
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THINK RIGHT: LEARNING TO MITIGATE UNDER-OVER
THINKING VIA ADAPTIVE, ATTENTIVE COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent thinking models are capable of solving complex reasoning tasks by scal-
ing test-time compute across various domains, but this scaling must be allocated
in line with task difficulty. On one hand, short reasoning (underthinking) leads
to errors on harder problems that require extended reasoning steps; but, exces-
sively long reasoning (overthinking) can be token-inefficient by generating un-
necessary steps even after reaching a correct intermediate solution. We refer to
this as under-adaptivity, where the model fails to modulate its response length
appropriately given problems of varying difficulty. To address under-adaptivity
and strike a balance between under- and overthinking, we propose TRAAC (Think
Right with Adaptive, Attentive Compression), an online post-training RL method
that leverages the model’s self-attention over a long reasoning trajectory to iden-
tify important steps and prune redundant ones. TRAAC also estimates difficulty and
incorporates into training rewards, thereby learning to allocate reasoning budget
commensurate with example difficulty. Our approach improves accuracy, reduces
reasoning steps, and enables adaptive thinking compared to base models and other
RL baselines. Across a variety of tasks (AIME, AMC, GPQA-D, BBEH), TRAAC
(Qwen3-4B) achieves an average absolute accuracy gain of 8.4% with a relative
reduction in reasoning length of 36.8% compared to the base model, and a 7.9%
accuracy gain paired with a 29.4% length drop compared to the best RL baseline.
TRAAC also shows strong generalization: although the models are trained on math
datasets, they show accuracy and efficiency gains on out-of-distribution non-math
datasets like GPQA-D, BBEH, and OptimalThinkingBench. Our analysis further
verifies that TRAAC provides fine-grained adjustments to thinking budget based on
difficulty and that a combination of task-difficulty calibration and attention-based
compression yields gains across diverse tasks.1

1 INTRODUCTION

Recent advancements in thinking models have enabled language models to solve complex reasoning
tasks (DeepSeek-AI et al., 2025; OpenAI et al., 2024; Team, 2025). These models extend the chain-
of-thought (CoT; Wei et al., 2023) paradigm with online reinforcement learning (RL; Shao et al.,
2024), allowing them to refine intermediate solutions as well as sequentially scaling the number of
tokens (i.e., compute) to arrive at the final answer. While such approaches show strong promise
for harder problems in domains like mathematics, programming, and logical puzzles (Xie et al.,
2025; Chen et al., 2025), their accuracy and utility remain capped by a failure to regulate their
reasoning length. On one hand, underthinking arises when models terminate too early on harder
problems, yielding an incorrect final answer. On the other hand, overthinking occurs when models
think excessively for simpler tasks, inflating test-time computation (Marjanović et al., 2025; Wu
et al., 2025; Cuadron et al., 2025), and reducing efficiency. This highlights the need for adaptive
thinking (Saha et al., 2025; Chen et al., 2024; Snell et al., 2024; Aggarwal & Welleck, 2025), where
models dynamically allocate thinking based on difficulty.

We refer to the phenomenon of models misallocating thinking budget – illustrated in Fig. 1 – as
under-adaptivity. Addressing under-adaptivity is crucial for improving both performance and ef-
ficiency of long-thinking models, as dynamic reasoning effort allocation can enable better reason-

1Codebase available in the supplementary, and will be released publicly upon acceptance.
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<think> ok, so I …

But maybe I also need
to consider …

But problem is likely 
from an Olympiad …
I think the answer 
is \boxed{575}

So the distance PQ 
would be ≈ 242.61

Wait, but …

Question: In isosceles trapezoid !"#$, parallel bases !" and #$ have lengths 
500 and 650, respectively, and !$ = "# = 333. The angle bisectors of ∠! and ∠$ 
meet at +, and the angle bisectors of ∠" and ∠#	meet at -. Find +-. 

Hard
Problem

Easy
Problem

(47% attention-based compression)

Step 1 Step 2 Final Step
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Figure 1: Overthinking on easy problems wastes tokens despite being able to maintain decent accu-
racy. On the other hand, underthinking on hard problems saves token budgets but fails to maintain
accuracy. TRAAC addresses this trade-off by adapting to problem difficulty (estimated during train-
ing), via attention-based compression and, enabling intelligent resource allocation while improving
both accuracy and efficiency.

ing exploration in harder problems, while avoiding wasteful computation on problems requiring
minimal reasoning. Prior work has generally addressed the upper end of under-adaptivity, i.e., im-
proving thinking efficiency. These works employ supervised fine-tuning on compressed CoT (Xia
et al., 2025), using user control signals such as early stopping during inference (Muennighoff et al.,
2025), or RL methods with length penalties (Arora & Zanette, 2025; Hou et al., 2025). Other more
adaptive work has employed budget-aware reward shaping with a binary choice between thinking
or not thinking (Zhang et al., 2025b). While such work can reduce token usage, its performance is
typically bounded by the accuracy of the underlying model being trained, and often trades perfor-
mance for efficiency. Our work aims to beat this trade-off and improve both efficiency and accuracy
by providing finer-grained feedback through difficulty-adaptive compression, where the degree of
compression is dynamically adapted to task difficulty to address under-adaptivity.

To address these gaps, we introduce TRAAC (Think Right with Adaptive, Attentive Compression),
a GRPO-based (Shao et al., 2024) post-training method that incorporates an online, difficulty-
adaptive, attention-based compression module to adaptively prune the reasoning trajectory (an
entire chain in Fig. 1) based on estimated task difficulty. Our method teaches the model to compress
the context that it should pay attention to, such that it contains only relevant material without getting
distracted or skewed in wrong directions (Weston & Sukhbaatar, 2023). Specifically, we compute
the attention score averaged across layers and heads of the model for each reasoning step (illustrated
as nodes in Fig. 1 (right)) from the </think> token and compress reasoning steps that are least at-
tended to, based on the assumption that these are the least important tokens contributing to the final
answer. During online training, the level of attention-compression is determined by task difficulty,
as estimated by the pass rate during GRPO rollout, making the model more adaptive. For harder
problems, TRAAC maintains a low compression rate, allowing the model to extend its reasoning tra-
jectory, which increases the likelihood of reaching the correct final answer. For easier problems, it
applies a higher compression rate to aggressively compress once the correct final answer is reached.

We evaluate TRAAC on two strong off-the-shelf reasoning models, Qwen3-4B (Team, 2025) and
Deepseek-Qwen-7B (DeepSeek-AI et al., 2025), across multiple benchmarks: AMC (AMC, 2023),
AIME (AIME, 2024), GPQA-Diamond (Rein et al., 2023), BBEH (Big Bench Extra Hard; Kazemi
et al., 2025), and OptimalThinkingBench (Aggarwal et al., 2025). Our experiments demonstrate
that TRAAC consistently adapts to problem difficulty, yielding improvements in efficiency on sim-
ple tasks and stronger accuracy on complex tasks. Averaged across AMC, AIME, GPQA-D, and
BBEH, TRAAC (Qwen3-4B) achieves an average absolute improvement of 8.4% in accuracy while a
relative reduction in reasoning length by 36.8% compared to the base model. When compared to the
next-best performing baseline, AdaptThink (Zhang et al., 2025b), we achieve an average accuracy
improvement of 7.9% and 29.4% efficiency gain. We test TRAAC on OptimalThinkingBench (Ag-
garwal et al., 2025), and find TRAAC improves by 7.36 points on Qwen3-4B and 12.55 points on
Deepseek-Qwen-7B over the base model according to Aggarwal et al. (2025)’s F1 metric – designed
to measure both performance and efficiency. Moreover, TRAAC is trained on a math-specific dataset;
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Okay, so I need to solve... Let me 
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So final answer is...

Ok, let’s see...

Full Rollout Full Rollout w/ Attention Score

Compressed Rollout

...

...
Compression
If Hard → More
If Easy → Less

Figure 2: Overview of TRAAC. Given a problem, the model first generates N rollouts, and the pass
rate of these rollouts is used to estimate the problem’s difficulty (easy, medium, or hard). Next,
the generated reasoning is fed back into the model, which is asked to compute the attention score
of each reasoning token from </think>. During this attention-based compression step, we remove
steps with lower scores. The degree of removal is determined by the estimated difficulty: easier
problems undergo more aggressive compression. Finally, we compute the correctness and length
rewards using the compressed reasoning trajectory, and these rewards are used to update the policy.

evaluation on various benchmarks such as GPQA-D, BBEH, OverthinkingBench, and Underthink-
ingBench shows generalizability performance. Among these OOD tasks, TRAAC shows an average
improvement of 3% on Qwen3-4B, with a maximum improvement of 6.8% on UnderthinkBench,
along with an average 40% reduction in response length across OOD tasks. Our analysis and ab-
lations demonstrate that through difficulty level calibration, TRAAC learns to dynamically adjust its
compression ratio – with lower compression on difficult tasks and higher compression on easier
ones, which translates into performance gains across diverse difficulty tasks.

2 TRAAC: THINK RIGHT WITH ADAPTIVE ATTENTIVE COMPRESSION

In this section, we introduce our proposed TRAAC method in detail (also shown in Fig. 2). It is
designed to mitigate under-adaptivity, which leads to resource misallocation during test-time. The
main challenge lies in the efficient identification of low-importance tokens and making the attention-
based compression adaptive to the task’s difficulty. To this end, TRAAC employs an attention-based
compression module that calibrates its degree of compression based on estimated task difficulty and
prunes unnecessary reasoning steps while preserving essential information.

2.1 PROBLEM FORMULATION IN TRAAC

TRAAC is based on Group Reward Policy Optimization (GRPO; Shao et al., 2024), which is an on-
line reinforcement learning (RL) framework that extends Proximal Policy Optimization (Schulman
et al., 2017) by eliminating the critic and instead estimating the baseline from a group of sampled
responses. Let πθ denote the policy model and q the input query. Given q, the model generates an
output y = cat(r, a) where cat is the concatenate function, r is the complete reasoning trajectory,
and a is the final answer, separated by the delimiter </think>. An attention-based compression
module C (described below) produces a compressed reasoning trajectory: rcomp = C(r). At each
training step, the model generates N rollouts, {yi}Ni=1, where each rollout yi = cat(ri, ai) (see
“rollout” arrow in Fig. 2). The advantage of each rollout is estimated using the standard GRPO
objective (details in Appendix A.9). The task difficulty d is estimated from these rollouts as the
proportion of correct answers among the N samples (Zhang & Zuo, 2025; Huang et al., 2025). We
show this in Fig. 2 by classifying a problem to easy, medium or hard based on d. Task difficulty
d is then used to (i) modulate the compression ratio applied to the reasoning trajectory r, and (ii)
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assign rewards to each rollout. The answer is regenerated based on the compressed trajectory and
the advantage is estimated using both the original rollouts and their compressed counterparts.

2.2 ADAPTIVE, ATTENTIVE COMPRESSION MODULE

The goal of the compression module is to identify and remove redundant reasoning steps by evalu-
ating attention scores assigned to each token.

Attention-Based Compression. To calculate the attention score assigned to each token, we pass
the reasoning trajectory r (full rollout in Fig. 2) through the initial policy model. As compared
to other compression-based methods (Cheng et al., 2025; Lu et al., 2025), TRAAC does not rely on
external models for annotating reasoning steps. To segment the reasoning trajectory r into reasoning
steps, we split it at special control tokens such as “wait”, “alternative”, “Let me think again”, etc
(complete list Appendix A.8.2). For the current thinking models, </think> marks the end of a
reasoning trajectory, followed by the final answer. Choi et al. (2025) show that </think> attends to
key reasoning steps that contain crucial information for deriving the final answer, therefore, for each
token tj in the reasoning steps, its importance score is defined as the aggregated attention from the
delimiter </think> across all layers and heads:

sj =
1

LH

L∑
ℓ=1

H∑
h=1

α
(ℓ,h)
</think>→tj

,

where L is the number of layers, H is the number of heads per layer, and α
(ℓ,h)
</think>→tj

is the attention
weight from </think> to token tj in head h of layer ℓ. Before computing the attention score of each
token, consistent with prior work (Muennighoff et al., 2025; Choi et al., 2025), we also append an
auxiliary prompt at the end of the reasoning trajectory (see Appendix A.8.1). This encourages the
model to distill the reasoning process into its most salient steps, thereby enabling the delimiter token
</think> to attend to the most informative parts of the reasoning trajectory (highlighted in green).
As shown in Fig. 2 (bottom-right), the model assigns low attention scores to reasoning steps that
do not contribute to the final correct answer (highlighted in red), effectively pruning unnecessary
cyclic self-corrections and verification loops. Finally, the importance score of a reasoning step
Ck, consisting of tokens {tj}j∈Ck

, is then computed as the mean of its token-level scores: sCk
=

1
|Ck|

∑
j∈Ck

sj . Steps with lower importance scores are pruned, yielding the compressed reasoning
trajectory ricomp.

Difficulty-Level Calibration. To address under-adaptivity, the pruning strategy is further
adapted to task difficulty, i.e., for easier tasks, a larger proportion of reasoning steps are removed, en-
couraging the model to condense its reasoning more aggressively (see “compression” on the right of
Fig. 2). The difficulty of a task is estimated, based on the pass rate of each problem, during rollout.
From the estimated difficulty level, each problem set is categorized among three difficulty levels:
easy, medium, and hard, with a higher pass rate indicating easier problems and vice versa. Each
category is assigned a compression rate to determine the degree of redundant steps to prune from
the reasoning trajectory, with a higher compression for easier problems and a lower compression for
hard problems. In addition, to keep these constraints adaptive to the amount of redundancy in the
steps, we calculate the uniformity of the attention score distribution. When the distribution of {sj}
is close to uniform, indicating that no step or token within a step stands out as significantly more im-
portant, the compression rate is reduced to avoid removing potentially useful reasoning steps. More
details on calculating the uniformity score can be found in Appendix A.8.3. The difficulty estimate
d is further incorporated with the reward calculation described below.

2.3 REWARDS

Following standard GRPO practice of having a verifiable reward system (Shao et al., 2024), our
setup comprises three different reward signals to guide the model to generate correct adaptive length
responses based on the difficulty of the task:

• Correctness Reward (CR): A high-weight reward is assigned to outputs that produce the correct
final answer. A high score over other rewards is used to ensure that correctness remains the
primary optimization objective, regardless of the reasoning trajectory length.
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• Format Reward: A structure reward to ensure the presence of special delimiter tokens such as
<think> and </think>, ensuring that trajectory r and final answer a are easily distinguishable.

• Length Reward (LR): To regulate the verbosity of the reasoning process, we define a length-
based reward that penalizes unnecessarily long reasoning traces while adapting to task difficulty.
Based on our initial experiment, simply favoring shorter rollouts led to a drastic decrease in re-
sponse length along with model accuracy; therefore we introduce a sigmoid-based smoothing
mechanism that provides a soft bonus (β) for rollouts beyond the median length. This prevents
sharp drops in reward for slightly longer reasoning and helps stabilize training. During each
training step, rollouts are partitioned into bins according to their calculated difficulty. As men-
tioned above, we use the pass rate of the rollouts to categorize them into three difficulty bins:
easy, medium and hard. For each bin, we maintain a different distribution Ld = {ℓ1, ℓ2, . . . , ℓm}
for each difficulty category, where each ℓi denotes the reasoning length of a rollout within that
difficulty category d. Let ℓ be the length of the current rollout. The normalized length score is
computed as: Lnorm = (Lmax − ℓ)/max(Lmax − Lmin, ϵ), where ϵ > 0 prevents division by
zero and Lmin = min(L), Lmax = max(L). To avoid a sharp cutoff around the median, we add
a smooth bonus term:

β = 1/
(
1 + exp

(
ℓ−median(L)

0.1×median(L)

))
,

where median(L)=median of the set. The final length reward becomes rlength= max(Lnorm, β).
Note that length reward is only provided to a rollout if it reaches a final correct answer. Moreover,
to ensure stability when calculating Lmin, Lmax, and medium(L), we maintain a sliding window
over the last 10 steps for each difficulty bin, thereby avoiding drastic fluctuations during training.

The final reward for each rollout during GRPO training is the combination of correctness, format,
and length rewards (c.f. range of each reward in Appendix A.10.2).

3 EXPERIMENTAL SETUP

Models. We adopt two reasoning models, DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI et al.,
2025) (Deepseek-Qwen-7B) and Qwen3-4B (Team, 2025) as our base models.

Datasets. We train the model using DAPO-Math-17k (Yu et al., 2025), a math dataset that has veri-
fiable answer. For evaluation, we use a diverse set of benchmarks, including AIME (AIME, 2024),
AMC (AMC, 2023), GPQA-D (Rein et al., 2023), OverthinkingBench/ UnderthinkingBench (Ag-
garwal et al., 2025), and Big Bench Extra Hard (BBEH) (Kazemi et al., 2025). Among the evalu-
ation datasets, only AIME and AMC are math-specific, while the remaining benchmarks represent
out-of-distribution settings. Further dataset details and their sizes are provided in Appendix A.1.

Evaluation. For each evaluation run, we set temperature to 1.0, and the maximum response length
is set to 10k. For each dataset, the mean accuracy and mean response length across 5 runs are
reported. For the overthink split, we also report the AUCOAA (Aggarwal et al., 2025), directly used
from their work. To aggregate performance across all thresholds, we compute the Area Under the
Curve (AUC). More details about these metrics can be found in Appendix A.10.3. Intuitively, a
higher AUCOAA indicates that the model sustains stronger accuracy while minimizing unnecessary
reasoning across thresholds. Following evaluation from Aggarwal et al. (2025) for computing the
OptimalThinkingBench score, we combined the AUCOAA from OverthinkingBench and accuracy
from UnderthinkingBench into a single F1 score.

Training. During the GRPO rollout, we keep a high temperature of 1.0 and sample 8 rollouts
at each step. Due to computational constraints, we set the maximum response length to 10k (see
Appendix A.10.3 for other hyperparameter details). For difficulty calibration, we bin problems into
easy, medium, and hard categories, assigning the categories decreasing compression scores.

Baselines. We compare TRAAC with 5 strong baselines: (1) Base model: off-the-shelf reasoning
model, (2) TokenSkip: An SFT based baseline as described by Xia et al. (2025) that fine-tunes the
model over compressed CoT training data. (3) L1-Max: An RL framework proposed by Aggarwal
& Welleck (2025) that optimizes for accuracy while adhering to user-specific length constraints.
We used the constraint “Think for a maximum of 10000 tokens.” during its training. (4) LC-
R1: A compression-based RL framework by Cheng et al. (2025) that uses an externally trained
model to remove invalid portions of the thinking process. (5) AdaptThink: Different from the
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Table 1: Performance comparison of TRAAC with various baselines. Each model is evaulate across
various benchmarks, and Acc: accuracy(%) and Len: average Response Length(k) are reported.
TRAAC on average shows the highest performance gain.

Method AIME AMC GPQA-D BBEH Average

Acc.↑ Len.↓ Acc.↑ Len.↓ Acc.↑ Len.↓ Acc.↑ Len.↓ Acc.↑ Len.↓
Qwen3-4B

Base Model 27.64 9.2 68.19 7.0 45.18 7.6 18.28 6.7 39.8 7.6
TokenSkip 5.84 9.6 27.71 8.7 32.32 7.8 11.91 7.2 19.4 8.3
L1-Max 30.11 7.1 63.61 5.8 43.23 5.8 14.91 5.0 38.0 5.9
LC-R1 13.48 2.6 56.38 1.7 26.67 1.5 12.35 1.9 27.2 1.9
Adapt Think 36.63 8.4 72.77 5.8 44.04 6.7 7.87 6.2 40.3 6.8
TRAAC 45.45 6.7 79.52 4.2 47.21 4.2 20.59 4.3 48.2 4.8

DeepSeek-R1-Distill-Qwen-7B

Base Model 33.71 8.2 74.22 5.7 43.55 7.1 10.61 5.9 40.5 6.7
TokenSkip 24.94 8.5 52.05 6.8 34.24 7.0 6.30 6.4 29.4 7.2
L1-Max 31.01 3.1 75.90 2.2 23.54 1.9 13.43 2.1 36.0 2.3
LC-R1 6.07 4.0 37.35 3.5 28.78 2.5 9.09 1.7 20.3 2.9
Adapt Think 38.88 7.1 75.66 4.1 19.29 4.8 6.17 5.2 35.0 5.3
TRAAC 38.60 7.3 77.83 4.5 47.31 6.2 11.55 5.2 43.8 5.8

above baselines, AdaptThink is an adaptive RL framework described by Zhang et al. (2025b), that
enables reasoning models to choose between “thinking” and “no-thinking” modes and poses it as a
constraint optimization problem that encourages the model to choose no-thinking while maintaining
performance. Prompts used for all baselines in Appendix A.10.5.

4 RESULT AND DISCUSSION

4.1 MAIN RESULTS

TRAAC improve both performance and efficiency. Tables 1 show the performance of TRAAC com-
pared to other baselines on AIME, AMC, GPQA-D, BBEH (Big Bench Extra Hard) benchmarks.
TRAAC (Qwen3-4B) achieves an average accuracy improvement of 8.4% while reducing reasoning
length by 36.8% compared to the base model. Similarly, TRAAC (Deepseek-Qwen-7B) improves
accuracy by 3.3% with a 13.4% reduction in length. When compared to the SFT baseline Token-
Skip (Xia et al., 2025), TRAAC outperforms in terms of performance and efficiency for both models,
Qwen3-4B and Deepseek-Qwen-7B. Similarly, L1-Max (Aggarwal & Welleck, 2025), an RL-based
method that penalizes long responses, also solely focuses on efficiency gains, at a slight cost of over-
all performance. Additionally, the compression-based RL framework LC-R1 (Cheng et al., 2025)
improves the efficiency of the model at the cost of a 12.6% drop for Qwen3-4B and 20.2% drop for
Deepseek-Qwen-7B, when compared with base models, respectively. On average for Qwen3-4B,
TRAAC outperforms L1-Max by 10.2% on Qwen3-4B and by 7.9% on Deepseek-Qwen-7B. Sim-
ilarly, TRAAC also outperforms LC-R1 by 21% on Qwen3-4B and 23% on Deepseek-Qwen-7B.
Moreover, given the same token budget, of approximately 7k, TRAAC (Qwen3-4B) on AIME outper-
forms L1-Max by 15%. These results highlight that, unlike methods that prioritize only efficiency,
TRAAC simultaneously delivers both higher accuracy and shorter reasoning traces.

TRAAC generalizes across domains. Recall that for training TRAAC we used data from DAPO-Math-
17k (Yu et al., 2025), which is a math reasoning dataset. In addition to math datasets, we also evalu-
ate TRAAC on several out-of-domain (OOD) tasks, including GPQA-D, BBEH, OverthinkingBench,
and UnderthinkingBench (Table 2). Among these OOD tasks, TRAAC shows an average improve-
ment of 3% on Qwen3-4B and 2.8% on Deepseek-Qwen-7B compared to the base model, with
improvement as high as 6.8% on UnderthinkingBench, which covers 100 diverse reasoning tasks
from Reasoning Gym (Stojanovski et al., 2025). In addition, TRAAC reduces reasoning tokens by
40% on Qwen3-4B and 20% on Deepseek-Qwen-7B, demonstrating substantially higher efficiency
while also boosting accuracy across benchmarks. This indicates that TRAAC learns a generalizable
compression strategy that transfers from math to other reasoning domains.
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Table 2: Performance of TRAAC and various baselines on OptimalThinkingBench (OTB). For Un-
derthinkingBench we report the Acc: Accuracy(%), and Len: Average Response length(k). For
OverthinkingBench, in addition to Acc. and Len. we also report the AUCOAA.

Method OverthinkingBench UnderthinkingBench OTB

Acc.↑ Len.↓ AUCOAA ↑ Acc.↑ Len.↓ F1↑
Qwen3-4B

Base Model 90.02 1.2 80.06 34.33 7.1 48.05
TokenSkip 78.15 3.5 57.88 14.80 7.9 23.57
L1-Max 87.22 0.9 1.11 21.27 6.3 2.10
LC-R1 78.62 0.3 64.20 14.95 1.3 24.25
Adapt Think 68.83 8.2 63.44 18.80 6.0 29.01
TRAAC 89.79 0.6 85.06 41.09 4.7 55.41

DeepSeek-R1-Distill-Qwen-7B

Base Model 78.45 0.9 72.38 12.69 6.2 21.60
TokenSkip 57.03 3.9 40.77 8.55 7.2 14.13
L1-Max 73.18 1.0 66.01 20.07 2.0 30.78
LC-R1 76.08 0.9 69.81 7.16 2.5 12.99
Adapt Think 73.41 0.4 70.72 13.13 4.6 22.14
TRAAC 81.81 1.0 72.89 22.30 5.9 34.15

TRAAC learns to adaptively allocate token budget. Among the baselines in Tables 1 and 2, we
also compare TRAAC against an adaptive RL method, AdaptThink (Zhang et al., 2025b), which
teaches the model to use distinct “thinking” vs. “non-thinking” modes for hard and easy prob-
lems, respectively. On Qwen3-4B, TRAAC outperforms AdaptThink by 7.9% while also reducing
tokens by 29.4%, highlighting that a flexible adaptive strategy is more effective in handling diverse
problem difficulties. Table 2 further tests on the OverthinkingBench/UnderthinkingBench (Aggar-
wal et al., 2025). OverthinkingBench is designed to measure excessive use of thinking tokens on
simple queries. On the other hand, UnderthinkingBench evaluates how necessary “thinking” is
based on problem difficulty. Taken together, TRAAC improves overall F1 performance by 7.36% on
Qwen3-4B, and 12.55% on Deepseek-Qwen-7B over base model, indicating that TRAAC enables the
model to avoid both overthinking on simple problems and underthinking on complex ones(Aggarwal
et al., 2025). Against AdaptThink, TRAAC achieves a 26% gain on Qwen3-4B and a 12% gain on
Deepseek-Qwen-7B, underscoring its ability to adaptively allocate reasoning effort and adjust token
budgets based on problem difficulty. On OverthinkingBench, we measure overthinking using the
AUCOAA metric, which rewards models that solve very easy problems correctly while using min-
imal tokens (ideally 0). Compared to the base model, TRAAC (Qwen3-4B) improves AUCOAA by
5% and Deepseek-Qwen-7B by 0.5%. Relative to AdaptThink, TRAAC gains 21.6% for Qwen3-4B
and 6.9% for Deepseek-Qwen-7B.

4.2 ABLATIONS AND ANALYSIS

To understand the importance of each component of the training setup we conducted an ablation
study, removing each component of our method. Table 3 and Table 4 show the performance of these
ablations compared with the base model. Specifically, we start with the base model and the ablations:
(i) Base Model + CR: The base model trained with GRPO using only the correctness reward, (ii)
Base model + CR + LR: The base model trained with GRPO using both correctness and length
rewards, but without difficulty-level calibration, (iii) Base model + CR + LR + Compression: The
base model trained with GRPO using correctness and length rewards, along with the compression
module, with no difficulty-level calibration. Our findings are as follows.

Combining difficulty-adaptiveness and attention-based compression is crucial for accuracy
and efficiency. Table 3 shows that on Qwen3-4B, removing the difficulty-based calibration (Base
Model + CR + LR + compression) reduces the average performance across AIME, AMC, GPQA-D,
and BBEH by 3.4%, while also making the model less efficient by 23.8%. Additionally, removing
the attention-based compression (Base Model + LR + CR) leads to a further drop in performance by
0.3%. Similarly, on OptimalThinkingBench (Table 4), we observe a comparable degradation: the
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Table 3: Ablation Results of TRAAC on Qwen3-4B and Deepseek-Qwen-7B tested across 4 datasets:
AIME, AMC, GPQA-D, and BBEH. Each component addition adds to the previous method.

Method AIME AMC GPQA-D BBEH Average

Acc.↑ Len.↓ Acc.↑ Len.↓ Acc.↑ Len.↓ Acc.↑ Len.↓ Acc.↑ Len.↓
Qwen3-4B

Base Model 27.64 9.2 68.19 7.0 45.18 7.6 18.28 6.7 39.8 7.6
+ CR 44.36 7.9 77.35 5.5 46.29 5.7 18.13 5.2 46.5 6.1
+ LR 37.84 4.5 77.35 2.4 44.06 2.3 18.57 2.1 44.5 2.8
+ Compression 38.37 8.1 75.90 5.5 46.40 6.2 18.41 5.4 44.8 6.3
TRAAC 45.45 6.7 79.52 4.2 47.21 4.2 20.59 4.3 48.2 4.8

Table 4: Ablation Results of TRAAC (Qwen3-4B and Deepseek-Qwen-7B) on OptimalThinking-
Bench (OTB). Each component addition adds to the previous method.

Method OverthinkingBench UnderthinkingBench OTB

Acc.↑ Len.↓ AUCOAA ↑ Acc.↑ Len.↓ F1↑
Qwen3-4B

Base Model 90.02 1.2 80.06 34.33 7.1 48.1
+ CR 90.02 0.9 78.86 37.06 5.7 50.4
+ LR 90.94 0.4 75.86 29.62 2.3 42.6
+ Compression 90.12 0.9 80.41 36.51 6.0 50.2
TRAAC 89.79 0.6 85.06 41.09 4.7 55.4

F1 score decreases by 5.2% when task-difficulty level calibration is removed and drops further by
7.6% when the attention-based compression module is also removed. These results highlight that a
combination of task-difficulty calibration and attention-based compression is crucial for achieving
both high performance and efficiency gains across tasks.

TRAAC adapts to task difficulty. To further understand the level of adaptivity of TRAAC compared
to other methods, we plot the relative compression ratio and absolute accuracy gains (w.r.t. the base
model) in Fig. 3 as a function of task difficulty. Here, we rank tasks in order of increasing difficulty.
We conduct these experiments on SuperGPQA (Team et al., 2025) – a benchmark to evaluate model
knowledge and reasoning capabilities, which is stratified into easy, medium, and hard splits, and
BBH (Big Bench Hard) (Suzgun et al., 2022) – an easier version of BBEH. To get oracle difficulty
ratings, we rank the datasets by the performance of frontier models on them (Kazemi et al., 2025;
Team et al., 2025), with harder datasets being those with lower performance. From Fig. 3(a), we see
that as the difficulty of the dataset increases from left to right, the compression rate steadily drops
for TRAAC, underscoring its ability to compress more for easier tasks and less for difficult tasks.
However, without task-difficulty level calibration, the compression rate remains roughly uniform
across the tasks. Fig. 3(b) highlights the performance difference, and shows that even with more
compression, TRAAC always maintains higher accuracy than Qwen3-4B + CR + LR + compression,
reiterating the effectiveness of adapting to problem difficulty in TRAAC. Moreover, most of the ac-
curacy gains stems from harder problems, indicating the average accuracy gains seen in Table 1
come from difficulty-adaptive thinking. Deepseek-Qwen-7B results are shown in Appendix A.7 and
follow a similar trend as Qwen3-4B.

Table 5: TRAAC with 15k training and test-
time response length. For each dataset, Ac-
curacy (%) and Response Length (in ×1000
tokens) are reported.

AIME AMC GPQA-D

Qwen3-4B 47.74 / 12.3 77.11 / 8.5 49.64 / 8.6
TRAAC 51.93 / 9.7 81.68 / 6.6 51.27 / 6.2

TRAAC scales to larger response length, maintain-
ing its improvement. During TRAAC training, we set
a maximum token budget of 10k. To test the scala-
bility of our method, we increase the max training
and test-time response length to 15k. Table 5 shows
the accuracy and average response length for AIME,
AMC, and GPQA-D datasets, for the Qwen3-4B and
TRAAC with increased token budget. Similar to the
prior results, we see an average accuracy improvement of 3.5% and 23.4% efficiency gains. This
underscores that scaling TRAAC still shows consistent gains for both accuracy and efficiency.
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Figure 3: (a) Relative change in compression rate of TRAAC and Qwen3-4B + Compression compared
to Qwen3-4B across varying problem difficulty. (b) Absolute accuracy drop of TRAAC and Qwen3-
4B + Compression compared to Qwen3-4B across varying problem difficulty.

Table 6: Ablation on Qwen3-4B: comparing TRAAC with
pruning random and least confident steps. For each
dataset, Accuracy(%) / Response length (k) is reported.

Pruning Strategy AIME AMC GPQA-D

Random Steps 29.54 / 6.5 66.74 / 4.1 42.94 / 3.2
Least Confidence 32.35 / 5.8 71.08 / 3.4 47 / 3.0
TRAAC 45.45 / 6.7 79.52 / 4.2 47.2 / 4.2

Attention-based compression iden-
tifies redundant steps effectively.To
help understand the efficiency of the
adaptive, attentive compression mod-
ule, we replace the attention-based
compression with random step com-
pression or confidence-based compres-
sion. At each training step, instead
of using attention as a metric, reason-
ing steps are pruned either randomly
or steps with the least confidence (complete details on how confidence is calculated are in Ap-
pendix A.5). Table 6 compares TRAAC (Qwen3-4B) with random steps and least confidence. Rela-
tive to TRAAC, random step pruning shows an average of 11% accuracy drop, and similarly, pruning
the least confidence steps leads to a 7.25% accuracy drop. This highlights the efficacy of using
attention-based compression in TRAAC.

Table 7: Reward ablation results comparing different cor-
rectness and length reward configurations. For each dataset,
Accuracy (%) and Response Length (in ×1000 tokens) are
reported.

AIME AMC GPQA-D

TRAACreduced correctness 29.96 / 6.2 71.32 / 3.9 47.7 / 3.6
TRAACnon adaptive 5.33 / 0.6 34.87 / 0.7 29.79 / 0.5
TRAAC 45.45 / 6.7 79.52 / 4.2 47.21 / 4.2

TRAAC reward design achieves the
highest performance. During TRAAC
training, we use a correctness reward
of +4/0, a format reward of +1/0,
and a length reward of +2/0. The
length reward is kept adaptive: roll-
outs receive a positive length reward
only if the final answer is correct;
otherwise, all length rewards are set
to zero. This ensures that correctness
is always prioritized over efficiency,
which is reflected in the larger magnitude of the correctness reward. To study the impact of this
reward design, we conduct two additional ablations: (i) Reduced correctness reward: correctness
reward lowered to +1, with length reward still adaptive to correctness. (ii) Non-adaptive length
reward: correctness reward lowered to +1, and length reward made independent of final-answer
correctness. Table 7 compares these variants with the full TRAAC setup across AIME, AMC, and
GPQA-D. The ablation results show that reducing the correctness reward maintains reasonable per-
formance on AMC and GPQA-D but causes a substantial accuracy drop on AIME. Removing the
dependency of the length reward on correctness leads the model to exploit the reward by minimizing
output length, resulting in severe performance degradation across all datasets.

5 RELATED WORK

In the past years, reasoning performance of language models has vastly improved via the introduc-
tion of chain-of-thoughts (Wei et al., 2023), parallel scaling through self-consistency (Wang et al.,
2023), and best-of-N sampling (Lightman et al., 2023). More recently, several works have found
sequential scaling – i.e., increasing the number of reasoning tokens – to be the most effective ap-
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proach (Muennighoff et al., 2025), especially when combined with online reinforcement learning or
distillation from such models (Aggarwal & Welleck, 2025; Shao et al., 2024; DeepSeek-AI et al.,
2025). Consequently, the area of efficient reasoning – maintaining high performance from sequential
scaling with minimal token usage – has become a central research focus (Chen et al., 2024; Mar-
janović et al., 2025; Wu et al., 2025). To this end, prior works compress or prune chain-of-thoughts
via early exiting (Zhang et al., 2025a; Fu et al., 2025), train models under pre-specified budgets (Ag-
garwal & Welleck, 2025), learn thoughts latently without generating them (Hao et al., 2025), use
supervised finetuning to avoid overthinking (Xia et al., 2025; Cheng et al., 2025; Lu et al., 2025), or
add length-based penalties for conciseness (Arora & Zanette, 2025; Hou et al., 2025). However, this
line of work does not explicitly account for varying problem difficulty, instead relying on the model
to learn to allocate budget implicitly; in contrast, TRAAC introduces difficulty-based supervision for
budget allocation. Moreover, prior approaches typically address only overthinking – reducing output
length at the cost of performance drops – whereas we tackle both over- and underthinking.

Improving both reasoning performance and efficiency requires a more adaptive approach through
explicit training. Prior work such as Zhang et al. (2025b) frames adaptivity as a binary decision of
whether to think, whereas we argue that for harder problems it must involve deciding how much
to think – and empirically outperform this baseline in Appendix 4.1. A similar insight appears in
planning, where Saha et al. (2025) show that mixing “system 1” and “system 2” reasoning within
the same instance outperforms a binary choice between them. Shen et al. (2025) pursue difficulty-
adaptive training via repeated sampling and offline preference optimization to prefer shorter re-
sponses. In contrast, TRAAC provides attention-based supervision in the compression module through
online RL (DeepSeek-AI et al., 2025). Unlike concurrent work by Choi et al. (2025), who prune re-
dundant tokens post hoc, our method adapts compression during training itself – yielding difficulty-
aware reasoning and improved test-time efficiency without generating unnecessary tokens.

6 CONCLUSION

We introduced TRAAC, a post-training RL method that operates online and uses a difficulty-adaptive,
attention-based compression module. Through its adaptive attentive compression, TRAAC is able
to prune its reasoning steps adaptively based on the task difficulty. TRAAC addresses the issue of
under-adaptivity, which helps improve both performance and efficiency, as thinking longer on harder
problems helps in better exploration, and thinking shorter on easier problems avoids wasting of test-
time compute. Moreover, our method also shows strong generalizability, with evaluation done on
various OOD tasks. Through our analysis and ablation, we further verify that our adaptive method
can provide fine-grained adjustments to the thinking budget based on the difficulty of the problem,
and a combination of task-difficulty calibration and attention-based compression helped achieve
both accuracy and efficiency gains.

ETHICS STATEMENT

TRAAC is a reinforcement learning method that rewards models based on the correctness of the final
answer. Therefore, the trained LLMs may still generate hallucinations, since their intermediate
reasoning steps are neither guided nor evaluated – only the final result is checked. This means
outputs from TRAAC can pose risks of misinformation or hallucination. Future work is needed to
more thoroughly evaluate and mitigate these issues.

REPRODUCIBILITY STATEMENT

We are making our code available in the supplementary materials to help reproduce our findings.
We also provide detailed descriptions, hyperparameters, and prompts about the implementation of
TRAAC in Appendix A.10.

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.04697.

10

https://arxiv.org/abs/2503.04697


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pranjal Aggarwal, Seungone Kim, Jack Lanchantin, Sean Welleck, Jason Weston, Ilia Kulikov, and
Swarnadeep Saha. Optimalthinkingbench: Evaluating over and underthinking in llms, 2025. URL
https://arxiv.org/abs/2508.13141.

AIME. American invitational mathematics examination, 2024. URL https:
//artofproblemsolving.com/wiki/index.php/American Invitational Mathematics
Examination.

AMC. American mathematics competitions, 2023. URL https://maa.org/student-programs/
amc/.

Daman Arora and Andrea Zanette. Training language models to reason efficiently, 2025. URL
https://arxiv.org/abs/2502.04463.

Jiangjie Chen, Qianyu He, Siyu Yuan, Aili Chen, Zhicheng Cai, Weinan Dai, Hongli Yu, Qiying Yu,
Xuefeng Li, Jiaze Chen, Hao Zhou, and Mingxuan Wang. Enigmata: Scaling logical reasoning in
large language models with synthetic verifiable puzzles, 2025. URL https://arxiv.org/abs/
2505.19914.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking
of o1-like llms. arXiv preprint arXiv:2412.21187, 2024.

Zhengxiang Cheng, Dongping Chen, Mingyang Fu, and Tianyi Zhou. Optimizing length compres-
sion in large reasoning models, 2025. URL https://arxiv.org/abs/2506.14755.

Daewon Choi, Jimin Lee, Jihoon Tack, Woomin Song, Saket Dingliwal, Sai Muralidhar Jayanthi,
Bhavana Ganesh, Jinwoo Shin, Aram Galstyan, and Sravan Babu Bodapati. Think clearly: Im-
proving reasoning via redundant token pruning, 2025. URL https://arxiv.org/abs/2507.
08806.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training, 2025. URL https://arxiv.org/abs/2501.17161.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, et al. The danger of overthinking: Examin-
ing the reasoning-action dilemma in agentic tasks. arXiv preprint arXiv:2502.08235, 2025.

DeepSeek-AI et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learn-
ing, 2025. URL https://arxiv.org/abs/2501.12948.

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. arXiv
preprint arXiv:2508.15260, 2025.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason E Weston, and Yuandong
Tian. Training large language model to reason in a continuous latent space, 2025. URL https:
//openreview.net/forum?id=tG4SgayTtk.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Shijue Huang, Hongru Wang, Wanjun Zhong, Zhaochen Su, Jiazhan Feng, Bowen Cao, and Yi R.
Fung. Adactrl: Towards adaptive and controllable reasoning via difficulty-aware budgeting, 2025.
URL https://arxiv.org/abs/2505.18822.

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou, San-
ket Vaibhav Mehta, Lalit K. Jain, Virginia Aglietti, Disha Jindal, Peter Chen, Nishanth Dikkala,
Gladys Tyen, Xin Liu, Uri Shalit, Silvia Chiappa, Kate Olszewska, Yi Tay, Vinh Q. Tran, Quoc V.
Le, and Orhan Firat. Big-bench extra hard, 2025. URL https://arxiv.org/abs/2502.19187.

11

https://arxiv.org/abs/2508.13141
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://maa.org/student-programs/amc/
https://maa.org/student-programs/amc/
https://arxiv.org/abs/2502.04463
https://arxiv.org/abs/2505.19914
https://arxiv.org/abs/2505.19914
https://arxiv.org/abs/2506.14755
https://arxiv.org/abs/2507.08806
https://arxiv.org/abs/2507.08806
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=tG4SgayTtk
https://openreview.net/forum?id=tG4SgayTtk
https://arxiv.org/abs/2505.18822
https://arxiv.org/abs/2502.19187


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Ximing Lu, Seungju Han, David Acuna, Hyunwoo Kim, Jaehun Jung, Shrimai Prabhumoye, Niklas
Muennighoff, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, et al. Retro-search: Ex-
ploring untaken paths for deeper and efficient reasoning. arXiv preprint arXiv:2504.04383, 2025.
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A APPENDIX

A.1 DATASET DETAILS

We evaluated the model on various benchmarks:

• AMC: All questions come from AMC12 2022, AMC12 2023, and have been extracted from the
AOPS wiki page. Total Count: 83

• AIME: All questions come from AIME 22, AIME 23, and AIME 24, and have been extracted
directly from the AOPS wiki page. Total Count: 90

• GPQA-D: It is a multiple-choice dataset covering physics, biology, and chemistry. Total Count:
198

• BBEH: A benchmark designed to push the boundaries of LLM reasoning evaluation. BBEH
replaces each task in BBH with a novel task that probes a similar reasoning capability but exhibits
significantly increased difficulty. Total Count: 460

• OptimalThinkingBench: A unified benchmark that jointly evaluates overthinking and under-
thinking in LLMs and also encourages the development of optimally-thinking models that bal-
ance performance and efficiency. Two sub benchmarks: OverthinkingBench, featuring simple
queries in 72 domains, and UnderthinkingBench, containing 11 challenging reasoning tasks.
UnderthinkingBench count: 550, OverthinkingBench count: 607.

• BBH: a suite of 23 challenging BIG-Bench tasks. Total Count: 2115

• SuperGPQA: A comprehensive benchmark designed to evaluate the knowledge and reasoning
abilities of Large Language Models (LLMs) across 285 graduate-level disciplines. Each problem
is also categorized as easy, medium and hard. 540 problems for each difficulty category, so the
total count is 1620.

To calculate the accuracy, we adopt Math-Verify 2. For UnderthinkingBench accuracy calculation,
we used the evaluation scripts from Reasoning-Gym (Stojanovski et al., 2025)

A.2 COMPUTATIONAL COST ANALYSIS OF TRAINING TRAAC

To understand the computational cost of training TRAAC vs other RL-based methods (L1-max, Adapt-
Think), we compare TRAAC with RL baselines on training time and FLOPs.

A.2.1 TRAINING TIME

The GRPO algorithm mainly consists of three stages: (i) Rollout: the LLM produces multiple re-
sponses for a given prompt; (ii) Scoring: a scalar reward is assigned to each response; (iii) Policy
optimisation: the LLM is updated by optimising the total objective. Since we use the math-verify
library – a rule-based expression system that does not require additional LLM calls for reward com-
putation – the cost of scoring is negligible.

Table 8 reports the breakdown of training time for TRAAC compared to RL baselines. For each
method, we show the wall-clock time (in seconds) for the first training step, split into rollout time,
policy optimisation time, and total time.

• Base Model + CR: GRPO with correctness reward only.

• Base Model + CR + LR: GRPO with correctness and length rewards (no difficulty calibration).

Other RL baselines such as L1-MAX and ADAPTTHINK are also variants of Base Model + CR with
an additional length reward term.

2Huggingface Math-Verify
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Table 8: Training time breakdown for TRAAC and RL baselines during the first GRPO training step.

Method Rollout (sec) Optimise Policy (sec) Total Time (sec) Hardware
Base Model + CR 250 87.5 397.5 H100
Base Model + CR + LR 222 88 375 H100
TRAAC 418 88 583 H100

A.2.2 FLOPS

The majority of the difference between TRAAC and other RL-based methods lies in the rollout strat-
egy used. TRAAC rollout consists of three stages: (i) Generation: producing the initial reasoning
steps; (ii) Attention-based compression: computing attention scores for each reasoning step and
compressing the trajectory; (iii) Answer generation: generating the final answer based on the com-
pressed chain of thought. Table 9 compares the FLOPs required to generate 20 training examples.

Table 9: FLOPs comparison for generating 20 training examples using different rollout strategies.

Method FLOPs Used

Base Model + CR 1.65× 1015 FLOPs
TRAAC 3.84× 1015 FLOPs

Most RL baselines only perform the initial generation step. In contrast, TRAAC adds an additional
attention-computation stage, yet keeps the overall FLOPs in the same order of magnitude—while
producing higher-quality reasoning trajectories. Even though TRAAC incurs an increase in train-
ing time and FLOPs for the initial batches, mainly due to its multi-stage generation, the overhead
remains modest. Moreover, during inference, TRAAC makes the model more efficient, effectively
reducing the computational cost at test time.

A.2.3 COST AMORTIZES AS TRAINING PROGRESSES

The additional overhead introduced at the beginning of the training quickly amortises as the training
progresses. As the model learns to shorten its generated reasoning traces, its computational cost
– including both FLOPs and time per step steadily decreases. To show this empirically, Figure 4
shows the time-per-step curve for training DeepSeek-Qwen-7B. As illustrated in the figure, TRAAC
begins with a higher step time compared to the Base Model + CR baseline, but the gap closes rapidly.
Around mid-training, the two curves match closely, and in later steps, TRAAC consistently becomes
more efficient – ultimately achieving a lower step time than the baseline. This confirms that while
TRAAC introduces an initial overhead, its adaptive reduction of reasoning length leads to substantial
efficiency gains, resulting in lower computation over the course of training.

Figure 4: Time per step across training (Deepseek-Qwen-7B)
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To highlight the advantage gained from training TRAAC in terms of FLOPs we calculated the av-
erage FLOPs required during inference. We calculated the total amount of FLOPs for generating
80 examples from AMC dataset. The table 10 show the total amount of FLOPs required for both
TRAAC and Base Model + CR.

Table 10: Inference compute comparison for TRAAC vs. Base Model + CR on 80 AMC questions.

Method Total FLOPs (80 questions) Average FLOPs per question
Base Model + CR (Qwen3-4B) 3.7× 1015 FLOPs 4.6× 1013 FLOPs
TRAAC (Qwen3-4B) 2.7× 1015 FLOPs 3.3× 1013 FLOPs

TRAAC yields a substantial reduction in inference compute. As shown above, TRAAC requires
2.7×1015 FLOPs to answer 80 AMC questions, compared to 3.7×1015 FLOPs for the Base Model
+ CR. This corresponds to a 27.3% reduction in inference FLOPs, or a savings of 1.2664 × 1013

FLOPs per question. Although TRAAC incurs additional compute at the beginning of training, this
overhead amortizes quickly as training progresses. This cost is balanced rapidly at inference time.

Therefore, with the above two experiments, we show that TRAAC not only amortizes quickly during
inference but also makes training more efficient within the first 100 steps.

A.3 AGENTIC EVALUATION OF TRAAC

Including diverse test benchmarks allows us to robustly assess the out-of-distribution generalization
capability of TRAAC. In addition, we conduct an evaluation on the agentic, multi-turn benchmark
MINT (Wang et al., 2024), which measures an LLM’s ability to solve complex tasks through multi-
step interactions and tool use. In MINT, LLMs are tasked with solving problems under different
interaction limits k ∈ {1, 2, 3, 4, 5}, without natural-language feedback. Performance is measured
through: (1) the absolute success rate (SR), and (2) the average response length. Table 11 com-
pares the base model (Qwen3-4B) and TRAAC across these metrics for three task categories: code
generation, decision making, and reasoning.

Table 11: MINT benchmark results for Base Model (Qwen3-4B) and TRAAC across interaction
limits k ∈ {1, 2, 3, 4, 5}. Metrics include success rate (SR, %) and average response length.

Task Method k = 1 k = 2 k = 3 k = 4 k = 5
SR Len SR Len SR Len SR Len SR Len

code generation Base Model 0.74 0.5 58.09 3.7 58.09 4.8 59.56 5.7 59.56 7.1
TRAAC 49.26 1.7 58.82 2.6 56.62 3.3 59.56 3.5 58.82 3.8

decision making Base Model 0.00 0.5 11.19 2.4 17.16 2.5 30.60 2.5 33.58 3.0
TRAAC 0.00 0.5 8.21 1.0 21.64 1.2 35.07 1.3 40.30 1.6

reasoning Base Model 19.94 0.5 76.58 1.9 80.38 2.2 79.75 2.5 79.75 2.4
TRAAC 66.46 0.8 76.90 1.1 81.65 1.2 79.11 1.3 81.96 1.2

avg micro Base Model 10.92 0.5 57.34 2.4 60.75 2.9 63.82 3.2 64.51 3.6
TRAAC 47.27 1.0 57.00 1.4 62.12 1.7 64.51 1.8 67.06 1.9

When examining the average micro-aggregated performance across all interaction limits, TRAAC
consistently matches or exceeds the base model. TRAAC improves the average success rate by
8.12% while simultaneously reducing response length by 38.3%. This demonstrates that TRAAC
not only strengthens performance on agentic, multi-turn tasks but also makes the model substantially
more efficient in its interactions.

A.4 WHY CHOOSE RL IN TRAAC

Choosing reinforcement learning (RL) rather than supervised fine-tuning (SFT) to teach adaptive
compression is motivated by two key reasons:

• Generalization advantages of RL. Prior work has repeatedly shown that RL-based methods
yield significantly stronger generalization compared to SFT (Chu et al., 2025). In our own exper-
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iments, the SFT-based baseline TokenSkip performs substantially worse than TRAAC, demon-
strating that simply applying SFT on compressed outputs is insufficient.

• Adaptive compression requires an online difficulty signal. TRAAC relies on dynamically
compressing reasoning trajectories according to the difficulty of each problem, where the dif-
ficulty signal itself is tightly coupled to the model’s evolving capabilities. Because TRAAC
learns this adaptivity during training, an online RL setting naturally allows difficulty estimates
to improve alongside the model, enabling progressively better compression decisions.

SFT ON ATTENTION-BASED COMPRESSED TRAJECTORIES

For a direct comparison, we also train an SFT model using reasoning trajectories compressed via
TRAAC’s attention-based rollout. To generate the dataset, we use a larger model (Qwen3-32B) to
produce 1.4k compressed rollouts, and then train a smaller model (Qwen3-4B) on this data. The
table below reports the performance of the SFT model relative to the base model and TRAAC across
three benchmarks: AIME, AMC, and GPQA. The SFT model matches the base model’s accuracy
while offering moderate efficiency gains. In contrast, TRAAC improves both accuracy and efficiency
across all benchmarks.

Table 12: Comparison of TokenSkip, Base Model, SFT on attention-compressed rollouts, and
TRAAC across AIME, AMC, and GPQA. Metrics include accuracy (%) and average response
length.

Method AIME AMC GPQA
Acc. Len. Acc. Len. Acc. Len.

TokenSkip 5.84% 9.6k 27.71% 8.7k 32.32% 7.8k
Base Model 27.64% 9.2k 68.19% 7.0k 45.18% 7.6k
SFT 26.06% 8.8k 59.51% 6.6k 42.00% 6.9k
TRAAC 45.45% 6.7k 79.52% 4.2k 47.21% 4.2k

A.5 CONFIDENCE BASED COMPRESSION

Similar to attention compression, where a score is calculated for each reasoning token, the confi-
dence of the model is used to calculate the score, and based on the lowest average score, reasoning
steps are removed. Algorithm 1 shows the pseudocode used to calculate the confidence of each
token.

Algorithm 1: Token Confidence Calculation
Input: Top-k token log-probabilities L = {ℓ1, ℓ2, . . . , ℓk}
Output: Confidence score C
begin

// Convert log-probabilities to probabilities
pj ← exp(ℓj) for each ℓj ∈ L ;
// Normalize probabilities

Z ←
∑k

j=1 pj ;
pj ← pj/Z for each j ;
// Compute entropy of distribution

H ← −
∑k

j=1 pj · log(pj + ϵ) ;
// Maximum entropy with k tokens
Hmax ← log(k) ;
// Confidence is normalized inverse entropy
C ← 1− (H/Hmax) ;
return C

17
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A.6 ATTENTION SCORE OVER FULL ATTENTION SCORE

During generation from a reasoning model, the </think> token marks the end of the reasoning
process, and the answer tokens generated after </think> contain key summarized conclusions. Prior
work (Choi et al., 2025) shows that </think> strongly attends to the critical reasoning steps needed
to derive the final answer. To verify that attention score from </think> is more effective in practice,
we ran an additional ablation that computes attention over the full context, including all reasoning
tokens as well as the answer tokens generated after </think>. Using these attention scores, low-
scoring steps were removed from the reasoning trajectory. The table below compares performance
between using attention over the full rollout and using TRAAC.

Method AIME AMC GPQA
Acc. Len. Acc. Len. Acc. Len.

TRAAC (full attention rollout) 2.309% 1.9k 18.53% 2.1k 25.81% 4.2k
TRAAC 45.45% 6.7k 79.52% 4.2k 47.21% 4.2k

Table 13: Comparison of TRAAC with full-rollout attention pruning vs. standard TRAAC.

Accuracy drops sharply across all three datasets when attention is computed over the full rollout.
This demonstrates that without relying on the </think> token for attention scoring, the model can-
not reliably identify and prune redundant reasoning steps. Especially on AIME and AMC, we ob-
serve a substantial drop in efficiency, indicating that when attention is computed over the complete
rollout – including both reasoning and final answers – the model struggles to determine which steps
are informative versus unnecessary.

A.7 DEEPSEEK ABLATION AND ANALYSIS

Table 14 and Table 15 present the ablation results for (i) Base Model + CR: The base model trained
with GRPO using only the correctness reward, (ii) Base model + CR + LR: The base model trained
with GRPO using both correctness and length rewards, but without difficulty-level calibration.

Table 14: Ablation Results of TRAAC on Qwen3-4B and Deepseek-Qwen-7B tested across 4 datasets:
AIME, AMC, GPQA-D, and BBEH. Each component addition adds to the previous method.

Method AIME AMC GPQA-D BBEH Average

Acc.↑ Len.↓ Acc.↑ Len.↓ Acc.↑ Len.↓ Acc.↑ Len.↓ Acc.↑ Len.↓
DeepSeek-R1-Distill-Qwen-7B

Base Model 33.71 8.2 74.22 5.7 43.55 7.1 10.61 5.9 40.5 6.7
+ CR 35.81 7.6 78.55 4.9 45.99 6.1 11.74 5.1 43.0 5.9
+ LR 32.73 6.0 79.04 3.3 45.99 3.5 11.51 2.7 42.3 3.9
TRAAC 38.60 7.3 77.83 4.5 47.31 6.2 11.55 5.2 43.8 5.8

Table 15: Ablation Results of TRAAC (Qwen3-4B and Deepseek-Qwen-7B) on OptimalThinking-
Bench (OTB). Each component addition adds to the previous method.

Method OverthinkingBench UnderthinkingBench OTB

Acc.↑ Len.↓ AUCOAA ↑ Acc.↑ Len.↓ F1↑
DeepSeek-R1-Distill-Qwen-7B

Base Model 78.45 0.9 72.38 12.69 6.2 21.6
+ CR 79.51 0.8 73.36 17.05 5.7 27.7
+ LR 78.06 0.4 72.61 14.69 3.0 24.4
TRAAC 81.81 1.0 72.89 22.30 5.9 34.1
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A.8 COMPRESSION MODULE

A.8.1 PROMPT

For every reasoning trajectory, auxiliary prompt was appended at the end of the trajectory. The
prompt is: “Time is up. I should stop thinking and now write a summary containing all key steps
required to solve the problem.”.

A.8.2 SPECIAL TOKENS TO SPLIT TRAJECTORY TO CHUNKS

Below is the list that is used to split each reasoning trajectory into multiple reasoning steps.

split_tokens = [
"Wait", "Alternatively", "Another angle", "Another approach", "But wait",
"Hold on", "Hmm", "Maybe", "Looking back", "Okay", "Let me", "First",
"Then", "Alright", "Compute", "Correct", "Good", "Got it",
"I don't see any errors", "I think", "Let me double-check", "Let's see",
"Now", "Remember", "Seems solid", "Similarly", "So", "Starting",
"That's correct", "That seems right", "Therefore", "Thus"

]

A.8.3 UNIFORMITY SCORE

Algorithm 2 presents the pseudocode for calculating the uniformity score, based on which the final
compression rate is calculated.

Algorithm 2: Calculating Eviction Percentage Based on Attention Uniformity
Input: Step importance scores {s1, s2, . . . , sn}, target reduction τ (default: 0.25)
Output: Eviction percentage e ∈ [0, 1]

Function CALCULATEUNIFORMITYSCORE({s1, . . . , sn}):
if n ≤ 1 then

return 1.0;
; // Only one step ⇒ perfectly uniform

Clamp all si ≥ 0;
T ←

∑
i si;

if T ≤ 0 then
return 1.0;

pi ← si/T ; // Normalize to probability distribution
H ← −

∑
i pi · log(pi + ϵ) ; // Entropy, ϵ = 10−12

Hmax ← log(n);
if Hmax = 0 then

return 1.0;
return H/Hmax ; // Uniformity score in [0, 1]

Function DETERMINEEVICTIONPERCENTAGE(u, τ ):
if u > 0.8 then

return 0.0 ; // High uniformity: keep all steps

e← τ · (1− u) ; // Scale eviction by non-uniformity
return min(e, 0.8) ; // Cap eviction at 80%

u← CALCULATEUNIFORMITYSCORE({s1, . . . , sn});
e← DETERMINEEVICTIONPERCENTAGE(u, τ);

A.9 GRPO DETAILS

For each question q, a group of responses {y1, y2, . . . , yN} is sampled from the old policy πold, and
the policy model πθ is optimized by maximizing the following GRPO objective.
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JGRPO(θ) =
1

N

N∑
i=1

1

|yi|

|yi|∑
t=1

min

[
πθ(y

i(t)|yi<t)

πold(yi(t)|yi<t)
Âi,t, clip

(
πθ(y

i(t)|yi<t)

πold(yi(t)|yi<t)
, 1− ε, 1 + ε

)
Âi,t

]
,

where ε is the clipping range hyperparameter, and Âi,t represents the advantage, computed based
on the relative verifiable outcome based rewards of outputs within each group.

A.10 EXPERIMENTAL DETAILS

We adopt verl (Sheng et al., 2024) as the training framework.

A.10.1 HYPERPARAMETERS

Table 16: Hyperparameters used for training, evaluation, and difficulty calibration.

Category Hyperparameter Value

Training

Number of rollouts 8
Temperature 1.0

top p 1.0
top k -1.0

Max response length 10k
clip ratio low 0.20
clip ratio high 0.28

kl loss coef 0.001
Learning rate (LR) 1e-6

Evaluation

Number of rollouts 8
Temperature 1.0

top p 1.0
top k -1.0

Max response length 10k
N 5

Difficulty Calibration
Hard 0.20

Medium 0.40
Easy 0.60

A.10.2 TRAINING REWARD

To ensure a high weight on correctness relative to other components, we assign a correctness re-
ward of +4 if the final answer is correct and 0 otherwise. The format reward ranges from 0 to
1: a score of 0.5 is given for the presence of the <think> and </think> tokens, and an additional
0.5 is awarded if every reasoning trajectory is properly enclosed within these tokens in the correct
order. The length reward ranges from 0 to 2. The overall reward is computed as the sum of these
components:

Total Reward = Correctness Reward + Format Reward + Length Reward.

A.10.3 EVALUATION METRICS

For each of the dataset we compute the accuracy and the average response length. Specifically for
OverthinkingBench we also compute the AUCOAA. This metric is based on Overthinking-Adjusted
Accuracy (OAA), which measures model correctness under a limit on reasoning tokens. For a
threshold t, it is defined as

OAAt =
1

n

n∑
i=1

(
Correctnessi · I(ThinkTokensi < t)

)
,
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where Correctnessi ∈ {0, 1} indicates whether the i-th response is correct, and I(·) is the indicator
function that enforces the thinking length constraint.

AUCOAA =

∫ tmax

0

OAAt

tmax
dt ≈ 1

tmax

tmax∑
t=0

OAAt,

where tmax is the maximum number of allowed thinking tokens. Furthermore, following the method
from (Aggarwal et al., 2025), to compute the OptimalThinkingBench metric: F1 score we combine
the AUCOAA from OverthinkingBench and Accuracy (Accut) from UnderthinkingBench into a sin-
gle F1 score:

F1 = 2 · AUCOAA ·Accut
AUCOAA +Accut

(1)

A.10.4 TRAINING PROMPT

For each questions in the training set, instruction was provided: ‘‘Let’s think step by step
and output the final answer within \\boxed{}’’

A.10.5 BASELINE PROMPTS

Below we define the instruction that was provided to each baseline model:

• Base Model: ‘‘Let’s think step by step and output the final answer within
\\boxed{}’’

• L1-Max: ‘‘Let’s think step by step and output the final answer within \\boxed{}.
Think for maximum 10000 tokens.’’

• LC-R1: ‘‘ Please reason step by step, and put your final answer within
\\boxed{}’’

• AdaptThink: No prompt, just the question
• TokenSkip: "<|im start|>system You are a helpful assistant.<|im end|>
<|im start|>user Please reason step by step, and put your final answer within
\boxed{}. question<|eot id|>0.5<|eot id|><|im end|> <|im start|>assistant"

A.11 COMPUTE USED

All training was done on 4*A100 (80GB).

A.12 EXAMPLE

Data Source: AMC

Input:

Maureen is keeping track of the mean of her quiz scores this semester. If Maureen scores an
11 on the next quiz, her mean will increase by 1. If she scores an 11 on each of the next three
quizzes, her mean will increase by 2. What is the mean of her quiz scores currently? Let’s
think step by step and output the final answer within boxed{}

Response (TRAAC):

\<think\>\\nOkay, let's try to solve this problem. So, Maureen's current mean
is what we need to find. The problem gives two scenarios. Let's break it down.
First, if she scores an 11 on the next quiz, her mean increases by1. Second,
if she gets11 on each of the next three quizzes, the mean increases by2.
Hmm. Let's think about how means work. Let's say currently she has a mean of M.
Let's say she has n quizzes so far. The total sum of her current scores would be
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M multiplied by n. Wait, when she takes another quiz, the number of quizzes
becomes n+1. For the first scenario, adding an11would make the new mean be M \+1.
So the new total would be (current sum) \+11. And that divided by (n+1) equals the
new mean. So (current sum) \+11 \= (M+1) \* (n+1). But the current sum is M \*n.
So substituting, M\*n \+11 \= (M+1)(n+1). Let's expand the right side:
M\*n \+M \+n \+1. So the equation would be M\*n \+11 \= M\*n \+M \+n \+1.
Subtract M\*n from both sides:11 \= M \+n \+1. So M \+n equals10? Because11-1
is10. So M \+n=10? That's equation one.\\n\\nThen the second scenario: if she
scores11 on each of thenext three quizzes. So adding three quizzes, each11.
The new mean would be current mean plus2. Let's think. The current sum is
M\*n. After three more quizzes, the total sum is M\*n \+3\*11. The number of
quizzes is n+3. The new mean is M+2. So (M\*n \+33) / (n+3) \= M+2. Let's
multiply both sides by(n+3): M\*n \+33 \= (M+2)(n+3). Let's expand the right
side: M\*n \+3M \+2n \+6. So the equation becomes M\*n \+33 \= M\*n \+3M \+2n
\+6. Subtract M\*n from both sides:33=3M \+2n \+6. Subtract6:27=3M \+2n. So
that's the second equation.\\n\\nSo from the first scenario, we had M \+n=10.
Let's call that equation1. And the second gives3M \+2n=27? Equation2. So we
need to solve these two equations. Let's see. From equation1, n is10-M.
Substitute into equation2. So3M \+2\*(10-M) \=27. Let's calculate that:3M \+20-
2M \=27. So (3M-2M) is M. So M \+20=27. Therefore M is7? Because27-20is7. So
the current mean is7? Let's check. \\n\\nIf M is7, then n is10-M which is3. So
currently, she has3 quizzes. Current total is7\*3=21. First scenario:
adding11. New total is21+11=32. Number of quizzes is4. Mean would be32/4=8.
Which is7+1. Correct. For the second scenario, adding three11s. The total
would be21+33=54. Number of quizzes is3+3=6.54/6 is9. The current mean was7,
so7+2=9. Yes that's right. So the current mean is7?\\n\</think\>\\n\\nTo
determine the current mean of Maureen's quiz scores, we analyze the two given
scenarios mathematically.\\n\\n---\\n\\n\#\#\# Step 1: Define
Variables\\n\\nLet:\\n- $ M $ \= current mean of quiz scores\\n- $ n $ \=
number of quizzes Maureen has taken so far\\n\\nThen the total of her current
scores is $ M \\\\times n $.\\n\\n---\\n\\n\#\#\# Step 2: First
Scenario\\n\\nIf Maureen scores an 11 on the next quiz, her mean increases by
1.\\n\\nThe new total becomes $ M \\\\times n \+ 11 $, and the number of
quizzes is $ n \+ 1 $. The new mean is $ M \+ 1 $. So:\\n\\n$$\\n\\\\frac{Mn
\+ 11}{n \+ 1} \= M \+ 1\\n$$\\n\\nMultiply both sides by $ n \+ 1
$:\\n\\n$$\\nMn \+ 11 \= (M \+ 1)(n \+ 1)\\n$$\\n\\nExpanding the right-hand
side:\\n\\n$$\\nMn \+ 11 \= Mn \+ M \+ n \+ 1\\n$$\\n\\nSubtract $ Mn $ from
both sides:\\n\\n$$\\n11 \= M \+ n \+ 1 \\\\Rightarrow M \+ n \= 10 \\\\quad
\\\\text{(Equation 1)}\\n$$\\n\\n---\\n\\n\#\#\# Step 3: Second
Scenario\\n\\nIf she scores 11 on each of the next three quizzes, the mean
increases by 2.\\n\\nThe total becomes $ Mn \+ 33 $, and the number of quizzes
becomes $ n \+ 3 $. The new mean is $ M \+ 2 $. So:\\n\\n$$\\n\\\\frac{Mn \+
33}{n \+ 3} \= M \+ 2\\n$$\\n\\nMultiply both sides by $ n \+ 3
$:\\n\\n$$\\nMn \+ 33 \= (M \+ 2)(n \+ 3)\\n$$\\n\\nExpanding the right-hand
side:\\n\\n$$\\nMn \+ 33 \= Mn \+ 3M \+ 2n \+ 6\\n$$\\n\\nSubtract $ Mn $ from
both sides:\\n\\n$$\\n33 \= 3M \+ 2n \+ 6 \\\\Rightarrow 3M \+ 2n \= 27
\\\\quad \\\\text{(Equation 2)}\\n$$\\n\\n---\\n\\n\#\#\# Step 4: Solve the
System of Equations\\n\\nFrom Equation 1:\\n$$\\nM \+ n \= 10 \\\\Rightarrow n
\= 10 \- M\\n$$\\n\\nSubstitute into Equation 2:\\n\\n$$\\n3M \+ 2(10 \- M) \=
27 \\\\Rightarrow 3M \+ 20 \- 2M \= 27 \\\\Rightarrow M \+ 20 \= 27
\\\\Rightarrow M \= 7\\n$$\\n\\n---\\n\\n\#\#\# Final
Answer\\n\\n$$\\n\\\\boxed{7}\\n$$

Response (Base Model + CR):

\<think\>\\nOkay, let me try to figure out this problem. So, Maureen is
tracking her mean quiz score. The problem says that if she scores an 11 on the
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next quiz, her mean will increase by 1\. Also, if she scores 11 on each of the
next three quizzes, her mean will increase by 2\. We need to find her current
mean. Hmm, let me break this down step by step.\\n\\nFirst, let me recall what
a mean is. The mean is the sum of all the scores divided by the number of
scores. So, if I let her current mean be something, maybe I can set up
equations based on the information given.\\n\\nLet me denote the current
number of quizzes she has taken as $ n $, and her current total score as $ S
$. Therefore, her current mean is $ \\\\frac{S}{n} $.\\n\\nNow, the first
condition: if she scores an 11 on the next quiz, her mean will increase by 1\.
Let's think about that. If she takes one more quiz with a score of 11, then
her total score becomes $ S \+ 11 $, and the number of quizzes becomes $ n \+
1 $. The new mean is $ \\\\frac{S \+ 11}{n \+ 1} $. According to the problem,
this new mean is 1 more than her current mean. So, we can write the
equation:\\n\\n$$\\n\\\\frac{S \+ 11}{n \+ 1} \= \\\\frac{S}{n} \+
1\\n$$\\n\\nOkay, that seems like a good starting point. Let me write that
down.\\n\\nSimilarly, the second condition: if she scores an 11 on each of the
next three quizzes, her mean will increase by 2\. So, taking three more
quizzes with 11 each, her total score becomes $ S \+ 11\*3 \= S \+ 33 $, and
the number of quizzes becomes $ n \+ 3 $. The new mean is $ \\\\frac{S \+ 33}
{n \+ 3} $, which should be 2 more than her current mean. So, the equation
would be:\\n\\n$$\\n\\\\frac{S \+ 33}{n \+ 3} \= \\\\frac{S}{n} \+
2\\n$$\\n\\nSo, now we have two equations with two variables, $ S $ and $ n $.
Let me write both equations again:\\n\\n1. $ \\\\frac{S \+ 11}{n \+ 1} \=
\\\\frac{S}{n} \+ 1 $\\n2. $ \\\\frac{S \+ 33}{n \+ 3} \= \\\\frac{S}{n} \+ 2
$\\n\\nI need to solve these equations for $ S $ and $ n $, and then find the
current mean $ \\\\frac{S}{n} $.\\n\\nLet me start with the first equation.
Let's simplify it.\\n\\nMultiply both sides by $ n(n \+ 1\) $ to eliminate
denominators:\\n\\n$ (S \+ 11\) \\\\cdot n \= (S \+ n(n \+ 1)) \\\\cdot 1
$\\n\\nWait, let me check that again. Wait, the right-hand side is $
\\\\frac{S}{n} \+ 1 $, so when I multiply both sides by $ n(n \+ 1\) $, it
becomes:\\n\\nLeft side: $ (S \+ 11\) \\\\cdot n $\\n\\nRight side: $ \[
\\\\frac{S}{n} \+ 1 \] \\\\cdot n(n \+ 1\) $\\n\\nWait, let me do that more
carefully:\\n\\nOriginal equation:\\n\\n$ \\\\frac{S \+ 11}{n \+ 1} \=
\\\\frac{S}{n} \+ 1 $\\n\\nMultiply both sides by $ n(n \+ 1\) $:\\n\\nLeft
side: $ (S \+ 11\) \\\\cdot n $\\n\\nRight side: $ \[ \\\\frac{S}{n} \+ 1 \]
\\\\cdot n(n \+ 1\) \= \[ S \+ n \] \\\\cdot (n \+ 1\) $\\n\\nWait, because $
\\\\frac{S}{n} \\\\times n(n \+ 1\) \= S(n \+ 1\) $, and $ 1 \\\\times n(n \+
1\) \= n(n \+ 1\) $. Therefore:\\n\\nRight side: $ S(n \+ 1\) \+ n(n \+ 1\)
$\\n\\nTherefore, equation becomes:\\n\\n$ n(S \+ 11\) \= S(n \+ 1\) \+ n(n \+
1\) $\\n\\nLet me expand both sides:\\n\\nLeft side: $ nS \+ 11n $\\n\\nRight
side: $ Sn \+ S \+ nˆ2 \+ n $\\n\\nNow, subtract left side from both
sides:\\n\\n0 \= (Sn \+ S \+ n² \+ n) \- (nS \+ 11n)\\n\\nSimplify:\\n\\nSn \+
S \+ n² \+ n \- nS \-11n \= S \+ n² \-10n \= 0\\n\\nTherefore:\\n\\nS \+ n²
\-10n \= 0 → S \= \-n² \+10n\\n\\nSo that's equation 1: S \= \-n²
\+10n\\n\\nOkay, now let's do the same for the second equation:\\n\\n$
\\\\frac{S \+ 33}{n \+ 3} \= \\\\frac{S}{n} \+ 2 $\\n\\nMultiply both sides by
$ n(n \+ 3\) $:\\n\\nLeft side: (S \+ 33\) \* n\\n\\nRight side: \[ S/n \+ 2
\] \* n(n \+ 3\) \= \[ S \+ 2n \] \* (n \+ 3 )\\n\\nTherefore:\\n\\nLeft side:
nS \+ 33n\\n\\nRight side: (S \+ 2n)(n \+ 3\) \= S(n \+ 3\) \+ 2n(n \+ 3\) \=
Sn \+ 3S \+ 2n² \+ 6n\\n\\nTherefore, equation:\\n\\nnS \+ 33n \= Sn \+ 3S \+
2n² \+ 6n\\n\\nSubtract Sn from both sides:\\n\\n33n \= 3S \+ 2n²
\+6n\\n\\nBring all terms to left side:\\n\\n33n \-6n \-2n² \-3S \= 0 → 27n
\-2n² \-3S \= 0\\n\\nRearranged:\\n\\n-2n² \+27n \-3S \= 0\\n\\nMultiply both
sides by \-1:\\n\\n2n² \-27n \+3S \=0\\n\\nSo:\\n\\n3S \= \-2n² \+27n → S \=
(-2n² \+27n)/3\\n\\nSo now, from equation 1, we have S \= \-n² \+10n, and from
equation 2, S \= (-2n² \+27n)/3.\\n\\nTherefore, we can set them equal:\\n\\n-
n² \+10n \= (-2n² \+27n)/3\\n\\nMultiply both sides by 3:\\n\\n-3n² \+30n \=

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

\-2n² \+27n\\n\\nBring all terms to left side:\\n\\n-3n² \+30n \+2n² \-27n \=
0 → (-n²) \+3n \=0 → \-n² \+3n \=0 → n(-n \+3)=0\\n\\nSo, solutions are n=0 or
\-n \+3=0 → n=3.\\n\\nBut n is the number of quizzes, so it can't be zero.
Therefore, n=3.\\n\\nTherefore, the current number of quizzes is 3.\\n\\nThen,
substitute n=3 into equation 1: S \= \-n² \+10n \= \-9 \+30 \=
21\\n\\nTherefore, current total score S=21, and number of quizzes n=3, so
current mean is 21/3=7.\\n\\nWait, so the current mean is 7?\\n\\nBut let me
check if this works with the original conditions.\\n\\nFirst condition: if she
scores an 11 on the next quiz, the mean increases by 1.\\n\\nCurrent mean is
7, with 3 quizzes.\\n\\nAfter taking 11, total is 21 \+11=32, number of
quizzes is 4\. New mean is 32/4=8, which is 7 \+1=8. Correct.\\n\\nSecond
condition: if she scores 11 on each of the next three quizzes, then total is
21 \+33=54, number of quizzes is 3 \+3=6. New mean is 54/6=9, which is 7
\+2=9. Correct. Perfect.\\n\\nTherefore, current mean is 7\. So the answer is
7, which is \\\\boxed{7}\\n\\n\*\*Final Answer\*\*\\nThe mean of Maureen's
quiz scores currently is \\\\boxed{7}.\\n\</think\>\\n\\nTo determine
Maureen's current mean quiz score, we start by modeling the situation
mathematically.\\n\\n---\\n\\n\#\#\# Step 1: Define Variables\\n\\nLet:\\n- $
n $ be the current number of quizzes Maureen has taken.\\n- $ S $ be her total
score so far.\\n- Her current mean is then $ \\\\frac{S}{n} $.\\n\\n---
\\n\\n\#\#\# Step 2: Use Given Conditions to Form Equations\\n\\n\#\#\#\#
First Condition:\\nIf Maureen scores an \*\*11\*\* on the next quiz, her mean
increases by 1.\\n\\nNew total score: $ S \+ 11 $ \\nNew number of quizzes: $
n \+ 1 $ \\nNew mean: $ \\\\frac{S \+ 11}{n \+ 1} $\\n\\nAccording to the
problem:\\n$$\\n\\\\frac{S \+ 11}{n \+ 1} \= \\\\frac{S}{n} \+
1\\n$$\\n\\nMultiply both sides by $ n(n \+ 1\) $ to eliminate
denominators:\\n$$\\n(S \+ 11)n \= S(n \+ 1\) \+ n(n \+
1)\\n$$\\n\\nSimplify:\\n$$\\nSn \+ 11n \= Sn \+ S \+ nˆ2 \+
n\\n\\\\Rightarrow 11n \= S \+ nˆ2 \+ n\\n\\\\Rightarrow S \= \-nˆ2 \+
10n\\n$$\\n\\n\#\#\#\# Second Condition:\\nIf Maureen scores an \*\*11\*\* on
\*\*three\*\* quizzes, her mean increases by 2.\\n\\nNew total score: $ S \+
33 $ \\nNew number of quizzes: $ n \+ 3 $ \\nNew mean: $ \\\\frac{S \+ 33}{n
\+ 3} $\\n\\nAccording to the problem:\\n$$\\n\\\\frac{S \+ 33}{n \+ 3} \=
\\\\frac{S}{n} \+ 2\\n$$\\n\\nMultiply both sides by $ n(n \+ 3\) $:\\n$$\\n(S
\+ 33)n \= (S \+ 2n)(n \+ 3)\\n$$\\n\\nSimplify:\\n$$\\nSn \+ 33n \= Sn \+ 3S
\+ 2nˆ2 \+ 6n\\n\\\\Rightarrow 33n \= 3S \+ 2nˆ2 \+ 6n\\n\\\\Rightarrow 27n \=
3S \+ 2nˆ2\\n\\\\Rightarrow 3S \= \-2nˆ2 \+ 27n\\n\\\\Rightarrow S \=
\\\\frac{-2nˆ2 \+ 27n}{3}\\n$$\\n\\n---\\n\\n\#\#\# Step 3: Solve for $ n $
and $ S $\\n\\nFrom the two expressions for $ S $:\\n$$\\n-nˆ2 \+ 10n \=
\\\\frac{-2nˆ2 \+ 27n}{3}\\n$$\\n\\nMultiply both sides by 3:\\n$$\\n-3nˆ2 \+
30n \= \-2nˆ2 \+ 27n\\n\\\\Rightarrow \-nˆ2 \+ 3n \= 0\\n\\\\Rightarrow n(n \-
3\) \= 0\\n$$\\n\\nSince $ n \\\\neq 0 $, we get:\\n$$\\nn \=
3\\n$$\\n\\nSubstitute into $ S \= \-nˆ2 \+ 10n $:\\n$$\\nS \= \-9 \+ 30 \=
21\\n$$\\n\\n---\\n\\n\#\#\# Step 4: Compute the Current
Mean\\n\\n$$\\n\\\\text{Current mean} \= \\\\frac{S}{n} \= \\\\frac{21}{3} \=
\\\\boxed{7}\\n$$\\n\\n---\\n\\n\#\#\# Final Answer\\n\\n$$\\nboxed{7}$$

Ground Truth:

7
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