1, . . . , p, n−1

∑n
i=1 X

2
ij ≤ C3. For any b ∈ B,

Λmin

(∑
i:Ai∈G∗

b
XiX

⊤
i

)
/Nmin ≥ C4, where Λmin(·) de-

note the smallest eigenvalue of a matrix, and Nmin :=
minb∈B

∑n
i=1 I{Ai ∈ G∗

b } is the smallest sample size
across groups.
Assumption 3.6 (Sub-Gaussian error). For any a ∈ A,
ε(a) :=

(
ε1(a), . . . , εn(a)

)⊤
has sub-Gaussian tails, that

is, ∃σε > 0, for any b ∈ Rn and t > 0, P(|b⊤ε(a) −
E{b⊤ε(a)}| > ∥b∥2t) ≤ 2 exp(−t2/2σ2

ε).
Remark 3.7. Assumptions 3.5 and 3.6 are typical regularity
conditions used in high-dimensional statistics (Wainwright,
2019). Notably, Assumption 3.6 only requires that b⊤ε(a)
concentrates around its expectation. If the outcome model
is misspecified and there is covariate shift across treatments,
E{b⊤ε(a)} may not equal zero when bi = I(Ai = a)Xij ,
leading to bias. However, by using calibration weighting
with bi = I(Ai = a)w∗

iXij , we can robustly eliminate this
bias if either the calibration weighting model or the outcome
model is correctly specified, as shown in Lemma A.1.

Theorem 3.8 (Consistency of ζ̂
or

). Suppose Assumptions
2.1, 3.2, 3.3, 3.5, and 3.6 hold. If Mp/n = o(1) and√

p n log(n)/Nmin = o(1), then for some constant C > 0,
with probability at least 1− 2Mp/n− ιn (where ιn → 0 as
n → ∞), we have ∥ζ̂

or
− ζ∗∥∞ ≤ C

√
p n log(n)/Nmin.
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Remark 3.9. To ensure the consistency of ζ̂
or

, it is required
that

√
p n log(n) ≪ Nmin ≤ n/M , which implies that the

number of groups must satisfy M = o
(√

n/{p log(n)}
)

.

3.2.3. ORACLE PROPERTY OF ζ̂

Next, we establish the oracle property of ζ̂. To encourage
the grouping of similar projection vectors and reduce bias
introduced by the penalty, we require the penalty function
pλn(·) := λnρ(·) to have a sharp derivative near 0. More-
over, the ℓ∞ distances between the projection vectors of two
different groups must be sufficiently large to ensure they
can be separated. Thus, we impose the following regularity
condition, which is commonly used in high-dimensional
statistics (e.g., Ma & Huang, 2017).

Assumption 3.10 (Penalty function). The penalty function
pλn

(·) = λnρ(·) is symmetric about 0, satisfies pλn
(0) =

0, is differentiable near 0 with ρ′(t) continuous except at
finitely many t and ρ′(0+) = 1, and becomes constant for
t ≥ cλn/2 for some c > 0. Additionally, minb̸=b′ ∥β∗

b −
β∗
b′∥∞/c > λn ≫ ϕn + p ϕn/Kmin +

√
n log(n)/Kmin,

where ϕn := C
√
p n log(n)/Nmin, C is the constant in

Theorem 3.8, and Kmin := minb∈B |G∗
b | is the smallest

number of treatments across groups.

Remark 3.11. When (i) the covariate dimension p and the
number of groups M are fixed, and (ii) Nmin = η1n/M
and Kmin = η2K/M , where η1, η2 ∈ (0, 1] are fixed con-
stants, the term ϕn + p ϕn/Kmin +

√
n log(n)/Kmin is

of order O(
√
n log(n)/K). In this simplified case, it suf-

fices to assume that minb ̸=b′ ∥β∗
b − β∗

b′∥∞/c > λn ≫√
n log(n)/K.

Theorem 3.12 (Oracle property of ζ̂). Suppose the con-
ditions in Theorem 3.8 and Assumption 3.10 are satisfied.
If Kp/n = o(1), there exists a local minimizer ζ̂ of the
objective function Qn(ζ) such that P(ζ̂ = ζ̂

or
) → 1.

Combining Theorems 3.8 and 3.12, we demonstrate that
minimizing Qn(ζ) facilitates the recovery of ζ∗, which in-
dicates the group structure ∪M

b=1G∗
b under the completeness

Assumption 3.1.

3.3. Multi-armed Policy Learning

After fusing treatments, those within the same group can
be treated as identical. This enables our doubly robust
treatment fusion procedure to seamlessly integrate with
any state-of-the-art multi-armed ITR learning method to
identify the optimal grouped ITR dB∗ : X → B, where
B = {1, 2, . . . ,M} represents the set of group indices.

As a concrete example, we combine the doubly robust treat-
ment fusion with the Cross-Fitted Augmented IPW Learning
(CAIPWL) approach proposed by Zhou et al. (2023), em-

ploying policy trees as the specific policy class, and review
its theoretical results. CAIPWL involves three main steps.
First, it estimates the nuisance functions

πb(x) :=
∑
a∈G∗

b

πa(x), µb(x) := µa(x),∀a ∈ G∗
b ,

using L-fold cross-fitting. Next, to evaluate the value of a
policy dB, an augmented IPW (AIPW) estimator is used:

V̂ (dB) =
1

n

n∑
i=1

{
I{Bi = dB(Xi)}

Yi − µ̂
−l(i)
Bi

(Xi)

π̂
−l(i)
Bi

(Xi)
+

µ̂
−l(i)

dB(Xi)
(Xi)

}
. (11)

Finally, V̂ (dB) is optimized over a specified policy class
DB, such as a decision tree, to obtain the ITR estimator d̂B.
The detailed procedure is outlined in Algorithm 2. Note that
µ̂
−l(i)
Bi

(Xi) and π̂
−l(i)
Bi

(Xi) denote the nuisance functions
estimated using L − 1 folds of data, excluding the l(i)-th
fold containing the i-th unit.

Algorithm 2: Cross-Fitted AIPW Policy Learning
Input: Data {(Xi, Ai, Yi)}ni=1; Group mapping δ.
Mapping the treatment into groups Bi = δ(Ai).
Split the data into L folds.
for l = 1, . . . , L do

for b = 1, . . . ,M do
Fit π̂−l

b (x) using rest L− 1 folds.
Fit µ̂−l

b (x) using rest L− 1 folds.

Compute the estimated value of a policy dB by (11).
Solving d̂B = argmaxdB∈DB V̂ (dB).
Output: Optimal policy d̂B.

Consider DB = DB
tree in Algorithm 2, where depth-D trees

serve as candidate policies dB(·) : X → B. A depth-D tree
maps a covariate vector X = (X1, . . . , Xp) ∈ X into an
action b ∈ B by traversing D − 1 branch layers followed
by a final layer of leaf nodes. Each branch node splits on
a covariate Xj at a threshold l, directing traversal to the
left child if Xj < l and to the right child otherwise. The
traversal ends at a leaf node, assigned one of M actions
in B, partitioning X into up to 2D disjoint regions, each
associated with an action b. Figure 1 shows a depth-5 tree
learned from a real data application.

Notably, the covariates used for node splits may be a smaller
subset of those used for treatment fusion in Algorithm 1 and
for estimating nuisance functions µb(X) and πb(X). While
treatment fusion and nuisance function estimation employ
a richer covariate set to ensure correct model specification,
the decision function dB prioritizes a smaller, interpretable
subset of covariates that are actionable and relevant for
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Table 1. Summary of definitions for the CAIPWL and policy tree.

Description Notation Definition

Hamming Distance on {xi}ni=1 ⊂ X H(dB1 , d
B
2 ; {xi}ni=1) n−1

∑n
i=1 I{dB1 (xi) ̸= dB2 (xi)}.

ϵ-Hamming Covering Number on
{xi}ni=1 ⊂ X

NH(ϵ,DB, {xi}ni=1) The smallest number L of policies dB1 , . . . , d
B
L in DB, such

that ∀dB ∈ DB, ∃dBi ∈ DB, H(dB, dBi ; {xi}ni=1) ≤ ϵ.

ϵ-Hamming Covering Number NH(ϵ,DB) sup{NH(ϵ,DB, {xi}mi=1) : m ≥ 1, {xi}mi=1 ⊂ X}.

Entropy Integral κ(DB)
∫ 1

0

√
logNH(ϵ2,DB)dϵ.

Policy value of dB ϕ(dB) I{B = dB(X)}Y−µB(X)
πB(X) + µdB(X)(X).

Worst-case variance in evaluating the
difference between two policies in DB

V∗ supdB
1 ,dB

2 ∈DB E{ϕ(dB1 )− ϕ(dB2 )}2.

Regret Bound R(d̂B) E{Y (dB∗(X))} − E{Y (d̂B(X))}.

Decision Tree Class DB
tree Set of all depth-D trees.

decision-making. This separation highlights the robustness
and flexibility of our procedure, ensuring the resulting policy
is both interpretable and practical for implementation.

We provide the
√
n-regret bound for CAIPWL, relying on

the rate doubly robust model, policy class complexity, and
bounded outcome and covariate assumptions. Table 1 is a
summary of definitions relevant to the theoretical result.

Assumption 3.13 (Rate doubly robust model assumption).
For any b ∈ B, l = 1, . . . , L, π̂−l

b (X) and µ̂−l
b (X) satisfy:

E
{
π̂−l
b (X)− πb(X)

}2 → 0, E
{
µ̂−l
b (X)− µb(X)

}2 → 0,

E
{
π̂−l
b (X)− πb(X)

}2 E{µ̂−l
b (X)− µb(X)

}2
= o(n−1).

Assumption 3.14 (Complexity of the policy class). ∀0 <
ϵ < 1, NH(ϵ2,DB) ≤ C1 exp(C2ϵ

−ω) for some constants
C1, C2 > 0, 0 < ω < 0.5.

Assumption 3.15 (Bounded outcome and covariate). For
all a ∈ A, Y (a) is bounded, and X is bounded.

Remark 3.16. Assumption 3.13 is weaker than the standard
doubly robust model assumption, which requires either the
estimator of πb(X) or µb(X) to be

√
n-consistent. Instead,

Assumption 3.13 permits a trade-off between their accu-
racies, requiring only that the product of their error terms
scales as o(n−1). Modern machine learning methods offer
effective estimators for these quantities. Assumption 3.14
requires the logarithm of the policy class covering number
to grow at a low-order polynomial rate with 1/ϵ, a condi-
tion satisfied by the finite-depth trees considered here (Zhou
et al., 2023). Assumption 3.15, required only for the results
in Section 3.3, is a standard regularity condition in the policy
learning literature.

Proposition 3.17 (Regret bound of CAIPWL). Under As-
sumptions 2.1, 3.13, 3.14, and 3.15, suppose that µa(X) =

µa′(X) for all δ(a) = δ(a′). For the d̂B learned from Algo-

rithm 2, we have R(d̂B) = OP

(
κ(DB)

√
V∗/n

)
.

Proposition 3.18 (Regret bound of policy tree). Un-
der Assumptions 2.1, 3.13, and 3.15, suppose that
µa(X) = µa′(X) for all δ(a) = δ(a′). For the
d̂B learned from Algorithm 2 with DB = DB

tree, we
have R(d̂B) = OP

({√
(2D − 1) log p+ 2D logM +

4
3D

1
4

√
2D − 1

}√
V∗/n

)
.

4. Numerical Experiments
4.1. Synthetic Scenarios

We considered M = 4 treatment groups, with the structure
summarized in Table 2. Each group comprises |G∗

b | = 4
treatments sharing identical outcome mean functions, as
detailed in Table 4. We considered covariate distributions
with shifts and varying sample sizes across treatment groups,
as shown in Table 3. The covariance matrices are:

Σ1 =

(
1 −0.25

−0.25 1

)
, Σ2 =

(
1 −0.3

−0.3 1

)
.

Table 2. Group structure.
Group 1 2 3 4

Treatment {1,2,3,4} {5,6,7,8} {9,10,11,12} {13,14,15,16}

As a baseline, we implemented the CAIPWL method (Zhou
et al., 2023) without calibration weighting or fusion, using
the default tuning in the R package policytree to learn a
depth-3 policy tree. We further implemented the fusion step
both with and without calibration weighting, using CAIPWL
to learn the corresponding optimal policy trees. In the fusion
step, fused lasso uses extended BIC (Chen & Chen, 2008)
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Table 3. Covariate distribution.
Treatment Covariate Sample Size

{1,5,9,13}
X1 ∼ Bernoulli(0.3)

150(X2, X3)
T |X1 = 1 ∼ N((1,−1)T ,Σ1)

(X2, X3)
T |X1 = 0 ∼ N((−1, 1)T ,Σ2)

{2,6,10,14}
X1 ∼ Bernoulli(0.4)

125(X2, X3)
T |X1 = 1 ∼ N((1,−1)T ,Σ1)

(X2, X3)
T |X1 = 0 ∼ N((−1, 1)T ,Σ2)

{3,7,11,15}
X1 ∼ Bernoulli(0.5)

100(X2, X3)
T |X1 = 1 ∼ N((1,−1)T ,Σ1)

(X2, X3)
T |X1 = 0 ∼ N((−1, 1)T ,Σ2)

{4,8,12,16}
X1 ∼ Bernoulli(0.6)

75(X2, X3)
T |X1 = 1 ∼ N((1,−1)T ,Σ1)

(X2, X3)
T |X1 = 0 ∼ N((−1, 1)T ,Σ2)

Table 4. Outcome mean functions for each group.
b µb(X)
1 3 exp{0.7 + 0.1X1 − 0.3X2 − 0.2X2

3 + 0.4sign(X2
2 + 3X3 − 2.5)}

2 3 exp{0.5 + 0.1X1 + 0.15X2 − 0.3X2
3 + 0.5sign(X2

2 + 3X3 − 2.5)}
3 3 exp{0.6 + 0.1X1 − 0.15X2 − 0.3X3 + 0.6sign(X2

2 + 3X3 − 2.5)}
4 3 exp{0.6 + 0.1X1 + 0.2X2 − 0.1X3 − 0.1X2

3 + 0.7sign(X2
2 −X3 − 2)}

for model selection. Treatments are grouped if the Euclidean
distance between their fused lasso estimates is less than 0.25.
Additionally, for comparison, we implemented the method
proposed by Ma et al. (2022), where the group structure
is learned using fused Lasso without calibration weighting,
and linear working models are used for both treatment fusion
and policy learning.

We used the adjusted Rand index (ARI) (Gates & Ahn, 2017)
to assess the quality of the fusion by comparing it to the true
underlying group structure presented in Table 2. The ARI
measures the similarity between two clusterings while ac-
counting for random chance. It evaluates how pairs of items
are grouped together or separated in both clusterings, adjust-
ing for the possibility that some agreement could occur by
chance. ARI produces a score between -1 and 1, where 1 in-
dicates perfect agreement, 0 suggests no better than random
chance, and negative values indicate worse-than-random
fusion. We then generated a large dataset following the
same distribution as the sample dataset and used the average
outcome mean function over the entire dataset as the test
value. We conducted 200 replications of the learning-testing
procedure, with the average results summarized in Table 5.

Table 5. Simulation results for K = 16.

Method ARI Number of groups Value
policy tree (baseline) / 16 8.77 (0.08)
fusion + policy tree 0.26 (0.14) 10.725 (1.93) 8.78 (0.09)

CW + fusion + policy tree 0.96 (0.06) 4.335 (0.60) 8.89 (0.11)
Ma et al. (2022) 0.26 (0.14) 10.725 (1.93) 8.51 (0.12)

CW = Calibration Weighting. ARI (Adjusted Rand Index for fusion quality) and
policy value: higher is better. Oracle number of groups = 4. Numbers in parentheses
are Monte Carlo standard errors. Results are averaged over 200 runs.

We observed that, due to heterogeneity in the covariate dis-
tribution across different treatment groups, fusion without
calibration weighting resulted in an average ARI of only

0.26, whereas fusion with calibration weighting achieved a
significantly higher average ARI of 0.96. For the ”fusion
+ policy tree” approach, the poor quality of fusion led to a
lower average testing value compared to the ”CW + fusion +
policy tree” method. However, both approaches still outper-
formed the baseline. In contrast, the method proposed by
Ma et al. (2022) suffered from misspecified outcome mean
functions, yielding results that were even worse than the
baseline. We perform additional simulations with increased
K and fixed n, and under a misspecified weighting model,
deferring the details to Section B.

4.2. Real Data Application

We illustrate the proposed methods through an application
to data of patients with Chronic Lymphocytic Leukemia
(CLL) and Small Lymphocytic Lymphoma (SLL) from the
nationwide Flatiron Health electronic health record-derived
database. The Flatiron Health database is a longitudinal
database, comprising de-identified patient-level structured
and unstructured data, curated via technology-enabled ab-
straction (Ma et al., 2020; Birnbaum et al., 2020). During the
study period, the de-identified data originated from approxi-
mately 280 US cancer clinics (∼800 sites of care; primarily
community oncology settings). The data are de-identified
and subject to obligations to prevent re-identification and
protect patient confidentiality. CLL and SLL are slow-
growing, indolent hematologic malignancies that primarily
affect lymphocytes. In CLL, cancer cells are mainly found
in the blood and bone marrow, while in SLL, they are mostly
located in the lymph nodes. The relative 5-year survival rate
following an initial CLL diagnosis is estimated to be 88.1%
(source: SEER Cancer Statistics).

The dataset includes 10,346 patients who received first line
of therapy (LOT), with details provided in Table 6. The
primary outcome is patient overall survival status (1 for
survival, 0 for death), along with 10 covariates: race, region,
PayerBin, SES Index (2015-2019), gender, ECOG score,
Rai stage, lymphadenopathy, age at the start of first LOT,
and the time from diagnosis to the initiation of first LOT.

Table 6. Sample size for each treatment.
Treatment Number of patients
cBTKi mono 3392
AntiCD20 + Chemotherapy Only 1726
AntiCD20 mono 1230
BCL2i + AntiCD20 Only 463
cBKTi + AntiCD20 Only 408
Chemotherapy Only 215
Other 412
Total 10346

We implemented the proposed “CW + fusion + policy tree”
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Group 1 Group 2 Group 3 Group 4 Group 5

cBTKi mono AntiCD20 mono AntiCD20 +
Chemotherapy Only Other BCL2i + AntiCD20

Only
cBKTi + AntiCD20

Only Chemotherapy Only

NoYes

Yes No

Yes No

Group 3 Group 5 Group 3 Group 4

Yes No Yes No

Yes No

Group 4 Group 5 Group 4 Group 5

Yes No Yes No

Yes No

Yes No

Group 5 Group 3 Group 5 Group 2

Yes No Yes No

Yes No

Group 5 Group 3 Group 5 Group 2

Yes No Yes No

time<=1.87

time<=1.08

age<=84 lymphadenopathy
_false=0

time<=0.3 time<=0.59 age<=72 age<=82

time<=36.99

raistage_0=0 ECOG_0-1=0

time<=35.58 time<=15.31 time<=67.71 time<=171.86

Figure 1. The fusion results and the learned optimal policy tree assigns patients to grouped treatments based on covariate splits. time
is the time from diagnosis to the first LOT; age is the age at the start of the first LOT; lymphadenopathy false=1 indicates no
lymph node swelling, and lymphadenopathy false=0 indicates its presence; raistage 0=1 indicates Rai stage 0 (low risk), and
raistage 0=0 indicates stages I-IV (intermediate to high risk); ECOG 0-1=1 indicates an ECOG score of 0 or 1 (good functional
status), and ECOG 0-1=0 indicates a score of 2-5 (diminished functional status).

method described in Algorithms 1 and 2. All 10 covariates
were included in the calibration weighting and the estima-
tion of nuisance functions in CAIPWL. The algorithm offers
flexibility by enabling a subset of covariates to be used for
learning the ITR, in contrast to methods that require the
same covariates for weighting, modeling nuisance functions,
and ITR learning. Certain confounders, such as race, region,
and proxies of social status like PayerBin and SES Index
(2015-2019), were excluded from ITR learning to avoid
their use in treatment assignment. As a result, the remaining
six covariates were used for fused Lasso and ITR.

The fusion results and the learned optimal policy tree are
presented in Figure 1. The following insights can be drawn:
(i) Two monotherapies are grouped together in Group 1,
reflecting their similar mechanisms of action and treatment
intensity. (ii) Combination therapies are assigned to dis-
tinct groups, while chemotherapy-only forms its own sep-
arate group. (iii) Older patients or those with shorter time
since diagnosis are more likely recommended to Group 5
(chemotherapy-only), likely due to limited treatment toler-
ance and the need for immediate intervention. (iv) Relatively
younger patients or those with longer time since diagnosis
tend to be recommended to Groups 2, 3, or 4 (combination
therapies), likely due to their better functional status to toler-
ate aggressive treatments, and longer diagnostic times often
indicate a chronic disease course requiring more targeted
interventions to manage progression. Our findings provide
valuable insights for guiding future individualized treatment
strategies while ensuring their practical feasibility.

5. Conclusion
This paper introduces a calibration-weighted treatment fu-
sion procedure to address the challenges of many treatments
in ITR learning. By leveraging treatment similarities and ro-
bustly balancing covariates, our method employs weighted

fused Lasso to recover the latent group structure of treat-
ments, providing theoretical guarantees of consistency and
double robustness. Practitioners can seamlessly integrate
the fusion results with state-of-the-art ITR learning methods,
such as policy trees, which offer

√
n-regret bounds, enabling

flexible and interpretable decision-making. Simulation stud-
ies highlight the superiority of our method over baseline
and competing approaches. Additionally, we demonstrate
its practical utility through a real data application, yielding
clinically relevant insights.

In extreme cases where some treatment arms have few or
no observations, our method may become unstable due to
the lack of information, unless additional structural assump-
tions, such as the combinatorial structure in Agarwal et al.
(2023), are imposed. This instability underscores the in-
herent difficulty of the problem and suggests directions for
methodological improvement. Currently, the fusion step is
performed once; an alternative is to adopt an iterative pro-
cedure that alternates between treatment fusion and weight
estimation to enhance stability.

Our method can be extended in several directions. First,
while this study focuses on a single data source, future work
could enhance the procedure by integrating multi-source
data or generalizing learned ITRs to other target popula-
tions (Mo et al., 2021; Chu et al., 2023; Wu & Yang, 2023;
Zhang et al., 2024; Carranza & Athey, 2024). Second, be-
yond ITR estimation, providing inference and uncertainty
quantification is critical (Liang et al., 2022; Ghosh et al.,
2023; Cheng & Yang, 2024), especially in high-stakes con-
texts like medicine, with conformal prediction offering a
promising approach (Osama et al., 2020; Taufiq et al., 2022;
Zhang et al., 2023). Finally, high-dimensional treatments
also occur in heterogeneous treatment effect (HTE) estima-
tion (Goplerud et al., 2025), and extending our procedure to
HTE frameworks would enhance its applicability.
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A. Proof
A.1. Rationale for Assumption 3.2

For every treatment a ∈ A, calibration weighting is an optimization problem and can be solved using the method of
Lagrange multipliers:

La(w1, . . . , wn) =
∑

i:Ai=a

(nawi)
γ+1 − 1

γ(γ + 1)
− nλ⊤

∑
i:Ai=a

wi(Xi − X̄) + nφ

(
1−

∑
i:Ai=a

wi

)
.

Minimizing La(w1, . . . , wn) gives:

ŵi = w(Xi; λ̂) =
ργ [λ̂

⊤(Xi − X̄)]∑
j:Aj=a ργ [λ̂

⊤(Xj − X̄)]
,

where the function ργ(x) for different γ values are summarized in Table 7, and λ̂ solves the equation∑
i:Ai=a

ργ [λ
⊤(Xi − X̄)](Xi − X̄) = 0.

Therefore, λ̂ is an M-estimator and, under standard regularity conditions for M-estimators (Boos & Stefanski, 2013), it is
root-n consistent.

Table 7. ργ(x) for Cressie-Read family.

γ hγ(w) ργ(x)

−1 − ln(nw) (1− x)−1

0 nw ln(nw) exp(x)

γ
(nw)γ+1 − 1

γ(γ + 1)
(1 + γx)1/γ

A.2. Lemma A.1

Lemma A.1. Suppose Assumptions 2.1 and 3.3 hold. For any i = 1, . . . , n, j = 1, . . . , p, and a ∈ A,

E
{
I(Ai = a)w∗

iXijεi(a)
}
= 0.

Proof of Lemma A.1. By the unconfoundedness in Assumption 2.1, we have

E
{
I(Ai = a)w∗

iXijεi(a)
}
= E

[
E
{
I(Ai = a)w∗

iXijεi(a) | Xi

}]
= E

[
E
{
I(Ai = a)w∗

i | Xi

}
XijE

{
εi(a) | Xi

}]
.

If (i) (correct calibration weighting) in Assumption 3.3 holds, i.e., E
{
I(Ai = a)w∗

i | Xi

}
= 1, we have

E
[
E
{
I(Ai = a)w∗

i | Xi

}
XijE

{
εi(a) | Xi

}]
= E

[
XijE

{
εi(a) | Xi

}]
= E

[
Xijεi(a)

]
.

By the definitions of the projection vector and projection residual:

ζ∗
a := argmin

ζ∈Rp

E
{
Ỹ (a)−X⊤ζ

}2

, and ε(a) := Ỹ (a)−X⊤ζ∗
a, (12)

the result follows from
E
{
X⊤ε(a)

}
= E

[
X⊤

{
Ỹ (a)−X⊤ζ∗

a

}]
= 0.

Note that E
{
X⊤ε(a)

}
= 0 does not require a linear model between Ỹ (a) and X; it holds solely due to the projection (12).
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If (ii) (correct outcome model) in Assumption 3.3 holds, i.e., E
{
εi(a) | Xi

}
= 0, we have

E
[
E
{
I(Ai = a)w∗

i | Xi

}
XijE

{
εi(a) | Xi

}]
= 0.

Note that the above equation does not require calibration weighting to be correct; it holds solely due to E {ε(a) | X} = 0,
a condition stronger than E

{
X⊤ε(a)

}
= 0. This condition is also referred to as the exogeneity assumption or the zero

conditional mean condition (Wooldridge, 2012).

A.3. Proof of Theorem 3.8

Proof of Theorem 3.8. We rewrite β̂b to relate it to the potential outcomes

β̂b = min
βm∈Rp

1

2n

n∑
i=1

∑
a∈G∗

b

I(Ai = a)ŵi

(
Ỹi −X⊤

i βm

)2
= min

βm∈Rp

1

2n

n∑
i=1

∑
a∈G∗

b

I(Ai = a)ŵi

(
Ỹi(a)−X⊤

i βm

)2
= min

βm∈Rp

1

2n

n∑
i=1

∑
a∈G∗

b

I(Ai = a)ŵi

(
X⊤β∗

b + ε(a)−X⊤
i βm

)2
.

where the second equation is due to I(Ai = a)Ỹi = I(Ai = a)Ỹi(a) and the third equation is due to (10). Then, the least
squares estimation leads to

β̂b − β∗
b =

{
n∑

i=1

∑
a∈G∗

b

I(Ai = a)ŵiXiX
⊤
i︸ ︷︷ ︸

ΓŵX[b]

}−1{ n∑
i=1

∑
a∈G∗

b

I(Ai = a)ŵiXiεi(a)︸ ︷︷ ︸
Γŵε[b]

}
.

We have
max
b∈B

∥β̂b − β∗
b∥∞ ≤ max

b∈B
∥Γ−1

ŵX[b]∥∞∥Γŵε[b]∥∞. (13)

We examine ∥Γ−1
ŵX[b]∥∞ and ∥Γŵε[b]∥∞, respectively.

Step 1 (Bound ∥Γ−1
ŵX[b]∥∞). By Assumption 3.2, ∃ϵ > 0, with probability at least 1 − ιn (where ιn → 0 as n → ∞),

ŵi ≥ w∗
i − |ŵi − w∗

i | ≥ C1 − ϵ := C ′
1, for any i. Thus, we have

∥Γ−1
ŵX[b]∥2 = Λmax(Γ

−1
ŵX[b]) =

1

Λmin(ΓŵX[b])
≤ 1

C4C ′
1Nmin

,

where the last inequality is due to Assumptions 3.5. Then, we have

max
b∈B

∥Γ−1
ŵX[b]∥∞ ≤ √

pmax
b∈B

∥Γ−1
ŵX[b]∥2 ≤

√
p

C4C ′
1Nmin

. (14)

Step 2 (Bound ∥Γŵε[b]∥∞). We first bound

Γwε[b] :=

n∑
i=1

∑
a∈G∗

b

I(Ai = a)w∗
iXiεi(a).

By Assumptions 3.2 and 3.5, we have

n∑
i=1

∑
a∈G∗

b

I(Ai = a)(w∗
iXij)

2 ≤ nC2
2C3.
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Combined with Lemma A.1 and Assumption 3.6, for any j = 1, . . . , p and b ∈ B, for t > 0, we have

P

∣∣∣∣∣∣
n∑

i=1

∑
a∈G∗

b

I(Ai = a)w∗
iXijεi(a)

∣∣∣∣∣∣ >
√

nC2
2C3t

 ≤ 2 exp(−t2/2σ2
ε).

Then, we have

P
(
max
b∈B

∥Γwε[b]∥∞ >
√

nC2
2C3t

)
≤ 2Mp exp(−t2/2σ2

ε).

Letting 2Mp exp(−t2/2σ2
ε) = 2Mp/n, we have that with probability at least 1− 2Mp/n,

max
b∈B

∥Γwε[b]∥∞ ≤
√
2C2

2C3σε

√
n log(n). (15)

Finally, by Assumption 3.2,

max
b∈B

∥Γ−1
ŵX[b]∥∞∥Γŵε[b] − Γwε[b]∥∞ = OP

(√
p n

Nmin

)
. (16)

The result follows from (13), (14), (15), and (16).

A.4. Proof of Theorem 3.12

Proof of Theorem 3.12. Recall that the true group structure is ∪M
b=1G∗

b . The space of ζ’s that have the true group structure is
defined as

Zor :=
{
ζ = (ζ⊤

1 , . . . , ζ
⊤
K)⊤ ∈ RKp : ∀b ∈ B,∀a, a′ ∈ G∗

b , ζa = ζa′

}
.

Note that ζ̂
or

∈ Zor. Define the mapping
T : RKp → Zor, ζ 7→ ζ̄,

where ζ̄ = (ζ̄
⊤
1 , . . . , ζ̄

⊤
K)⊤ and ζ̄a =

∑
a′∈G∗

b
ζa′/|G∗

b |, ∀a ∈ G∗
b . Define the neighbor of projection vector ζ∗ as

Θ =
{
ζ ∈ RKp : ∥ζ − ζ∗∥∞ ≤ ϕn

}
.

Note that ∀ζ ∈ Θ, we have T (ζ) ∈ Θ. Define the event E1 = {ζ̂
or

∈ Θ}. By Theorem 3.8, we have P (E1) ≥
1− 2Mp/n− ιn. The result follows from the following two statements, each of which we will prove separately.

• Statement 1 On event E1, for all ζ ∈ Θ such that T (ζ) ̸= ζ̂
or

, we have Qn(T (ζ)) > Qn(ζ̂
or
).

• Statement 2 There exists an event E2 such that P(E2) ≥ 1 − Kp/n − ιn, and on E2, for all ζ ∈ Θ, we have
Qn(ζ) ≥ Qn(T (ζ)).

Proof of Statement 1. We examine Ln(T (ζ))− Ln(ζ̂
or
) and Pn(T (ζ))− Pn(ζ̂

or
), respectively.

Step 1.1 (Examine Ln). By definition, restricted to Zor, ζ̂
or

is the unique minimizer of Ln(ζ), that is, for all ζ ∈ Θ such
that T (ζ) ̸= ζ̂

or
,

Ln(T (ζ)) > Ln(ζ̂
or
). (17)

Step 1.2 (Examine Pn). For any ζ̄ = (ζ̄
⊤
1 , . . . , ζ̄

⊤
K)⊤ ∈ Zor ∩Θ (including the case ζ̄ = ζ̂

or
),

Pn(ζ̄) =
∑

1⩽a<a′⩽K

pλn

(∥∥ζ̄a − ζ̄a′

∥∥
1

)
.

If treatments belong to different groups, i.e., a ∈ G∗
b and a′ ∈ G∗

b′ with b ̸= b′, by Assumption 3.10, we have

∥ζ̄a − ζ̄a′∥1 ≥ ∥ζ̄a − ζ̄a′∥∞
≥ ∥ζ∗

a − ζ∗
a′∥∞ − 2∥ζ̄ − ζ∗∥∞

≥ cλn − 2ϕn

≫ cλn/2.
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Then, pλn

(∥∥ζ̄a − ζ̄a′

∥∥
1

)
is a constant by Assumption 3.10. If treatments belong to the same group, i.e., a, a′ ∈ G∗

b , we
have

∥∥ζ̄a − ζ̄a′

∥∥
1
= 0, thus pλn

(
∥∥ζ̄a − ζ̄a′

∥∥
1
) = 0. Overall, we have that Pn(ζ̄) is a constant. Since T (ζ) ∈ Zor ∩Θ and

ζ̂
or

∈ Zor ∩Θ on E1, we have
Pn(T (ζ)) = Pn(ζ̂

or
). (18)

The Statement 1 follows from (17) and (18).

Proof of Statement 2: Let ζ̄ := T (ζ). We examine Ln(ζ)− Ln(ζ̄) and Pn(ζ)− Pn(ζ̄), respectively.

Step 2.1 (Examine Ln). By Taylor expansion, there is 0 < ξ < 1 such that ζ̃ = ξζ + (1− ξ)ζ̄ ∈ Θ, we have

Ln(ζ)− Ln(ζ̄) = − 1

n

n∑
i=1

∑
a∈A

I(Ai = a)ŵi

(
Ỹi −X⊤

i ζ̃a

)(
X⊤

i ζa −X⊤
i ζ̄a

)
= − 1

n

n∑
i=1

∑
a∈A

I(Ai = a)ŵi

{
Ỹi(a)−X⊤

i ζ̃a

}(
X⊤

i ζa −X⊤
i ζ̄a

)
= − 1

n

n∑
i=1

∑
a∈A

I(Ai = a)ŵi

{
X⊤

i ζ∗
a + εi(a)−X⊤

i ζ̃a

}(
X⊤

i ζa −X⊤
i ζ̄a

)
= − 1

n

n∑
i=1

∑
a∈A

I(Ai = a)ŵi

{
XiX

⊤
i (ζ∗

a − ζ̃a) +Xiεi(a)
}⊤(

ζa − ζ̄a

)
.

Let

va :=
1

n

n∑
i=1

I(Ai = a)ŵi

{
XiX

⊤
i (ζ∗

a − ζ̃a) +Xiεi(a)
}
.

Then, we have Ln(ζ) − Ln(ζ̄) = −
∑

a∈A v⊤
a (ζa − ζ̄a). Since ζ̄a =

∑
a′∈G∗

b
ζa′/|G∗

b |, ∀a ∈ G∗
b , by some algebra, we

have

Ln(ζ)− Ln(ζ̄) = −
∑
b∈B

∑
a∈G∗

b

v⊤
a (ζa − ζ̄a)

= −
∑
b∈B

∑
a∈G∗

b

v⊤
a

(
ζa −

∑
a′∈G∗

b
ζa′

|G∗
b |

)

= −
∑
b∈B

∑
a∈G∗

b

∑
a′∈G∗

b

v⊤
a (ζa − ζa′)

|G∗
b |

= −
∑
b∈B

∑
a∈G∗

b

∑
a′∈G∗

b

(va − va′)
⊤
(ζa − ζa′)

2|G∗
b |

= −
∑
b∈B

∑
a,a′∈G∗

b ,a<a′

(va − va′)
⊤
(ζa − ζa′)

|G∗
b |

≥ −
∑
b∈B

∑
a,a′∈G∗

b ,a<a′

∥va − va′∥∞ ∥ζa − ζa′∥1
|G∗

b |
.

By Assumptions 3.5 and 3.2, we have∥∥∥∥∥ 1n
n∑

i=1

I(Ai = a)ŵiXiX
⊤
i (ζ∗

a − ζ̃a)

∥∥∥∥∥
∞

≤

∥∥∥∥∥ 1n
n∑

i=1

I(Ai = a)ŵiXiX
⊤
i

∥∥∥∥∥
∞

∥∥∥ζ∗
a − ζ̃a

∥∥∥
∞

= OP(p ϕn).

Following a similar derivation as in Step 2 of the proof of Theorem 3.8, there exists an event E2 such that P(E2) ≥
1−Kp/n− ιn, and on E2, we have∥∥∥∥∥ 1n

n∑
i=1

I(Ai = a)ŵiXiεi(a)

∥∥∥∥∥
∞

= O(
√

n log(n)).

16



Doubly Robust Fusion of Many Treatments for Policy Learning

Thus, we have

∥va − va′∥∞ ≤ 2max
a∈A

∥va∥∞ = OP

(
p ϕn +

√
n log(n)

)
,

and

Ln(ζ)− Ln(ζ̄) ≥ −
∑
b∈B

∑
a,a′∈G∗

b ,a<a′

OP

(
p ϕn +

√
n log(n)

)
|G∗

b |
∥ζa − ζa′∥1 . (19)

Step 2.2 (Examine Pn). Following similar arguments as in Step 1.2 of the proof of Statement 1, if treatments belong
to different groups, i.e., a ∈ G∗

b and a′ ∈ G∗
b′ with b ̸= b′, by Assumption 3.10, we have ∥ζa − ζa′∥1 ≫ cλn/2 and∥∥ζ̄a − ζ̄a′

∥∥
1
≫ cλn/2, thus,

pλn
(∥ζa − ζa′∥1)− pλn

(∥∥ζ̄a − ζ̄a′

∥∥
1

)
= 0.

If treatments belong to the same group, i.e., a, a′ ∈ G∗
b , we have

∥∥ζ̄a − ζ̄a′

∥∥
1
= 0, thus pλn(

∥∥ζ̄a − ζ̄a′

∥∥
1
) = 0. However,

since ∥ζa − ζa′∥1 ̸= 0, they are the only terms contributing to Pn(ζ)− Pn(ζ̄). Thus, we have

Pn(ζ)− Pn(ζ̄) =
∑
b∈B

∑
a,a′∈G∗

b ,a<a′

pλn (∥ζa − ζa′∥1)

=
∑
b∈B

∑
a,a′∈G∗

b ,a<a′

pλn
(∥ζa − ζa′∥1)
∥ζa − ζa′∥1

∥ζa − ζa′∥1 . (20)

We have ∥ζa − ζa′∥1 ≤ ∥ζa − ζ∗
a∥1 + ∥ζa′ − ζ∗

a′∥1 ≤ 2ϕn → 0. By Assumption 3.10, that is, pλn(·) = λnρ(·),
ρ′(0+) = 1, and λn ≫ p ϕn/Kmin +

√
n log(n)/Kmin, we have

pλn (∥ζa − ζa′∥1)
∥ζa − ζa′∥1

≥ O

(
p ϕn +

√
n log(n)

Kmin

)
. (21)

The Statement 2 follows from (19) (20), and (21).

B. Additional Simulation Results
B.1. Simulations for increasing K and fixed n

We keep the sample size fixed at n = 1800 and increase the number of treatments K from 16 to 32 and 48. In such regime,
our proposed method outperforms other baselines in terms of fusion quality and policy value (see Tables 8 and 9). The
number of recovered groups increases slightly, as expected.

Table 8. Simulation results for K = 32

Method ARI Number of groups Value
policy tree (baseline) / 32 8.66 (0.18)
fusion + policy tree 0.21 (0.09) 16.74 (3.64) 8.63 (0.18)

CW + fusion + policy tree 0.85 (0.10) 5.68 (1.72) 8.80 (0.21)
Ma et al. (2022) 0.21 (0.09) 16.74 (3.64) 8.52 (0.12)

CW = Calibration Weighting. ARI (Adjusted Rand Index for fusion quality) and
policy value: higher is better. Oracle number of groups = 4. Numbers in parentheses
are Monte Carlo standard errors. Results are averaged over 200 runs.

B.2. Simulations under misspecified weighting model

We additionally considered a scenario where the outcome mean functions are linear (i.e., correctly specified), but the
weighting model is misspecified. Specifically, in calibration weighting, we excluded X1 and used only X2 and X3. The
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Table 9. Simulation results for K = 48

Method ARI Number of groups Value
policy tree (baseline) / 48 8.49 (0.20)
fusion + policy tree 0.16 (0.08) 21.00 (5.58) 8.40 (0.30)

CW + fusion + policy tree 0.74 (0.10) 7.35 (2.31) 8.52 (0.23)
Ma et al. (2022) 0.16 (0.08) 21.00 (5.58) 8.41 (0.12)

CW = Calibration Weighting. ARI (Adjusted Rand Index for fusion quality) and
policy value: higher is better. Oracle number of groups = 4. Numbers in parentheses
are Monte Carlo standard errors. Results are averaged over 200 runs.

outcome mean functions were set as follows:

Y1 = 2.5 + 0.5X1 − 1.5X2 −X3,

Y2 = X1 − 2X2 − 2.5X3,

Y3 = 2− 0.5X1 + 2X2 − 2X3,

Y4 = −1 +X1 −X2 +X3.

Table 10. Simulation results under misspecified weighting model

Method ARI Number of groups Value
policy tree (baseline) / 16 6.35 (0.06)
fusion + policy tree 0.88 (0.13) 5.42 (1.42) 6.41 (0.04)

CW + fusion + policy tree 0.96 (0.06) 4.46 (0.66) 6.43 (0.02)
Ma et al. (2022) 0.88 (0.13) 5.42 (1.42) 6.39 (0.00)

CW = Calibration Weighting. ARI (Adjusted Rand Index for fusion quality) and
policy value: higher is better. Oracle number of groups = 4. Numbers in parentheses
are Monte Carlo standard errors. Results are averaged over 200 runs.

Table 10 presents the results. As the outcome models are correctly specified, both the fusion (based on a linear model)
and the CW + fusion approaches achieved strong ARI scores, illustrating the double robustness property of CW + fusion.
Ma et al. (2022) also performed well, as their method relies on the same linearity assumption, which holds in this setting.
Nevertheless, our proposed method consistently achieved the best overall performance. Note that the simulation in Section
4.1 already showed the advantage of the proposed method when the outcome model is misspecified while the weighting
model is correct.
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