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Abstract
We consider minimizing functions for which it is expensive to compute the gradient. Such
functions are prevalent in reinforcement learning, imitation learning and bilevel optimization.
Our target optimization framework uses the (expensive) gradient computation to construct
surrogate functions in a target space (e.g. the logits output by a linear model for classification)
that can be minimized efficiently. This allows for multiple parameter updates to the model,
amortizing the cost of gradient computation. In the full-batch setting, we prove that our
surrogate is a global upper-bound on the loss, and can be (locally) minimized using a
black-box optimization algorithm. We prove that the resulting majorization-minimization
algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our
framework in the stochastic setting and propose the SSO algorithm that can be viewed as
projected stochastic gradient descent in the target space. This connection enables us to use
standard stochastic optimization algorithms to construct surrogates which can be minimized
using deterministic optimization. Our experiments on supervised learning and imitation
learning exhibit the benefits of target optimization, even in stochastic settings.

1. Introduction

Stochastic gradient descent (SGD) [18] and its variants [5, 10] are ubiquitous optimization
methods in machine learning (ML). For supervised learning, iterative first-order methods
require computing the gradient over individual mini-batches of examples. The computational
cost of these algorithms is often dominated by that of computing the stochastic gradient,
which can be expensive. For example, in reinforcement learning (RL) or online imitation
learning (IL) [19], optimization for finding a good policy requires gathering data samples via
potentially expensive interactions with the environment. Policy gradient methods [22, 28]
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for example, use the gathered data to compute the stochastic gradient and update the
policy. This computation requires expensive interactions with the environment and its cost
dominates the total computational cost of these methods.

We focus on algorithms that access the expensive gradient oracle to construct a sequence
of surrogate functions. Typically, these surrogates are chosen to be global upper-bounds
on the underlying function and hence minimizing the surrogate results in minimizing the
function. Algorithmically, these surrogate functions can be minimized efficiently without
additional accesses to the gradient oracle, making this technique advantageous for the
applications of interest. This technique of incrementally constructing and minimizing
surrogate functions is commonly referred to as majorization-minimization and includes the
expectation-maximization (EM) algorithm [4] as an example. In RL, common algorithms [20,
21] also rely on minimizing surrogate functions.

Surrogate functions are typically constructed by using the convexity and/or smoothness
properties of the underlying function. Such surrogates have been used in the stochastic
setting [13, 14]. Unlike these existing works, we construct surrogate functions over a well-
chosen target space rather than the parametric space, leveraging the composition structure
of the loss functions prevalent in ML to build tighter surrogates. For example, in supervised
learning, typical loss functions are of the form h(θ) = ℓ(f(θ)), where ℓ is (usually) a convex
loss (e.g. the squared loss for regression or the logistic loss for classification), while f

corresponds to a transformation (e.g. linear or high-dimensional, and non-convex as in
the case of neural networks) of the inputs. Similarly, in IL, ℓ measures the divergence
between the policy being learned and the ground-truth expert policy, whereas f corresponds
to a specific parameterization of the policy being learned. Formally, if Θ is the feasible
set of parameters, f : Θ → Z is a potentially non-convex mapping from the parametric
space Θ ⊆ Rd to the target space Z ⊆ Rp and ℓ : Z → R is a convex loss function. Here,
computing ∇zℓ(z) requires accessing the expensive gradient oracle, while ∇θf(θ) can be
computed efficiently. Unlike Nguyen et al. [15] who exploit this composition structure to
prove global convergence, we will use it to construct surrogate functions in the target space.
The work in Johnson and Zhang [8] also constructs surrogate functions using the target
space, but require accessing the (stochastic) gradient oracle for each model update, and is
hence inefficient in our setting. We make the following contributions.

Target optimization in the deterministic setting: In Section 3, we use the
smoothness of ℓ with respect to z in order to define the target smoothness surrogate and
prove that it is a global upper-bound on the underlying function h. Using this, we devise a
majorization-minimization algorithm which iteratively forms the target smoothness surrogate
and (locally) minimizes it using any black-box algorithm. Although forming the target
smoothness surrogate requires access to the expensive gradient oracle, it can be minimized
without additional oracle calls resulting in multiple, computationally efficient updates to the
model. We refer to this framework as target optimization. In Algorithm 1 of Appendix B,
we instantiate the target optimization framework using m steps of gradient descent to
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approximately minimize the surrogate. For smooth surrogates, we prove that Algorithm 1
converges to a stationary point of h at an O (1/T) rate for any value of m ≥ 1 (Appendix C).

Target optimization in the stochastic setting: In Section 4, we consider the setting
where we have access to an expensive stochastic gradient oracle that returns a noisy, but
unbiased estimate of the true gradient. Similar to the deterministic setting, we access the
gradient oracle to form a stochastic target smoothness surrogate. Though the surrogate is
constructed by using a stochastic gradient in the target space, it is a deterministic function
with respect to the parameters and can be minimized using any standard optimization
algorithm. Our framework disentangles the stochasticity in ∇zℓ(z) (in the target space)
from the potential non-convexity in f (in the parametric space). Similar to the deterministic
setting, we use m steps of GD to minimize the stochastic target smoothness surrogate and
refer to the resulting algorithm as stochastic surrogate optimization (SSO). Interpreting SSO
as inexact projected SGD in the target space allows us to take advantage of existing stochastic
optimization techniques to construct surrogates which themselves can be minimized by a
deterministic optimization method.

Minimizing surrogate functions in the target space is also advantageous because it allows
us to choose the space in which to constrain the size of the updates. Specifically, for
overparameterized models such as deep neural networks, there is only a loose connection
between the updates in the parameter and target space. In order to directly constrain the
updates in the target space, methods such as natural gradient [1, 9] involve computationally
expensive operations. In comparison, SSO has direct control over the updates in the target
space and can also be implemented efficiently.

Experimental evaluation: To evaluate our target optimization framework, we consider
a suite of supervised learning and imitation learning problems (Section 5 and Appendix D),
comparing SSO with different variations of the target surrogate to standard optimization
methods. Our empirical results exhibit the benefits of target optimization.

2. Problem Formulation

We focus on minimizing functions that have a composition structure and for which the
gradient computation is expensive. Formally, our objective is to solve the following problem:
minθ∈Θ h(θ) := ℓ(f(θ)) where Θ ⊆ Rd, Z ⊆ Rp, f : Θ→ Z and ℓ : Z → R. Throughout this
paper, we will assume that h is Lθ-smooth1 in the parameters θ and that ℓ(z) is L-smooth
in the targets z. For all generalized linear models including linear and logistic regression,
f = X⊤θ is a linear map in θ and ℓ is convex in z. For neural networks, it is typical for
the function f mapping X to y to be non-convex but for the loss ℓ to be convex. For
RL, the target space is the space of policies, and ℓ is the cumulative loss when using a
policy π := f(θ) parameterized by θ. Even though our algorithmic framework can handle
non-convex ℓ and f , depending on the specific setting, our theoretical results will assume
that ℓ (or h) is (strongly)-convex in θ and f is an affine map.

1. For definitions of smoothness, convexity, and strong-convexity see Appendix A.

3



Target-based Surrogates for Stochastic Optimization

For our applications of interest, computing ∇zℓ(z) is computationally expensive, whereas
f(θ) (and its gradient) can be computed efficiently. For example, in RL, computing the
cumulative loss ℓ (and the corresponding gradient ∇zℓ(z)) for a policy involves evaluating it
in the environment. Since this operation involves interactions with the environment or a
simulator, it is computationally expensive. On the other hand, the cost of computing ∇θf(θ)
only depends on the policy parameterization and does not involve additional interactions
with the environment. This structure is also satisfied by online imitation learning that we
consider in Section 5. In some cases, it is more natural to consider access to a stochastic
gradient oracle that returns a noisy, unbiased gradient ∇ℓ̃(z) such that E[∇ℓ̃(z)] = ∇ℓ(z).
We consider the effect of stochasticity in Section 4.

If we do not take advantage of the composition structure nor explicitly consider the cost
of the gradient oracle, iterative first-order methods such as GD or SGD can be directly used
to minimize h(θ). At iteration t ∈ [T ], the parametric GD update is: θt+1 = θt − η∇ht(θt)
where η is the step-size to be selected or tuned according to the properties of h. Since
h is Lθ-smooth, each iteration of parametric GD can be viewed as exactly minimizing
the quadratic surrogate function derived from the smoothness condition with respect to
the parameters. Specifically, θt+1 := arg min gθ

t (θ) where gθ
t is the parametric smoothness

surrogate: gθ
t := h(θt) + ⟨∇h(θt), θ − θt⟩ + 1

2η ∥θ − θt∥22. Minimizing the global upper-
bound results in descent on h since h(θt+1) ≤ gθ

t (θt+1) ≤ gθ
t (θt) = ht(θt). Similarly,

the parametric SGD update consists of accessing the stochastic gradient oracle to obtain(
h̃(θ),∇h̃(θ)

)
such that E[h̃(θ)] = h(θ) and E[∇h̃(θ)] = ∇h(θ), and iteratively constructing

the stochastic parametric smoothness surrogate g̃θ
t (θ). Specifically, θt+1 = arg min g̃θ

t (θ),
g̃θ

t (θ) := h̃(θt) + ⟨∇h̃(θt), θ− θt⟩+ 1
2ηt
∥θ − θt∥22. Here, ηt is the iteration dependent step-size

that is decayed according to the properties of h [18]. In contrast to these methods, in the
next section, we exploit the smoothness of the losses with respect to the target space and
propose a majorization-minimization algorithm in the deterministic setting.

3. Deterministic setting

We consider minimizing ℓ(f) in the deterministic setting where we can exactly evaluate the
gradient ∇zℓ(z). Similar to the parametric case in Section 2, we use the smoothness of
ℓ(z) w.r.t the target space and define the target smoothness surrogate around zt as: ℓ(zt) +
⟨∇zℓ(zt), z− zt⟩+ 1

2η ∥z − zt∥22, where η is the step-size to be determined theoretically. Since
z = f(θ), the surrogate can be expressed as a function of θ: gz

t (θ) = ℓ(zt) + ⟨∇zℓ(zt), f(θ)−
zt⟩ + 1

2η ∥f(θ)− zt∥22, which is in general not quadratic in θ. Similar to the parametric
smoothness surrogate, we see that h(θt) = ℓ(f(θt)) = gz

t (f(θt)) and if ℓ is L-smooth w.r.t
the target space Z, then for η ≤ 1

L , gz
t (f(θ)) ≥ ℓ(f(θ)) = h(θ) for all θ i.e. the surrogate

is a global upper-bound on h. Since gz
t is a global upper-bound on h, similar to GD, we

can minimize h by minimizing the surrogate at each iteration i.e. θt+1 = arg minθ gz
t (θ).

However, unlike GD, in general, there is no closed form solution for the minimizer of gz
t , and

we will consider minimizing it approximately. This results in the following meta-algorithm:
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for each t ∈ [T ], at iterate θt, form the surrogate gz
t and compute θt+1 by (approximately)

minimizing gz
t (θ). This meta-algorithm enables the use of any black-box algorithm to

minimize the surrogate at each iteration. In Algorithm 1, we instantiate this meta-algorithm
by minimizing gz

t (θ) using m ≥ 1 steps of gradient descent. For m = 1, Algorithm 1 results
in the following update: θt+1 = θt − α∇gz

t (θt) = θt − α∇h(θt), and is thus equivalent to
parametric GD with step-size α. Instantiating Algorithm 1 for linear regression with m = 1
recovers parametric GD on the least squares objective. On the other hand, minimizing
the surrogate exactly (corresponding to m =∞) to compute θt+1 results in the following
update: θt+1 = (XTX)−1 [XT(Xθt − y)] and recovers the Newton update in the parameter
space. Hence, for linear regression, approximately minimizing gz

t using m ∈ (1,∞) steps of
GD interpolates between a first and second-order method.

In Theorem 1 in Appendix C, we prove that Algorithm 1 with any value of m ≥ 1 and
appropriate choices of α and η results in an O(1/T) convergence to a stationary point of h.
Importantly, this result only relies on the smoothness of ℓ and gz

t , and does not require either
ℓ(z) or f(θ) to be convex. Hence, this result holds even when using a non-convex model like
deep neural networks, or for problems with non-convex loss function such as in RL. The
idea of constructing surrogates in the target space has been recently explored in the context
of designing efficient off-policy algorithms for reinforcement learning [25]. Next, we consider
the stochastic setting where we only obtain a noisy (though unbiased) gradient estimate.

4. Stochastic setting

In the stochastic setting, we use the noisy but unbiased estimates (ℓ̃(z),∇ℓ̃(z)) from the
gradient oracle to construct the stochastic target surrogate. We will focus on the special case
where ℓ is a sum over (potentially infinite) individual losses i.e. ℓ(z) =

∑
i ℓi(z). In this case,

querying the stochastic gradient oracle at iteration t returns the individual loss and gradient
corresponding to the loss index it i.e.

(
ℓ̃(z),∇ℓ̃(z)

)
= (ℓit(z),∇ℓit(z)). This structure is

present in the use-cases of interest, for example in supervised learning using a dataset of n

training points or in imitation learning when a small number of random trajectories were
collected at iteration t. Also, in order to admit an efficient implementation of the surrogate
and the resulting algorithms, we only consider loss functions that are separable w.r.t the
target space, i.e. for z ∈ Z, if zi ∈ R denotes coordinate i of z, then ℓ(z) =

∑
i ℓi(zi). Such a

structure is present in the loss functions for all supervised learning problems where Z ⊆ Rn

and zi = fi(θ) := f(Xi, θ). In this setting, ∂ℓi
∂zj = 0 for all i and j ̸= i. The stochastic target

surrogate g̃z
t (θ) = ℓit(zt) + ∂ℓit (zt)

∂zit

[
fit(θ)− zi

t

]
+ 1

2ηt

[
fit(θ)− zit

t

]2
, with ηt the step-size at

iteration t. The next iterate is obtained as θt+1 = arg minθ g̃z
t (θ). Note that g̃z

t (θ) only
depends on a single point it and only requires access to ∂ℓit(zt) and thus can be constructed
efficiently.2 Algorithmically, we can form the surrogate g̃z

t at iteration t and minimize it
approximately by using any black-box algorithm. Similar to the deterministic setting, we can

2. While E[g̃z
t ] = gz

t , E[arg min g̃z
t ] ̸= arg min gz

t , in contrast to parametric SGD where E[arg min g̃θ
t ] =

arg min gθ
t .
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minimize g̃z
t using m steps of GD. The resulting algorithm is the same as Algorithm 1 but

using g̃z
t . Notably the surrogate is formed by selecting function ℓt randomly and is therefore

random. However, once the surrogate is formed, it can be minimized using any deterministic
algorithm, i.e. there is no additional randomness in the inner-loop in Algorithm 1. Moreover,
for m = 1, Algorithm 1 has the same update as parametric SGD.

We interpret minimizing g̃z
t as projected SGD: zt+1/2 = zt − ηt∇zℓit(zt) and z̄t+1 =

arg minz∈Z
1
2

∥∥∥zt+1/2 − z
∥∥∥2

Pt

, where Pt ∈ Rp×p is a diagonal preconditioner such that Pit,it = 1
and Pi,j = 0 for all i, j ≠ it. Starting from zt, the SGD update might result in an zt+1/2

such that zt+1/2 /∈ Z, and hence we need an additional projection step. For the linear
parameterization, the set Z is convex, and the Euclidean projection is unique. In Ap-
pendix C.1, we prove that z̄t+1 = f (arg minθ∈Θ g̃z

t (θ)). Hence, minimizing g̃z
t is equivalent

to projected SGD, implying that the inexact minimization of g̃z
t (for example, using m

steps of GD in Algorithm 1) can be interpreted as an inexact projection. For non-convex
f , the set Z can be non-convex and the projection is not well-defined but the surrogate
g̃z

t can still be minimized, albeit without any guarantees on the convergence. To fully
instantiate the stochastic surrogate, we can specify the step-size sequence {ηt}Tt=1 using the
existing literature [5, 12, 18, 24]. Moreover, while we introduced the framework using a first
order method in the target space, it allows us to use alternative stochastic optimization
algorithms (e.g online Newton method, stochastic mirror descent) to construct surrogates
(refer to Appendix B) that can then be optimized using a black-box deterministic algorithm.

5. Experimental Evaluation
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Figure 1: Comparison of policy return, and log policy loss incurred by SGD, SLS, Adam, Adagrad,
and SSO as a function of the interactions. In all settings, (i) SSO outperforms all other online-
optimization algorithms, and (ii) as m in increases SSO performance improves. Additional neural
network experiments are included in Appendix D, which display similar trends.

We evaluate the target optimization framework for supervised learning and online
imitation learning. We compare stochastic surrogate optimization (SSO), against SGD with
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the standard theoretical 1/2Lθ step-size, SGD with the step-size set according to a stochastic
line-search [24] SLS, Adagrad [5], and finally Adam [10] using default hyper-parameters. Since
SSO is equivalent to projected SGD in the target space, we set η (in the surrogate definition)
to 1/2L where L is the smoothness of ℓ w.r.t z. In the subsequent experiments, we use either
the theoretically chosen step-size when available, or the default step-size provided by Paszke
et al. [17]. For SSO, since the surrogate optimization is a deterministic problem, we use
the standard back-tracking Armijo line-search [2] with the same hyper-parameters across
all experiments. For each experiment, we plot the average (across 3 independent runs)
loss against the number of calls to the (stochastic) gradient oracle. We consider imitation
learning below, and defer the results for supervised learning to Appendix D. In imitation
learning, the losses are generated through interaction with a simulated environment. In
this setting, a behavioral policy gathers examples by observing a state and taking an action
at that state. For each state gathered through the interaction, an expert policy provides
the action that it would have taken. The goal in IL is to produce a policy which exactly
matches that of the expert. When the behavioral policy chosen is the expert itself, we refer
to the problem as behavioral cloning. When the learned policy is used to interact with the
environment [6], we refer to the problem as online imitation learning (OIL) [11, 19].

In Fig. 1, we consider continuous control environments from the Mujoco benchmark
suite [23]. The policy is a linear function of state (coresponding to f) and parameterizes the
mean of a standard normal distribution. Here, the loss (ℓ) is defined as the average squared ℓ2
distance between the mean action of the policy and the label provided by the expert. During
environment interactions for data collection, we sample from the stochastic (multivariate
normal) policy in order to take actions. At each round of environment interaction 1000
states are gathered, and used to update the policy. The expert policy, defined by a squashed
normal distribution [17], parameterized by a two layer multi-layer-perception, and is trained
using the Soft-Actor-Critic Algorithm [7]. A “good” policy in this control setting, is one
which maximizes the return. In Fig. 1, we observe the importance of making multiple model
updates using one stochastic gradient from the oracle. More specifically, we observe (i) all
variants of SSO outperform the algorithms by a significant margin in terms of both policy
return and log policy loss as a function of environment interactions (calls to the gradient
oracle), and (ii) as m increases, the performance of the learned policy improves consistently.

6. Discussion

In the future, we aim to prove convergence rates for the stochastic case, extend our theoretical
results to a broader class of functions, and empirically evaluate target optimization for more
complex models. Moreover, since our framework allows using any optimizer in the target
space, we plan to explore other optimization algorithms to construct better surrogates.
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Organization of the Appendix

A Definitions

C Proofs

D Additional Experimental Results

Appendix A. Definitions

Our main assumptions are that each individual function fi is differentiable, has a finite
minimum f∗

i , and is Li-smooth, meaning that for all v and w,

fi(v) ≤ fi(w) + ⟨∇fi(w), v − w⟩+ Li

2 ∥v − w∥22 , (Individual Smoothness)

which also implies that f is L-smooth, where L is the maximum smoothness constant of the
individual functions. A consequence of smoothness is the following bound on the norm of
the stochastic gradients,

∥∇fi(w)−∇f∗
i ∥

2 ≤ 2L(fi(w)− f∗
i − ⟨∇f∗

i , w − w∗
i ⟩). (1)

We also assume that each fi is convex, meaning that for all v and w,

fi(v) ≥ fi(w) + ⟨∇fi(w), v − w⟩, (Convexity)

Depending on the setting, we will also assume that f is µ strongly-convex, meaning that for
all v and w,

f(v) ≥ f(w) + ⟨∇f(w), v − w⟩+ µ

2 ∥v − w∥22 , (Strong Convexity)

Appendix B. Algorithms

Algorithm 1 Generic algorithm for surrogate optimization
Input: θ0 (initialization), T (number of iterations), mt (number of inner-loops), η (step-size
in the surrogate), α (step-size for the parametric update)
for t← 0 to T − 1 do

Access the gradient oracle to construct gz
t (θ)

Initialize inner-loop: ω0 = θt

for k ← 0 to mt do
ωk+1 = ωk + α∇ωgz

t (ωk)
end
θt+1 = ωm ; zt+1 = f(θt+1)

end
Return θT

11
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In this section, we first specify the generic algorithm for target optimization in the
deterministic setting Algorithm 1. Next, we will formulate the algorithms beyond the
standard SGD update in the target space. We will do so in two ways – (i) extending SGD to
the online Newton step that uses second-order information in Appendix B.1 and (ii) extend
SGD to the more general stochastic mirror descent algorithm in Appendix B.2. For both (i)
and (ii), we will instantiate the resulting algorithms for the squared and logistic losses.

B.1. Online Newton Step

Let us consider the online Newton step w.r.t to the targets. The corresponding update is:

zt+1/2 = zt − ηt[∇2
zℓt(zt)]−1∇zℓt(zt) ; z̄t+1 = arg min

z∈Z

1
2

∥∥∥z − zt+1/2

∥∥∥2

Pt

(2)

zt+1 = f(θt+1) ; θt+1 = arg min
θ

[
⟨∇zℓt(zt), f(θ)− zt⟩+ 1

2ηt
∥f(θ)− zt∥2∇2ℓt(zt)

]
(3)

where ∇2
zℓt(zt) is the Hessian of example of the loss corresponding to sample it w.r.t z. Let

us instantiate this update for the squared-loss. In this case, ℓt(z) = 1
2 ∥z − yt∥22, and hence,

∇ℓt(z) = z − yt, [∇2ℓt(z)]it,it = 1 and [∇2ℓt(z)]j,j = 0 for all j ̸= it. Hence, for the squared
loss, Eq. (2) is the same as GD in the target space.

For the logistic loss, ℓt(z) = log (1 + exp (−ytz)). If it is the loss index sampled at
iteration t, then, [∇ℓt(z)]j = 0 for all j ̸= it. Similarly, all entries of ∇2ℓt(z) except the
[it, it] are zero.

[∇ℓt(z)]it = −yt

1 + exp(yt zt)
; [∇2ℓ(z)]it,it , = 1

1 + exp(ytzt)
1

1 + exp(−ytzt)
= (1− pt) pt ,

where, pt = 1
1+exp(−ytzt) is the probability of classifying the example it to have the +1 label.

In this case, the surrogate can be written as:

g̃z
t (θ) = −yt

1 + exp(yt zt)
(
fit(θ)− zit

t

)
+ (1− pt) pt

2ηt

(
fit(θ)− zit

t

)2
(4)

As before, the above surrogate can be implemented efficiently.

B.2. Stochastic Mirror Descent

If ϕ is a differentiable, strictly-convex mirror map, it induces a Bregman divergence between
x and y: Dϕ(y, x) := ϕ(y) − ϕ(x) − ⟨∇ϕ(x), y − x⟩. For an efficient implementation of
stochastic mirror descent, we require the Bregman divergence to be separable, i.e. Dϕ(y, x) =∑p

j=1 Dϕj
(yj , xj) =

∑p
j=1 ϕj(yj) − ϕj(xj) − ∂ϕj(x)

∂xj [yj − xj ]. Such a separable structure is
satisfied when ϕ is the Euclidean norm or negative entropy. We define stochastic mirror
descent update in the target space as follows,

∇ϕ(zt+1/2) = ∇ϕ(zt)− ηt∇zℓt(zt) ; z̄t+1 = arg min
z∈Z

p∑
j=1

I(j = it)Dϕj
(zj , zj

t+1/2)) (5)

12
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=⇒ z̄t+1 = arg min
z∈Z

⟨∇zℓt(zt), z − zt⟩+ 1
ηt

p∑
j=1

I(j = it)Dϕj
(zj , zj

t+1/2)

 (6)

where I is an indicator function and it corresponds to the index of the sample chosen in
iteration t. For the Euclidean mirror map, ϕ(z) = 1

2 ∥z∥
2
2, Dϕ(z, zt) = 1

2 ∥z − zt∥22 and we
recover the SGD update.

Another common choice of the mirror map is the negative entropy function: ϕ(x) =∑K
i=1 xi log(xi) where xi is coordinate i of the x ∈ RK . This induces the (generalized) KL

divergence as the Bregman divergence,

Dϕ(x, y) =
K∑

k=1
xk log

(
xk

yk

)
+

K∑
k=1

xk −
K∑

k=1
yk .

If both x and y correspond to probability distributions i.e.
∑K

k=1 xk =
∑K

k=1 yk = 1, then
the induced Bregman divergence corresponds to the standard KL-divergence between the
two distributions. For multi-class classification, Z ⊆ Rp×K and each zi ∈ ∆K where ∆K is
K-dimensional simplex. We will refer to coordinate j of zi as [zi]j . Since zi ∈ ∆K , [zi]k ≥ 0
and

∑K
k=1[zi]k = 1.

Let us instantiate the general SMD updates in Eq. (5) when using the negative entropy
mirror map. In this case, for z ∈ ∆K , [∇ϕ(z)]k = 1 + log([z]k). Denoting ∇t := ∇zℓt(zt)
and using [∇t]k to refer to coordinate k of the K-dimensional vector ∇t. Hence, Eq. (5) can
be written as:

[zit

t+1/2]k = [zt
it ]k exp (−ηt[∇t]k) (7)

For multi-class classification, yi ∈ {0, 1}K are one-hot vectors. If [yi]k refers to coordinate k

of vector yi, then corresponding log-likelihood for n observations can be written as:

ℓ(z) =
n∑

i=1

K∑
k=1

[yi]k log([zi]k) .

In our target optimization framework, the targets correspond to the probabilities of classifying
the points into one of the classes. We use a parameterization to model the vector-valued
function fi(θ) : Rd → RK . This ensures that for all i,

∑K
k=1[fi(θ)]k = 1. Hence, the

projection step in Eq. (5) can be rewritten as:

min
z∈Z

Dϕ(z, zt+1/2) =
K∑

k=1
[fit(θ)]k log

 [fit(θ)]k
[zit

t+1/2]k


where [zit

t+1/2]k is computed according to Eq. (7). Since the computation of [zit

t+1/2]k and the
resulting projection only depends on sample it, it can be implemented efficiently.

13
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Appendix C. Proofs

Lemma 1 Assuming that gz
t (θ) is β-smooth w.r.t. the Euclidean norm and η ≤ 1

L , then, for
α = 1/β, iteration t of Algorithm 1 guarantees that h(θt+1) ≥ h(θt) for any number m ≥ 1 of
surrogate steps. In this setting, under the additional assumption that h is lower-bounded by
h∗, then Algorithm 1 results in the following guarantee,

min
t∈{0,...,T −1}

∥∇h(θt)∥22 ≤
2β [h(θ0)− h∗]

T
.

Proof Using the update in Algorithm 1 with α = 1
β and the β-smoothness of gz

t (θ), for all
k ∈ [m− 1],

gz
t (ωk+1) ≤ gz

t (ωk)− 1
2β
∥∇gz

t (ωk)∥22

After m steps,

gz
t (ωm) ≤ gz

t (ω0)− 1
2β

m−1∑
k=0
∥∇gz

t (ωk)∥22

Since θt+1 = ωm and ω0 = θt in Algorithm 1,

=⇒ gz
t (θt+1) ≤ gz

t (θt)−
1

2β
∥∇gz

t (θt)∥22 −
m−1∑
k=1
∥∇gz

t (ωk)∥22

Note that h(θt) = gz
t (θt) and if η ≤ 1

L , then h(θt+1) ≤ gz
t (θt+1). Using these relations,

h(θt+1) ≤ h(θt)−

 1
2β
∥∇gz

t (θt)∥22 +
m−1∑
k=1
∥∇gz

t (ωk)∥22︸ ︷︷ ︸
positive

 =⇒ h(θt+1) ≤ h(θt).

This proves the first part of the Lemma. Since
∑m−1

k=1 ∥∇gz
t (ωk)∥22 ≥ 0,

h(θt+1) ≤ h(θt)−
1

2β
∥∇gz

t (θt)∥22 =⇒ ∥∇h(θt)∥22 ≤ 2β [h(θt)− h(θt+1)]

(Since ∇h(θt) = ∇gz
t (θt))

Summing from k = 0 to T − 1, and dividing by T ,

∥∇h(θt)∥22
T

≤ 2β [h(θt)− h∗]
T

=⇒ min
t∈{0,...,T −1}

∥∇h(θt)∥22 ≤
2β [h(θt)− h∗]

T

14



Target-based Surrogates for Stochastic Optimization

C.1. Equivalence of Optimizing Surrogate and SGD in Target Space

Optimization in target space is

zt+1/2 = zt − ηt∇zℓt(zt)

z̄t+1 = arg min
z∈Z

1
2

∥∥∥zt+1/2 − z
∥∥∥2

Pt

. (8)

where, Pt ∈ Rp×p is a diagonal preconditioner such that Pit,it = 1 and Pi,j = 0 for all
i, j ̸= it. Since ℓ is separable, if we assume it is a coordinate sampled from z, we can rewrite
the zt+1/2 update as follows:

zt+1/2
it = zt

it − ηt∇zℓit(zt)
zt+1/2

j = zt
j when j ̸= it .

Putting the above update in the projection step we have

z̄t+1 = arg min
z∈Z

1
2

∥∥∥zt+1/2 − z
∥∥∥2

Pt

= arg min
z∈Z

1
2

0×
∑

j=1,j ̸=it

∥∥∥zt+1/2
j − zj

∥∥∥2

2
+ 1×

∥∥∥zt+1/2
it − zit

∥∥∥2

2

 = arg min
z∈Z

{
∥∥∥zt+1/2

it − zit

∥∥∥2

2
}

= arg min
z∈Z

1
2{
∥∥∥zt

it − ηt∇zℓit(zt)− zit

∥∥∥2

2
} = arg min

z∈Z

{
∂ℓit(zt)

∂zit
[zit − zit

t ] + 1
2ηt

∥∥∥zit − zit
t

∥∥∥2

2

}
(Due to separability of ℓ)

Since for all z ∈ Z, z = f(θ) and zi = fi(θ) for all i. Hence z̄t+1 = f(θ̄t+1) such that,

θ̄t+1 = arg min
θ∈Θ

{
∂ℓit(zt)

∂zit
[fit(θ)− fit(θt)] + 1

2ηt
∥fit(θ)− fit(θt)∥22

}
= arg min

θ∈Θ
g̃z

t (θ)

Since z̄t+1 = f(θ̄t+1), for all j, zj
t+1 = fj(θ̄t+1), and hence all coordinates of z̄t+1 have been

updated (though not necessarily via a stochastic gradient update).
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Appendix D. Additional Experimental Results
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(a) Mean-Squared-Error Loss
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Figure 2: Comparison of average squared loss and logistic loss between SGD, SLS, Adam, and SSO-SLS.
The number next to SSO in the legend indicates the number of steps taken on the surrogate. All
plots are in log-log space. We note the SGD with its theoretical step-size is outperformed by more
sophisticated algorithms like SLS or Adam. In contrast, SSO with the theoretical step-size is competitive
with both SLS and Adam with default hyper-parameters.

Supervised Learning: We evaluate our framework on the LibSVM benchmarks [3], a
standard suite of convex-optimization problems. Here consider two datasets – mushrooms,
and rcv1, two losses – squared loss and logistic loss, and four batch sizes – {25, 125, 625,
full-batch} for the linear parameterization (f = X⊤θ). Each optimization algorithm is run
for 500 epochs (full passes over the data). We compare stochastic surrogate optimization
(SSO), against SGD with the standard theoretical 1/2Lθ step-size, SGD with the step-size set
according to a stochastic line-search [24] SLS, and finally Adam [10] using default hyper-
parameters. Since SSO is equivalent to projected SGD in the target space, we set η (in the
surrogate definition) to 1/2L where L is the smoothness of ℓ w.r.t z. For squared loss, L is
therefore set to 1, while for logistic it is set to 2. Fig. 2(a) and Fig. 2(b) show that (i) SSO
improves over SGD when the step-sizes are set theoretically, (ii) SSO is competitive with SLS
or Adam, and (iii) as m increases, on average, the performance of SSO improves as projection
error decreases.

Extensions to the Stochastic Surrogate: Next we consider using two other standard
optimization algorithms (SLS and Adagrad) in the target space, to construct new surrogates.
We refer to the resulting algorithms as SSO-SLS and SSO-AdaGrad. For SSO-SLS, at every
stage, we perform a backtracking Armijo line-search in target space. This means that for
every stochastic gradient ∇zℓit(z), we find an step-size ηt which satisfies the Armijo condition
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(b) Deterministic Setting

Figure 3: Comparison of two variations of the SSO algorithm on the ijcnn dataset in deterministic
and stochastic settings. We compare against parametric SLS, and Adagrad. The left plot considers
target-space variation of SLS to its parametric counterpart, while the plot on the right compares the
Adagrad variation. Notice (i) each SSO variation improves over its parametric counter-part in the
deterministic setting with significant improvements for large m, and (ii) in the stochastic setting
each SSO variation inherits the properties of its parent optimizer.

in the target space: ℓit(zt− ηt∇zℓit(zt)) ≤ ℓit(zt)− ηt

2 ∥∇zℓit(zt)∥22. We then follow the same
procedure as before, taking steps according to this ηt using Algorithm 1. Similarly, following
the original Adagrad algorithm [5], we set ηt according to 1/

√∑t

i=1 ||∇zℓi(zi)||2. A comparison
of each algorithm along-side its parametric variant is included in Fig. 3, which shows (i)
in fully deterministic settings, SSO can lead to large improvements over its parametric
counterparts, and (ii) in the stochastic setting, SSO inherits the characteristics of the
optimization algorithm used to derive its surrogate (for SLS we converge to a neighbourhood
of the minimizer, while for Adagrad we observe a monotonic decrease in the loss). We also
include SSO-SLS in Fig. 2(a) and Fig. 2(b) with m = 20 and observe that it results in a
significant and consistent improvement over standard baselines.
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Figure 4: Comparison of run-times (in seconds) between SSO and relevant baselines. These plots
illustrate that when moving data onto GPU is costly (as in the full-batch setting) SSO will be roughly
as fast as even SGD.

Runtime Comparison: These experiments demonstrate the relative runtime between
algorithms for the supervised learning setting. Each column provides run-times evaluated
over 500 epochs for batch-sizes of 25, 125, 625 and full-batch respectively. Evaluation is
performed on the rcv1 dataset [3]. This dataset was chosen as it is large enough to incur
significant wall-clock time to move data to/from the GPU. All experiments were run using
the same resources, namely a NVIDIA GeForce RTX 2070 graphics card with a AMD
Ryzen 9 3900 12-Core Processor. Fig. 4 shows that for small batch-sizes, the time it takes
to move data to/from the GPU is small and the target variants can be slower than their
parametric counterparts. However, for large-batch sizes, that require longer time to be
moved into memory, we observe that the time for the additional surrogate steps in SSO
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is largely amortized. This experiment shows that in cases where data-access is the major
bottleneck in computing the stochastic gradient, target optimization can be beneficial.

D.1. Stochastic Surrogate Optimization

Comparisons of SGD, SLS, Adam, Adagrad, and SSO evaluated on three SVMLib benchmarks
mushrooms, ijcnn, and rcv1. Each run was evaluated over three random seeds following the
same initialization scheme. All plots are in log-log space to make trends between optimization
algorithms more apparent. As before in all settings, algorithms use either their theoretical
step-size when available, or the default as defined by [17]. The inner-optimization loop are
set according to line-search parameters and heuristics following Vaswani et al. [24]. All
algorithms and batch sizes are evaluated for 500 epochs and performance is represented as a
function of total optimization steps. Below we include three different step-size schedules:
constant, 1√

t
[16], and (1/T )t/T [26]. For further details see the attached code repository.

103 104 105

10 2

100
batch-size: 25

102 103 104

10 2

100
batch-size: 125

101 102 103

10 2

100
batch-size: 625

100 101 102

10 2

100

m
us

hr
oo

m
s

full-batch

104 105

10 1

7 × 10 2
8 × 10 2
9 × 10 2

103 104 105

10 1

7 × 10 2
8 × 10 2
9 × 10 2

102 103 104

10 1

100 101 102

10 1

ijc
nn

103 104 105
10 3

10 2

10 1

103 104 105
10 3

10 2

10 1

102 103 104
10 3

10 2

10 1

100 101 102

10 1

rc
v1

SGD Adam SLS Adagrad SSO-1 SSO-5 SSO-10 SSO-20

Figure 5: Constant step-size: comparison of optimization algorithms under a mean squared
error loss. We note here, as in Fig. 2(a), SSO significantly outperforms its parametric counterpart,
and maintains performance which is on par with both SLS and Adam. Additionally we note that
taking additional steps in the surrogate generally improves performance.
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Figure 6: Constant step-size: comparison of optimization algorithms under a average logistic
loss. We note here, as in Fig. 2(b), SSO significantly outperforms its parametric counterpart, and
maintains performance which is on par with both SLS and Adam. Additionally we note that taking
additional steps in the surrogate generally improves performance
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Figure 7: Decreasing step-size: comparison of optimization algorithms under a mean squared
error loss. In this figure, unlike Fig. 2(a), we compare examples which include a decaying step
size of 1√

t
alongside both SSO as well as SGD and SLS. Adam (and Adagrad) remain the same as in

Fig. 2(a). Again, we note that taking additional steps in the surrogate generally improves performance.
Additionally the decreasing step-size seems to help maintain strict monotonic improvement.
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Figure 8: Decreasing step-size: comparison of optimization algorithms under a logistic loss. In
this figure, unlike Fig. 2(b), we compare examples which include a decaying step size of 1√

t
alongside

both SSO as well as SGD and SLS. Adam (and Adagrad) remain the same as in Fig. 2(b). Again, we
note that taking additional steps in the surrogate generally improves performance. Additionally the
decreasing step-size seems to help maintain strict monotonic improvement.
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Figure 9: Exponential step-size: comparison of optimization algorithms under a mean squared
error loss. In this figure, unlike Fig. 2(b), we compare examples which include a decaying step size
of ( 1

T )t/T alongside both SSO as well as SGD and SLS. Adam remains the same as in Fig. 2(b). Again,
we note that taking additional steps in the surrogate generally improves performance. Additionally
the decreasing step-size seems to help maintain strict monotonic improvement. Lastly, because of a
less aggressive step size decay, the optimization algorithms make more progress then their stochastic

1√
t

counterparts.
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Figure 10: Exponential step-size: comparison of optimization algorithms under a logistic loss.
In this figure, unlike Fig. 2(b), we compare examples which include a decaying step size of ( 1

T )t/T

alongside both SSO as well as SGD and SLS. Adam remains the same as in Fig. 2(b). Again, we note
that taking additional steps in the surrogate generally improves performance. Additionally the
decreasing step-size seems to help maintain strict monotonic improvement. Lastly, because of a less
aggressive step size decay, the optimization algorithms make more progress then their stochastic 1√

t
counterparts.

D.2. Stochastic Surrogate Optimization with a Line-search

Comparisons of SGD, SLS, Adam, Adagrad, and SSO-SLS evaluated on three SVMLib bench-
marks mushrooms, ijcnn, and rcv1. Each run was evaluated over three random seeds
following the same initialization scheme. All plots are in log-log space to make trends
between optimization algorithms more apparent. As before in all settings, algorithms use
either their theoretical step-size when available, or the default as defined by [17]. The
inner-optimization loop are set according to line-search parameters and heuristics follow-
ing Vaswani et al. [24]. All algorithms and batch sizes are evaluated for 500 epochs and
performance is represented as a function of total optimization steps.
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Figure 11: Constant step-size: comparison of optimization algorithms under a mean squared
error loss. We note here, as in Fig. 2(a), SSO-SLS outperforms its parametric counterpart, and
maintains performance which is on par with both SLS and Adam. Additionally we note that taking
additional steps in the surrogate generally improves performance, especially in settings with less
noise (full-batch and batch-size 625).
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Figure 12: Constant step-size: comparison of optimization algorithms under a average logistic
loss. We note here, as in Fig. 2(b), SSO-SLS outperforms its parametric counterpart, and maintains
performance which is on par with both SLS and Adam. Additionally we note that taking additional
steps in the surrogate generally improves performance.

D.3. Combining Stochastic Surrogate Optimization with Adaptive Gradient
Methods

Comparisons of SGD, SLS, Adam, Adagrad, and SSO-Adagrad evaluated on three SVMLib
benchmarks mushrooms, ijcnn, and rcv1. Each run was evaluated over three random seeds
following the same initialization scheme. All plots are in log-log space to make trends between
optimization algorithms more apparent. As before in all settings, algorithms use either their
theoretical step-size when available, or the default as defined by [17]. The inner-optimization
loop are set according to line-search parameters and heuristics following Vaswani et al. [24].
All algorithms and batch sizes are evaluated for 500 epochs and performance is represented
as a function of total optimization steps. Here unlike in Appendix D.1, we update the η

according to the same schedule as scalar Adagrad (termed AdaGrad-Norm in Ward et al.
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[27]), as discussed in Section 5. Because Adagrad does not have an easy to compute optimal
theoretical step size, for our setting we set the log learning rate (the negative of log η) to be
2.. For further details see the attached coding repository.
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Figure 13: Comparison in terms of average MSE loss of SGD, SLS, Adam, and SSO-Adagrad evaluated
under a mean squared error loss. These plots show that SSO-Adagrad outperforms its parametric
counterpart, and maintains performance which is on par with both SLS and Adam. Additionally, we
again find that taking additional steps in the surrogate generally improves performance.
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Figure 14: Comparison in terms of average MSE loss of SGD, SLS, Adam, and SSO-Adagrad evaluated
under a logistic loss. These plots show that SSO-Adagrad outperforms its parametric counterpart,
and maintains performance which is on par with both SLS and Adam. Additionally, we again find
that taking additional steps in the surrogate generally improves performance.
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D.4. Combining Stochastic Surrogate Optimization With Online Newton Steps

Comparisons of SGD, SLS, Adam, Adagrad, and SSO-Newton evaluated on three SVMLib
benchmarks mushrooms, ijcnn, and rcv1. Each run was evaluated over three random seeds
following the same initialization scheme. All plots are in log-log space to make trends between
optimization algorithms more apparent. As before, in all settings, algorithms use either their
theoretical step-size when available, or the default as defined by [17]. The inner-optimization
loop are set according to line-search parameters and heuristics following Vaswani et al.
[24]. All algorithms and batch sizes are evaluated for 500 epochs and performance is
represented as a function of total optimization steps. Here unlike in Appendix D.1, we
update the η according to the same schedule as Online Newton. We omit the MSE example
as SSO-Newton in this setting is equivalent to SSO. In the logistic loss setting however, which
is displayed below, we re-scale the regularization term by (1− p)p where p = σ(f(x)) where
σ is this sigmoid function, and f is the target space. This operation is done per-data point,
and as can be seen below, often leads to extremely good performance, even in the stochastic
setting. In the plots below, if the line vanishes before the maximum number of optimization
steps have occurred, this indicates that the algorithm has converged to the minimum and is
no longer executed. Notably, SSO-Newton achieves this in for multiple data-sets and batch
sizes.
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Figure 15: Comparison in terms of average logistic loss of SGD, SLS, Adam, and SSO-Newton evaluated
on the logistic loss. This plot displays that significant improvement can be made at no additional
cost by re-scaling the regularization term correctly. Note that in the case of mushrooms, SSO-Newton
in all cases for m = 20 reaches the stopping criteria before the 500th epoch. Second, even in many
stochastic settings, SSO-Newton outperforms both SLS and Adam.
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D.5. Imitation Learning

Comparisons of Adagrad, SLS, Adam, and SSO evaluated on two Mujoco [23] imitation learning
benchmarks [11], Hopper-v2, and Walker-v2. In this setting training and evaluation proceed
in rounds. At every round, a behavioral policy samples data from the environment, and an
expert labels that data. The goal is guess at the next stage (conditioned on the sampled states)
what the expert will label the examples which are gathered. Here, unlike the supervised
learning setting, we receive a stream of new data points which can be correlated and drawn
from following different distributions through time. Theoretically this makes the optimization
problem significantly more difficult, and because we must interact with a simulator, querying
the stochastic gradient can be expensive. Like the example in Appendix D, in this setting
we will interact under both the experts policy distribution (behavioral cloning), as well as
the policy distribution induced by the agent (online imitation). Like Appendix D, we will
again parameterize a standard normal distribution whose mean is learned through a mean
squared error loss between the expert labels and the mean of the agent policy. Again, the
expert is trained following soft-actor-critic.

In this this setting we evaluate two measures: the per-round log-policy loss, and the
policy return. The log policy loss is as described above, while the return is a measure of
how well the imitation learning policy actually solves the task. In the Mujoco benchmarks,
this reward is defined as a function of how quickly the agent can move in space, as well as
the power exerted to move. Imitation learning generally functions by taking a policy which
has a high reward (e.g. can move through space with very little effort in terms of torque),
and directly imitating it instead of attempting to learn a cost to go function as is done in
RL [22].

Each algorithm is evaluated over three random seeds following the same initialization
scheme. As before, in all settings, algorithms use either their theoretical step-size when
available, or the default as defined by [17]. The inner-optimization loop is set according to
line-search parameters and heuristics following Vaswani et al. [24]. All algorithms and batch
sizes are evaluated for 50 rounds of interaction and performance is represented as a function
of total interactions with the environment. Unlike the imitation learning experiments in
Section 5, here we learn a policy which is parameterized by a two layer perceptron with
256 hidden units and relu activations. For further details, please see the attached code
repository.
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(a) Walker2d-v2 Environment
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(b) Hopper-v2 Environment

Figure 16: Comparison of policy return, and log policy loss incurred by SGD, SLS, Adam, Adagrad, and
SSO as a function of the total interactions. Unlike Section 5, the mean of the policy is parameterized
by a neural network model. In both environments, for both behavioral policies, SSO outperforms
all other online-optimization algorithms. Additionally, as m in increases, so to does the performance
of SSO in terms of both the return as well as the loss.
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