

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THINK RIGHT: LEARNING TO MITIGATE UNDER-OVER THINKING VIA ADAPTIVE, ATTENTIVE COMPRESSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent thinking models are capable of solving complex reasoning tasks by scaling test-time compute across various domains, but this scaling must be allocated in line with task difficulty. On one hand, short reasoning (*underthinking*) leads to errors on harder problems that require extended reasoning steps; but, excessively long reasoning (*overthinking*) can be token-inefficient by generating unnecessary steps even after reaching a correct intermediate solution. We refer to this as **under-adaptivity**, where the model fails to modulate its response length appropriately given problems of varying difficulty. To address under-adaptivity and strike a balance between under- and overthinking, we propose TRAAC (Think Right with Adaptive, Attentive Compression), an online post-training RL method that leverages the model’s self-attention over a long reasoning trajectory to identify important steps and prune redundant ones. TRAAC also estimates difficulty and incorporates into training rewards, thereby learning to allocate reasoning budget commensurate with example difficulty. Our approach improves accuracy, reduces reasoning steps, and enables adaptive thinking compared to base models and other RL baselines. Across a variety of tasks (AIME, AMC, GPQA-D, BBEH), TRAAC (Qwen3-4B) achieves an average absolute accuracy gain of 8.4% with a relative reduction in reasoning length of 36.8% compared to the base model, and a 7.9% accuracy gain paired with a 29.4% length drop compared to the best RL baseline. TRAAC also shows strong generalization: although the models are trained on math datasets, they show accuracy and efficiency gains on out-of-distribution non-math datasets like GPQA-D, BBEH, and OptimalThinkingBench. Our analysis further verifies that TRAAC provides fine-grained adjustments to thinking budget based on difficulty and that a combination of task-difficulty calibration and attention-based compression yields gains across diverse tasks.¹

1 INTRODUCTION

Recent advancements in thinking models have enabled language models to solve complex reasoning tasks (DeepSeek-AI et al., 2025; OpenAI et al., 2024; Team, 2025). These models extend the chain-of-thought (CoT; Wei et al., 2023) paradigm with online reinforcement learning (RL; Shao et al., 2024), allowing them to refine intermediate solutions as well as sequentially scaling the number of tokens (i.e., compute) to arrive at the final answer. While such approaches show strong promise for harder problems in domains like mathematics, programming, and logical puzzles (Xie et al., 2025; Chen et al., 2025), their accuracy and utility remain capped by a failure to regulate their reasoning length. On one hand, *underthinking* arises when models terminate too early on harder problems, yielding an incorrect final answer. On the other hand, *overthinking* occurs when models think excessively for simpler tasks, inflating test-time computation (Marjanović et al., 2025; Wu et al., 2025; Cuadron et al., 2025), and reducing efficiency. This highlights the need for adaptive thinking (Saha et al., 2025; Chen et al., 2024; Snell et al., 2024; Aggarwal & Welleck, 2025), where models dynamically allocate thinking based on difficulty.

We refer to the phenomenon of models misallocating thinking budget – illustrated in Fig. 1 – as **under-adaptivity**. Addressing under-adaptivity is crucial for improving both performance and efficiency of long-thinking models, as dynamic reasoning effort allocation can enable better reason-

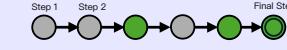
¹Codebase available in the supplementary, and will be released publicly upon acceptance.

054

055 **Question:** In isosceles trapezoid $ABCD$, parallel bases \overline{AB} and \overline{CD} have lengths
 056 500 and 650, respectively, and $\overline{AD} = \overline{BC} = 333$. The angle bisectors of $\angle A$ and $\angle D$
 057 meet at P , and the angle bisectors of $\angle B$ and $\angle C$ meet at Q . Find \overline{PQ} .

058

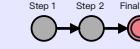
Overthinking for
Easy Problems



✗ Static
✗ Wastes Tokens
✓ Accuracy ↑

059

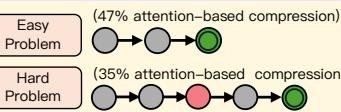
Underthinking for
Hard Problems



✗ Static
✗ Accuracy ↓
✓ Fewer Tokens

060

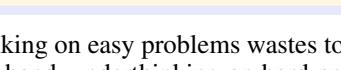
Adaptive to
Problem
Difficulty
(TRAAC, Ours)



✓ Adaptive
✓ Accuracy ↑
✓ Fewer Tokens

061

(TRAAC, Ours)



✓ Adaptive
✓ Accuracy ↑
✓ Fewer Tokens

062

063

064

065

066

Figure 1: Overthinking on easy problems wastes tokens despite being able to maintain decent accuracy. On the other hand, underthinking on hard problems saves token budgets but fails to maintain accuracy. TRAAC addresses this trade-off by adapting to problem difficulty (estimated during training), via attention-based compression and, enabling intelligent resource allocation while improving both accuracy and efficiency.

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

ing exploration in harder problems, while avoiding wasteful computation on problems requiring minimal reasoning. Prior work has generally addressed the upper end of under-adaptivity, i.e., improving thinking efficiency. These works employ supervised fine-tuning on compressed CoT (Xia et al., 2025), using user control signals such as early stopping during inference (Muennighoff et al., 2025), or RL methods with length penalties (Arora & Zanette, 2025; Hou et al., 2025). Other more adaptive work has employed budget-aware reward shaping with a binary choice between thinking or not thinking (Zhang et al., 2025b). While such work can reduce token usage, its performance is typically bounded by the accuracy of the underlying model being trained, and often trades performance for efficiency. Our work aims to beat this trade-off and improve both efficiency and accuracy by providing finer-grained feedback through difficulty-adaptive compression, where the degree of compression is dynamically adapted to task difficulty to address under-adaptivity.

To address these gaps, we introduce TRAAC (Think Right with Adaptive, Attentive Compression), a GRPO-based (Shao et al., 2024) post-training method that incorporates an **online, difficulty-adaptive, attention-based compression module** to adaptively prune the reasoning trajectory (an entire chain in Fig. 1) based on estimated task difficulty. Our method teaches the model to compress the context that it should pay attention to, such that it contains only relevant material without getting distracted or skewed in wrong directions (Weston & Sukhbaatar, 2023). Specifically, we compute the attention score averaged across layers and heads of the model for each reasoning step (illustrated as nodes in Fig. 1 (right)) from the `</think>` token and `compress` reasoning steps that are *least attended to*, based on the assumption that these are the least important tokens contributing to the final answer. During online training, the level of attention-compression is determined by task difficulty, as estimated by the pass rate during GRPO rollout, making the model more adaptive. For harder problems, TRAAC maintains a low compression rate, allowing the model to extend its reasoning trajectory, which increases the likelihood of reaching the correct final answer. For easier problems, it applies a higher compression rate to aggressively compress once the correct final answer is reached.

We evaluate TRAAC on two strong off-the-shelf reasoning models, Qwen3-4B (Team, 2025) and Deepseek-Qwen-7B (DeepSeek-AI et al., 2025), across multiple benchmarks: AMC (AMC, 2023), AIME (AIME, 2024), GPQA-Diamond (Rein et al., 2023), BBEH (Big Bench Extra Hard; Kazemi et al., 2025), and OptimalThinkingBench (Aggarwal et al., 2025). Our experiments demonstrate that TRAAC consistently adapts to problem difficulty, yielding improvements in efficiency on simple tasks and stronger accuracy on complex tasks. Averaged across AMC, AIME, GPQA-D, and BBEH, TRAAC (Qwen3-4B) achieves an average absolute improvement of 8.4% in accuracy while a relative reduction in reasoning length by 36.8% compared to the base model. When compared to the next-best performing baseline, AdaptThink (Zhang et al., 2025b), we achieve an average accuracy improvement of 7.9% and 29.4% efficiency gain. We test TRAAC on OptimalThinkingBench (Aggarwal et al., 2025), and find TRAAC improves by 7.36 points on Qwen3-4B and 12.55 points on Deepseek-Qwen-7B over the base model according to Aggarwal et al. (2025)’s F1 metric – designed to measure *both performance and efficiency*. Moreover, TRAAC is trained on a math-specific dataset;

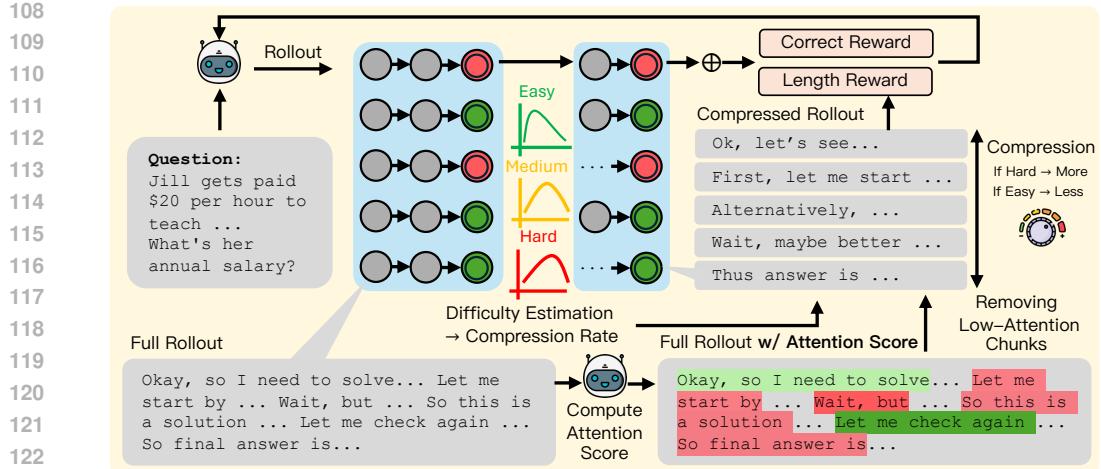


Figure 2: Overview of TRAAC. Given a problem, the model first generates N rollouts, and the pass rate of these rollouts is used to estimate the problem’s difficulty (easy, medium, or hard). Next, the generated reasoning is fed back into the model, which is asked to compute the attention score of each reasoning token from `</think>`. During this attention-based compression step, we remove steps with lower scores. The degree of removal is determined by the estimated difficulty: easier problems undergo more aggressive compression. Finally, we compute the correctness and length rewards using the compressed reasoning trajectory, and these rewards are used to update the policy.

evaluation on various benchmarks such as GPQA-D, BBEH, OverthinkingBench, and UnderthinkingBench shows generalizability performance. Among these OOD tasks, TRAAC shows an average improvement of 3% on Qwen3-4B, with a maximum improvement of 6.8% on UnderthinkBench, along with an average 40% reduction in response length across OOD tasks. Our analysis and ablations demonstrate that through difficulty level calibration, TRAAC learns to dynamically adjust its compression ratio – with lower compression on difficult tasks and higher compression on easier ones, which translates into performance gains across diverse difficulty tasks.

2 TRAAC: THINK RIGHT WITH ADAPTIVE ATTENTIVE COMPRESSION

In this section, we introduce our proposed TRAAC method in detail (also shown in Fig. 2). It is designed to mitigate under-adaptivity, which leads to resource misallocation during test-time. The main challenge lies in the efficient identification of low-importance tokens and making the attention-based compression adaptive to the task’s difficulty. To this end, TRAAC employs an attention-based compression module \mathcal{C} (described below) that calibrates its degree of compression based on estimated task difficulty and prunes unnecessary reasoning steps while preserving essential information.

2.1 PROBLEM FORMULATION IN TRAAC

TRAAC is based on Group Reward Policy Optimization (GRPO; Shao et al., 2024), which is an on-line reinforcement learning (RL) framework that extends Proximal Policy Optimization (Schulman et al., 2017) by eliminating the critic and instead estimating the baseline from a group of sampled responses. Let π_θ denote the policy model and q the input query. Given q , the model generates an output $y = \text{cat}(r, a)$ where cat is the concatenate function, r is the complete reasoning trajectory, and a is the final answer, separated by the delimiter `</think>`. An attention-based compression module \mathcal{C} (described below) produces a compressed reasoning trajectory: $r_{\text{comp}} = \mathcal{C}(r)$. At each training step, the model generates N rollouts, $\{y^i\}_{i=1}^N$, where each rollout $y^i = \text{cat}(r^i, a^i)$ (see “rollout” arrow in Fig. 2). The advantage of each rollout is estimated using the standard GRPO objective (details in Appendix A.9). The task difficulty d is estimated from these rollouts as the proportion of correct answers among the N samples (Zhang & Zuo, 2025; Huang et al., 2025). We show this in Fig. 2 by classifying a problem to easy, medium or hard based on d . Task difficulty d is then used to (i) modulate the compression ratio applied to the reasoning trajectory r , and (ii)

162 assign rewards to each rollout. The answer is regenerated based on the compressed trajectory and
 163 the advantage is estimated using both the original rollouts and their compressed counterparts.
 164

165 2.2 ADAPTIVE, ATTENTIVE COMPRESSION MODULE 166

167 The goal of the compression module is to identify and remove redundant reasoning steps by evaluating
 168 attention scores assigned to each token.

169 **Attention-Based Compression.** To calculate the attention score assigned to each token, we pass
 170 the reasoning trajectory r (full rollout in Fig. 2) through the initial policy model. As compared
 171 to other compression-based methods (Cheng et al., 2025; Lu et al., 2025), TRAAC does not rely on
 172 external models for annotating reasoning steps. To segment the reasoning trajectory r into reasoning
 173 steps, we split it at special control tokens such as “*wait*”, “*alternative*”, “*Let me think again*”, etc
 174 (complete list Appendix A.8.2). For the current thinking models, $\langle/\text{think}\rangle$ marks the end of a
 175 reasoning trajectory, followed by the final answer. Choi et al. (2025) show that $\langle/\text{think}\rangle$ attends to
 176 key reasoning steps that contain crucial information for deriving the final answer, therefore, for each
 177 token t_j in the reasoning steps, its importance score is defined as the aggregated attention from the
 178 delimiter $\langle/\text{think}\rangle$ across all layers and heads:

$$179 \quad s_j = \frac{1}{LH} \sum_{\ell=1}^L \sum_{h=1}^H \alpha_{\langle/\text{think}\rangle \rightarrow t_j}^{(\ell,h)}, \\ 180 \\ 181$$

182 where L is the number of layers, H is the number of heads per layer, and $\alpha_{\langle/\text{think}\rangle \rightarrow t_j}^{(\ell,h)}$ is the attention
 183 weight from $\langle/\text{think}\rangle$ to token t_j in head h of layer ℓ . Before computing the attention score of each
 184 token, consistent with prior work (Muennighoff et al., 2025; Choi et al., 2025), we also append an
 185 auxiliary prompt at the end of the reasoning trajectory (see Appendix A.8.1). This encourages the
 186 model to distill the reasoning process into its most salient steps, thereby enabling the delimiter token
 187 $\langle/\text{think}\rangle$ to attend to the most informative parts of the reasoning trajectory (highlighted in green).
 188 As shown in Fig. 2 (bottom-right), the model assigns low attention scores to reasoning steps that
 189 do not contribute to the final correct answer (highlighted in red), effectively pruning unnecessary
 190 cyclic self-corrections and verification loops. Finally, the importance score of a reasoning step
 191 C_k , consisting of tokens $\{t_j\}_{j \in C_k}$, is then computed as the mean of its token-level scores: $s_{C_k} =$
 192 $\frac{1}{|C_k|} \sum_{j \in C_k} s_j$. Steps with lower importance scores are pruned, yielding the compressed reasoning
 193 trajectory r_{comp}^i .

194 **Difficulty-Level Calibration.** To address **under-adaptivity**, the pruning strategy is further
 195 adapted to task difficulty, i.e., for easier tasks, a larger proportion of reasoning steps are removed, en-
 196 couraging the model to condense its reasoning more aggressively (see “compression” on the right of
 197 Fig. 2). The difficulty of a task is estimated, based on the pass rate of each problem, during rollout.
 198 From the estimated difficulty level, each problem set is categorized among three difficulty levels:
 199 easy, medium, and hard, with a higher pass rate indicating easier problems and vice versa. Each
 200 category is assigned a compression rate to determine the degree of redundant steps to prune from
 201 the reasoning trajectory, with a higher compression for easier problems and a lower compression for
 202 hard problems. In addition, to keep these constraints adaptive to the amount of redundancy in the
 203 steps, we calculate the *uniformity* of the attention score distribution. When the distribution of $\{s_j\}$
 204 is close to uniform, indicating that no step or token within a step stands out as significantly more im-
 205 portant, the compression rate is reduced to avoid removing potentially useful reasoning steps. More
 206 details on calculating the uniformity score can be found in Appendix A.8.3. The difficulty estimate
 207 d is further incorporated with the reward calculation described below.

208 2.3 REWARDS 209

210 Following standard GRPO practice of having a verifiable reward system (Shao et al., 2024), our
 211 setup comprises three different reward signals to guide the model to generate correct adaptive length
 212 responses based on the difficulty of the task:

- 214 • **Correctness Reward (CR):** A high-weight reward is assigned to outputs that produce the correct
 215 final answer. A high score over other rewards is used to ensure that correctness remains the
 216 primary optimization objective, regardless of the reasoning trajectory length.

216 • **Format Reward:** A structure reward to ensure the presence of special delimiter tokens such as
 217 <think> and </think>, ensuring that trajectory r and final answer a are easily distinguishable.
 218 • **Length Reward (LR):** To regulate the verbosity of the reasoning process, we define a length-
 219 based reward that penalizes unnecessarily long reasoning traces while adapting to task difficulty.
 220 Based on our initial experiment, simply favoring shorter rollouts led to a drastic decrease in re-
 221 sponse length along with model accuracy; therefore we introduce a sigmoid-based smoothing
 222 mechanism that provides a soft bonus (β) for rollouts beyond the median length. This prevents
 223 sharp drops in reward for slightly longer reasoning and helps stabilize training. During each
 224 training step, rollouts are partitioned into bins according to their calculated difficulty. As men-
 225 tioned above, we use the pass rate of the rollouts to categorize them into three difficulty bins:
 226 easy, medium and hard. For each bin, we maintain a different distribution $\mathcal{L}_d = \{\ell_1, \ell_2, \dots, \ell_m\}$
 227 for each difficulty category d . Let ℓ be the length of the current rollout. The normalized length score is
 228 computed as: $L_{\text{norm}} = (L_{\text{max}} - \ell) / \max(L_{\text{max}} - L_{\text{min}}, \epsilon)$, where $\epsilon > 0$ prevents division by
 229 zero and $L_{\text{min}} = \min(\mathcal{L})$, $L_{\text{max}} = \max(\mathcal{L})$. To avoid a sharp cutoff around the median, we add
 230 a smooth bonus term:

$$\beta = 1 / \left(1 + \exp \left(\frac{\ell - \text{median}(\mathcal{L})}{0.1 \times \text{median}(\mathcal{L})} \right) \right),$$

231 where $\text{median}(\mathcal{L})$ = median of the set. The final length reward becomes $r_{\text{length}} = \max(L_{\text{norm}}, \beta)$.
 232 Note that length reward is only provided to a rollout if it reaches a final correct answer. Moreover,
 233 to ensure stability when calculating L_{min} , L_{max} , and $\text{median}(\mathcal{L})$, we maintain a sliding window
 234 over the last 10 steps for each difficulty bin, thereby avoiding drastic fluctuations during training.

235 The final reward for each rollout during GRPO training is the combination of correctness, format,
 236 and length rewards (c.f. range of each reward in Appendix A.10.2).

3 EXPERIMENTAL SETUP

237 **Models.** We adopt two reasoning models, DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI et al.,
 238 2025) (Deepseek-Qwen-7B) and Qwen3-4B (Team, 2025) as our base models.

239 **Datasets.** We train the model using DAPO-Math-17k (Yu et al., 2025), a math dataset that has veri-
 240 fiable answer. For evaluation, we use a diverse set of benchmarks, including AIME (AIME, 2024),
 241 AMC (AMC, 2023), GPQA-D (Rein et al., 2023), OverthinkingBench/ UnderthinkingBench (Ag-
 242 garwal et al., 2025), and Big Bench Extra Hard (BBEH) (Kazemi et al., 2025). Among the evalua-
 243 tion datasets, only AIME and AMC are math-specific, while the remaining benchmarks represent
 244 out-of-distribution settings. Further dataset details and their sizes are provided in Appendix A.1.

245 **Evaluation.** For each evaluation run, we set temperature to 1.0, and the maximum response length
 246 is set to 10k. For each dataset, the mean accuracy and mean response length across 5 runs are
 247 reported. For the overthink split, we also report the AUC_{OAA} (Aggarwal et al., 2025), directly used
 248 from their work. To aggregate performance across all thresholds, we compute the Area Under the
 249 Curve (AUC). More details about these metrics can be found in Appendix A.10.3. Intuitively, a
 250 higher AUC_{OAA} indicates that the model sustains stronger accuracy while minimizing unnecessary
 251 reasoning across thresholds. Following evaluation from Aggarwal et al. (2025) for computing the
 252 OptimalThinkingBench score, we combined the AUC_{OAA} from OverthinkingBench and accuracy
 253 from UnderthinkingBench into a single F1 score.

254 **Training.** During the GRPO rollout, we keep a high temperature of 1.0 and sample 8 rollouts
 255 at each step. Due to computational constraints, we set the maximum response length to 10k (see
 256 Appendix A.10.3 for other hyperparameter details). For difficulty calibration, we bin problems into
 257 easy, medium, and hard categories, assigning the categories decreasing compression scores.

258 **Baselines.** We compare TRAAC with 5 strong baselines: (1) **Base model:** off-the-shelf reasoning
 259 model, (2) **TokenSkip:** An SFT based baseline as described by Xia et al. (2025) that fine-tunes the
 260 model over compressed CoT training data. (3) **L1-Max:** An RL framework proposed by Aggarwal
 261 & Welleck (2025) that optimizes for accuracy while adhering to user-specific length constraints.
 262 We used the constraint “Think for a maximum of 10000 tokens.” during its training. (4) **LC-
 263 R1:** A compression-based RL framework by Cheng et al. (2025) that uses an externally trained
 264 model to remove invalid portions of the thinking process. (5) **AdaptThink:** Different from the

270 Table 1: Performance comparison of TRAAC with various baselines. Each model is evaluate across
 271 various benchmarks, and Acc: accuracy(%) and Len: average Response Length(k) are reported.
 272 TRAAC on average shows the highest performance gain.

Method	AIME		AMC		GPQA-D		BBEH		Average	
	Acc. \uparrow	Len. \downarrow								
Qwen3-4B										
Base Model	27.64	9.2	68.19	7.0	45.18	7.6	18.28	6.7	39.8	7.6
TokenSkip	5.84	9.6	27.71	8.7	32.32	7.8	11.91	7.2	19.4	8.3
L1-Max	30.11	7.1	63.61	5.8	43.23	5.8	14.91	5.0	38.0	5.9
LC-R1	13.48	2.6	56.38	1.7	26.67	1.5	12.35	1.9	27.2	1.9
Adapt Think	36.63	8.4	72.77	5.8	44.04	6.7	7.87	6.2	40.3	6.8
TRAAC	45.45	6.7	79.52	4.2	47.21	4.2	20.59	4.3	48.2	4.8
DeepSeek-R1-Distill-Qwen-7B										
Base Model	33.71	8.2	74.22	5.7	43.55	7.1	10.61	5.9	40.5	6.7
TokenSkip	24.94	8.5	52.05	6.8	34.24	7.0	6.30	6.4	29.4	7.2
L1-Max	31.01	3.1	75.90	2.2	23.54	1.9	13.43	2.1	36.0	2.3
LC-R1	6.07	4.0	37.35	3.5	28.78	2.5	9.09	1.7	20.3	2.9
Adapt Think	38.88	7.1	75.66	4.1	19.29	4.8	6.17	5.2	35.0	5.3
TRAAC	38.60	7.3	77.83	4.5	47.31	6.2	11.55	5.2	43.8	5.8

291 above baselines, AdaptThink is an adaptive RL framework described by [Zhang et al. \(2025b\)](#), that
 292 enables reasoning models to choose between “thinking” and “no-thinking” modes and poses it as a
 293 constraint optimization problem that encourages the model to choose no-thinking while maintaining
 294 performance. Prompts used for all baselines in Appendix [A.10.5](#).

4 RESULT AND DISCUSSION

4.1 MAIN RESULTS

300 **TRAAC improve both performance and efficiency.** Tables 1 show the performance of TRAAC com-
 301 pared to other baselines on AIME, AMC, GPQA-D, BBEH (Big Bench Extra Hard) benchmarks.
 302 TRAAC (Qwen3-4B) achieves an average accuracy improvement of 8.4% while reducing reasoning
 303 length by 36.8% compared to the base model. Similarly, TRAAC (Deepseek-Qwen-7B) improves
 304 accuracy by 3.3% with a 13.4% reduction in length. When compared to the SFT baseline Token-
 305 Skip ([Xia et al., 2025](#)), TRAAC outperforms in terms of performance and efficiency for both models,
 306 Qwen3-4B and Deepseek-Qwen-7B. Similarly, L1-Max ([Aggarwal & Welleck, 2025](#)), an RL-based
 307 method that penalizes long responses, also solely focuses on efficiency gains, at a slight cost of over-
 308 all performance. Additionally, the compression-based RL framework LC-R1 ([Cheng et al., 2025](#))
 309 improves the efficiency of the model at the cost of a 12.6% drop for Qwen3-4B and 20.2% drop for
 310 Deepseek-Qwen-7B, when compared with base models, respectively. On average for Qwen3-4B,
 311 TRAAC outperforms L1-Max by 10.2% on Qwen3-4B and by 7.9% on Deepseek-Qwen-7B. Sim-
 312ilarly, TRAAC also outperforms LC-R1 by 21% on Qwen3-4B and 23% on Deepseek-Qwen-7B.
 313 Moreover, given the same token budget, of approximately 7k, TRAAC (Qwen3-4B) on AIME outper-
 314 forms L1-Max by 15%. These results highlight that, unlike methods that prioritize only efficiency,
 315 TRAAC simultaneously delivers both higher accuracy and shorter reasoning traces.

316 **TRAAC generalizes across domains.** Recall that for training TRAAC we used data from DAPO-Math-
 317 17k ([Yu et al., 2025](#)), which is a math reasoning dataset. In addition to math datasets, we also eval-
 318 uate TRAAC on several out-of-domain (OOD) tasks, including GPQA-D, BBEH, OverthinkingBench,
 319 and UnderthinkingBench (Table 2). Among these OOD tasks, TRAAC shows an average improve-
 320 ment of 3% on Qwen3-4B and 2.8% on Deepseek-Qwen-7B compared to the base model, with
 321 improvement as high as 6.8% on UnderthinkingBench, which covers 100 diverse reasoning tasks
 322 from Reasoning Gym ([Stojanovski et al., 2025](#)). In addition, TRAAC reduces reasoning tokens by
 323 40% on Qwen3-4B and 20% on Deepseek-Qwen-7B, demonstrating substantially higher efficiency
 324 while also boosting accuracy across benchmarks. This indicates that TRAAC learns a generalizable
 325 compression strategy that transfers from math to other reasoning domains.

324
 325 Table 2: Performance of TRAAC and various baselines on OptimalThinkingBench (OTB). For Un-
 326 derthinkingBench we report the Acc: Accuracy(%), and Len: Average Response length(k). For
 327 OverthinkingBench, in addition to Acc. and Len. we also report the AUC_{OAA}.

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 Method	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 OverthinkingBench	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 UnderthinkingBench	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 OTB			
	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 Acc. \uparrow	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 Len. \downarrow	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 AUC _{OAA} \uparrow	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 Acc. \uparrow	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 Len. \downarrow	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 F1 \uparrow
Qwen3-4B						
Base Model	90.02	1.2	80.06	34.33	7.1	48.05
TokenSkip	78.15	3.5	57.88	14.80	7.9	23.57
L1-Max	87.22	0.9	1.11	21.27	6.3	2.10
LC-R1	78.62	0.3	64.20	14.95	1.3	24.25
Adapt Think	68.83	8.2	63.44	18.80	6.0	29.01
TRAAC	89.79	0.6	85.06	41.09	4.7	55.41
DeepSeek-R1-Distill-Qwen-7B						
Base Model	78.45	0.9	72.38	12.69	6.2	21.60
TokenSkip	57.03	3.9	40.77	8.55	7.2	14.13
L1-Max	73.18	1.0	66.01	20.07	2.0	30.78
LC-R1	76.08	0.9	69.81	7.16	2.5	12.99
Adapt Think	73.41	0.4	70.72	13.13	4.6	22.14
TRAAC	81.81	1.0	72.89	22.30	5.9	34.15

345
 346 **TRAAC learns to adaptively allocate token budget.** Among the baselines in Tables 1 and 2, we
 347 also compare TRAAC against an adaptive RL method, AdaptThink (Zhang et al., 2025b), which
 348 teaches the model to use distinct “thinking” vs. “non-thinking” modes for hard and easy prob-
 349 lems, respectively. On Qwen3-4B, TRAAC outperforms AdaptThink by 7.9% while also reducing
 350 tokens by 29.4%, highlighting that a flexible adaptive strategy is more effective in handling diverse
 351 problem difficulties. Table 2 further tests on the OverthinkingBench/UnderthinkingBench (Aggar-
 352 wal et al., 2025). OverthinkingBench is designed to measure excessive use of thinking tokens on
 353 simple queries. On the other hand, UnderthinkingBench evaluates how necessary “thinking” is
 354 based on problem difficulty. Taken together, TRAAC improves overall F1 performance by 7.36% on
 355 Qwen3-4B, and 12.55% on Deepseek-Qwen-7B over base model, indicating that TRAAC enables the
 356 model to avoid both overthinking on simple problems and underthinking on complex ones(Aggarwal
 357 et al., 2025). Against AdaptThink, TRAAC achieves a 26% gain on Qwen3-4B and a 12% gain on
 358 Deepseek-Qwen-7B, underscoring its ability to adaptively allocate reasoning effort and adjust token
 359 budgets based on problem difficulty. On OverthinkingBench, we measure overthinking using the
 360 AUC_{OAA} metric, which rewards models that solve very easy problems correctly while using minimal
 361 tokens (ideally 0). Compared to the base model, TRAAC (Qwen3-4B) improves AUC_{OAA} by
 362 5% and Deepseek-Qwen-7B by 0.5%. Relative to AdaptThink, TRAAC gains 21.6% for Qwen3-4B
 363 and 6.9% for Deepseek-Qwen-7B.

364 4.2 ABLATIONS AND ANALYSIS

365 To understand the importance of each component of the training setup we conducted an ablation
 366 study, removing each component of our method. Table 3 and Table 4 show the performance of these
 367 ablations compared with the base model. Specifically, we start with the base model and the ablations:
 368 **(i) Base Model + CR:** The base model trained with GRPO using only the correctness reward, **(ii)**
 369 **Base model + CR + LR:** The base model trained with GRPO using both correctness and length
 370 rewards, but without difficulty-level calibration, **(iii) Base model + CR + LR + Compression:** The
 371 base model trained with GRPO using correctness and length rewards, along with the compression
 372 module, with no difficulty-level calibration. Our findings are as follows.

373 **Combining difficulty-adaptiveness and attention-based compression is crucial for accuracy**
 374 **and efficiency.** Table 3 shows that on Qwen3-4B, removing the difficulty-based calibration (Base
 375 Model + CR + LR + compression) reduces the average performance across AIME, AMC, GPQA-D,
 376 and BBEH by 3.4%, while also making the model less efficient by 23.8%. Additionally, removing
 377 the attention-based compression (Base Model + LR + CR) leads to a further drop in performance by
 0.3%. Similarly, on OptimalThinkingBench (Table 4), we observe a comparable degradation: the

378 Table 3: Ablation Results of TRAAC on Qwen3-4B and Deepseek-Qwen-7B tested across 4 datasets:
379 AIME, AMC, GPQA-D, and BBEH. Each component addition adds to the previous method.

Method	AIME		AMC		GPQA-D		BBEH		Average	
	Acc.↑	Len.↓	Acc.↑	Len.↓	Acc.↑	Len.↓	Acc.↑	Len.↓	Acc.↑	Len.↓
Qwen3-4B										
Base Model	27.64	9.2	68.19	7.0	45.18	7.6	18.28	6.7	39.8	7.6
+ CR	44.36	7.9	77.35	5.5	46.29	5.7	18.13	5.2	46.5	6.1
+ LR	37.84	4.5	77.35	2.4	44.06	2.3	18.57	2.1	44.5	2.8
+ Compression	38.37	8.1	75.90	5.5	46.40	6.2	18.41	5.4	44.8	6.3
TRAAC	45.45	6.7	79.52	4.2	47.21	4.2	20.59	4.3	48.2	4.8

389 Table 4: Ablation Results of TRAAC (Qwen3-4B and Deepseek-Qwen-7B) on OptimalThinking-
390 Bench (OTB). Each component addition adds to the previous method.

Method	OverthinkingBench			UnderthinkingBench		OTB
	Acc.↑	Len.↓	AUC _{OAA} ↑	Acc.↑	Len.↓	
Qwen3-4B						
Base Model	90.02	1.2	80.06	34.33	7.1	48.1
+ CR	90.02	0.9	78.86	37.06	5.7	50.4
+ LR	90.94	0.4	75.86	29.62	2.3	42.6
+ Compression	90.12	0.9	80.41	36.51	6.0	50.2
TRAAC	89.79	0.6	85.06	41.09	4.7	55.4

401
402 F1 score decreases by 5.2% when task-difficulty level calibration is removed and drops further by
403 7.6% when the attention-based compression module is also removed. These results highlight that a
404 combination of task-difficulty calibration and attention-based compression is crucial for achieving
405 both high performance and efficiency gains across tasks.

406
407 **TRAAC adapts to task difficulty.** To further understand the level of adaptivity of TRAAC compared
408 to other methods, we plot the relative compression ratio and absolute accuracy gains (w.r.t. the base
409 model) in Fig. 3 as a function of task difficulty. Here, we rank tasks in order of increasing difficulty.
410 We conduct these experiments on SuperGPQA (Team et al., 2025) – a benchmark to evaluate model
411 knowledge and reasoning capabilities, which is stratified into easy, medium, and hard splits, and
412 BBH (Big Bench Hard) (Suzgun et al., 2022) – an easier version of BBEH. To get oracle difficulty
413 ratings, we rank the datasets by the performance of frontier models on them (Kazemi et al., 2025;
414 Team et al., 2025), with harder datasets being those with lower performance. From Fig. 3(a), we see
415 that as the difficulty of the dataset increases from left to right, the compression rate steadily drops
416 for TRAAC, underscoring its ability to compress more for easier tasks and less for difficult tasks.
417 However, without task-difficulty level calibration, the compression rate remains roughly uniform
418 across the tasks. Fig. 3(b) highlights the performance difference, and shows that even with more
419 compression, TRAAC always maintains higher accuracy than Qwen3-4B + CR + LR + compression,
420 reiterating the effectiveness of adapting to problem difficulty in TRAAC. Moreover, most of the
421 accuracy gains stems from harder problems, indicating the average accuracy gains seen in Table 1
422 come from difficulty-adaptive thinking. Deepseek-Qwen-7B results are shown in Appendix A.7 and
423 follow a similar trend as Qwen3-4B.

424
425 **TRAAC scales to larger response length, maintaining its improvement.** During TRAAC training, we set
426 a maximum token budget of 10k. To test the scalability of our method, we increase the max training
427 and test-time response length to 15k. Table 5 shows the accuracy and average response length for AIME,
428 AMC, and GPQA-D datasets, for the Qwen3-4B and TRAAC with increased token budget. Similar to the
429 prior results, we see an average accuracy improvement of 3.5% and 23.4% efficiency gains. This
430 underscores that scaling TRAAC still shows consistent gains for both accuracy and efficiency.

431 Table 5: TRAAC with 15k training and test-
432 time response length. For each dataset, Acc-
433 uracy (%) and Response Length (in $\times 1000$
434 tokens) are reported.

	AIME	AMC	GPQA-D
Qwen3-4B	47.74 / 12.3	77.11 / 8.5	49.64 / 8.6
TRAAC	51.93 / 9.7	81.68 / 6.6	51.27 / 6.2

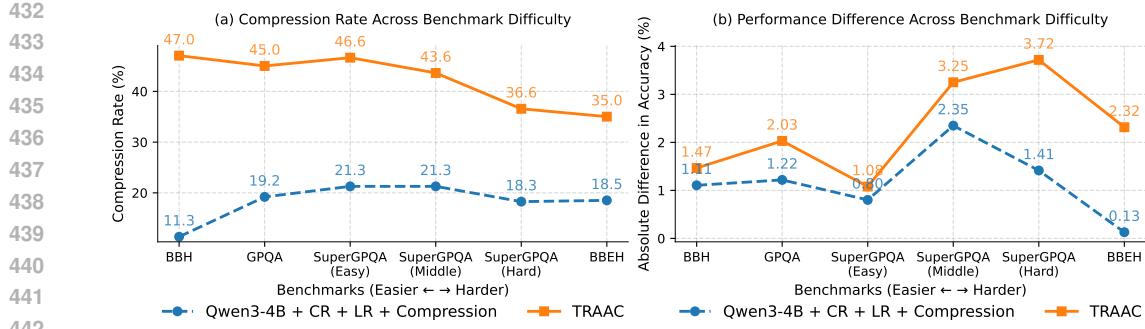


Figure 3: (a) Relative change in compression rate of TRAAC and Qwen3-4B + Compression compared to Qwen3-4B across varying problem difficulty. (b) Absolute accuracy drop of TRAAC and Qwen3-4B + Compression compared to Qwen3-4B across varying problem difficulty.

Attention-based compression identifies redundant steps effectively. To help understand the efficiency of the adaptive, attentive compression module, we replace the attention-based compression with random step compression or confidence-based compression. At each training step, instead of using attention as a metric, reasoning steps are pruned either randomly or steps with the least confidence (complete details on how confidence is calculated are in Appendix A.5). Table 6 compares TRAAC (Qwen3-4B) with random steps and least confidence. Relative to TRAAC, random step pruning shows an average of 11% accuracy drop, and similarly, pruning the least confidence steps leads to a 7.25% accuracy drop. This highlights the efficacy of using attention-based compression in TRAAC.

TRAAC reward design achieves the highest performance. During TRAAC training, we use a correctness reward of +4/0, a format reward of +1/0, and a length reward of +2/0. The length reward is kept *adaptive*: rollouts receive a positive length reward only if the final answer is correct; otherwise, all length rewards are set to zero. This ensures that correctness is always prioritized over efficiency, which is reflected in the larger magnitude of the correctness reward. To study the impact of this reward design, we conduct two additional ablations: (i) **Reduced correctness reward**: correctness reward lowered to +1, with length reward still adaptive to correctness. (ii) **Non-adaptive length reward**: correctness reward lowered to +1, and length reward made independent of final-answer correctness. Table 7 compares these variants with the full TRAAC setup across AIME, AMC, and GPQA-D. The ablation results show that reducing the correctness reward maintains reasonable performance on AMC and GPQA-D but causes a substantial accuracy drop on AIME. Removing the dependency of the length reward on correctness leads the model to exploit the reward by minimizing output length, resulting in severe performance degradation across all datasets.

Table 6: Ablation on Qwen3-4B: comparing TRAAC with pruning random and least confident steps. For each dataset, Accuracy(%) / Response length (k) is reported.

Pruning Strategy	AIME	AMC	GPQA-D
Random Steps	29.54 / 6.5	66.74 / 4.1	42.94 / 3.2
Least Confidence	32.35 / 5.8	71.08 / 3.4	47 / 3.0
TRAAC	45.45 / 6.7	79.52 / 4.2	47.2 / 4.2

Table 7: Reward ablation results comparing different correctness and length reward configurations. For each dataset, Accuracy (%) and Response Length (in $\times 1000$ tokens) are reported.

	AIME	AMC	GPQA-D
TRAAC _{reduced correctness}	29.96 / 6.2	71.32 / 3.9	47.7 / 3.6
TRAAC _{non adaptive}	5.33 / 0.6	34.87 / 0.7	29.79 / 0.5
TRAAC	45.45 / 6.7	79.52 / 4.2	47.21 / 4.2

5 RELATED WORK

In the past years, reasoning performance of language models has vastly improved via the introduction of chain-of-thoughts (Wei et al., 2023), parallel scaling through self-consistency (Wang et al., 2023), and best-of- N sampling (Lightman et al., 2023). More recently, several works have found sequential scaling – i.e., increasing the number of reasoning tokens – to be the most effective ap-

486 proach (Muennighoff et al., 2025), especially when combined with online reinforcement learning or
 487 distillation from such models (Aggarwal & Welleck, 2025; Shao et al., 2024; DeepSeek-AI et al.,
 488 2025). Consequently, the area of efficient reasoning – maintaining high performance from sequential
 489 scaling with minimal token usage – has become a central research focus (Chen et al., 2024; Mar-
 490 janović et al., 2025; Wu et al., 2025). To this end, prior works compress or prune chain-of-thoughts
 491 via early exiting (Zhang et al., 2025a; Fu et al., 2025), train models under pre-specified budgets (Ag-
 492 garwal & Welleck, 2025), learn thoughts latently without generating them (Hao et al., 2025), use
 493 supervised finetuning to avoid overthinking (Xia et al., 2025; Cheng et al., 2025; Lu et al., 2025), or
 494 add length-based penalties for conciseness (Arora & Zanette, 2025; Hou et al., 2025). However, this
 495 line of work does not *explicitly* account for varying problem difficulty, instead relying on the model
 496 to learn to allocate budget implicitly; in contrast, TRAAC introduces difficulty-based supervision for
 497 budget allocation. Moreover, prior approaches typically address only overthinking – reducing output
 498 length at the cost of performance drops – whereas we tackle both over- and underthinking.
 499

500 Improving *both* reasoning performance and efficiency requires a more *adaptive* approach through
 501 explicit training. Prior work such as Zhang et al. (2025b) frames adaptivity as a binary decision of
 502 *whether* to think, whereas we argue that for harder problems it must involve deciding *how much*
 503 to think – and empirically outperform this baseline in Appendix 4.1. A similar insight appears in
 504 planning, where Saha et al. (2025) show that mixing “system 1” and “system 2” reasoning within
 505 the same instance outperforms a binary choice between them. Shen et al. (2025) pursue difficulty-
 506 adaptive training via repeated sampling and offline preference optimization to prefer shorter re-
 507 sponds. In contrast, TRAAC provides attention-based supervision in the compression module through
 508 online RL (DeepSeek-AI et al., 2025). Unlike concurrent work by Choi et al. (2025), who prune re-
 509 dundant tokens post hoc, our method adapts compression during training itself – yielding difficulty-
 510 aware reasoning and improved test-time efficiency without generating unnecessary tokens.
 511

510 6 CONCLUSION

511 We introduced TRAAC, a post-training RL method that operates online and uses a difficulty-adaptive,
 512 attention-based compression module. Through its adaptive attentive compression, TRAAC is able
 513 to prune its reasoning steps adaptively based on the task difficulty. TRAAC addresses the issue of
 514 under-adaptivity, which helps improve both performance and efficiency, as thinking longer on harder
 515 problems helps in better exploration, and thinking shorter on easier problems avoids wasting of test-
 516 time compute. Moreover, our method also shows strong generalizability, with evaluation done on
 517 various OOD tasks. Through our analysis and ablation, we further verify that our adaptive method
 518 can provide fine-grained adjustments to the thinking budget based on the difficulty of the problem,
 519 and a combination of task-difficulty calibration and attention-based compression helped achieve
 520 both accuracy and efficiency gains.
 521

522 ETHICS STATEMENT

523 TRAAC is a reinforcement learning method that rewards models based on the correctness of the final
 524 answer. Therefore, the trained LLMs may still generate hallucinations, since their intermediate
 525 reasoning steps are neither guided nor evaluated – only the final result is checked. This means
 526 outputs from TRAAC can pose risks of misinformation or hallucination. Future work is needed to
 527 more thoroughly evaluate and mitigate these issues.
 528

530 7 REPRODUCIBILITY STATEMENT

531 We are making our code available in the supplementary materials to help reproduce our findings.
 532 We also provide detailed descriptions, hyperparameters, and prompts about the implementation of
 533 TRAAC in Appendix A.10.
 534

535 8 REFERENCES

536 Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
 537 reinforcement learning, 2025. URL <https://arxiv.org/abs/2503.04697>.
 538

540 Pranjal Aggarwal, Seungone Kim, Jack Lanchantin, Sean Welleck, Jason Weston, Ilia Kulikov, and
 541 Swarnadeep Saha. Optimalthinkingbench: Evaluating over and underthinking in llms, 2025. URL
 542 <https://arxiv.org/abs/2508.13141>.

543

544 AIME. American invitational mathematics examination, 2024. URL https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination.

545

546

547 AMC. American mathematics competitions, 2023. URL <https://maa.org/student-programs/amc/>.

548

549

550 Daman Arora and Andrea Zanette. Training language models to reason efficiently, 2025. URL
 551 <https://arxiv.org/abs/2502.04463>.

552

553 Jiangjie Chen, Qianyu He, Siyu Yuan, Aili Chen, Zhicheng Cai, Weinan Dai, Hongli Yu, Qiying Yu,
 554 Xuefeng Li, Jiaze Chen, Hao Zhou, and Mingxuan Wang. Enigmata: Scaling logical reasoning in
 555 large language models with synthetic verifiable puzzles, 2025. URL <https://arxiv.org/abs/2505.19914>.

556

557 Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
 558 Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for $2+3=?$ on the overthinking
 559 of o1-like llms. *arXiv preprint arXiv:2412.21187*, 2024.

560

561 Zhengxiang Cheng, Dongping Chen, Mingyang Fu, and Tianyi Zhou. Optimizing length compres-
 562 sion in large reasoning models, 2025. URL <https://arxiv.org/abs/2506.14755>.

563

564 Daewon Choi, Jimin Lee, Jihoon Tack, Woomin Song, Saket Dingliwal, Sai Muralidhar Jayanthi,
 565 Bhavana Ganesh, Jinwoo Shin, Aram Galstyan, and Sravan Babu Bodapati. Think clearly: Im-
 566 proving reasoning via redundant token pruning, 2025. URL <https://arxiv.org/abs/2507.08806>.

567

568 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
 569 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
 570 model post-training, 2025. URL <https://arxiv.org/abs/2501.17161>.

571

572 Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
 573 Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, et al. The danger of overthinking: Exam-
 574 ining the reasoning-action dilemma in agentic tasks. *arXiv preprint arXiv:2502.08235*, 2025.

575

576 DeepSeek-AI et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learn-
 577 ing, 2025. URL <https://arxiv.org/abs/2501.12948>.

578

579 Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. *arXiv preprint arXiv:2508.15260*, 2025.

580

581 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason E Weston, and Yuandong
 582 Tian. Training large language model to reason in a continuous latent space, 2025. URL <https://openreview.net/forum?id=tG4SgayTtk>.

583

584 Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
 585 Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. *arXiv preprint arXiv:2504.01296*, 2025.

586

587 Shijue Huang, Hongru Wang, Wanjun Zhong, Zhaochen Su, Jiazhan Feng, Bowen Cao, and Yi R.
 588 Fung. Adactrl: Towards adaptive and controllable reasoning via difficulty-aware budgeting, 2025.
 589 URL <https://arxiv.org/abs/2505.18822>.

590

591 Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou, San-
 592 ket Vaibhav Mehta, Lalit K. Jain, Virginia Aglietti, Disha Jindal, Peter Chen, Nishanth Dikkala,
 593 Gladys Tyen, Xin Liu, Uri Shalit, Silvia Chiappa, Kate Olszewska, Yi Tay, Vinh Q. Tran, Quoc V.
 Le, and Orhan Firat. Big-bench extra hard, 2025. URL <https://arxiv.org/abs/2502.19187>.

594 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 595 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth*
 596 *International Conference on Learning Representations*, 2023.

597 Ximing Lu, Seungju Han, David Acuna, Hyunwoo Kim, Jaehun Jung, Shrimai Prabhumoye, Niklas
 598 Muennighoff, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, et al. Retro-search: Ex-
 599 ploring untaken paths for deeper and efficient reasoning. *arXiv preprint arXiv:2504.04383*, 2025.

600 Sara Vera Marjanović, Arkil Patel, Vaibhav Adlakha, Milad Aghajohari, Parishad BehnamGhader,
 601 Mehar Bhatia, Aditi Khandelwal, Austin Kraft, Benno Krojer, Xing Han Lù, Nicholas
 602 Meade, Dongchan Shin, Amirhossein Kazemnejad, Gaurav Kamath, Marius Mosbach, Karolina
 603 Stańczak, and Siva Reddy. Deepseek-r1 thoughtology: Let's think about llm reasoning, 2025.
 604 URL <https://arxiv.org/abs/2504.07128>.

605 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 606 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 607 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.

608 OpenAI et al. Openai o1 system card, 2024. URL <https://arxiv.org/abs/2412.16720>.

609 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 610 Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof qa bench-
 611 mark, 2023. URL <https://arxiv.org/abs/2311.12022>.

612 Swarnadeep Saha, Archiki Prasad, Justin Chih-Yao Chen, Peter Hase, Elias Stengel-Eskin, and
 613 Mohit Bansal. System-1.x: Learning to balance fast and slow planning with language models,
 614 2025. URL <https://arxiv.org/abs/2407.14414>.

615 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 616 optimization algorithms, 2017. URL <https://arxiv.org/abs/1707.06347>.

617 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 618 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 619 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

620 Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
 621 Wang, Zhaoxiang Liu, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reason-
 622 ing models, 2025. URL <https://arxiv.org/abs/2503.04472>.

623 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 624 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*
 625 *arXiv: 2409.19256*, 2024.

626 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 627 can be more effective than scaling model parameters, 2024. URL <https://arxiv.org/abs/2408.03314>.

628 Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kad-
 629 dour, and Andreas Köpf. Reasoning gym: Reasoning environments for reinforcement learning
 630 with verifiable rewards, 2025. URL <https://arxiv.org/abs/2505.24760>.

631 Mirac Suzgun, Nathan Scales, Nathanael Schärlí, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 632 Akanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
 633 bench tasks and whether chain-of-thought can solve them, 2022. URL <https://arxiv.org/abs/2210.09261>.

634 P Team et al. Supergpqa: Scaling llm evaluation across 285 graduate disciplines, 2025. URL
 635 <https://arxiv.org/abs/2502.14739>.

636 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

637 Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji. Mint:
 638 Evaluating llms in multi-turn interaction with tools and language feedback, 2024. URL <https://arxiv.org/abs/2309.10691>.

648 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
 649 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 650 models. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 651 <https://openreview.net/forum?id=1PL1NIMMrw>.

652 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
 653 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
 654 2023. URL <https://arxiv.org/abs/2201.11903>.

655 Jason Weston and Sainbayar Sukhbaatar. System 2 attention (is something you might need too),
 656 2023. URL <https://arxiv.org/abs/2311.11829>.

657 Yuyang Wu, Yifei Wang, Ziyu Ye, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is
 658 less: Understanding chain-of-thought length in llms. *arXiv preprint arXiv:2502.07266*, 2025.

659 Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
 660 chain-of-thought compression in llms, 2025. URL <https://arxiv.org/abs/2502.12067>.

661 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
 662 Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
 663 learning, 2025. URL <https://arxiv.org/abs/2502.14768>.

664 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
 665 Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
 666 ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
 667 Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
 668 Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
 669 uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
 670 <https://arxiv.org/abs/2503.14476>.

671 Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reason-
 672 ing models know when they're right: Probing hidden states for self-verification. *arXiv preprint*
 673 *arXiv:2504.05419*, 2025a.

674 Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adapthink: Reasoning models can
 675 learn when to think, 2025b. URL <https://arxiv.org/abs/2505.13417>.

676 Jixiao Zhang and Chunsheng Zuo. Grpo-lead: A difficulty-aware reinforcement learning approach
 677 for concise mathematical reasoning in language models, 2025. URL <https://arxiv.org/abs/2504.09696>.

678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

A APPENDIX

A.1 DATASET DETAILS

We evaluated the model on various benchmarks:

- AMC: All questions come from AMC12 2022, AMC12 2023, and have been extracted from the AOPS wiki page. Total Count: 83
- AIME: All questions come from AIME 22, AIME 23, and AIME 24, and have been extracted directly from the AOPS wiki page. Total Count: 90
- GPQA-D: It is a multiple-choice dataset covering physics, biology, and chemistry. Total Count: 198
- BBEH: A benchmark designed to push the boundaries of LLM reasoning evaluation. BBEH replaces each task in BBH with a novel task that probes a similar reasoning capability but exhibits significantly increased difficulty. Total Count: 460
- OptimalThinkingBench: A unified benchmark that jointly evaluates overthinking and underthinking in LLMs and also encourages the development of optimally-thinking models that balance performance and efficiency. Two sub benchmarks: OverthinkingBench, featuring simple queries in 72 domains, and UnderthinkingBench, containing 11 challenging reasoning tasks. UnderthinkingBench count: 550, OverthinkingBench count: 607.
- BBH: a suite of 23 challenging BIG-Bench tasks. Total Count: 2115
- SuperGPQA: A comprehensive benchmark designed to evaluate the knowledge and reasoning abilities of Large Language Models (LLMs) across 285 graduate-level disciplines. Each problem is also categorized as easy, medium and hard. 540 problems for each difficulty category, so the total count is 1620.

To calculate the accuracy, we adopt Math-Verify². For UnderthinkingBench accuracy calculation, we used the evaluation scripts from Reasoning-Gym (Stojanovski et al., 2025)

A.2 COMPUTATIONAL COST ANALYSIS OF TRAINING TRAAC

To understand the computational cost of training TRAAC vs other RL-based methods (L1-max, Adapt-Think), we compare TRAAC with RL baselines on training time and FLOPs.

A.2.1 TRAINING TIME

The GRPO algorithm mainly consists of three stages: (i) **Rollout**: the LLM produces multiple responses for a given prompt; (ii) **Scoring**: a scalar reward is assigned to each response; (iii) **Policy optimisation**: the LLM is updated by optimising the total objective. Since we use the math-verify library – a rule-based expression system that does not require additional LLM calls for reward computation – the cost of scoring is negligible.

Table 8 reports the breakdown of training time for TRAAC compared to RL baselines. For each method, we show the wall-clock time (in seconds) for the first training step, split into rollout time, policy optimisation time, and total time.

- **Base Model + CR:** GRPO with correctness reward only.
- **Base Model + CR + LR:** GRPO with correctness and length rewards (no difficulty calibration).

Other RL baselines such as L1-MAX and ADAPTTHINK are also variants of Base Model + CR with an additional length reward term.

²Huggingface Math-Verify

756 Table 8: Training time breakdown for TRAAC and RL baselines during the first GRPO training step.
757

758 Method	759 Rollout (sec)	760 Optimise Policy (sec)	761 Total Time (sec)	762 Hardware
760 Base Model + CR	760 250	760 87.5	760 397.5	760 H100
761 Base Model + CR + LR	761 222	761 88	761 375	761 H100
762 TRAAC	762 418	762 88	762 583	762 H100

763
764 A.2.2 FLOPS
765

766 The majority of the difference between TRAAC and other RL-based methods lies in the rollout strategy used. TRAAC rollout consists of three stages: (i) **Generation**: producing the initial reasoning
767 steps; (ii) **Attention-based compression**: computing attention scores for each reasoning step and
768 compressing the trajectory; (iii) **Answer generation**: generating the final answer based on the com-
769 pressed chain of thought. Table 9 compares the FLOPs required to generate 20 training examples.
770

772 Table 9: FLOPs comparison for generating 20 training examples using different rollout strategies.
773

774 Method	775 FLOPs Used
776 Base Model + CR	776 1.65×10^{15} FLOPs
777 TRAAC	777 3.84×10^{15} FLOPs

779 Most RL baselines only perform the initial generation step. In contrast, TRAAC adds an additional
780 attention-computation stage, yet keeps the overall FLOPs in the same order of magnitude—while
781 producing higher-quality reasoning trajectories. Even though TRAAC incurs an increase in train-
782 ing time and FLOPs for the initial batches, mainly due to its multi-stage generation, the overhead
783 remains modest. Moreover, during inference, TRAAC makes the model more efficient, effectively
784 reducing the computational cost at test time.

785
786 A.2.3 COST AMORTIZES AS TRAINING PROGRESSES
787

788 The additional overhead introduced at the beginning of the training quickly amortises as the training
789 progresses. As the model learns to shorten its generated reasoning traces, its computational cost
790 – including both FLOPs and time per step steadily decreases. To show this empirically, Figure 4
791 shows the time-per-step curve for training DeepSeek-Qwen-7B. As illustrated in the figure, TRAAC
792 begins with a higher step time compared to the Base Model + CR baseline, but the gap closes rapidly.
793 Around mid-training, the two curves match closely, and in later steps, TRAAC consistently becomes
794 more efficient – ultimately achieving a lower step time than the baseline. This confirms that while
795 TRAAC introduces an initial overhead, its adaptive reduction of reasoning length leads to substantial
796 efficiency gains, resulting in lower computation over the course of training.

Figure 4: Time per step across training (Deepseek-Qwen-7B)

To highlight the advantage gained from training TRAAC in terms of FLOPs we calculated the average FLOPs required during inference. We calculated the total amount of FLOPs for generating 80 examples from AMC dataset. The table 10 show the total amount of FLOPs required for both TRAAC and Base Model + CR.

Table 10: Inference compute comparison for TRAAC vs. Base Model + CR on 80 AMC questions.

Method	Total FLOPs (80 questions)	Average FLOPs per question
Base Model + CR (Qwen3-4B)	3.7×10^{15} FLOPs	4.6×10^{13} FLOPs
TRAAC (Qwen3-4B)	2.7×10^{15} FLOPs	3.3×10^{13} FLOPs

TRAAC yields a substantial reduction in inference compute. As shown above, TRAAC requires 2.7×10^{15} FLOPs to answer 80 AMC questions, compared to 3.7×10^{15} FLOPs for the *Base Model + CR*. This corresponds to a 27.3% reduction in inference FLOPs, or a savings of 1.2664×10^{13} FLOPs per question. Although TRAAC incurs additional compute at the beginning of training, this overhead amortizes quickly as training progresses. This cost is balanced rapidly at inference time.

Therefore, with the above two experiments, we show that TRAAC not only amortizes quickly during inference but also makes training more efficient within the first 100 steps.

A.3 AGENTIC EVALUATION OF TRAAC

Including diverse test benchmarks allows us to robustly assess the out-of-distribution generalization capability of TRAAC. In addition, we conduct an evaluation on the agentic, multi-turn benchmark **MINT** (Wang et al., 2024), which measures an LLM’s ability to solve complex tasks through multi-step interactions and tool use. In MINT, LLMs are tasked with solving problems under different interaction limits $k \in \{1, 2, 3, 4, 5\}$, without natural-language feedback. Performance is measured through: (1) the absolute success rate (SR), and (2) the average response length. Table 11 compares the base model (Qwen3-4B) and TRAAC across these metrics for three task categories: code generation, decision making, and reasoning.

Table 11: MINT benchmark results for Base Model (Qwen3-4B) and TRAAC across interaction limits $k \in \{1, 2, 3, 4, 5\}$. Metrics include success rate (SR, %) and average response length.

Task	Method	$k = 1$		$k = 2$		$k = 3$		$k = 4$		$k = 5$	
		SR	Len								
code-generation	Base Model	0.74	0.5	58.09	3.7	58.09	4.8	59.56	5.7	59.56	7.1
	TRAAC	49.26	1.7	58.82	2.6	56.62	3.3	59.56	3.5	58.82	3.8
decision_making	Base Model	0.00	0.5	11.19	2.4	17.16	2.5	30.60	2.5	33.58	3.0
	TRAAC	0.00	0.5	8.21	1.0	21.64	1.2	35.07	1.3	40.30	1.6
reasoning	Base Model	19.94	0.5	76.58	1.9	80.38	2.2	79.75	2.5	79.75	2.4
	TRAAC	66.46	0.8	76.90	1.1	81.65	1.2	79.11	1.3	81.96	1.2
avg_micro	Base Model	10.92	0.5	57.34	2.4	60.75	2.9	63.82	3.2	64.51	3.6
	TRAAC	47.27	1.0	57.00	1.4	62.12	1.7	64.51	1.8	67.06	1.9

When examining the average micro-aggregated performance across all interaction limits, TRAAC consistently matches or exceeds the base model. TRAAC improves the average success rate by 8.12% while simultaneously reducing response length by 38.3%. This demonstrates that TRAAC not only strengthens performance on agentic, multi-turn tasks but also makes the model substantially more efficient in its interactions.

A.4 WHY CHOOSE RL IN TRAAC

Choosing reinforcement learning (RL) rather than supervised fine-tuning (SFT) to teach adaptive compression is motivated by two key reasons:

- **Generalization advantages of RL.** Prior work has repeatedly shown that RL-based methods yield significantly stronger generalization compared to SFT (Chu et al., 2025). In our own exper-

864 iments, the SFT-based baseline TokenSkip performs substantially worse than TRAAC, demon-
 865 strating that simply applying SFT on compressed outputs is insufficient.
 866

867 • **Adaptive compression requires an online difficulty signal.** TRAAC relies on dynamically
 868 compressing reasoning trajectories according to the difficulty of each problem, where the dif-
 869 ficulty signal itself is tightly coupled to the model’s evolving capabilities. Because TRAAC
 870 learns this adaptivity during training, an online RL setting naturally allows difficulty estimates
 871 to improve alongside the model, enabling progressively better compression decisions.

872
 873 **SFT ON ATTENTION-BASED COMPRESSED TRAJECTORIES**
 874

875 For a direct comparison, we also train an SFT model using reasoning trajectories compressed via
 876 TRAAC’s attention-based rollout. To generate the dataset, we use a larger model (Qwen3-32B) to
 877 produce 1.4k compressed rollouts, and then train a smaller model (Qwen3-4B) on this data. The
 878 table below reports the performance of the SFT model relative to the base model and TRAAC across
 879 three benchmarks: AIME, AMC, and GPQA. The SFT model matches the base model’s accuracy
 880 while offering moderate efficiency gains. In contrast, TRAAC improves both accuracy and efficiency
 881 across all benchmarks.

882
 883 Table 12: Comparison of TokenSkip, Base Model, SFT on attention-compressed rollouts, and
 884 TRAAC across AIME, AMC, and GPQA. Metrics include accuracy (%) and average response
 885 length.

Method	AIME		AMC		GPQA	
	Acc.	Len.	Acc.	Len.	Acc.	Len.
TokenSkip	5.84%	9.6k	27.71%	8.7k	32.32%	7.8k
Base Model	27.64%	9.2k	68.19%	7.0k	45.18%	7.6k
SFT	26.06%	8.8k	59.51%	6.6k	42.00%	6.9k
TRAAC	45.45%	6.7k	79.52%	4.2k	47.21%	4.2k

893
 894
 895
 896 **A.5 CONFIDENCE BASED COMPRESSION**
 897

898 Similar to attention compression, where a score is calculated for each reasoning token, the confi-
 899 dence of the model is used to calculate the score, and based on the lowest average score, reasoning
 900 steps are removed. Algorithm 1 shows the pseudocode used to calculate the confidence of each
 901 token.

902 **Algorithm 1:** Token Confidence Calculation
 903

904 **Input:** Top- k token log-probabilities $L = \{\ell_1, \ell_2, \dots, \ell_k\}$
 905 **Output:** Confidence score C
 906 **begin**
 907 // Convert log-probabilities to probabilities
 908 $p_j \leftarrow \exp(\ell_j)$ for each $\ell_j \in L$;
 909 // Normalize probabilities
 910 $Z \leftarrow \sum_{j=1}^k p_j$;
 911 $p_j \leftarrow p_j/Z$ for each j ;
 912 // Compute entropy of distribution
 913 $H \leftarrow -\sum_{j=1}^k p_j \cdot \log(p_j + \epsilon)$;
 914 // Maximum entropy with k tokens
 915 $H_{\max} \leftarrow \log(k)$;
 916 // Confidence is normalized inverse entropy
 917 $C \leftarrow 1 - (H/H_{\max})$;
 918 **return** C

918 A.6 ATTENTION SCORE OVER FULL ATTENTION SCORE
919

920 During generation from a reasoning model, the `</think>` token marks the end of the reasoning
921 process, and the answer tokens generated after `</think>` contain key summarized conclusions. Prior
922 work (Choi et al., 2025) shows that `</think>` strongly attends to the critical reasoning steps needed
923 to derive the final answer. To verify that attention score from `</think>` is more effective in practice,
924 we ran an additional ablation that computes attention over the full context, including all reasoning
925 tokens as well as the answer tokens generated after `</think>`. Using these attention scores, low-
926 scoring steps were removed from the reasoning trajectory. The table below compares performance
927 between using attention over the full rollout and using TRAAC.
928

Method	AIME		AMC		GPQA	
	Acc.	Len.	Acc.	Len.	Acc.	Len.
TRAAC (full attention rollout)	2.309%	1.9k	18.53%	2.1k	25.81%	4.2k
TRAAC	45.45%	6.7k	79.52%	4.2k	47.21%	4.2k

934 Table 13: Comparison of TRAAC with full-rollout attention pruning vs. standard TRAAC.
935

936 Accuracy drops sharply across all three datasets when attention is computed over the full rollout.
937 This demonstrates that without relying on the `</think>` token for attention scoring, the model can-
938 not reliably identify and prune redundant reasoning steps. Especially on AIME and AMC, we ob-
939 serve a substantial drop in efficiency, indicating that when attention is computed over the complete
940 rollout – including both reasoning and final answers – the model struggles to determine which steps
941 are informative versus unnecessary.
942

943 A.7 DEEPSEEK ABLATION AND ANALYSIS
944

945 Table 14 and Table 15 present the ablation results for **(i) Base Model + CR**: The base model trained
946 with GRPO using only the correctness reward, **(ii) Base model + CR + LR**: The base model trained
947 with GRPO using both correctness and length rewards, but without difficulty-level calibration.
948

949 Table 14: Ablation Results of TRAAC on Qwen3-4B and Deepseek-Qwen-7B tested across 4 datasets:
950 AIME, AMC, GPQA-D, and BBEH. Each component addition adds to the previous method.
951

Method	AIME		AMC		GPQA-D		BBEH		Average	
	Acc. \uparrow	Len. \downarrow								
DeepSeek-R1-Distill-Qwen-7B										
Base Model	33.71	8.2	74.22	5.7	43.55	7.1	10.61	5.9	40.5	6.7
+ CR	35.81	7.6	78.55	4.9	45.99	6.1	11.74	5.1	43.0	5.9
+ LR	32.73	6.0	79.04	3.3	45.99	3.5	11.51	2.7	42.3	3.9
TRAAC	38.60	7.3	77.83	4.5	47.31	6.2	11.55	5.2	43.8	5.8

961 Table 15: Ablation Results of TRAAC (Qwen3-4B and Deepseek-Qwen-7B) on OptimalThinking-
962 Bench (OTB). Each component addition adds to the previous method.
963

Method	OverthinkingBench			UnderthinkingBench		OTB
	Acc. \uparrow	Len. \downarrow	AUC _{OAA} \uparrow	Acc. \uparrow	Len. \downarrow	
DeepSeek-R1-Distill-Qwen-7B						
Base Model	78.45	0.9	72.38	12.69	6.2	21.6
+ CR	79.51	0.8	73.36	17.05	5.7	27.7
+ LR	78.06	0.4	72.61	14.69	3.0	24.4
TRAAC	81.81	1.0	72.89	22.30	5.9	34.1

972 A.8 COMPRESSION MODULE

973

974 A.8.1 PROMPT

975

976 For every reasoning trajectory, auxiliary prompt was appended at the end of the trajectory. The
977 prompt is: "Time is up. I should stop thinking and now write a summary containing all key steps
978 required to solve the problem.".

979 A.8.2 SPECIAL TOKENS TO SPLIT TRAJECTORY TO CHUNKS

980

981 Below is the list that is used to split each reasoning trajectory into multiple reasoning steps.

982

983

```
split_tokens = [
  "Wait", "Alternatively", "Another angle", "Another approach", "But wait",
  "Hold on", "Hmm", "Maybe", "Looking back", "Okay", "Let me", "First",
  "Then", "Alright", "Compute", "Correct", "Good", "Got it",
  "I don't see any errors", "I think", "Let me double-check", "Let's see",
  "Now", "Remember", "Seems solid", "Similarly", "So", "Starting",
  "That's correct", "That seems right", "Therefore", "Thus"
]
```

989

990 A.8.3 UNIFORMITY SCORE

991

992 Algorithm 2 presents the pseudocode for calculating the uniformity score, based on which the final
993 compression rate is calculated.

994

Algorithm 2: Calculating Eviction Percentage Based on Attention Uniformity

995 **Input:** Step importance scores $\{s_1, s_2, \dots, s_n\}$, target reduction τ (default: 0.25)996 **Output:** Eviction percentage $e \in [0, 1]$ 997 **Function** CALCULATEUNIFORMITYSCORE($\{s_1, \dots, s_n\}$):
1000 **if** $n \leq 1$ **then**
1001 **return** 1.0;
1002 ;
1003 Clamp all $s_i \geq 0$;
1004 $T \leftarrow \sum_i s_i$;
1005 **if** $T \leq 0$ **then**
1006 **return** 1.0;
1007 $p_i \leftarrow s_i/T$;
1008 $H \leftarrow -\sum_i p_i \cdot \log(p_i + \epsilon)$;
1009 $H_{\max} \leftarrow \log(n)$;
1010 **if** $H_{\max} = 0$ **then**
1011 **return** 1.0;
1012 **return** H/H_{\max} ;
1013 // Uniformity score in $[0, 1]$
1014 **Function** DETERMINEEVICTIONPERCENTAGE(u, τ):
1015 **if** $u > 0.8$ **then**
1016 **return** 0.0;
1017 // High uniformity: keep all steps
1018 $e \leftarrow \tau \cdot (1 - u)$;
1019 **return** $\min(e, 0.8)$;
1020 // Scale eviction by non-uniformity
1021 // Cap eviction at 80%
1022 $u \leftarrow \text{CALCULATEUNIFORMITYSCORE}(\{s_1, \dots, s_n\})$;
1023 $e \leftarrow \text{DETERMINEEVICTIONPERCENTAGE}(u, \tau)$;

1024

1025

A.9 GRPO DETAILS

For each question q , a group of responses $\{y^1, y^2, \dots, y^N\}$ is sampled from the old policy π_{old} , and
the policy model π_θ is optimized by maximizing the following GRPO objective.

$$\mathcal{J}_{\text{GRPO}}(\theta) = \frac{1}{N} \sum_{i=1}^N \frac{1}{|y^i|} \sum_{t=1}^{|y^i|} \min \left[\frac{\pi_\theta(y^i(t)|y_{<t}^i)}{\pi_{\text{old}}(y^i(t)|y_{<t}^i)} \hat{A}_{i,t}, \text{clip} \left(\frac{\pi_\theta(y^i(t)|y_{<t}^i)}{\pi_{\text{old}}(y^i(t)|y_{<t}^i)}, 1 - \varepsilon, 1 + \varepsilon \right) \hat{A}_{i,t} \right],$$

where ε is the clipping range hyperparameter, and $\hat{A}_{i,t}$ represents the advantage, computed based on the relative verifiable outcome based rewards of outputs within each group.

A.10 EXPERIMENTAL DETAILS

We adopt verl (Sheng et al., 2024) as the training framework.

A.10.1 HYPERPARAMETERS

Table 16: Hyperparameters used for training, evaluation, and difficulty calibration.

Category	Hyperparameter	Value
	Number of rollouts	8
	Temperature	1.0
	top_p	1.0
	top_k	-1.0
Training	Max response length	10k
	clip_ratio_low	0.20
	clip_ratio_high	0.28
	kl_loss_coeff	0.001
	Learning rate (LR)	1e-6
	Number of rollouts	8
	Temperature	1.0
	top_p	1.0
	top_k	-1.0
Evaluation	Max response length	10k
	N	5
Difficulty Calibration	Hard	0.20
	Medium	0.40
	Easy	0.60

A.10.2 TRAINING REWARD

To ensure a high weight on correctness relative to other components, we assign a **correctness reward** of +4 if the final answer is correct and 0 otherwise. The **format reward** ranges from 0 to 1: a score of 0.5 is given for the presence of the `<think>` and `</think>` tokens, and an additional 0.5 is awarded if every reasoning trajectory is properly enclosed within these tokens in the correct order. The **length reward** ranges from 0 to 2. The overall reward is computed as the sum of these components:

$$\text{Total Reward} = \text{Correctness Reward} + \text{Format Reward} + \text{Length Reward}.$$

A.10.3 EVALUATION METRICS

For each of the dataset we compute the accuracy and the average response length. Specifically for OverthinkingBench we also compute the AUC_{OAA} . This metric is based on Overthinking-Adjusted Accuracy (OAA), which measures model correctness under a limit on reasoning tokens. For a threshold t , it is defined as

$$\text{OAA}_t = \frac{1}{n} \sum_{i=1}^n (\text{Correctness}_i \cdot \mathbb{I}(\text{ThinkTokens}_i < t)),$$

1080 where $\text{Correctness}_i \in \{0, 1\}$ indicates whether the i -th response is correct, and $\mathbb{I}(\cdot)$ is the indicator
 1081 function that enforces the thinking length constraint.
 1082

$$1083 \quad 1084 \quad 1085 \quad \text{AUC}_{\text{OAA}} = \int_0^{t_{\max}} \frac{\text{OAA}_t}{t_{\max}} dt \approx \frac{1}{t_{\max}} \sum_{t=0}^{t_{\max}} \text{OAA}_t,$$

1086 where t_{\max} is the maximum number of allowed thinking tokens. Furthermore, following the method
 1087 from (Aggarwal et al., 2025), to compute the OptimalThinkingBench metric: F1 score we combine
 1088 the AUC_{OAA} from OverthinkingBench and Accuracy (Acc_{ut}) from UnderthinkingBench into a single
 1089 F1 score:

$$1090 \quad 1091 \quad F1 = 2 \cdot \frac{\text{AUC}_{\text{OAA}} \cdot \text{Acc}_{\text{ut}}}{\text{AUC}_{\text{OAA}} + \text{Acc}_{\text{ut}}} \quad (1)$$

1093 A.10.4 TRAINING PROMPT

1094 For each questions in the training set, instruction was provided: “Let’s think step by step
 1095 and output the final answer within $\boxed{\cdot}$ ”
 1096

1097 A.10.5 BASELINE PROMPTS

1098 Below we define the instruction that was provided to each baseline model:

- 1101 • Base Model: “Let’s think step by step and output the final answer within
 1102 $\boxed{\cdot}$ ”
- 1103 • L1-Max: “Let’s think step by step and output the final answer within $\boxed{\cdot}$.
 1104 Think for maximum 10000 tokens.”
- 1105 • LC-R1: “Please reason step by step, and put your final answer within
 1106 $\boxed{\cdot}$ ”
- 1107 • AdaptThink: No prompt, just the question
- 1108 • TokenSkip: “<|im_start|>system You are a helpful assistant.<|im_end|>
 1109 <|im_start|>user Please reason step by step, and put your final answer within
 1110 $\boxed{\cdot}$. question<|eot_id|>0.5<|eot_id|><|im_end|> <|im_start|>assistant”

1112 A.11 COMPUTE USED

1113 All training was done on 4*A100 (80GB).

1116 A.12 EXAMPLE

1118 Data Source: AMC

1119 Input:

1121 Maureen is keeping track of the mean of her quiz scores this semester. If Maureen scores an
 1122 11 on the next quiz, her mean will increase by 1. If she scores an 11 on each of the next three
 1123 quizzes, her mean will increase by 2. What is the mean of her quiz scores currently? Let’s
 1124 think step by step and output the final answer within $\boxed{\cdot}$

1126 Response (TRAAC):

1128 \<think\>\nOkay, let’s try to solve this problem. So, Maureen’s current mean
 1129 is what we need to find. The problem gives two scenarios. Let’s break it down.
 1130 First, if she scores an 11 on the next quiz, her mean increases by 1. Second,
 1131 if she gets 11 on each of the next three quizzes, the mean increases by 2.
 1132 Hmm. Let’s think about how means work. Let’s say currently she has a mean of M.
 1133 Let’s say she has n quizzes so far. The total sum of her current scores would be

1134
 1135 M multiplied by n. Wait, when she takes another quiz, the number of quizzes
 1136 becomes $n+1$. For the first scenario, adding an 11 would make the new mean be $M + 1$.
 1137 So the new total would be (current sum) $+11$. And that divided by $(n+1)$ equals the
 1138 new mean. So (current sum) $+11 = (M+1) * (n+1)$. But the current sum is $M * n$.
 1139 So substituting, $M * n + 11 = (M+1)(n+1)$. Let's expand the right side:
 1140 $M * n + M + n + 1$. So the equation would be $M * n + 11 = M * n + M + n + 1$.
 1141 Subtract $M * n$ from both sides: $11 = M + n + 1$. So $M + n$ equals 10? Because $11 - 1$
 1142 is 10. So $M + n = 10$? That's equation one. \\n\\n Then the second scenario: if she
 1143 scores 11 on each of the next three quizzes. So adding three quizzes, each 11.
 1144 The new mean would be current mean plus 2. Let's think. The current sum is
 1145 $M * n$. After three more quizzes, the total sum is $M * n + 3 * 11$. The number of
 1146 quizzes is $n+3$. The new mean is $M+2$. So $(M * n + 33) / (n+3) = M+2$. Let's
 1147 multiply both sides by $(n+3)$: $M * n + 33 = (M+2)(n+3)$. Let's expand the right
 1148 side: $M * n + 3M + 2n + 6$. So the equation becomes $M * n + 33 = M * n + 3M + 2n + 6$.
 1149 Subtract $M * n$ from both sides: $33 = 3M + 2n + 6$. Subtract 6: $27 = 3M + 2n$. So
 1150 that's the second equation. \\n\\n So from the first scenario, we had $M + n = 10$.
 1151 Let's call that equation 1. And the second gives $3M + 2n = 27$? Equation 2. So we
 1152 need to solve these two equations. Let's see. From equation 1, n is $10 - M$.
 1153 Substitute into equation 2. So $3M + 2(10 - M) = 27$. Let's calculate that: $3M + 20 - 2M = 27$. So $(3M - 2M)$ is M . So $M + 20 = 27$. Therefore M is 7? Because $27 - 20$ is 7. So
 1154 the current mean is 7? Let's check. \\n\\n If M is 7, then n is $10 - M$ which is 3. So
 1155 currently, she has 3 quizzes. Current total is $7 * 3 = 21$. First scenario:
 1156 adding 11. New total is $21 + 11 = 32$. Number of quizzes is 4. Mean would be $32 / 4 = 8$.
 1157 Which is $7 + 1$. Correct. For the second scenario, adding three 11s. The total
 1158 would be $21 + 33 = 54$. Number of quizzes is $3 + 3 = 6$. $54 / 6 = 9$. The current mean was 7,
 1159 so $7 + 2 = 9$. Yes that's right. So the current mean is 7? \\n\\n To
 1160 determine the current mean of Maureen's quiz scores, we analyze the two given
 1161 scenarios mathematically. \\n\\n--\\n\\n#\\# Step 1: Define
 1162 Variables\\n\\n Let: \\n\\n \$ M \$ = current mean of quiz scores\\n\\n \$ n \$ =
 1163 number of quizzes Maureen has taken so far\\n\\n Then the total of her current
 1164 scores is $M * n$ \\times n. \\n\\n--\\n\\n#\\# Step 2: First
 1165 Scenario\\n\\n If Maureen scores an 11 on the next quiz, her mean increases by
 1166 1. \\n\\n The new total becomes $M * n + 11$, and the number of
 1167 quizzes is $n + 1$. The new mean is $M + 1$. So: \\n\\n \$ M + 1 = \frac{M * n + 11}{n + 1}
 1168 \$: \\n\\n \$ M + 1 = (M + 1)(n + 1) \\n\\n Expanding the right-hand
 1169 side: \\n\\n \$ M * n + M + n + 1 = M * n + M + n + 1 \\n\\n Subtract \$ M from
 1170 both sides: \\n\\n \$ M = 10 \\n\\n Rightarrow M = 10 \\n\\n quad \\n\\n text{(Equation 1)} \\n\\n--\\n\\n#\\# Step 3: Second
 1171 Scenario\\n\\n If she scores 11 on each of the next three quizzes, the mean
 1172 increases by 2. \\n\\n The total becomes $M * n + 33$, and the number of quizzes
 1173 becomes $n + 3$. The new mean is $M + 2$. So: \\n\\n \$ M + 2 = \frac{M * n + 33}{n + 3}
 1174 \$: \\n\\n \$ M + 2 = (M + 2)(n + 3) \\n\\n Expanding the right-hand
 1175 side: \\n\\n \$ M * n + 3M + 2n + 6 = M * n + 3M + 2n + 6 \\n\\n Subtract \$ M from
 1176 both sides: \\n\\n \$ 3M + 2n + 6 = 27 \\n\\n Rightarrow 3M + 2n = 27 \\n\\n quad \\n\\n text{(Equation 2)} \\n\\n--\\n\\n#\\# Step 4: Solve the
 1177 System of Equations\\n\\n From Equation 1: \\n\\n \$ M + n = 10 \\n\\n Rightarrow n = 10 - M \\n\\n Substituting into Equation 2: \\n\\n \$ 3M + 2(10 - M) = 27 \\n\\n Rightarrow 3M + 20 - 2M = 27 \\n\\n Rightarrow M + 20 = 27 \\n\\n Rightarrow M = 7 \\n\\n Final
 1178 Answer\\n\\n \$ M = 7 \\boxed{7} \\n\\n

Response (Base Model + CR):

1186 \<think\>\\nOkay, let me try to figure out this problem. So, Maureen is
1187 tracking her mean quiz score. The problem says that if she scores an 11 on the

1188
 1189 next quiz, her mean will increase by $1\backslash$. Also, if she scores 11 on each of the
 1190 next three quizzes, her mean will increase by $2\backslash$. We need to find her current
 1191 mean. Hmm, let me break this down step by step.
 1192 First, let me recall what
 1193 a mean is. The mean is the sum of all the scores divided by the number of
 1194 scores. So, if I let her current mean be something, maybe I can set up
 1195 equations based on the information given.
 1196 Let me denote the current
 1197 number of quizzes she has taken as n , and her current total score as S
 1198 $\$$. Therefore, her current mean is $\frac{S}{n}$. Now, the first
 1199 condition: if she scores an 11 on the next quiz, her mean will increase by $1\backslash$.
 1200 Let's think about that. If she takes one more quiz with a score of 11, then
 1201 her total score becomes $S + 11$, and the number of quizzes becomes $n + 1$.
 1202 The new mean is $\frac{S + 11}{n + 1}$. According to the problem,
 1203 this new mean is 1 more than her current mean. So, we can write the
 1204 equation:
 1205
$$\frac{S + 11}{n + 1} = \frac{S}{n} + 1$$

 1206 Okay, that seems like a good starting point. Let me write that
 1207 down.
 1208 Similarly, the second condition: if she scores an 11 on each of the
 1209 next three quizzes, her mean will increase by $2\backslash$. So, taking three more
 1210 quizzes with 11 each, her total score becomes $S + 11 \times 3 = S + 33$, and
 1211 the number of quizzes becomes $n + 3$. The new mean is $\frac{S + 33}{n + 3}$,
 1212 which should be 2 more than her current mean. So, the equation
 1213 would be:
 1214
$$\frac{S + 33}{n + 3} = \frac{S}{n} + 2$$

 1215 So, now we have two equations with two variables, S and n .
 1216 Let me write both equations again:
 1217
$$\frac{S + 11}{n + 1} = \frac{S}{n} + 1$$

 1218
$$\frac{S + 33}{n + 3} = \frac{S}{n} + 2$$

 1219 I need to solve these equations for S and n , and then find the
 1220 current mean $\frac{S}{n}$. Let me start with the first equation.
 1221 Let's simplify it.
 1222 Multiply both sides by $n(n + 1)$ to eliminate
 1223 denominators:
 1224
$$(S + 11) \cdot n = (S + n(n + 1)) \cdot 1$$

 1225 Wait, let me check that again. Wait, the right-hand side is S
 1226 $\frac{S}{n} + 1$, so when I multiply both sides by $n(n + 1)$, it
 1227 becomes:
 1228 Left side: $(S + 11) \cdot n$
 1229 Right side: $S + n(n + 1)$
 1230 Wait, let me do that more
 1231 carefully:
 1232 Original equation:
 1233
$$n \cdot \frac{S + 11}{n + 1} = n \cdot \frac{S}{n} + n(n + 1)$$

 1234 Multiply both sides by $n(n + 1)$:
 1235 Left side: $(S + 11) \cdot n(n + 1)$
 1236 Right side: $S \cdot n(n + 1) + n(n + 1)^2$
 1237 Wait, because $S \cdot n(n + 1) = S(n + 1)$, and $n(n + 1)^2 = n(n + 1) \cdot n(n + 1) = n(n + 1)^2$. Therefore:
 1238 Right side: $S(n + 1) + n(n + 1)^2$
 1239 Therefore, equation becomes:
 1240
$$n(S + 11) = S(n + 1) + n(n + 1)^2$$

 1241 Let me expand both sides:
 1242 Left side: $nS + 11n$
 1243 Right side: $S(n + 1) + n(n + 1)^2$
 1244 Now, subtract left side from both
 1245 sides:
 1246
$$(S(n + 1) + n(n + 1)^2) - (nS + 11n) = 0$$

 1247 Simplify:
 1248
$$S(n + 1) + n(n + 1)^2 - nS - 11n = 0$$

 1249
$$S(n + 1) + n(n + 1)^2 - 11n = 0$$

 1250
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1251
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1252
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1253
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1254
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1255
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1256
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1257
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1258
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1259
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1260
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1261
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1262
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1263
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1264
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1265
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1266
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1267
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1268
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1269
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1270
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1271
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1272
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1273
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1274
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1275
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1276
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1277
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1278
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1279
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1280
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1281
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1282
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1283
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1284
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1285
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1286
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1287
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1288
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1289
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1290
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1291
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1292
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1293
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1294
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1295
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1296
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1297
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1298
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1299
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1300
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1301
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1302
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1303
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1304
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1305
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1306
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1307
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1308
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1309
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1310
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1311
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1312
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1313
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1314
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1315
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1316
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1317
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1318
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1319
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1320
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1321
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1322
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1323
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1324
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1325
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1326
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1327
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1328
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1329
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1330
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1331
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1332
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1333
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1334
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1335
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1336
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1337
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1338
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1339
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1340
$$S(n + 1) + n(n + 1)^2 = 11n$$

 1341
$$S(n + 1) + n(n + 1)^2 = 11n$$

```

1242 
$$-2n^2 + 27n = 0 \rightarrow (-n^2) + 3n = 0 \rightarrow n(-n + 3) = 0$$

1243 So, solutions are  $n=0$  or  $n=3$ . But  $n$  is the number of quizzes, so it can't be zero.
1244 Therefore,  $n=3$ . Therefore, the current number of quizzes is 3.
1245 Then, substitute  $n=3$  into equation 1:  $S = -n^2 + 10n = -9 + 30 = 21$ 
1246 Therefore, current total score  $S=21$ , and number of quizzes  $n=3$ , so
1247 current mean is  $21/3=7$ . Wait, so the current mean is 7?
1248 But let me check if this works with the original conditions.
1249 First condition: if she scores an 11 on the next quiz, the mean increases by 1.
1250 Current mean is 7, with 3 quizzes.
1251 After taking 11, total is  $21 + 11 = 32$ , number of quizzes is 4.
1252 New mean is  $32/4=8$ , which is 7 + 1 = 8. Correct.
1253 Second condition: if she scores 11 on each of the next three quizzes, then total is
1254  $21 + 3 \cdot 11 = 54$ , number of quizzes is  $3 + 3 = 6$ . New mean is  $54/6=9$ , which is 7 + 2 = 9. Correct.
1255 Perfect.
1256 Therefore, current mean is 7. So the answer is 7, which is  $\boxed{7}$ .
1257 Final Answer
1258 To determine Maureen's current mean quiz score, we start by modeling the situation
1259 mathematically.
1260 Step 1: Define Variables
1261 Let:  $n$  be the current number of quizzes Maureen has taken.
1262  $S$  be her total score so far.
1263 Her current mean is then  $\frac{S}{n}$ .
1264 Step 2: Use Given Conditions to Form Equations
1265 First Condition: If Maureen scores an 11 on the next quiz, her mean increases by 1.
1266 New total score:  $S + 11$ 
1267 New number of quizzes:  $n + 1$ 
1268 New mean:  $\frac{S + 11}{n + 1}$ 
1269 According to the problem:  $\frac{S + 11}{n + 1} = \frac{S}{n} + 1$ 
1270 Multiply both sides by  $n(n + 1)$  to eliminate denominators:
1271  $n(S + 11) = S(n + 1) + n(n + 1)$ 
1272 Simplify:  $nS + 11n = Sn + S + n^2 + n$ 
1273 Rightarrow  $11n = S + n^2 + n$ 
1274 Rightarrow  $S = -n^2 - n + 10n$ 
1275 Second Condition: If Maureen scores an 11 on the next three quizzes, her mean increases by 2.
1276 New total score:  $S + 3 \cdot 11$ 
1277 New number of quizzes:  $n + 3$ 
1278 New mean:  $\frac{S + 33}{n + 3}$ 
1279 According to the problem:  $\frac{S + 33}{n + 3} = \frac{S}{n} + 2$ 
1280 Multiply both sides by  $n(n + 3)$  to eliminate denominators:
1281  $n(S + 33) = (S + 2n)(n + 3)$ 
1282 Simplify:  $nS + 33n = Sn + 3S + 2n^2 + 6n$ 
1283 Rightarrow  $33n = 3S + 2n^2 + 6n$ 
1284 Rightarrow  $27n = 3S + 2n^2$ 
1285 Rightarrow  $3S = -2n^2 - 27n$ 
1286 Step 3: Solve for  $n$ 
1287 From the two expressions for  $S$ :
1288  $nS = -n^2 - n + 10n$ 
1289  $3S = -2n^2 - 27n$ 
1290 Multiply both sides by 3:
1291  $3nS = -3n^2 - 3n + 30n$ 
1292  $3S = -2n^2 - 27n$ 
1293 Rightarrow  $-n^2 + 3n = 0$ 
1294 Since  $n \neq 0$ , we get:
1295 Substitute into  $S = -n^2 + 10n$ :
1296  $S = -9 + 30 = 21$ 
1297 Step 4: Compute the Current Mean
1298  $\text{Current mean} = \frac{S}{n} = \frac{21}{3} = 7$ 
1299 Final Answer
1300

```

Ground Truth:

7