Under review as a conference paper at ICLR 2026

THINK RIGHT: LEARNINGTOMITIGATE UNDER-OVER
THINKING VIA ADAPTIVE, ATTENTIVE COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent thinking models are capable of solving complex reasoning tasks by scal-
ing test-time compute across various domains, but this scaling must be allocated
in line with task difficulty. On one hand, short reasoning (underthinking) leads
to errors on harder problems that require extended reasoning steps; but, exces-
sively long reasoning (overthinking) can be token-inefficient by generating un-
necessary steps even after reaching a correct intermediate solution. We refer to
this as under-adaptivity, where the model fails to modulate its response length
appropriately given problems of varying difficulty. To address under-adaptivity
and strike a balance between under- and overthinking, we propose TRAAC (Think
Right with Adaptive, Attentive Compression), an online post-training RL method
that leverages the model’s self-attention over a long reasoning trajectory to iden-
tify important steps and prune redundant ones. TRAAC also estimates difficulty and
incorporates into training rewards, thereby learning to allocate reasoning budget
commensurate with example difficulty. Our approach improves accuracy, reduces
reasoning steps, and enables adaptive thinking compared to base models and other
RL baselines. Across a variety of tasks (AIME, AMC, GPQA-D, BBEH), TRAAC
(Qwen3-4B) achieves an average absolute accuracy gain of 8.4% with a relative
reduction in reasoning length of 36.8% compared to the base model, and a 7.9%
accuracy gain paired with a 29.4% length drop compared to the best RL baseline.
TRAAC also shows strong generalization: although the models are trained on math
datasets, they show accuracy and efficiency gains on out-of-distribution non-math
datasets like GPQA-D, BBEH, and OptimalThinkingBench. Our analysis further
verifies that TRAAC provides fine-grained adjustments to thinking budget based on
difficulty and that a combination of task-difficulty calibration and attention-based
compression yields gains across diverse tasks.'

1 INTRODUCTION

Recent advancements in thinking models have enabled language models to solve complex reasoning
tasks (DeepSeek-Al et al., 2025; OpenAl et al., 2024; Team, 2025). These models extend the chain-
of-thought (CoT; Wei et al., 2023) paradigm with online reinforcement learning (RL; Shao et al.,
2024), allowing them to refine intermediate solutions as well as sequentially scaling the number of
tokens (i.e., compute) to arrive at the final answer. While such approaches show strong promise
for harder problems in domains like mathematics, programming, and logical puzzles (Xie et al.,
2025; Chen et al., 2025), their accuracy and utility remain capped by a failure to regulate their
reasoning length. On one hand, underthinking arises when models terminate too early on harder
problems, yielding an incorrect final answer. On the other hand, overthinking occurs when models
think excessively for simpler tasks, inflating test-time computation (Marjanovi¢ et al., 2025; Wu
et al., 2025; Cuadron et al., 2025), and reducing efficiency. This highlights the need for adaptive
thinking (Saha et al., 2025; Chen et al., 2024; Snell et al., 2024; Aggarwal & Welleck, 2025), where
models dynamically allocate thinking based on difficulty.

We refer to the phenomenon of models misallocating thinking budget — illustrated in Fig. 1 — as
under-adaptivity. Addressing under-adaptivity is crucial for improving both performance and ef-
ficiency of long-thinking models, as dynamic reasoning effort allocation can enable better reason-

!Codebase available in the supplementary, and will be released publicly upon acceptance.

Under review as a conference paper at ICLR 2026

Question: In isosceles trapezoid ABCD, parallel bases AB and CD have lengths
500 and 650, respectively, and AD = BC =333. The angle bisectors of £A and 4D
meet at P, and the angle bisectors of 4B and ZCmeet at Q. Find PQ.

Overthinking for SR SmE e See Static <think> ok, s0 I ..
Wastes Tokens
Easy Problems Accuracy 1 ! But maybe I also need

to consider ..
Step1 Step2 Final Step

Underthinking for
Hard Problems

Static
Accuracy | But problem is likely
Fewer Tokens from an Olympiad ..

I think the answer

Adaptive t Easy (47% attention—based compression) i \bereel 5751
e (56878 |
Adaptive
Problem Problem v .
e Accuracy T Wait, but ..

e v
Difficulty Hard (35% attention-based compression) « Fewer Tokens :
(TRAAC, Ours) | Problem O—.O—;O-.O-». So the distance PQ
would be ~ 242.61

CXX (XX

Figure 1: Overthinking on easy problems wastes tokens despite being able to maintain decent accu-
racy. On the other hand, underthinking on hard problems saves token budgets but fails to maintain
accuracy. TRAAC addresses this trade-off by adapting to problem difficulty (estimated during train-
ing), via attention-based compression and, enabling intelligent resource allocation while improving
both accuracy and efficiency.

ing exploration in harder problems, while avoiding wasteful computation on problems requiring
minimal reasoning. Prior work has generally addressed the upper end of under-adaptivity, i.e., im-
proving thinking efficiency. These works employ supervised fine-tuning on compressed CoT (Xia
et al., 2025), using user control signals such as early stopping during inference (Muennighoff et al.,
2025), or RL methods with length penalties (Arora & Zanette, 2025; Hou et al., 2025). Other more
adaptive work has employed budget-aware reward shaping with a binary choice between thinking
or not thinking (Zhang et al., 2025b). While such work can reduce token usage, its performance is
typically bounded by the accuracy of the underlying model being trained, and often trades perfor-
mance for efficiency. Our work aims to beat this trade-off and improve both efficiency and accuracy
by providing finer-grained feedback through difficulty-adaptive compression, where the degree of
compression is dynamically adapted to task difficulty to address under-adaptivity.

To address these gaps, we introduce TRAAC (Think Right with Adaptive, Attentive Compression),
a GRPO-based (Shao et al., 2024) post-training method that incorporates an online, difficulty-
adaptive, attention-based compression module to adaptively prune the reasoning trajectory (an
entire chain in Fig. 1) based on estimated task difficulty. Our method teaches the model to compress
the context that it should pay attention to, such that it contains only relevant material without getting
distracted or skewed in wrong directions (Weston & Sukhbaatar, 2023). Specifically, we compute
the attention score averaged across layers and heads of the model for each reasoning step (illustrated
as nodes in Fig. 1 (right)) from the </think> token and compress reasoning steps that are least at-
tended to, based on the assumption that these are the least important tokens contributing to the final
answer. During online training, the level of attention-compression is determined by task difficulty,
as estimated by the pass rate during GRPO rollout, making the model more adaptive. For harder
problems, TRAAC maintains a low compression rate, allowing the model to extend its reasoning tra-
jectory, which increases the likelihood of reaching the correct final answer. For easier problems, it
applies a higher compression rate to aggressively compress once the correct final answer is reached.

We evaluate TRAAC on two strong off-the-shelf reasoning models, Qwen3-4B (Team, 2025) and
Deepseek-Qwen-7B (DeepSeek-Al et al., 2025), across multiple benchmarks: AMC (AMC, 2023),
AIME (AIME, 2024), GPQA-Diamond (Rein et al., 2023), BBEH (Big Bench Extra Hard; Kazemi
et al., 2025), and OptimalThinkingBench (Aggarwal et al., 2025). Our experiments demonstrate
that TRAAC consistently adapts to problem difficulty, yielding improvements in efficiency on sim-
ple tasks and stronger accuracy on complex tasks. Averaged across AMC, AIME, GPQA-D, and
BBEH, TRAAC (Qwen3-4B) achieves an average absolute improvement of 8.4% in accuracy while a
relative reduction in reasoning length by 36.8% compared to the base model. When compared to the
next-best performing baseline, AdaptThink (Zhang et al., 2025b), we achieve an average accuracy
improvement of 7.9% and 29.4% efficiency gain. We test TRAAC on OptimalThinkingBench (Ag-
garwal et al., 2025), and find TRAAC improves by 7.36 points on Qwen3-4B and 12.55 points on
Deepseek-Qwen-7B over the base model according to Aggarwal et al. (2025)’s F1 metric — designed
to measure both performance and efficiency. Moreover, TRAAC is trained on a math-specific dataset;

Under review as a conference paper at ICLR 2026

Correct Reward
& = 0v0-0— 000 —
Length Reward
Easy
T O-bO». O}. Compressed Rollout
. let’s see. 4 compression
Jill gets paid First, let me start ... aandadhicre

If Easy — Less

$20 per hour to Alternatively, ... 229
teach ... g@l

What's her Hard Wait, maybe better ...

annual salary? O”O’. |/\ T ". Thus answer is ... v
o - . Removing
Difficulty Estimation f 1 Low-Attention

Full Rollout — Compression Rate Full Rollout w/ Attention Score Chunks

Okay, so I need to solve... Let me - —p Okay, so I need to solve... Let me
start by Wait, but So this is

e i Cen is i Compute start by So this is
a solution ... Let me check again ... X a solution |... oo
Attention

So final answer is... So final answer is...
Score

Figure 2: Overview of TRAAC. Given a problem, the model first generates N rollouts, and the pass
rate of these rollouts is used to estimate the problem’s difficulty (easy, medium, or hard). Next,
the generated reasoning is fed back into the model, which is asked to compute the attention score
of each reasoning token from </think>. During this attention-based compression step, we remove
steps with lower scores. The degree of removal is determined by the estimated difficulty: easier
problems undergo more aggressive compression. Finally, we compute the correctness and length
rewards using the compressed reasoning trajectory, and these rewards are used to update the policy.

evaluation on various benchmarks such as GPQA-D, BBEH, OverthinkingBench, and Underthink-
ingBench shows generalizability performance. Among these OOD tasks, TRAAC shows an average
improvement of 3% on Qwen3-4B, with a maximum improvement of 6.8% on UnderthinkBench,
along with an average 40% reduction in response length across OOD tasks. Our analysis and ab-
lations demonstrate that through difficulty level calibration, TRAAC learns to dynamically adjust its
compression ratio — with lower compression on difficult tasks and higher compression on easier
ones, which translates into performance gains across diverse difficulty tasks.

2 TRAAC: THINK RIGHT WITH ADAPTIVE ATTENTIVE COMPRESSION

In this section, we introduce our proposed TRAAC method in detail (also shown in Fig. 2). It is
designed to mitigate under-adaptivity, which leads to resource misallocation during test-time. The
main challenge lies in the efficient identification of low-importance tokens and making the attention-
based compression adaptive to the task’s difficulty. To this end, TRAAC employs an attention-based
compression module that calibrates its degree of compression based on estimated task difficulty and
prunes unnecessary reasoning steps while preserving essential information.

2.1 PROBLEM FORMULATION IN TRAAC

TRAAC is based on Group Reward Policy Optimization (GRPO; Shao et al., 2024), which is an on-
line reinforcement learning (RL) framework that extends Proximal Policy Optimization (Schulman
et al., 2017) by eliminating the critic and instead estimating the baseline from a group of sampled
responses. Let my denote the policy model and ¢ the input query. Given ¢, the model generates an
output y = cat(r, a) where cat is the concatenate function, r is the complete reasoning trajectory,
and a is the final answer, separated by the delimiter </think>. An attention-based compression
module C (described below) produces a compressed reasoning trajectory: reomp = C(7). At each
tralnlng step, the model generates N rollouts, {y*}~ ;, where each rollout y* = cat(r?,a’) (see

“rollout” arrow in Fig. 2). The advantage of each rollout is estimated using the standard GRPO
objective (details in Appendix A.4). The task difficulty d is estimated from these rollouts as the
proportion of correct answers among the N samples (Zhang & Zuo, 2025; Huang et al., 2025). We
show this in Fig. 2 by classifying a problem to easy, medium or hard based on d. Task difficulty
d is then used to (i) modulate the compression ratio applied to the reasoning trajectory r, and (ii)

Under review as a conference paper at ICLR 2026

assign rewards to each rollout. The answer is regenerated based on the compressed trajectory and
the advantage is estimated using both the original rollouts and their compressed counterparts.

2.2 ADAPTIVE, ATTENTIVE COMPRESSION MODULE

The goal of the compression module is to identify and remove redundant reasoning steps by evalu-
ating attention scores assigned to each token.

Attention-Based Compression. To calculate the attention score assigned to each token, we pass
the reasoning trajectory r (full rollout in Fig. 2) through the initial policy model. As compared
to other compression-based methods (Cheng et al., 2025; Lu et al., 2025), TRAAC does not rely on
external models for annotating reasoning steps. To segment the reasoning trajectory 7 into reasoning
steps, we split it at special control tokens such as “wait”, “alternative”, “Let me think again”, etc
(complete list Appendix A.3.2). For the current thinking models, </think> marks the end of a
reasoning trajectory, followed by the final answer. Choi et al. (2025) show that </think> attends to
key reasoning steps that contain crucial information for deriving the final answer, therefore, for each
token ¢; in the reasoning steps, its importance score is defined as the aggregated attention from the
delimiter </think> across all layers and heads:

L H

1 5SS alh

55T TTH Q/think>—t;0
=1 h=1

where L is the number of layers, H is the number of heads per layer, and aﬁﬁ’{;)iw 5t is the attention

weight from </think> to token ¢; in head h of layer ¢. Before computing the attention score of each
token, consistent with prior work (Muennighoff et al., 2025; Choi et al., 2025), we also append an
auxiliary prompt at the end of the reasoning trajectory (see Appendix A.3.1). This encourages the
model to distill the reasoning process into its most salient steps, thereby enabling the delimiter token
</think> to attend to the most informative parts of the reasoning trajectory (highlighted in green).
As shown in Fig. 2 (bottom-right), the model assigns low attention scores to reasoning steps that
do not contribute to the final correct answer (highlighted in red), effectively pruning unnecessary
cyclic self-corrections and verification loops. Finally, the importance score of a reasoning step
C}, consisting of tokens {¢;};cc, . is then computed as the mean of its token-level scores: s¢, =
|Cilk‘ > jec, Sj- Steps with lower importance scores are pruned, yielding the compressed reasoning
trajectory 7¢omp-

Difficulty-Level Calibration. To address under-adaptivity, the pruning strategy is further
adapted to task difficulty, i.e., for easier tasks, a larger proportion of reasoning steps are removed, en-
couraging the model to condense its reasoning more aggressively (see “compression” on the right of
Fig. 2). The difficulty of a task is estimated, based on the pass rate of each problem, during rollout.
From the estimated difficulty level, each problem set is categorized among three difficulty levels:
easy, medium, and hard, with a higher pass rate indicating easier problems and vice versa. Each
category is assigned a compression rate to determine the degree of redundant steps to prune from
the reasoning trajectory, with a higher compression for easier problems and a lower compression for
hard problems. In addition, to keep these constraints adaptive to the amount of redundancy in the
steps, we calculate the uniformity of the attention score distribution. When the distribution of {s;}
is close to uniform, indicating that no step or token within a step stands out as significantly more im-
portant, the compression rate is reduced to avoid removing potentially useful reasoning steps. More
details on calculating the uniformity score can be found in Appendix A.3.3. The difficulty estimate
d is further incorporated with the reward calculation described below.

2.3 REWARDS

Following standard GRPO practice of having a verifiable reward system (Shao et al., 2024), our
setup comprises three different reward signals to guide the model to generate correct adaptive length
responses based on the difficulty of the task:

* Correctness Reward (CR): A high-weight reward is assigned to outputs that produce the correct
final answer. A high score over other rewards is used to ensure that correctness remains the
primary optimization objective, regardless of the reasoning trajectory length.

Under review as a conference paper at ICLR 2026

* Format Reward: A structure reward to ensure the presence of special delimiter tokens such as
<think> and </think>, ensuring that trajectory r and final answer q are easily distinguishable.

¢ Length Reward (LR): To regulate the verbosity of the reasoning process, we define a length-
based reward that penalizes unnecessarily long reasoning traces while adapting to task difficulty.
Based on our initial experiment, simply favoring shorter rollouts led to a drastic decrease in re-
sponse length along with model accuracy; therefore we introduce a sigmoid-based smoothing
mechanism that provides a soft bonus () for rollouts beyond the median length. This prevents
sharp drops in reward for slightly longer reasoning and helps stabilize training. During each
training step, rollouts are partitioned into bins according to their calculated difficulty. As men-
tioned above, we use the pass rate of the rollouts to categorize them into three difficulty bins:
easy, medium and hard. For each bin, we maintain a different distribution L4 = {¢1,£a,..., ¢}
for each difficulty category, where each ¢; denotes the reasoning length of a rollout within that
difficulty category d. Let ¢ be the length of the current rollout. The normalized length score is
computed as: Lyorm = (Lmax — ¢)/max(Lmax — Lmin, €), where € > 0 prevents division by
zero and Ly, = min(L), Liax = max(£L). To avoid a sharp cutoff around the median, we add

a smooth bonus term:
B=1/(1+exp(grmamol)),

where median(£) =median of the set. The final length reward becomes 7iength = max(Lnorm,).
Note that length reward is only provided to a rollout if it reaches a final correct answer. Moreover,
to ensure stability when calculating L.,,;y,, Linaz, and medium(L), we maintain a sliding window
over the last 10 steps for each difficulty bin, thereby avoiding drastic fluctuations during training.

The final reward for each rollout during GRPO training is the combination of correctness, format,
and length rewards (c.f. range of each reward in Appendix A.5.2).

3 EXPERIMENTAL SETUP

Models. We adopt two reasoning models, DeepSeek-R1-Distill-Qwen-7B (DeepSeek-Al et al.,
2025) (Deepseek-Qwen-7B) and Qwen3-4B (Team, 2025) as our base models.

Datasets. We train the model using DAPO-Math-17k (Yu et al., 2025), a math dataset that has veri-
fiable answer. For evaluation, we use a diverse set of benchmarks, including AIME (AIME, 2024),
AMC (AMC, 2023), GPQA-D (Rein et al., 2023), OverthinkingBench/ UnderthinkingBench (Ag-
garwal et al., 2025), and Big Bench Extra Hard (BBEH) (Kazemi et al., 2025). Among the evalu-
ation datasets, only AIME and AMC are math-specific, while the remaining benchmarks represent
out-of-distribution settings. Further dataset details and their sizes are provided in Appendix A.1.

Evaluation. For each evaluation run, we set temperature to 1.0, and the maximum response length
is set to 10k. For each dataset, the mean accuracy and mean response length across 5 runs are
reported. For the overthink split, we also report the AUCpaa (Aggarwal et al., 2025), directly used
from their work. To aggregate performance across all thresholds, we compute the Area Under the
Curve (AUC). More details about these metrics can be found in Appendix A.5.3. Intuitively, a
higher AUCpa, indicates that the model sustains stronger accuracy while minimizing unnecessary
reasoning across thresholds. Following evaluation from Aggarwal et al. (2025) for computing the
OptimalThinkingBench score, we combined the AUCpaa from OverthinkingBench and accuracy
from UnderthinkingBench into a single F1 score.

Training. During the GRPO rollout, we keep a high temperature of 1.0 and sample 8 rollouts
at each step. Due to computational constraints, we set the maximum response length to 10k (see
Appendix A.5.3 for other hyperparameter details). For difficulty calibration, we bin problems into
easy, medium, and hard categories, assigning the categories decreasing compression scores.

Baselines. We compare TRAAC with 5 strong baselines: (1) Base model: off-the-shelf reasoning
model, (2) TokenSkip: An SFT based baseline as described by Xia et al. (2025) that fine-tunes the
model over compressed CoT training data. (3) L1-Max: An RL framework proposed by Aggarwal
& Welleck (2025) that optimizes for accuracy while adhering to user-specific length constraints.
We used the constraint “Think for a maximum of 10000 tokens.” during its training. (4) LC-
R1: A compression-based RL framework by Cheng et al. (2025) that uses an externally trained
model to remove invalid portions of the thinking process. (5) AdaptThink: Different from the

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of TRAAC with various baselines. Each model is evaulate across
various benchmarks, and Acc: accuracy(%) and Len: average Response Length(k) are reported.
TRAAC on average shows the highest performance gain.

Method | AIME | AMC | GPQA-D | BBEH | Average
| Acct Len. | Acet Len | Acet Lenl | Acet Len | Acet Len.|
Qwen3-4B

Base Model | 27.64 9.2 68.19 7.0 45.18 7.6 18.28 6.7 39.8 7.6
TokenSkip 5.84 9.6 27.71 8.7 3232 7.8 11.91 72 19.4 8.3

L1-Max 30.11 7.1 63.61 5.8 43.23 5.8 14.91 5.0 38.0 59
LC-R1 13.48 2.6 56.38 1.7 26.67 1.5 12.35 1.9 272 1.9
Adapt Think | 36.63 8.4 72.77 5.8 44.04 6.7 7.87 6.2 40.3 6.8
TRAAC 45.45 6.7 79.52 42 47.21 4.2 20.59 4.3 48.2 4.8

DeepSeek-R1-Distill-Qwen-7B

Base Model | 33.71 8.2 74.22 5.7 43.55 7.1 10.61 59 40.5 6.7
TokenSkip 24.94 8.5 52.05 6.8 34.24 7.0 6.30 6.4 29.4 7.2

L1-Max 31.01 3.1 75.90 22 23.54 1.9 13.43 2.1 36.0 23
LC-R1 6.07 4.0 37.35 35 28.78 2.5 9.09 1.7 20.3 29
Adapt Think | 38.88 7.1 75.66 4.1 19.29 4.8 6.17 52 35.0 53
TRAAC 38.60 7.3 77.83 4.5 47.31 6.2 11.55 52 43.8 5.8

above baselines, AdaptThink is an adaptive RL framework described by Zhang et al. (2025b), that
enables reasoning models to choose between “thinking” and “no-thinking” modes and poses it as a
constraint optimization problem that encourages the model to choose no-thinking while maintaining
performance. Prompts used for all baselines in Appendix A.5.5.

4 RESULT AND DISCUSSION

4.1 MAIN RESULTS

TRAAC improve both performance and efficiency. Tables | show the performance of TRAAC com-
pared to other baselines on AIME, AMC, GPQA-D, BBEH (Big Bench Extra Hard) benchmarks.
TRAAC (Qwen3-4B) achieves an average accuracy improvement of 8.4% while reducing reasoning
length by 36.8% compared to the base model. Similarly, TRAAC (Deepseek-Qwen-7B) improves
accuracy by 3.3% with a 13.4% reduction in length. When compared to the SFT baseline Token-
Skip (Xia et al., 2025), TRAAC outperforms in terms of performance and efficiency for both models,
Qwen3-4B and Deepseek-Qwen-7B. Similarly, L1-Max (Aggarwal & Welleck, 2025), an RL-based
method that penalizes long responses, also solely focuses on efficiency gains, at a slight cost of over-
all performance. Additionally, the compression-based RL framework LC-R1 (Cheng et al., 2025)
improves the efficiency of the model at the cost of a 12.6% drop for Qwen3-4B and 20.2% drop for
Deepseek-Qwen-7B, when compared with base models, respectively. On average for Qwen3-4B,
TRAAC outperforms L1-Max by 10.2% on Qwen3-4B and by 7.9% on Deepseek-Qwen-7B. Sim-
ilarly, TRAAC also outperforms LC-R1 by 21% on Qwen3-4B and 23% on Deepseek-Qwen-7B.
Moreover, given the same token budget, of approximately 7k, TRAAC (Qwen3-4B) on AIME outper-
forms L1-Max by 15%. These results highlight that, unlike methods that prioritize only efficiency,
TRAAC simultaneously delivers both higher accuracy and shorter reasoning traces.

TRAAC generalizes across domains. Recall that for training TRAAC we used data from DAPO-Math-
17k (Yu et al., 2025), which is a math reasoning dataset. In addition to math datasets, we also evalu-
ate TRAAC on several out-of-domain (OOD) tasks, including GPQA-D, BBEH, OverthinkingBench,
and UnderthinkingBench (Table 2). Among these OOD tasks, TRAAC shows an average improve-
ment of 3% on Qwen3-4B and 2.8% on Deepseek-Qwen-7B compared to the base model, with
improvement as high as 6.8% on UnderthinkingBench, which covers 100 diverse reasoning tasks
from Reasoning Gym (Stojanovski et al., 2025). In addition, TRAAC reduces reasoning tokens by
40% on Qwen3-4B and 20% on Deepseek-Qwen-7B, demonstrating substantially higher efficiency
while also boosting accuracy across benchmarks. This indicates that TRAAC learns a generalizable
compression strategy that transfers from math to other reasoning domains.

Under review as a conference paper at ICLR 2026

Table 2: Performance of TRAAC and various baselines on OptimalThinkingBench (OTB). For Un-
derthinkingBench we report the Acc: Accuracy(%), and Len: Average Response length(k). For
OverthinkingBench, in addition to Acc. and Len. we also report the AUCpaa.

Method | OverthinkingBench | UnderthinkingBench | OTB
| Acct Len.| AUCoaa T | Acc.t Len.| | F1t
Qwen3-4B
Base Model 90.02 1.2 80.06 34.33 7.1 48.05
TokenSkip 78.15 3.5 57.88 14.80 7.9 23.57
L1-Max 87.22 0.9 1.11 21.27 6.3 2.10
LC-R1 78.62 0.3 64.20 14.95 1.3 24.25
Adapt Think | 68.83 8.2 63.44 18.80 6.0 29.01
TRAAC 89.79 0.6 85.06 41.09 4.7 55.41
DeepSeek-R1-Distill-Qwen-7B
Base Model | 78.45 0.9 72.38 12.69 6.2 21.60
TokenSkip 57.03 39 40.77 8.55 7.2 14.13
L1-Max 73.18 1.0 66.01 20.07 2.0 30.78
LC-R1 76.08 0.9 69.81 7.16 2.5 12.99
Adapt Think | 73.41 0.4 70.72 13.13 4.6 22.14
TRAAC 81.81 1.0 72.89 22.30 59 34.15

TRAAC learns to adaptively allocate token budget. Among the baselines in Tables 1 and 2, we
also compare TRAAC against an adaptive RL method, AdaptThink (Zhang et al., 2025b), which
teaches the model to use distinct “thinking” vs. “non-thinking” modes for hard and easy prob-
lems, respectively. On Qwen3-4B, TRAAC outperforms AdaptThink by 7.9% while also reducing
tokens by 29.4%, highlighting that a flexible adaptive strategy is more effective in handling diverse
problem difficulties. Table 2 further tests on the OverthinkingBench/UnderthinkingBench (Aggar-
wal et al., 2025). OverthinkingBench is designed to measure excessive use of thinking tokens on
simple queries. On the other hand, UnderthinkingBench evaluates how necessary “thinking” is
based on problem difficulty. Taken together, TRAAC improves overall F1 performance by 7.36% on
Qwen3-4B, and 12.55% on Deepseek-Qwen-7B over base model, indicating that TRAAC enables the
model to avoid both overthinking on simple problems and underthinking on complex ones(Aggarwal
et al., 2025). Against AdaptThink, TRAAC achieves a 26% gain on Qwen3-4B and a 12% gain on
Deepseek-Qwen-7B, underscoring its ability to adaptively allocate reasoning effort and adjust token
budgets based on problem difficulty. On OverthinkingBench, we measure overthinking using the
AUCOAA metric, which rewards models that solve very easy problems correctly while using min-
imal tokens (ideally 0). Compared to the base model, TRAAC (Qwen3-4B) improves AUCOAA by
5% and Deepseek-Qwen-7B by 0.5%. Relative to AdaptThink, TRAAC gains 21.6% for Qwen3-4B
and 6.9% for Deepseek-Qwen-7B.

4.2 ABLATIONS AND ANALYSIS

To understand the importance of each component of the training setup we conducted an ablation
study, removing each component of our method. Table 3 and Table 4 show the performance of these
ablations compared with the base model. Specifically, we start with the base model and the ablations:
(i) Base Model + CR: The base model trained with GRPO using only the correctness reward, (ii)
Base model + CR + LR: The base model trained with GRPO using both correctness and length
rewards, but without difficulty-level calibration, (iii) Base model + CR + LR + Compression: The
base model trained with GRPO using correctness and length rewards, along with the compression
module, with no difficulty-level calibration. Our findings are as follows.

Combining difficulty-adaptiveness and attention-based compression is crucial for accuracy
and efficiency. Table 3 shows that on Qwen3-4B, removing the difficulty-based calibration (Base
Model + CR + LR + compression) reduces the average performance across AIME, AMC, GPQA-D,
and BBEH by 3.4%, while also making the model less efficient by 23.8%. Additionally, removing
the attention-based compression (Base Model + LR + CR) leads to a further drop in performance by
0.3%. Similarly, on OptimalThinkingBench (Table 4), we observe a comparable degradation: the

Under review as a conference paper at ICLR 2026

Table 3: Ablation Results of TRAAC on Qwen3-4B and Deepseek-Qwen-7B tested across 4 datasets:
AIME, AMC, GPQA-D, and BBEH. Each component addition adds to the previous method.

Method | AIME | AMC | GPQA-D | BBEH | Average
| Acc.t Lenl | Acc.t Len. | Acc.t Lenl | Acc.t Lend | Ace.t Len.
Qwen3-4B

Base Model 27.64 9.2 68.19 7.0 45.18 7.6 18.28 6.7 39.8 7.6
+ CR 44.36 7.9 77.35 5.5 46.29 5.7 18.13 5.2 46.5 6.1
+LR 37.84 4.5 77.35 2.4 44.06 2.3 18.57 2.1 44.5 2.8
+ Compression | 38.37 8.1 75.90 5.5 46.40 6.2 18.41 5.4 44.8 6.3

TRAAC 45.45 6.7 79.52 4.2 47.21 4.2 20.59 4.3 48.2 4.8

Table 4: Ablation Results of TRAAC (Qwen3-4B and Deepseek-Qwen-7B) on OptimalThinking-
Bench (OTB). Each component addition adds to the previous method.

Method | OverthinkingBench | UnderthinkingBench | OTB
| Acct Len.] AUCoaa T | Acc.t Len.| | FIT
Qwen3-4B

Base Model 90.02 1.2 80.06 34.33 7.1 48.1
+CR 90.02 0.9 78.86 37.06 5.7 50.4
+LR 90.94 0.4 75.86 29.62 2.3 42.6
+ Compression | 90.12 0.9 80.41 36.51 6.0 50.2
TRAAC 89.79 0.6 85.06 41.09 4.7 554

F1 score decreases by 5.2% when task-difficulty level calibration is removed and drops further by
7.6% when the attention-based compression module is also removed. These results highlight that a
combination of task-difficulty calibration and attention-based compression is crucial for achieving
both high performance and efficiency gains across tasks.

TRAAC adapts to task difficulty. To further understand the level of adaptivity of TRAAC compared
to other methods, we plot the relative compression ratio and absolute accuracy gains (w.r.t. the base
model) in Fig. 3 as a function of task difficulty. Here, we rank tasks in order of increasing difficulty.
We conduct these experiments on SuperGPQA (Team et al., 2025) — a benchmark to evaluate model
knowledge and reasoning capabilities, which is stratified into easy, medium, and hard splits, and
BBH (Big Bench Hard) (Suzgun et al., 2022) — an easier version of BBEH. To get oracle difficulty
ratings, we rank the datasets by the performance of frontier models on them (Kazemi et al., 2025;
Team et al., 2025), with harder datasets being those with lower performance. From Fig. 3(a), we see
that as the difficulty of the dataset increases from left to right, the compression rate steadily drops
for TRAAC, underscoring its ability to compress more for easier tasks and less for difficult tasks.
However, without task-difficulty level calibration, the compression rate remains roughly uniform
across the tasks. Fig. 3(b) highlights the performance difference, and shows that even with more
compression, TRAAC always maintains higher accuracy than Qwen3-4B + CR + LR + compression,
reiterating the effectiveness of adapting to problem difficulty in TRAAC. Moreover, most of the ac-
curacy gains stems from harder problems, indicating the average accuracy gains seen in Table 1
come from difficulty-adaptive thinking. Deepseek-Qwen-7B results are shown in Appendix A.2 and
follow a similar trend as Qwen3-4B.

TRAAC scales to larger response length, maintain- T,51e 5. TRAAC with 15k training and test-

ing its improvement. During TRAAC training, we set ;1o response length. For each dataset, Ac-

a maximum token budget of 10k. To test the scala- curacy (%) and Response Length (in x 1000
bility of our method, we increase the max training tokens) are reported.

and test-time response length to 15k. Table 5 shows | AME AMC GPQAD
the accuracy and average response length for AIME, Qwemd 4B | 47747123 7711785 4964786
W - B B
AMC, and GPQA-D datasets, for the Qwen3-4B and g, ¢ 5193/9.7 81.68/6.6 51.27/62
TRAAC with increased token budget. Similar to the
prior results, we see an average accuracy improvement of 3.5% and 23.4% efficiency gains. This
underscores that scaling TRAAC still shows consistent gains for both accuracy and efficiency.

Under review as a conference paper at ICLR 2026

(a) Compression Rate Across Benchmark Difficulty (b) Performance Difference Across Benchmark Difficulty

S
> 49
o
3 o
g . 3
40 4 34
1 1)
T < 2.35
o k= o
£307 ; 2 /', S 1.41
) ~
4 21.3 213 g |imr 1.22 e Yol
I 192 _ _em—m—— e 18.3 185 £ ;] @=—=="0~__ "Df)/ ~
g 20 1 ”. ————— o————— e O -9 e
o 11.3,-7 2 N3
¥ i i i i — ; i ; ; »
BBH GPQA SuperGPQA SuperGPQA SuperGPQA BBEH 2 BBH GPQA SuperGPQA SuperGPQA SuperGPQA BBEH
(Easy) (Middle) (Hard) < (Easy) (Middle) (Hard)
Benchmarks (Easier « - Harder) Benchmarks (Easier « - Harder)
=o-: Qwen3-4B + CR + LR + Compression TRAAC —®- Qwen3-4B + CR + LR + Compression TRAAC

Figure 3: (a) Relative change in compression rate of TRAAC and Qwen3-4B + Compression compared
to Qwen3-4B across varying problem difficulty. (b) Absolute accuracy drop of TRAAC and Qwen3-
4B + Compression compared to Qwen3-4B across varying problem difficulty.

5 RELATED WORK

In the past years, reasoning performance of language models has vastly improved via the introduc-
tion of chain-of-thoughts (Wei et al., 2023), parallel scaling through self-consistency (Wang et al.,
2023), and best-of-/N sampling (Lightman et al., 2023). More recently, several works have found
sequential scaling — i.e., increasing the number of reasoning tokens — to be the most effective ap-
proach (Muennighoff et al., 2025), especially when combined with online reinforcement learning or
distillation from such models (Aggarwal & Welleck, 2025; Shao et al., 2024; DeepSeek-Al et al.,
2025). Consequently, the area of efficient reasoning — maintaining high performance from sequential
scaling with minimal token usage — has become a central research focus (Chen et al., 2024; Mar-
janovic et al., 2025; Wu et al., 2025). To this end, prior works compress or prune chain-of-thoughts
via early exiting (Zhang et al., 2025a; Fu et al., 2025), train models under pre-specified budgets (Ag-
garwal & Welleck, 2025), learn thoughts latently without generating them (Hao et al., 2025), use
supervised finetuning to avoid overthinking (Xia et al., 2025; Cheng et al., 2025; Lu et al., 2025), or
add length-based penalties for conciseness (Arora & Zanette, 2025; Hou et al., 2025). However, this
line of work does not explicitly account for varying problem difficulty, instead relying on the model
to learn to allocate budget implicitly; in contrast, TRAAC introduces difficulty-based supervision for
budget allocation. Moreover, prior approaches typically address only overthinking — reducing output
length at the cost of performance drops — whereas we tackle both over- and underthinking.

Improving both reasoning performance and efficiency requires a more adaptive approach through
explicit training. Prior work such as Zhang et al. (2025b) frames adaptivity as a binary decision of
whether to think, whereas we argue that for harder problems it must involve deciding how much
to think — and empirically outperform this baseline in Appendix 4.1. A similar insight appears in
planning, where Saha et al. (2025) show that mixing “system 1” and “system 2" reasoning within
the same instance outperforms a binary choice between them. Shen et al. (2025) pursue difficulty-
adaptive training via repeated sampling and offline preference optimization to prefer shorter re-
sponses. In contrast, TRAAC provides attention-based supervision in the compression module through
online RL (DeepSeek-Al et al., 2025). Unlike concurrent work by Choi et al. (2025), who prune re-
dundant tokens post hoc, our method adapts compression during training itself — yielding difficulty-
aware reasoning and improved test-time efficiency without generating unnecessary tokens.

6 CONCLUSION

We introduced TRAAC, a post-training RL method that operates online and uses a difficulty-adaptive,
attention-based compression module. Through its adaptive attentive compression, TRAAC is able
to prune its reasoning steps adaptively based on the task difficulty. TRAAC addresses the issue of
under-adaptivity, which helps improve both performance and efficiency, as thinking longer on harder
problems helps in better exploration, and thinking shorter on easier problems avoids wasting of test-
time compute. Moreover, our method also shows strong generalizability, with evaluation done on
various OOD tasks. Through our analysis and ablation, we further verify that our adaptive method
can provide fine-grained adjustments to the thinking budget based on the difficulty of the problem,
and a combination of task-difficulty calibration and attention-based compression helped achieve
both accuracy and efficiency gains.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

TRAAC is a reinforcement learning method that rewards models based on the correctness of the final
answer. Therefore, the trained LLMs may still generate hallucinations, since their intermediate
reasoning steps are neither guided nor evaluated — only the final result is checked. This means
outputs from TRAAC can pose risks of misinformation or hallucination. Future work is needed to
more thoroughly evaluate and mitigate these issues.

REPRODUCIBILITY STATEMENT

We are making our code available in the supplementary materials to help reproduce our findings.
We also provide detailed descriptions, hyperparameters, and prompts about the implementation of
TRAAC in Appendix A.5.

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.04697.

Pranjal Aggarwal, Seungone Kim, Jack Lanchantin, Sean Welleck, Jason Weston, Ilia Kulikov, and
Swarnadeep Saha. Optimalthinkingbench: Evaluating over and underthinking in 1lms, 2025. URL
https://arxiv.org/abs/2508.13141.

AIME. American invitational mathematics examination, 2024. URL https:
//artofproblemsolving.com/wiki/index.php/American_Invitational Mathematics_
Examination.

AMC. American mathematics competitions, 2023. URL https://maa.org/student-programs/
amc/.

Daman Arora and Andrea Zanette. Training language models to reason efficiently, 2025. URL
https://arxiv.org/abs/2502.04463.

Jiangjie Chen, Qianyu He, Siyu Yuan, Aili Chen, Zhicheng Cai, Weinan Dai, Hongli Yu, Qiying Yu,
Xuefeng Li, Jiaze Chen, Hao Zhou, and Mingxuan Wang. Enigmata: Scaling logical reasoning in
large language models with synthetic verifiable puzzles, 2025. URL https://arxiv.org/abs/
2505.19914.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking
of ol-like llms. arXiv preprint arXiv:2412.21187, 2024.

Zhengxiang Cheng, Dongping Chen, Mingyang Fu, and Tianyi Zhou. Optimizing length compres-
sion in large reasoning models, 2025. URL https://arxiv.org/abs/2506.14755.

Daewon Choi, Jimin Lee, Jihoon Tack, Woomin Song, Saket Dingliwal, Sai Muralidhar Jayanthi,
Bhavana Ganesh, Jinwoo Shin, Aram Galstyan, and Sravan Babu Bodapati. Think clearly: Im-
proving reasoning via redundant token pruning, 2025. URL https://arxiv.org/abs/2507.
08806.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, et al. The danger of overthinking: Examin-
ing the reasoning-action dilemma in agentic tasks. arXiv preprint arXiv:2502.08235, 2025.

DeepSeek-Al et al. Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforcement learn-
ing, 2025. URL https://arxiv.org/abs/2501.12948.

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. arXiv
preprint arXiv:2508.15260, 2025.

10

https://arxiv.org/abs/2503.04697
https://arxiv.org/abs/2508.13141
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://maa.org/student-programs/amc/
https://maa.org/student-programs/amc/
https://arxiv.org/abs/2502.04463
https://arxiv.org/abs/2505.19914
https://arxiv.org/abs/2505.19914
https://arxiv.org/abs/2506.14755
https://arxiv.org/abs/2507.08806
https://arxiv.org/abs/2507.08806
https://arxiv.org/abs/2501.12948

Under review as a conference paper at ICLR 2026

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason E Weston, and Yuandong
Tian. Training large language model to reason in a continuous latent space, 2025. URL https:
//openreview.net/forum?id=tG4SgayTtk.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Shijue Huang, Hongru Wang, Wanjun Zhong, Zhaochen Su, Jiazhan Feng, Bowen Cao, and Yi R.
Fung. Adactrl: Towards adaptive and controllable reasoning via difficulty-aware budgeting, 2025.
URL https://arxiv.org/abs/2505.18822.

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou, San-
ket Vaibhav Mehta, Lalit K. Jain, Virginia Aglietti, Disha Jindal, Peter Chen, Nishanth Dikkala,
Gladys Tyen, Xin Liu, Uri Shalit, Silvia Chiappa, Kate Olszewska, Yi Tay, Vinh Q. Tran, Quoc V.
Le, and Orhan Firat. Big-bench extra hard, 2025. URL https://arxiv.org/abs/2502.19187.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Ximing Lu, Seungju Han, David Acuna, Hyunwoo Kim, Jaehun Jung, Shrimai Prabhumoye, Niklas
Muennighoff, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, et al. Retro-search: Ex-
ploring untaken paths for deeper and efficient reasoning. arXiv preprint arXiv:2504.04383, 2025.

Sara Vera Marjanovié, Arkil Patel, Vaibhav Adlakha, Milad Aghajohari, Parishad BehnamGhader,
Mehar Bhatia, Aditi Khandelwal, Austin Kraft, Benno Krojer, Xing Han Lu, Nicholas
Meade, Dongchan Shin, Amirhossein Kazemnejad, Gaurav Kamath, Marius Mosbach, Karolina
Staiczak, and Siva Reddy. Deepseek-rl thoughtology: Let’s think about llm reasoning, 2025.
URL https://arxiv.org/abs/2504.07128.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

OpenAl et al. Openai ol system card, 2024. URL https://arxiv.org/abs/2412.16720.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqga: A graduate-level google-proof qa bench-
mark, 2023. URL https://arxiv.org/abs/2311.12022.

Swarnadeep Saha, Archiki Prasad, Justin Chih-Yao Chen, Peter Hase, Elias Stengel-Eskin, and
Mohit Bansal. System-1.x: Learning to balance fast and slow planning with language models,
2025. URL https://arxiv.org/abs/2407.14414.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
Wang, Zhaoxiang Liu, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reason-
ing models, 2025. URL https://arxiv.org/abs/2503.04472.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/abs/
2408.03314.

11

https://openreview.net/forum?id=tG4SgayTtk
https://openreview.net/forum?id=tG4SgayTtk
https://arxiv.org/abs/2505.18822
https://arxiv.org/abs/2502.19187
https://arxiv.org/abs/2504.07128
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2407.14414
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2503.04472
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314

Under review as a conference paper at ICLR 2026

Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kad-
dour, and Andreas K&pf. Reasoning gym: Reasoning environments for reinforcement learning
with verifiable rewards, 2025. URL https://arxiv.org/abs/2505.24760.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them, 2022. URL https://arxiv.org/
abs/2210.09261.

P Team et al. Supergpga: Scaling llm evaluation across 285 graduate disciplines, 2025. URL
https://arxiv.org/abs/2502.14739.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PLTNIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Jason Weston and Sainbayar Sukhbaatar. System 2 attention (is something you might need too),
2023. URL https://arxiv.org/abs/2311.11829.

Yuyang Wu, Yifei Wang, Ziyu Ye, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is
less: Understanding chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025.

Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms, 2025. URL https://arxiv.org/abs/2502.12067.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqgian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing Ilm reasoning with rule-based reinforcement
learning, 2025. URL https://arxiv.org/abs/2502.14768.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
https://arxiv.org/abs/2503.14476.

Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reason-
ing models know when they’re right: Probing hidden states for self-verification. arXiv preprint
arXiv:2504.05419, 2025a.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think, 2025b. URL https://arxiv.org/abs/2505.13417.

Jixiao Zhang and Chunsheng Zuo. Grpo-lead: A difficulty-aware reinforcement learning approach
for concise mathematical reasoning in language models, 2025. URL https://arxiv.org/abs/
2504.09696.

12

https://arxiv.org/abs/2505.24760
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2502.14739
https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2311.11829
https://arxiv.org/abs/2502.12067
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2505.13417
https://arxiv.org/abs/2504.09696
https://arxiv.org/abs/2504.09696

Under review as a conference paper at ICLR 2026

A

APPENDIX

A.1 DATASET DETAILS

We evaluated the model on various benchmarks:

AMC: All questions come from AMC12 2022, AMC12 2023, and have been extracted from the
AOPS wiki page. Total Count: 83

AIME: All questions come from AIME 22, AIME 23, and AIME 24, and have been extracted
directly from the AOPS wiki page. Total Count: 90

GPQA-D: It is a multiple-choice dataset covering physics, biology, and chemistry. Total Count:
198

BBEH: A benchmark designed to push the boundaries of LLM reasoning evaluation. BBEH
replaces each task in BBH with a novel task that probes a similar reasoning capability but exhibits
significantly increased difficulty. Total Count: 460

OptimalThinkingBench: A unified benchmark that jointly evaluates overthinking and under-
thinking in LLMs and also encourages the development of optimally-thinking models that bal-
ance performance and efficiency. Two sub benchmarks: OverthinkingBench, featuring simple
queries in 72 domains, and UnderthinkingBench, containing 11 challenging reasoning tasks.
UnderthinkingBench count: 550, OverthinkingBench count: 607.

BBH: a suite of 23 challenging BIG-Bench tasks. Total Count: 2115

SuperGPQA: A comprehensive benchmark designed to evaluate the knowledge and reasoning
abilities of Large Language Models (LLMs) across 285 graduate-level disciplines. Each problem
is also categorized as easy, medium and hard. 540 problems for each difficulty category, so the
total count is 1620.

To calculate the accuracy, we adopt Math-Verify ?. For UnderthinkingBench accuracy calculation,
we used the evaluation scripts from Reasoning-Gym (Stojanovski et al., 2025)

A.2 DEEPSEEK ABLATION AND ANALYSIS

Table 6 and Table 7 present the ablation results for (i) Base Model + CR: The base model trained
with GRPO using only the correctness reward, (ii) Base model + CR + LR: The base model trained
with GRPO using both correctness and length rewards, but without difficulty-level calibration.

Table 6: Ablation Results of TRAAC on Qwen3-4B and Deepseek-Qwen-7B tested across 4 datasets:
AIME, AMC, GPQA-D, and BBEH. Each component addition adds to the previous method.

Method | AIME | AMC | GPQA-D | BBEH | Average

| Acc.t Len. | Acet Len. | Ace.t Len | Ace.t Len | Acct Len.|

DeepSeek-R1-Distill-Qwen-7B

Base Model | 33.71 8.2 74.22 5.7 43.55 7.1 10.61 59 40.5 6.7

+CR 35.81 7.6 78.55 4.9 45.99 6.1 11.74 5.1 43.0 5.9
+ LR 32.73 6.0 79.04 33 45.99 35 11.51 2.7 423 39
TRAAC 38.60 7.3 77.83 4.5 47.31 6.2 11.55 5.2 43.8 5.8

A.3 COMPRESSION MODULE

A.3.1 PROMPT

For every reasoning trajectory, auxiliary prompt was appended at the end of the trajectory. The
prompt is: “Time is up. I should stop thinking and now write a summary containing all key steps
required to solve the problem.”.

2Huggingface Math-Verify

13

https://github.com/huggingface/Math-Verify

Under review as a conference paper at ICLR 2026

Table 7: Ablation Results of TRAAC (Qwen3-4B and Deepseek-Qwen-7B) on OptimalThinking-
Bench (OTB). Each component addition adds to the previous method.

Method | OverthinkingBench | UnderthinkingBench | OTB

| Acct Len.| AUCoar T | Acc.t Len.| | F11
DeepSeek-R1-Distill-Qwen-7B

Base Model | 78.45 0.9 72.38 12.69 6.2 21.6

+ CR 79.51 0.8 73.36 17.05 5.7 27.7

+LR 78.06 0.4 72.61 14.69 3.0 24.4

TRAAC 81.81 1.0 72.89 22.30 5.9 34.1

A.3.2 SPECIAL TOKENS TO SPLIT TRAJECTORY TO CHUNKS

Below is the list that is used to split each reasoning trajectory into multiple reasoning steps.

split_tokens = [
"Wait", "Alternatively”, "Another angle"”, "Another approach”, "But wait",
"Hold on", "Hmm", "Maybe”, "Looking back", "Okay"”, "Let me"”, "First”,
"Then", "Alright"”, "Compute"”, "Correct”, "Good"”, "Got it",

"I don't see any errors”, "I think”, "Let me double-check”, "Let's see”,
"Now", "Remember”, "Seems solid”, "Similarly"”, "So", "Starting",
"That's correct”, "That seems right"”, "Therefore”, "Thus"”

A.3.3 UNIFORMITY SCORE

Algorithm 1 presents the pseudocode for calculating the uniformity score, based on which the final
compression rate is calculated.

Algorithm 1: Calculating Eviction Percentage Based on Attention Uniformity

Input: Step importance scores {s1, so, . . ., S, }, target reduction 7 (default: 0.25)
Output: Eviction percentage e € [0, 1]
Function CALCULATEUNIFORMITY SCORE({s1, ..., Sy }):

if n <1 then

return 1.0;
; // Only one step = perfectly uniform

Clamp all s; > 0;
T + Zi Sis
if T' < 0 then
L return 1.0;
pi < 8;/T // Normalize to probability distribution
H < =3, pi-log(p; +¢€); // Entropy, €=10"12
Hppax < log(n);
if H,,.x = 0 then
L return 1.0;
return H/H,,y ; // Uniformity score in [0, 1]

Function DETERMINEEVICTIONPERCENTAGE(u, 7):
if u > 0.8 then

L return 0.0 ; // High uniformity: keep all steps
e« 71-(1—u); // Scale eviction by non-uniformity
return min(e, 0.8) ; // Cap eviction at 80%

u < CALCULATEUNIFORMITY SCORE({s1,...,8n});

€ < DETERMINEEVICTIONPERCENTAGE(u, T);

14

Under review as a conference paper at ICLR 2026

A.4 GRPO DETAILS

For each question ¢, a group of responses {y',%2,...,y" } is sampled from the old policy o4, and
the policy model 7y is optimized by maximizing the following GRPO objective.

N ly’| , ,
1 1 Olye) ;o <7Te(y' (H)ly<,) > ;]
0) = — 7&_,, lip(——— 5, 1—¢&1+¢) Ais],
Jareo (0) N ;] 2 Z Lom gLy clip 5 e) Ay

Told (y* (¢)|y<t)

where ¢ is the clipping range hyperparameter, and Ai,t represents the advantage, computed based
on the relative verifiable outcome based rewards of outputs within each group.

A.5 EXPERIMENTAL DETAILS

We adopt verl (Sheng et al., 2024) as the training framework.
A.5.1 HYPERPARAMETERS

Table 8: Hyperparameters used for training, evaluation, and difficulty calibration.

Category Hyperparameter Value
Number of rollouts 8
Temperature 1.0
top_p 1.0
top_k -1.0
Training Max response length 10k

clip_ratio_low 0.20

clip_ratio_high 0.28
kl_loss_coef 0.001

Learning rate (LR) le-6

Number of rollouts 8

Temperature 1.0

. top_p 1.0
Evaluation top_k 10
Max response length 10k

N 5

Hard 0.20
Difficulty Calibration Medium 0.40
Easy 0.60

A.5.2 TRAINING REWARD

To ensure a high weight on correctness relative to other components, we assign a correctness re-
ward of +4 if the final answer is correct and 0 otherwise. The format reward ranges from 0 to
1: a score of 0.5 is given for the presence of the <think> and </think> tokens, and an additional
0.5 is awarded if every reasoning trajectory is properly enclosed within these tokens in the correct
order. The length reward ranges from 0 to 2. The overall reward is computed as the sum of these
components:

Total Reward = Correctness Reward + Format Reward + Length Reward.

A.5.3 EVALUATION METRICS

For each of the dataset we compute the accuracy and the average response length. Specifically for
OverthinkingBench we also compute the AUCpaa. This metric is based on Overthinking-Adjusted

15

Under review as a conference paper at ICLR 2026

Accuracy (OAA), which measures model correctness under a limit on reasoning tokens. For a
threshold ¢, it is defined as

n

1
OAA; = — g (Correctnessi - I(ThinkTokens; < t)),
n
i=1

where Correctness; € {0, 1} indicates whether the i-th response is correct, and I(+) is the indicator
function that enforces the thinking length constraint.

tmax OAA;

tms
|t
AUCopp = / dt ~ - Z OAA,,

0 max max ;o

where ¢y,.x is the maximum number of allowed thinking tokens. Furthermore, following the method
from (Aggarwal et al., 2025), to compute the OptimalThinkingBench metric: F1 score we combine
the AUCpaa from OverthinkingBench and Accuracy (Accy) from UnderthinkingBench into a sin-

gle F1 score:

AUCOAA . ACCut
F1=2- 1
AUCoanA + Accys M

A.5.4 TRAINING PROMPT

For each questions in the training set, instruction was provided: ‘‘Let’s think step by step
and output the final answer within \\boxed{}’’

A.5.5 BASELINE PROMPTS

Below we define the instruction that was provided to each baseline model:

e Base Model: ‘‘Let’s think step by step and output the final answer within

\\boxed{}"’

e L1-Max: ‘‘Let’s think step by step and output the final answer within \\boxed{}.
Think for maximum 10000 tokens.’’

e LC-R1: ‘¢ Please reason step by step, and put your final answer within
\\boxed{}"’

¢ AdaptThink: No prompt, just the question

e TokenSkip: "<|im_start|>system You are a helpful assistant.<[im_end]|>
<|im_start|>user Please reason step by step, and put your final answer within
\boxed{}. question<|eot_id|>@.5<|eot_id|><|im_end|> <|im_start|>assistant”

A.6 CoOMPUTE USED

All training was done on 4*A100 (80GB).

16

	Introduction
	TRAAC: Think Right with Adaptive Attentive Compression
	Problem Formulation in TRAAC
	Adaptive, Attentive Compression Module
	Rewards

	Experimental Setup
	Result and Discussion
	Main Results
	Ablations and Analysis

	Related Work
	Conclusion
	Appendix
	Dataset Details
	Deepseek Ablation and Analysis
	Compression Module
	Prompt
	Special Tokens to split Trajectory to Chunks
	Uniformity Score

	GRPO Details
	Experimental Details
	Hyperparameters
	Training Reward
	Evaluation Metrics
	Training prompt
	Baseline prompts

	Compute Used

