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ABSTRACT

Schrödinger bridge (SB) has demonstrated numerous applications in probabilis-
tic generative modeling. Finding the solution of probability paths aligns with
entropy-regularized optimal transport that employs the Sinkhorn algorithm, which
is characterized by performing iterative proportional fitting between marginal den-
sities. This paper argues that the standard training of the SB is prone to exaggerate
the amount of learning due to its inherent geometric nature. We leverage a sym-
metrized variant of Sinkhorn to study more lenient convergence of Schrödinger
potentials and prove distinctive theoretical properties of the symmetrization such
as linear convergence and monotonic improvements. To this end, we propose a dy-
namic SB algorithm named Symmetrized Schrödinger Bridge Matching (SSBM).
Inspired by score and flow matching models, the concurrent projection scheme
of SSBM is conceptualized as matching forward and backward drifts concur-
rently, constructing a time-symmetric learning objective for the SB model. We
empirically validate our SB method by solving classical optimal transportation
and model-based stochastic optimal control problems with physical dynamics.

1 INTRODUCTION

The Schrödinger bridge (SB; Schrödinger, 1932) offers a general formulation for the dynamical
evolution of a particle system. The corresponding problem has gained popularity by its connection
to the entropy regularized Monge-Kantorovich optimal transport (EOT; Peyré et al., 2019), implying
various applications in diverse areas such as image processing, natural language processing, and
control systems (Pavon & Wakolbinger, 1991; Léonard, 2012; Caron et al., 2020; Liu et al., 2023;
Alvarez-Melis & Jaakkola, 2018; Chen et al., 2022). For its computation, the SB problem is typically
solved by the Sinkhorn algorithm (Sinkhorn & Knopp, 1967; Cuturi, 2013), relying on iterative
projections between marginals. The algorithm is renowned for the simplicity and the convergence
properties inherent to iterative proportional fitting (IPF; Kullback, 1968; Ruschendorf, 1995).

There has been great advancement in synthesizing complex data distributions for deep generative
models. Score-based models (Song et al., 2021) seek to find nonlinear functions that transform
simple distributions into complex data distributions. These models are characterized by learning
the time-reversal process of progressive diffusion starting from data (Sohl-Dickstein et al., 2015),
through matching the score function of a stochastic differential equation (SDE). Another line of
research involves flow matching (Lipman et al., 2023), which stems from deterministic conditional
OT paths between marginals. This is well-described by a continuous vector field of probability
ordinary differential equation (ODE), which governs a direct way of translating one distribution to
another (Chen et al., 2018). The success of both approaches is supported by nonlinear computational
models such as neural networks and corresponding learning schemes for their guidance.

Recent studies have highlighted that SB succeeds in fundamental aspects of score and flow matching
models (Liu et al., 2023; Shi et al., 2023). For instance, Learning of SB generally performs score
matching where the first training stage of IPF is equivalent to the exact score matching. The projec-
tion corresponds to the variational lower bound maximization, or Kullback-Leibler (KL) projection
under the Girsanov theorem (Huang et al., 2021). On the other hand, the fluid dynamics formulation
of SB generalizes flow-based model by a time-symmetric drift field of probability flow (Nelson,
2001). Despite the strong resemblance, we claim that the direct extension of Sinkhorn only partially
embraces the advancement of deep generative models due to the strict geometric constraint of IPF’s
alternation. In order to efficiently solve the SB problem with a handful of networks at most, we
investigate whether there is a more lenient way of training SB models at the algorithmic level.
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Figure 1: An entropic OT problem and IPFP sequences.
In the problem, our PSIPF method (Algorithm 2) shows
monotonic decrement of temporal variation, and induce
more stable learning than standard IPF (Algorithm 1).

Table 1: A technical overview. DSB-IPF
(De Bortoli et al., 2021) allows dynamical
training by drift matching. DSBM-IMF
(Shi et al., 2023) preserves marginals dur-
ing training. SSBM combines these de-
sired properties with stable learning.

Preserving c · (µ, ν) Dynamic Monotony

DSB ✗ (µ or ν) ✓ ✗
DSBM ✓ (c = 1) ✗ ✗

SSBM ✓ (c = κ) ✓ ✓

In this work, we study an alternative learning scheme to the Sinkhorn algorithm. We leverage the
concept called symmetrization (Kurras, 2015) and propose a novel pseudo-symmetric variant of
Sinkhorn for reaching a fair amount of updates at each iteration. We claim that not only does this
approach find another way of convergence but also retains distinct properties which help SB training
in practice, especially for costly projections involving deep neural networks. For the sake of better
understanding, we conducted an actual experiment in Fig. 1. The blue lines in the plots demonstrate
that our strategy results in reduced perturbation in both total variation and ground-truth loss.

Algorithm 1 The Sinkhorn-Knopp algorithm (IPF).

Input: a pair ⟨µ, ν⟩, a cost matrix C, λ∈R+.
1: u(0) = 1µ, K = exp(−C/λ)
2: for n = 1 to N do
3: v(2n−1) = ν ⊘ [KTu(2n−2) ]
4: u(2n) = µ ⊘ [K v(2n−1) ]

5: return diag(u(2N))K diag(v(2N−1))

Algorithm 2 A pseudo-symmetric variant (PSIPF).

1: u(0) = 1µ, v(0) = 1ν , K = exp(−C/λ)
2: for ℓ = 1 to L do
3: ũ(ℓ) = µ ⊘ [K v(ℓ−1) ]
4: ṽ(ℓ) = ν ⊘ [KTu(ℓ−1) ]
5: κℓ = sum[diag(ũ(ℓ))Kdiag(ṽ(ℓ))]
6: u(ℓ) = ũ(ℓ)/

√
κℓ, v(ℓ) = ṽ(ℓ)/

√
κℓ

7: return diag(u(L))K diag(v(L))

For the detailed comparison, Algorithm 1 out-
lines the discrete Sinkhorn-Knopp algorithm.
For a cost matrix C, its objective is to
model optimal transport coupling i.e. π∗ =
diag(u∗)K diag(v∗), which represents a cou-
pling between µ and ν. The consecutive IPF
projections are represented in Lines 3 and 4.
A discretized version of our approach, called
peuedo-symmetric IPF, is demonstrated in Algo-
rithm 2. Note that the projection onto coupled
(ũℓ, ṽℓ) occurs in parallel from the current budget
(uℓ−1,vℓ−1). Due to the contraction of projec-
tive operations between submanifolds (Bauschke
& Borwein, 1994), we adjust the iterates with
symmetrical division by the square root of the
measure contraction coefficient κℓ. For n dimen-
sion, the complexity of each iteration is asymptot-
ically bounded as O(n2) for both IPF methods.

To this end, we propose Symmetrized Schrödinger Bridge Matching (SSBM), a practical algorithm
for training Schrödinger bridge, similar to well-established score and flow matching methods. First,
we formally state the theoretical benefits of linear convergence and the monotonic improvement in
the static SB problem. We then devise our learning algorithm for the dynamic SB problem, which
is based on an entropic version of optimal transport in mass-preserving fluid dynamics (Benamou
& Brenier, 2000). For the matching objective, we concurrently train both forward and backward
models and construct a time-symmetric learning objective for the SB model. As shown in Table 1,
one of the key features of our framework is the preservation of both score functions of marginal
distributions, which is a similar property appeared in deep Schrödinger bridge matching (DSBM;
Shi et al., 2023). However, our approach, unlike DSBM, does not have the constraint of tractable
reference measure, which allows us to train a dynamic SB model with arbitrary physical dynamics.

Our contributions are three-fold. First, we present a symmetrization scheme, which has theoret-
ically pleasing properties that reduce the instability of neural network training. Second, we devise
a matching algorithm that allows easier training. Lastly, we validate SSBM to OT benchmarks and
stochastic control problems with physical dynamics and compare it to other SB algorithms.

2 SCHRÖDINGER BRIDGE PROBLEM AND SYMMETRIZED SINKHORN

Schrödinger Bridge Problem (SBP). Let (X , µ) and (Y, ν) be Polish spaces. For marginals
(µ, ν) and the associated path measure P(µ, ν) with a given time interval [0, T ], the formal de-
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scription of SBP is to find the KL projection PSB :=infP∈P(µ,ν)H(P|Q) where Q ∈ P(µ, ν) is a
reference measure. Let Π(µ, ν) be the set of couplings and c be a continuous cost function. By the
disintegration of measures (Léonard, 2014), the relative entropy of SBP yields the chain rule

H(P|Q) = H(π|G) +
∫∫

X×Y
H(Pπ|QG) dπ(x, y), (1)

where ⊗ is the product of measures and G denotes a Gibbs measure dG ∝ e−cλd(µ ⊗ ν) for
cλ := c/λ with λ ∈ R+. Enforcing the conditional probabilities Pπ = QG yields the problem:

inf
π∈Π(µ,ν)

H(π|G) =
∫∫

X×Y
c(x, y) dπ(x, y) + λH(π|µ⊗ ν) + const. (2)

Therefore, the static SBP is equivalent to the standard EOT with a λ-regularizer. This relationship
allows us to consider the problem as finding an optimal EOT plan π∗ ∈ Π(µ, ν) (Peyré et al., 2019).

Sinkhorn Algorithm. The constrained optimization (2) naturally yields the strong duality. In par-
ticular, consider the Schrödinger potentials (φ∗, ψ∗), which constitute π∗ with the Radon-Nikodym
derivative: dπ∗ = eφ∗⊕ψ∗−cλd(µ⊗ ν). Then, the following statement holds for the potentials.
Lemma 2.1 (Duality of SBP; Theorem 3.2 of Nutz, 2021). Assume the existence of Schrödinger
bridge π∗ ∈ Π(µ, ν) and corresponding Schrödinger potentials (φ,ψ) ∈L1(µ)×L1(ν). Then,

min
π∈Π(µ,ν)

H(π|G) = sup
φ,ψ

F (φ,ψ), F (φ,ψ) := µ(φ) + ν(ψ)−
∫∫

X×Y e
φ⊕ψ dG + 1, (3)

where ⊕ indicates the direct sum of two potentials and µ(φ) :=
∫
X φdµ and ν(ψ) :=

∫
Y ϕ dν.

From a geometric perspective, the Sinkhorn updates are characterized by differentiating the dual
functional F . As a result, the algorithm performs alternating projections (Nutz & Wiesel, 2023):

ψ2n−1(y) = −log
∫
X e

φ2n(x)−cλ(x,y)µ(dx), φ2n(x) = −log
∫
Y e

ψ2n−1(y)−cλ(x,y)ν(dy), (4)

for all (x, y) ∈ X × Y , and these operations are essentially linear in terms of exponential. The
estimation of the coupling from the current budget naturally split into two versions:

dπ2n−1 = eφ2n−2⊕ψ2n−1−cλd(µ⊗ ν), dπ2n = eφ2n⊕ψ2n−1−cλd(µ⊗ ν). (5)

Note that the acquisition of marginals is also splitted; µ can be acquired with the first marginal of
π(φ2n, ψ2n−1), and ν with the second marginal of π(φ2n−2, ψ2n−1) by its alternating nature.

A Symetrization Proposal. In this work, we propose the following symmetrization framework for
SBP which is the direct extension of Algorithm 2. The procedure is composed of two stages. First,
the Schrödinger potentials are concurrently updated with intermediate representations:

φ̃ℓ(x) = −log
∫
Y e

ψℓ−1(y)−cλ(x,y)ν(dy), ψ̃ℓ(y) = −log
∫
X e

φℓ−1(x)−cλ(x,y)µ(dx). (6)

Unlike alternating update in Eq. (5), it is evident that the concurrent operation in Eq. (6) does not
satisfy the constraint of Π(µ, ν); thus, (φ̃ℓ, ψ̃ℓ) are not associated as potentials. Hence, one can
subsequently recover the constraint by equally subtracting a certain amount:

φℓ(x) = φ̃ℓ(x)− log
√
κℓ, ψℓ(y) = ψ̃ℓ(y)− log

√
κℓ, (7)

where κℓ denotes measure contraction κℓ :=
∫∫

X×Y e
φ̃ℓ⊕ψ̃ℓ−cλd(µ ⊗ ν). Applying the projection

in parallel, the algorithm seeks to recover both marginals involving the scaling factor
√
κℓ.

Remark 2.2. For {πℓ}ℓ∈N,
∫
Y e

φℓ⊕ψℓ−1−cλdν = µ/
√
κℓ and

∫
X e

φℓ−1⊕ψℓ−cλdµ = ν/
√
κℓ.

Compared to the standard Sinkhorn, the estimation of coupling from current budget writes in a sin-
gular form dπℓ = eφℓ⊕ψℓ−cλd(µ⊗ ν). This work refers to the procedure as symmetrized Sinkhorn.

3 THEORETICAL ANALYSES ON SYMMETRIZED SINKHORN

This section analyzes the associated sequences i.e. {φℓ}ℓ∈N, {ψℓ}ℓ∈N, and {πℓ}ℓ∈N in their con-
vergence and theoretical properties. Assume that projections occur in finite-dimensional spaces and
the boundedness of the cost function. Under these assumptions, we show the linear convergence of
symmetrized Sinkhorn for the dual functional F ; thus, our method leads the potentials to a unique
fixed point of convergence with gradual improvements.
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Proposition 3.1 (Linear convergence). Suppose a bounded cost, and let (X ,F1, µ) and (Y,F2, ν)
be the probability spaces. The sequence of symmeterized Sinkhorn iterates (φℓ, ψℓ) converges
strongly in Lp(X ,F1, µ)× Lp(Y,F2, ν) for p ∈ [1,∞]. Upon the existence of the solution π∗,

F (φ∗, ψ∗)− F (φℓ, ψℓ) ≤ kℓ
(
F (φ∗, ψ∗)− F (φ0, ψ0)

)
, ℓ ∈ N (8)

holds, where k = 1− e−22∥cλ∥∞ ∈ (0, 1) and (φ∗, ψ∗) are the optimal potentials for F .

Notice that our analysis achieves a slightly tighter contraction than (1 − e−24∥cλ∥∞) of centered
Sinkhorn (Carlier, 2022), and the reason of the difference is mainly due to the fact that we put more
the number of projections per iteration. Therefore, this result further suggests that increasing the
number of projections helps choosing fair amount of SB training.

Meanwhile, the Birkhoff-Bushell theorem (Birkhoff, 1957; Bushell, 1973) predicts measure contrac-
tion property such that log κℓ ≤ 0. Since the suboptimality gap gradually gets minimal by Eq. (8),
log κℓ are monotone increasing to 0. Using this property, we present the monotony of the algo-
rithm in terms of relative entropy for sufficiently large iterations. It is is related to the well-known
monotony of the Sinkhorn iterates {H(π∗|π2n)}n≥0 and {H(π∗|π2n−1)}n≥0 (Nutz, 2021). How-
ever, the drawback is that H(π∗|πn) ≤ H(π∗|πn+1) does not hold; thus the inconsistency might
persist especially when the IPF projections are estimated with a finite number of neural networks.
Proposition 3.2 (Monotony of symmetrized Sinkhorn). Suppose that the EOT coupling π∗ exists.
For sufficiently large iteration ℓ, the relative entropy between coupling monotonically decreases for
the iterates drawn from the symmetrized Sinkhorn, denoting H(π∗|πℓ) ≤ℓ H(π∗|πℓ−1).

In a computational context, our algorithm is also stable with discrete measures (i.e., mini-batch
learning), as it inherits geometric convergence properties from Sinkhorn (see Theorem 2.1 of Nutz
& Wiesel, 2023). To summarize, we have found that our algorithm brings theoretically pleasing
properties, namely, linear convergence and monotonic improvement. Compared to established prob-
abilistic generative methods, training of an SB model has been criticized for its complexity and
instability in finding solutions (Liu et al., 2023). Our hypothesis is that the benefits from the sym-
metrization holds for general SB problems. We claim that our symmetrization scheme leads to more
stable results than standard Sinkhorn, especially when solving SBP relies on finite models, and the
correlation between subsequent iterations is considerable.

4 SYMMETRIZED SCHRÖDINGER BRIDGE MATCHING

Based on the theoretical analyses, we aim to apply the aforementioned symmetrization framework
to general controllable dynamics for robust training of models. We propose a deep dynamic SB
algorithm, which we call SSBM. To computationally model the notion of concurrent projection,
we utilize the essential technique from matching algorithms (De Bortoli et al., 2021; Lipman et al.,
2023) to provide symmetric targets. This section sets the regularization coefficient λ to 1.

4.1 DYNAMIC CONTROL FORMULATION OF SB

Suppose that stochastic processes control the path measures Pµ and Pν starting from µ and ν, re-
spectively. If these two measures form SB between the marginals, the solution is represented with
time-varying potentials (Ψ, Ψ̂) ∈ C1,2([0, T ],Rn) which construct coupled SDEs:

dXt =
[
f(t,Xt) + ggT(t,Xt)∇logΨ(t,Xt)

]
dt + g(t,Xt) dWt, X0 ∼ µ, (9a)

dX̄s =
[
−f(s, X̄s) + ggT(s, X̄s)∇logΨ̂(s, X̄s)

]
ds + g(s, X̄s) dWs, X̄0 ∼ ν, (9b)

where f and g denote base drift and diffusion function given by the environment. In the SDEs,
Xt evolves with the “forward” equation (9a), and X̄s also evolves, but with the “reversed” time
coordinate s := T − t. It is well known that Ψ and Ψ̂ satisfy the partial differential equation (PDE):{

∂Ψ(t,x)
∂t = −∇ΨTf − 1

2 Tr(gg
T∇2Ψ)

∂Ψ̂(t,x)
∂t = −∇·

(
Ψ̂f

)
+ 1

2∇
2 · (ggTΨ̂)

such that
Ψ(0, ·) Ψ̂(0, ·) = µ,

Ψ(T, ·)Ψ̂(T, ·) = ν,
(10)

where the operator ∇2 and ∇2· denotes a shorthand notation for the Hessian and a nested diver-
gence operator for matrix functions. The PDE (10) suggests that (Ψ, Ψ̂) formulates the solutions
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to minimum control (or entropy-regularized) optimization problem (Bensoussan et al., 2013) while
preserving density. Using nonlinear Feynman-Kac (FK) lemma (Han et al., 2018; Pereira et al.,
2020), SB studies have presented a deep neural network parameterization according to the forward-
backward SDE (SB-FBSDE; Chen et al., 2022; Liu et al., 2022a), where we delineate the detailed
derivation to Appendix B. Based on the SB-FBSDE theory, training of one of SDE is based on
the backward trajectories sampled from the reversed counterpart, maximizing the likelihood of the
reversed path measure.

4.2 TIME-SYMMETRIC APPROACH TO DYNAMICAL SB PROBLEMS

To construct the learning target for both forward and backward SDEs, we utilize an optimal trans-
port formulation in mass-preserving fluid dynamics. Suppose a drift field v : [0, T ]×Rd→Rd and
a corresponding probability density ρ(t, ·) ∈ P(Rd) where P(Rd) is the set of probability mea-
sures on Rd. Using the Nelson’s duality (Nelson, 2001), we define time-symmetric current drift
vt(x) := 1/2[f+(t, x)− f−(s, x̄)] where drifts f+(t, x) and f−(s, x̄) drawn from the FBSDE. For a
transport cost function c(x, y) = 1/2∥x−y∥2, an entropic analogue of the Benamou-Brenier formula
(Benamou & Brenier, 2000; Gigli & Tamanini, 2020), or the time-symmetric dynamical SBP writes

H(P|Q) = inf
(vt,ρt)

{∫ T

0

∫
Rd

(
1

2

∥∥(vt − ft)(x)
∥∥2︸ ︷︷ ︸

kinetic energy

+
1

8

∥∥∇ logρt(x)
∥∥2
ggT︸ ︷︷ ︸

Fisher information

)
ρt(x)dxdt

∣∣∣∣ ∂ρ∂t +∇·(vρ) = 0

}
.

(11)
The objective encodes the kinetic energy endowed with a geometry incurred by the Fisher informa-
tion metric, and the condition on the righthand side is called the continuity equation which states the
conservation of the probability density. Under mild conditions, Eqs. (1) and (11) are equivalent in
terms that the cost of energy in the space of information geometry models the EOT problem.

Just like other SB representations, the optimality is unique, satisfying a Hamilton-Jacobi equation
(HJE). In the following proposition, we present the HJE with a function Φ defined with (Ψ, Ψ̂).
Proposition 4.1. Suppose a function Φ ∈ C1,1([0, T ],Rn) and let f, g satisfy growth and Lipchitz
conditions. The vector field vt(x) := ft(x)+ggT∇Φ(t, x) corresponds to the solution of Eq. (11) if

∂Φ(t, x)

∂t
+ vt ·∇Φ(t, x) =

1

4

∥∥∇ logΨ(t, x)
∥∥2
ggT

+
1

4

∥∥∇ log Ψ̂(s, x̄)
∥∥2
ggT

Φ(t, x) := 1/2
{
logΨ(t, x)− logΨ̂(s, x̄)

}
, s := T − t,

(12)

where the potentials (Ψ, Ψ̂) satisfy the PDE (10).

Due to the uniqueness of SDE solutions, Eqs. (10) and (12) predict the identical SB structure. In
quantum mechanics, j = vρ = 1/2(Ψ̂∇Ψ − Ψ∇Ψ̂) is often called as probability flux (Paul &
Baschnagel, 1999; Chen et al., 2017), making a concise way of describing the continuity ∂tρt+∇·j =
0. In this context, we can understand the relationship between (v, ρ) and (Ψ, Ψ̂) as two equivalent
representations of EOT for a probability path along (µ, ν). Since the HJE (12) have the symmetric
property, where (Ψ, Ψ̂) both involved regardless of path distributions Pµ and Pν , we propose to
consider the current vector field vt as a symmetrized learning target for achieving the SB optimality.

4.3 ITERATIVE PROBABILITY FLUX MATCHING

Under the Girsanov theorem (Øksendal, 2003), maximizing log-likelihoods by matching drifts cor-
responds to KL projections for another path measures; consequently, this has inspired consecutive
SB methods in previous studies (Algorithm 3; De Bortoli et al., 2021; Vargas et al., 2021).
Proposition 4.2 (Girsanov theorem). For two drifts f+ and f− from Pµ ∈ P(µ, ·) and Pν ∈ P(·, ν),
define respective probability densities as (ρ+, ρ−) and time-reversal drifts (γ+, γ−). Then,

H(Pµ|Pν) = 1

2

∫ T

0

Ex∼ρ+(t,·)
∥∥(f+− γ−)(t, x)

∥∥2
ggT

dt (13a)

H(Pν |Pµ) = 1

2

∫ T

0

Ex∼ρ−(s,·)
∥∥(f−− γ+)(s, x̄)

∥∥2
ggT

ds (13b)

where H(·|·) denotes relative entropy between two path measures.
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Algorithm 3 Schrödinger bridge matching (SBM).

Input: µ, ν, Pµ0
1: n = 1
2: repeat # consecutive KL projection.
3: Pν2n−1 = arginfPν∈P(·,ν)H(Pν |Pµ2n−2)

4: Pµ2n = arginfPµ∈P(µ,·)H(Pµ|Pν2n−1)
5: n := n+ 1
6: until convergence;
7: return Pµ∗ , Pν∗ .

Algorithm 4 Symmetrized SB matching (SSBM).

Input: µ, ν, Pµ0 , Pν0
2: repeat # concurrent KL projection.
3: P̃µℓ = arginfPµ∈P(µ,·)H(Pµ|Pνℓ−1)

4: P̃νℓ = arginfPν∈P(·,ν)H(Pν |Pµℓ−1)

5: Obtain jℓ using ⟨P̃µℓ , P̃
ν
ℓ ⟩ via HJE (15).

6: Update ⟨Pℓ,Pℓ⟩ using jℓ via LFSDE and LBSDE.
7: ℓ := ℓ+ 1
8: until convergence; return Pµ∗ , Pν∗ .

The theorem suggests that one way to achieve KL projection between path measures is by matching
drifts with the time reversal drifts of (γ+, γ−). Following DSB and CFM (De Bortoli et al., 2021;
Lipman et al., 2023), we train two target drifts (f̃+

ℓ , f̃
−
ℓ ) with conditional drift matching (CDM) loss:

L±
CDM(ℓ) = Et,q(xt)p

∓
ℓ−1(x

′|xt)

∥∥f̃±
ℓ (x

′)− (x− x′)/ε
∥∥2
ggT(t∓ε,x′)

, (14)

where ± and ∓ indicates consideration of signs regarding its timelines (+ and −), and p± is a
discrete Markovian kernel of ρ±ℓ for a small time interval ε. For instance, we can sample data using
the Euler-Maruyama integration. If the distribution q(·) covers the desired support set, the relative
entropies Eq. (13) and conditional matching loss (14) offer identical gradients to the target networks.

In order to model the dynamic version of symmetrized Sinkhorn, we need a learning method for
SDE drifts f±

ℓ that preserves probability density along (µ, ν). Therefore, we utilize Proposition 4.1
and define the estimated target current drift vℓ(t, x) := 1/2[f̃+

ℓ (t, x) − f̃−
ℓ (t̂, x)] and nonlinear FK

transformations Yℓ ≈ logΨ and Ŷℓ ≈ log Ψ̂. Hence, we propose the following loss function:

LΦ(ℓ) = Et,x
∣∣∣∣∂Φℓ∂t + vℓ ·∇Φℓ −

1

4

∥∥∇Yℓ∥∥2ggT − 1

4

∥∥∇Yℓ∥∥2ggT∣∣∣∣,
Φℓ(t, x) := 1/2 (Yℓ(t, x)− Ŷℓ(s, x̄)), s = T − t

(15)

We also keep the marginal score consistency ∇Yℓ(0, ·)+∇Ŷℓ−1(0, ·) = ∇ logµ and ∇Yℓ−1(T, ·)+
∇Ŷℓ(T, ·) = ∇ log ν with an auxiliary loss using score-based methods. Consequently, we can
achieve the SB model (Yℓ, Ŷℓ) that 1⃝ traverses with the target vector field vℓ with density preserva-
tion (7), and also 2⃝ preserves marginal score functions for both sides (Remark 2.2). The updates
are uniquely defined for every iteration.

M

Pµ
ℓ

Pν
ℓ

P0

P1

P2

P3

Pν
0Pν

1Pν
2Pν

3

j0j1
j2

j3
jℓ

P(µ, ·)

P(·, ν)

jℓ= probability flux

Figure 2: A schematic il-
lustration. Two projection
(dashed lines) operates be-
tween path measures. SSBM
identifies a distinct updates
for target flux jℓ within the in-
formation geometry M.

Finally, the obtained Yℓ and Ŷ ℓ are used to train drifts, the forward
drift is trained with the following loss functions achieving maxi-
mum likelihood estimation for P(µ, ·) and P(·, ν).

LFSDE(ℓ) = Et,x
∣∣f+

ℓ −
{

f(t, x) + gT∇Yℓ(t, x)
} ∣∣ (16a)

LBSDE(ℓ) = Es,x̄
∣∣f−
ℓ −

{
−f(s, x̄) + gT∇Ŷℓ(s, x̄)

}∣∣ (16b)

Algorithm 4 summarizes the SSBM procedure. Notice that we
make abstraction for some of the details by using the notion of
path measures and probability flux, which have equivalent mean-
ings to training with the proposed loss functions. This abstraction
also allows us to understand Fig. 2, which illustrates SSBM, sym-
metric learning toward an optimum by matching probability flux
jℓ = vℓρℓ. We leave more algorithmic details in the appendix.

5 RELATED WORKS

We are interested in one fundamental aspect of Schrödinger bridge (Schrödinger, 1931; 1932),
specifically its equivalence with EOT structures (Peyré et al., 2019; Nutz, 2021). In machine learn-
ing, there has been progress in training SB with nonlinear networks with Sinkhorn algorithm (Var-
gas et al., 2021; De Bortoli et al., 2021; Chen et al., 2022). Recently, the general convergence of
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Sinkhorn for various conditions has been extensively studied (Peyré et al., 2019; Nutz & Wiesel,
2023; Deng et al., 2023; Chen et al., 2023). As a symmetric counterpart, we propose symmetrized
Sinkhorn, which extends PSIPF (Kurras, 2015) to SB problems while retaining theoretically pleas-
ing features of PSIPF, which are advancements from the analyses of (Carlier, 2022; Nutz, 2021).

Score-based methods have exhibited exceptional image generation for diffusion models (Ho et al.,
2020; Song et al., 2021). From a perspective of variational methods, such score-matching algo-
rithms can be considered as iteratively elevating a lower bound of maximum likelihood estimation
through backward stochastic integration (Huang et al., 2021). On the other hand, the flow match-
ing algorithms (Lipman et al., 2023) model vector fields of conditional flow, which often leads to
efficient regression model for static OT. It has been verified that the SB is aligned with both score
and flow matching (Liu et al., 2023; Shi et al., 2023). By leveraging iterative minimization of KL
divergence between path measures (Øksendal, 2003; Vargas, 2021), training SB models have been
more inclined toward score matching. Nelson (2001) displayed a time-symmetric configuration of
diffusion bridge, uncovering the duality between stochastic process and vector field of mass flow.

The optimal control formalization of SB (Pavon & Wakolbinger, 1991; Léonard, 2012) put each
control agent in the symmetrical game with their respective timeline; the goal is to model controlled
SDEs with minimum control (Van Handel, 2007). The Hamilton-Jacobi equation offers a dynamic
programming approach through a well-formulated PDE (Kirk, 1970; Zavidovique, 2020). Using the
SB-FBSDE theory, a multi-step temporal difference method has been proposed Liu et al. (2022a)
via backward stochastic integration of the BSDEs (Bellman, 1954; Sutton & Barto, 2018). How-
ever, recent work shows that treating BSDE as updates could struggle to find convergent solutions
due to the stochastic cost variance (Andersson et al., 2023). The time-symmetrical HJE has been
theoretically studied (Chen et al., 2016; Gigli & Tamanini, 2020), which models entropy regularized
Benamou-Brenier formula (Benamou & Brenier, 2000) for EOT in mass-preserving fluid dynamics.

a b

Figure 3: An overview of the experiment. (a) Classical OT experiment in Euclidean space. We also
varied the marginal distributions and dimensional to measure stability and solubility. (b) Stochastic
optimal control experiments with various physical dynamics. The control is represented as an exter-
nal force, and there are other forces in the environment, such as drag and gravitational force.

6 EXPERIMENTAL RESULTS

We validated our SSBM on two classes of SB problems, including classical OT problem and general
optimal control problem (Fig. 3). The goal of the OT experiment was to validate the stability of the
SSBM approach in comparison to prior methods under diverse configurations. Also, we subjected
the optimal control variant of SSBM to validation within second-order dynamics as the underlying
physical system. These systems have served as the foundational physical framework and have been
a subject of classical control studies (Abraham & Marsden, 2008). We parameterized the functions
with fully connected deep neural networks. OT networks adopted sinusoidal time embeddings and
were trained with AdamW. We set λ = 1 and SDEs were solved with the Euler-Maruyama method.

2D OT Experiments. We first show our proposed method achieved competitive OT performance
in 2D problems. We compared our method SSBM with DSB (De Bortoli et al., 2021), DSBM-
IMF (Shi et al., 2023), Rectified Flow (RF; Liu et al., 2022b), SB-CFM (Tong et al., 2023). RF
uses an iterative flow matching procedure in order to improve the straightness of the flow, and SB-
CFM utilizes batch-wise Sinkhorn solvers to define an approximate SB static coupling. Since our
algorithm used the conditional drift matching loss Eq. (14) to construct a target current drift vℓ,
the algorithmic improvements compared to standard Sinkhorn are closely related to comparison
with DBM. Table 2 shows the OT experiment among four different types of marginal distributions.
In total variations, SSBM achieved the five best results for eight configurations. In path relative
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Table 2: OT performance evaluated using path relative entropies and marginal total variations across
four 2D experiments (5 runs). The best outcomes among these are highlighted in bold.

Forward Path Relative Entropy Backward Path Relative Entropy
Dataset gaussian multimodal s-curve moon gaussian multimodal s-curve moon

DSB 411.872±633.015 22.432±13.328 19.481±11.717 6.398±1.599 33.097±17.383 120.255±234.005 19.089±10.305 6.369±1.755
DSBM 8.936±0.294 3.864±0.276 6.866±0.304 3.518±0.190 8.942±0.291 3.942±0.256 6.939±0.203 3.469±0.193

SB-CFM 8.877±0.310 4.067±0.360 6.829±0.175 3.342±0.150 8.893±0.324 4.119±0.287 6.912±0.042 3.341±0.120
SSBM 9.560±0.540 5.874±0.389 7.626±1.418 5.718±0.970 9.593±0.623 5.629±0.294 9.544±0.591 5.075±0.811

Temporal Variation (µ) Temporal Variation (ν)
Dataset gaussian multimoidal s-curve moon gaussian multimoidal s-curve moon

DSB 2.903±0.797 8.893±13.599 0.930±0.009 2.352±0.215 13.140±15.666 5.105±2.846 3.997±0.269 3.141±0.079
DSBM 2.301±0.037 2.276±0.039 0.494±0.016 2.280±0.024 2.260±0.040 3.383±0.060 3.651±0.029 3.216±0.029

RF 2.802±0.117 2.384±0.034 1.417±0.037 2.374±0.017 2.345±0.046 3.241±0.032 2.870±0.036 3.071±0.030
SB-CFM 2.259±0.032 2.226±0.058 0.452±0.017 2.198±0.043 2.285±0.049 3.385±0.055 3.633±0.037 3.192±0.024

SSBM 1.906±0.070 1.911±0.064 0.493±0.008 1.877±0.033 1.928±0.073 3.130±0.032 3.091±0.037 3.147±0.089

entropy, DSBM and SB-CFM showed remarkable performance. This is due to the usage of reference
measures and static SB solvers, which often leads to stabilized energy levels in the static settings.
This showed that our SSBM method achieved stable OT results, which are aligned with our theory.

Table 3: Average total variation of OT in
multi-dimensional Gaussian distributions.

TV(µ) d = 1 d = 20 d = 50

DSB 1.458±0.450 27.119±0.472 70.927±2.200
DSBM 1.138±0.027 23.742±0.169 106.980±1.104

RF 1.227±0.004 22.935±0.062 57.592±0.173
SB-CFM 1.131±0.065 22.618±0.024 64.792±0.756

SSBM 0.966±0.017 19.955±1.516 48.646±3.754
TV (ν) d = 1 d = 20 d = 50

DSB 10.327±13.274 26.934±0.769 70.690±1.805
DSBM 1.121±0.013 23.601±0.116 106.254±0.818

RF 1.078±0.031 22.942±0.063 57.598±0.179
SB-CFM 1.091±0.023 22.618±0.035 64.797±0.847

SSBM 0.931±0.029 19.646±1.483 44.995±0.994

High-Dimensional Gaussian. Next, we conducted
large-scale Gaussian OT experiment that appeared
in (De Bortoli et al., 2021) with d ∈ {1, 20, 50} to
verify the scalability of our method. In Table 3, we
quantified the accuracy, which shows that our SSBM
showed better results for both marginals, and the gap
between SSBM and other algorithms increased with
the dimension. The results are closely related to the
analysis of SB for Gaussian measures from (Bunne
et al., 2023), that the entropic Benamou-Brenier
equation dictates how the mass should be transported
globally, rather than focusing on the quantity of the
mass. Thus, we conclude that the symmetrization
incurs scalability for large data.

2D Physical Mass Control. We considered environments characterized by point mass dynamics
operating under second-order principles. In these scenarios, two agents are initially located at distant
positions at a steady state. The objective was to establish dynamic SB between starting and goal
positions, where we considered stochastic control by generating force. The simulations focused on
two distinct settings. In the Branching environment, there are one initial and two goal positions. The
environments consist of drag forces proportional to the velocities, which take the kinetic energy, and
eventually, the systems halt without external control. In the Gravitational environment, there is a
constant gravitation force in the y-axis; thus, each control agent needs to control against gravity.

t = 0, s = T t = .25T, s = .75T t = s = .5T t = .75T, s = .25T t = T, s = 0

B
ra

nc
hi

ng
G

ra
vi

ta
tio

n

Figure 4: Trajectories in the point control problems. If SB exists in the acceleration space, particles
will show a time-symmetric maneuver along with the initialization points (Blue & Red). Top: Our
SSBM shows stochastic control that reaches multiple goals in a given time. Bottom: SSBM controls
against gravity, successfully formulating SB regardless of apparent external forces.
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t = 0, s = T t = .2T, s = .8T t = .4T, s = 0.6T t = .6T, s = 0.4T t = 0.8T, s = 0.2T t = T, s = 0

Figure 5: Demonstrations of forward control (red), and time-reversal control (blue) trajectories in
the pendulum problem. The stochastic angular acceleration processes forms Schrödinger bridge.

In order to successfully model SB in the control problems, the maneuver between particles should
be time-symmetric regardless of external drag and gravitational forces. The model-based control
result in Fig. 4 shows that SSBM successfully induces Schrödinger bridge structure so that each
position in the t coordinates corresponds to positions of the reverse process in T − t of the s time
coordinate. Notably, we observed that the induced SB structure was curved downwards when there
is a gravitational force. This verifies that our SSBM is able to model path distributions with the
principle of minimum control.

Table 4: Control performance measured by positional distances (5 runs, gravitation=1.0).

goal dist. Branching Gravity Pendulum reverse Branching Gravity Pendulum

DSB 0.316±0.039 0.092±0.026 2.634±0.692 DSB 0.316±0.039 0.352±0.068 0.007±0.001
SSBM 0.255±0.023 0.151±0.024 0.230±0.079 SSBM 0.117±0.010 0.177±0.030 0.135±0.125

A Pendulum. Lastly, we considered a physical control problem of the pendulum environment.
Since a pendulum is connected to a rod, this particular problem consists of variable gravitational
force depending on the pendulum’s angular position. In Fig. 5, the forward and reverse control
agents swing the pendulum in a time-symmetrical manner, changing their angular positions through-
out the time. Table 4 shows the numerical results compared to the DSB algorithm. In all cases,
SSBM induced much more stable results in terms of forward and reverse control. By considering
the success of the pendulum problem as reaching the top with the red pendulum by reaching the goal
angles π and −π, only SSBM was able to show the success of modeling SB in the task. Therefore,
we conclude that our theoretical claims were also verified in the dynamic SB problems.

7 CONCLUSION

In this paper, we presented a symmetrization framework developed to solve both static and dynamic
SBPs. Our approach allowed us to construct an optimal transport algorithm, with theoretical guar-
antees of linear convergence and monotonic improvements for a divergence. Based on the evidence,
we claimed that the proposed SSBM method mitigate exaggerated displacement of couplings in
Sinkhorn, by reflecting both sides of projection for each iteration. Compared to prior methods, our
method empirically showed overall better stability in terms of learning and control.

The computational success of EOT methods was hinged upon the information geometrical properties
of the KL divergence. Our work complements this key idea with a few more insights, implement-
ing an efficient algorithm for finding the solution, which is more generally applicable to arbitrary
space with Bregman projection (Bregman, 1967). A distinguishing feature—and concurrently a
limitation—of SSBM is the dependency of the construction of target current drift on the conditional
drift matching along with its corresponding samples. Such advancements in solving the IPF pro-
jections in non-compact high-dimensional spaces will help actualize the general application of SB
methods in various subfields of machine learning.
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E. Schrödinger. Über die Umkehrung der Naturgesetze. Sitzungsberichte der Preussischen
Akademie der Wissenschaften. Physikalisch-mathematische Klasse. Verlag der Akademie der
Wissenschaften in Kommission bei Walter De Gruyter u. Company, 1931.

Erwin Schrödinger. Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quan-
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Appendices for
Symmetrized Schrödinger Bridge Matching

ABBREVIATION AND NOTATION

Abbreviation Expansion

SB Schrödinger Bridge
IPF Iterative Proportional Fitting
PSIPF Pseudo–Symmetric IPF
SDE Stochastic Differential Equation
PDE Partial Differential Equation
FBSDE Forward-Bacward SDE
OT Optimal Transport
FK Feynman-Kac
HJE Hamilton-Jacobi Equation
CDM Conditional Drift Matching
KL Kullback-Leibler

Notation Usage

µ, ν marginal distributions
π a coupling of µ and ν
n, ℓ IPF/PSIPF iteration
φ,ψ Schrödinger potentials
φ̃, ψ̃ projections from a previous step
α, β exponential of Schrödinger potentials
κ Contraction coefficient
t, s Forward/reversed time coordinates
ρ(t, x) probability distribution for t
H (relative) entropy functions
f, f+, f− base / forward control / reverse control drifts
vℓ current drift function
g diffusion matrix function
(Ψ, Ψ̂) solution to SB PDEs
(Y, Ŷ ) FK transformation for (Ψ, Ψ̂)
Φ Time-symmetric

A PROOFS

We assume cλ is bounded and two probability space (X ,F1, µ) and (Y,F2, ν). where Fi denotes
the σ-algebras. Then, suprema for Schrödinger potentials defined with ∥φ∥∞ := ∥φ∥L∞(X ,F1,µ)

and ∥ψ∥∞ := ∥φ∥L∞(Y,F2,ν). The proofs follows some results of (Sinkhorn, 1967; Sinkhorn &
Knopp, 1967; Chen et al., 2016; Nutz & Wiesel, 2023; Carlier, 2022; Deng et al., 2023)

A.1 PROPOSITION 3.1

First, we find boundedness of symmetrized Sinkhorn iterates.
Lemma A.1. For every ℓ ≥ 1, the symmetrized Sinkhorn iterates are bounded such that

∥φℓ∥ ≤ 2∥cλ∥∞, ∥ψℓ∥∞ ≤ 2∥cλ∥∞, ∥φ̃ℓ∥ ≤ 3∥cλ∥∞, ∥ψ̃ℓ∥∞ ≤ 3∥cλ∥∞ (17)
and also
∥φℓ⊕ψℓ− cλ∥∞ ≤ 5∥cλ∥∞, ∥φ̃ℓ+1⊕ψℓ− cλ∥∞ ≤ 6∥cλ∥∞, ∥φℓ⊕ ψ̃ℓ+1− cλ∥∞ ≤ 6∥cλ∥∞

(18)
where ∥·∥∞ := ∥·∥L∞(X×Y,F1⊗F2,µ⊗ν).

Proof. For (µ⊗ µ)-a.e. x1, x2 ∈ X and (ν ⊗ ν)-a.e. y1, y2 ∈ Y , we can find
cλ(x1, y) ≥ cλ(x2, y)− 2∥cλ∥∞ ∀y ∈ Y, cλ(x, y1) ≥ cλ(x, y2)− 2∥cλ∥∞ ∀x ∈ X .

Using Eqs. (6) and (7), rewrite (φℓ, ψℓ) as

φℓ = − log

∫
Y
eψℓ−1−cλdν − log

√
κℓ, ψℓ = − log

∫
X
eφℓ−1−cλdµ− log

√
κℓ (19)

for ℓ = 1, . . . , N −1. Then, for ℓ = 1, . . . , N −1. Then, for x1, x2 ∈ X , using the strong convexity
of the exponential function,

φℓ(x1)− φℓ(x2) = log

∫
Y
eψℓ−1(y)−cλ(x2,y)ν(dy)− log

∫
Y
eψℓ−1(y)−cλ(x1,y)ν(dy)

≤ log

[
exp{sup

y∈Y

(
cλ(x1, y)− cλ(x2, y)

)
}
∫
Y
eψℓ−1(y)−cλ(x1,y)ν(dy)

]
− log

∫
Y
eψℓ−1(y)−cλ(x1,y)ν(dy) = sup

y∈Y
[cλ(x1, y)− cλ(x2, y)] ≤ 2∥cλ∥∞.

(20)
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Since µ(φℓ) = 0, we have that supx φ(x) ≥ 0 and infx φ(x) ≤ 0. Therefore, this implies that
∥φℓ∥∞ ≤ 2∥cλ∥∞. We can follow the same procedure for ψℓ. These make ∥φ̃∥∞ ≤ 3∥cλ∥∞ and
∥ψ̃∥∞ ≤ 3∥cλ∥∞.

Similarly, we achieve

φℓ(x1)− φℓ(x2) + ψℓ(y1)− ψℓ(y2)

= log

∫
Y
eψℓ−1(y)−cλ(x2,y)ν(dy)− log

∫
Y
eψℓ−1(y)−cλ(x1,y)ν(dy)+

log

∫
X
eφℓ−1(x)−cλ(x,y2)µ(dx)− log

∫
Y
eφℓ−1(x)−cλ(x,y1)µ(dx)

≤ log

[
exp{sup

y∈Y

(
cλ(x1, y)− cλ(x2, y)

)
}
∫
Y
eψℓ−1(y)−cλ(x1,y)ν(dy)

]
− log

∫
Y
eψℓ−1(y)−cλ(x1,y)ν(dy)+

log

[
exp{sup

x∈X

(
cλ(x, y1)− cλ(x, y2)

)
}
∫
Y
eφℓ−1(y)−cλ(x,y1)µ(dx)

]
− log

∫
X
eφℓ−1(x)−cλ(x,y1)µ(dx)

= sup
y∈Y

[cλ(x1, y)− cλ(x2, y)] + sup
x∈X

[cλ(x, y1)− cλ(x, y2)] ≤ 4∥cλ∥∞.

(21)
By the Radon-Nikodym theorem, the derivative satisfy

∫∫
X×Y e

φℓ⊕ψℓ−cλd(µ ⊗ ν) = 0, and this
implies that ∀y supx φℓ(x) + ψℓ(y) − cλ(x, y) ≥ 0 and ∀y infx φℓ(x) + ψℓ(y) − cλ(x, y) ≤ 0
(this holds same for the y case). Therefore, we have proved that ∥φℓ ⊕ ψℓ − cλ∥∞ ≤ 5∥cλ∥∞.
Furthermore, the definition of (φ̃ℓ, ψ̃ℓ) yields ∥φ̃ℓ+1 ⊕ ψℓ − cλ∥∞ ≤ ∥φℓ ⊕ ψℓ − cλ∥∞ + ∥c∥∞ ≤
6∥cλ∥∞ and also ∥φℓ ⊕ ψ̃ℓ+1 − cλ∥∞ ≤ 6∥cλ∥∞, thereby completing the proof.

Next, we introduce the general inequality for the dual functional F .
Lemma A.2. Define:

∂φF (φ,ψ) := 1−
∫
Y
eφ⊕ψ−cλdν, ∂ψF (φ,ψ) := 1−

∫
X
eφ⊕ψ−cλdµ. (22)

If both φ⊕ ψ − cλ ≥ −a and φ′ ⊕ ψ′ − cλ ≥ −a for some a ∈ R, we have

F (φ′, ψ′)− F (φ,ψ) ≥
∫
X
∂φF (φ

′, ψ′)[φ′ − φ]dµ+

∫
Y
∂ψF (φ

′, ψ′)[ψ′ − ψ]dν

+
e−a

2
∥(φ− φ′)⊕ (ψ − ψ′)∥L2(µ⊗ν)

(23)

where ∥·∥L2(µ⊗ν) is a shorthand notation for ∥·∥L2(X×Y,F1⊗F2,µ⊗ν).

Proof. Recall the strong convexity of the exponential function for x ∈ [−a,∞] and some constant
a,

ex − ey ≥ (x− y)ey +
e−y

2
|x− y|2, x, y ∈ [−a,∞].

Then, we have

F (φ′, ψ′)− F (φ,ψ)

= µ(φ′ − φ) + ν(ψ′ − ψ) +

∫∫
X×Y

(
eφ⊕ψ−cλ − eφ

′⊕ψ′−cλ
)
d(µ⊗ ν)

≥ µ(φ′ − φ) + ν(ψ′ − ψ) +

∫∫
X×Y

(φ⊕ ψ − φ′ ⊕ ψ′)eφ
′⊕ψ′−cλd(µ⊗ ν)

+
ea

2

∫∫
X×Y

∥φ⊗ ψ − φ′ ⊗ ψ′∥22 d(µ⊗ ν)

=

∫
X
∂φF (φ

′, ψ′)[φ′ − φ]dµ+

∫
Y
∂ψF (φ

′, ψ′)[ψ′ − ψ]dν +
e−a

2
∥(φ− φ′)⊕ (ψ − ψ′)∥L2(µ⊗ν).

(24)
The proof is complete.
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To advance the argument, we establish that change the dual functional F with respect to concur-
rent projection are subject to a lower bound of ∥φ̃ℓ+1 − ψℓ∥L2(µ)+∥ψ̃ℓ+1 − ψℓ∥L2(ν), inspired by
Lemma 3.1 of (Carlier, 2022). Specifically, we use the inequality such that ∀(a, b) ∈ [−M,M ]2

eb − ea − ea(b− a) ≥ e−M

2
(b− a)2, |eb − ea| ≤ eM |b− a| (25)

Lemma A.3. For ℓ ∈ N, the iterates satisfy the following inequality:

1

2

(
F (φ̃ℓ+1, ψℓ) + F (φℓ, ψ̃ℓ+1)

)
− F (φℓ, ψℓ) ≥

σ

2

(
∥φ̃ℓ+1 − φℓ∥2L2(µ)+ ∥ψ̃ℓ+1 − ψℓ∥2L2(ν)

)
(26)

where σ = e−5∥cλ∥∞ .

Proof. From the fact from Sinkhorn iterates that φ̃ℓ+1 −φℓ and ψ̃ℓ+1 −φℓ has zero mean against µ
and ν, we get

F (φ̃ℓ+1, ψℓ)− F (φℓ, ψℓ) =

∫∫
X×Y

(eφ̃ℓ+1 − eφℓ)e−cλeψℓd(µ⊗ ν)

≥
∫∫

X×Y
(φℓ − φ̃ℓ+1)e

φ̃ℓ+1e−cλeψℓd(µ⊗ ν)

+
e−2∥cλ∥∞

2

∫
X
((φℓ − φ̃ℓ+1))

2e−cλeψℓd(µ⊗ ν)

≥ constant ·
∫
X
(φℓ − φ̃ℓ)dµ+

e−5∥cλ∥∞

2

∫∫
X
(φ̃ℓ+1 − φℓ)

2dµ

=
e−5∥cλ∥∞

2

∫∫
X
(φ̃ℓ+1 − φℓ)

2dµ

(27)

And similarly,

F (φℓ, ψ̃ℓ+1)− F (φℓ, ψℓ) ≥
e−5∥cλ∥∞

2
, (28)

thereby completing the proof.

Since the dual function F is strictly concave, arbitrary Sinkhorn iterates e.g. ψ2n+1 =
argmaxψ F (φ2n, ·) is not only the maximizing argument for ψ2n−1, but also the general inequality

F (φ,ψ2n−1) ≥ F (φ,ψ2n+1) ∀n ∈ N (29)

holds for arbitrary φ ∈ L1(µ), under the condition the integration
∫∫

X×Y φ⊕ψ2n+1d(µ⊗ν) equals
to that of φ2n. In our case, this makes the following inequality:

F (φ̃ℓ+1, ψℓ) ≤ F (φ̃ℓ+1, ψ̃ℓ+1 − log κℓ+1) = F (φℓ+1, ψℓ+1). (30)

Hence, we arrive at
1

2

(
F (φ̃ℓ+1, ψℓ) + F (φℓ, ψ̃ℓ+1)

)
≤ F (φℓ+1, ψℓ+1). (31)

Finally, we prove Proposition 3.1 by the following lemma.
Lemma A.4. Suppose the existence of optimality (φ∗, ψ∗) specified with µ(φ∗) = ν(ψ∗) = 0.
Then, the iterates of the symmetrized Sinkhorn satisfy

F (φ∗, ψ∗)− F (φℓ, ψℓ) ≤ kℓ
(
F (φ∗, ψ∗)− F (φ0, ψ0)

)
(32)

where k := 1− e−22∥cλ∥∞ .

Proof. Using Lemma A.2 for a = 5∥cλ∥∞, we have

F (φℓ, ψℓ)− F (φ∗, ψ∗) ≥
∫
X
∂φF (φℓ, ψℓ)[φℓ − φ∗]dµ+

∫
Y
∂ψF (φℓ, ψℓ)[ψℓ − ψ∗]dν

+
exp(−5∥cλ∥∞)

2

∥∥∥(φ∗ − φℓ)⊕ (ψ∗ − ψℓ)
∥∥∥
L2(µ⊗ν)

.

(33)
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Since ∂φF (φ̃ℓ+1, ψℓ) is a deterministic scalar and µ(φℓ) = µ(φ∗) = 0, we can say∫
X
∂φF (φ̃ℓ+1, ψℓ)[φℓ − φ∗]dµ = 0 (34)

Therefore, for the first integral of Eq. (33) is decomposed as∫
X
∂φF (φℓ, ψℓ)[φℓ − φ∗]dµ

=

∫
X
[∂φF (φℓ, ψℓ)− ∂φF (φ̃ℓ+1, ψℓ)][φℓ − φ∗]dµ

≥ − 1

2σ1
∥∂φF (φℓ, ψℓ)− ∂φF (φ̃ℓ+1, ψℓ)∥2L2(µ) −

σ1
2
∥φℓ − φ∗∥2L2(µ)

(35)

where σ1 := e−5∥cλ∥∞ the inequality follows from Hölder’s inequality and Young’s inequality. By
the same process for the second integral of Eq. (33), using ∂ψF (φℓ, ψ̃ℓ+1), we achieve

F (φ∗, ψ∗)− F (φℓ, ψℓ) ≤
1

2σ1
∥∂φF (φℓ, ψℓ)− ∂φF (φ̃ℓ+1, ψℓ)∥2L2(µ)

+
1

2σ1
∥∂ψF (φℓ, ψℓ)− ∂ψF (φℓ, ψ̃ℓ+1)∥2L2(µ)

(36)

Note that for x ∈ X ,

|∂φF (φℓ, ψℓ)(x)− ∂ψF (φ̃ℓ+1, ψℓ)(x)| ≤
∫
Y
|eφ̃ℓ+1⊕ψℓ−cλ − eφℓ⊕ψℓ−cλ |dν

≤ e6∥cλ∥∞

∫
Y
|φ̃ℓ+1 ⊕ ψℓ − φℓ ⊕ ψℓ|dν

=
1

σ2
|φ̃ℓ+1(x)− φℓ(x)|.

(37)

where the second inequality follows by the boundedness and Lipchitz continuity of the exponential
function in certain region such that ea − eb ≤ eM |b− a| for a, b ≤M ; σ2 := e−6∥cλ∥∞ .

Combining Eqs. (36) and (37) after finding the inequality for |∂φF (φℓ, ψℓ)(x)−∂ψF (φℓ, ψ̃ℓ+1)(x)|
with the same manner, we conclude that

F (φ∗, ψ∗)− F (φℓ, ψℓ) ≤
1

2σ1σ2
2

(
∥φ̃ℓ+1 − φℓ∥2L2(µ) + ∥ψ̃ℓ+1 − ψℓ∥2L2(ν)

)
≤ 1

2σ1σ2
2

(
∥φℓ+1 − φℓ∥2L2(µ) + ∥ψℓ+1 − ψℓ∥2L2(ν)

)
≤ 1

σ2
1σ

2
2

(1
2

(
F (φ̃ℓ+1, ψℓ) + F (φℓ, ψ̃ℓ+1)

)
− F (φℓ, ψℓ)

)
≤ 1

σ2
1σ

2
2

(
F (φℓ+1, ψℓ+1)− F (φℓ, ψℓ)

)
(38)

Denoting the suboptimality gap ∆ℓ = F (φ∗, ψ∗) − F (φℓ, ψℓ) and kε := 1 − e−22∥cλ∥∞ ∈ (0, 1),
we have

∆ℓ ≤
1

σ2
1σ

2
2

(∆ℓ −∆ℓ+1). (39)

In other words, we apparently reach the contraction property as follows

∆ℓ+1 ≤ (1− σ2
1σ

2
2)∆ℓ ≤ (1− σ2

1σ
2
1)
ℓ+1∆0 (40)

Denote kε := 1− e−22∥cλ∥∞ ∈ (0, 1). We hereby complete the proposition for any ℓ ≥ 1

∆ℓ ≤ kℓ∆0. (41)

This proves the lemma and Proposition 3.1.
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A.2 PROPOSITION 3.2

We mainly relate this result to (Nutz, 2021). By the construction, we have

dµℓ
dµ

(x) =

∫
Y

dπℓ
dµ⊗ ν

(x, y)ν(dy) =

∫
Y
eφℓ(x)+ψℓ(y)−cλ(x,y)ν(dy)

= eφℓ(x)

∫
Y
eψℓ(y)−cλ(x,y)ν(dy) = eφℓ(x)−φ̃ℓ+1(x)

(42)

where we used the definition φ̃ℓ+1 in the last step. As a result, we have

dµℓ
dµ

= eφℓ−φ̃ℓ+1 ,
dνℓ
dν

= eψℓ−ψ̃ℓ+1 . (43)

And the relative entropy is represented with

H(µ|µℓ) = µ(φℓ − φ̃ℓ), H(ν|νℓ) = ν(ψℓ − ψ̃ℓ). (44)

Since the additive operation in the symmetrized Sinkhorn does not change the essential property of
projection, the well-known monotony property (Lemma 6.7 of Nutz, 2021):

H(µ|µℓ) ≤ H(µ|µℓ+2), H(ν|νℓ) ≤ H(ν|νℓ+2) (45)

holds, and thus both sequences:

{H(µ|µ2t) +H(µ|µ2t) +H(ν|ν2t+1) +H(µ|ν2t+1)}t≥0,

{H(µ|µ2t−1) +H(µ|µ2t−1) +H(ν|ν2t) +H(µ|ν2t)}t≥0,

are monotone decreasing. Using the definition of πℓ the relative entropy can be drawn:

H(π∗|πℓ+2)−H(π∗|πℓ)
= [H(π∗|πℓ+2)−H(π∗|πℓ+1)]− [H(π∗|πℓ+1)−H(π∗|πℓ)]
= µ(φℓ+1 − φℓ+2) + ν(ψℓ+1 − ψℓ+2) + µ(φℓ − φℓ+1) + ν(ψℓ − ψℓ+1)

= µ(φℓ+1 − φ̃ℓ+2) + ν(ψℓ+1 − ψ̃ℓ+2) + µ(φℓ − φ̃ℓ+1) + ν(ψℓ − ψ̃ℓ+1)− log κℓ+1κℓ+2

= −[H(µ|µℓ+1) +H(ν|νℓ+1) +H(µ|µℓ) +H(ν|νℓ) + log κℓ+1κℓ+2].
(46)

The Birkhoff-Bushell theorem (Birkhoff, 1957; Bushell, 1973) predicts measure contraction prop-
erty such that log κℓ ≤ 0. Since the suboptimality gap gradually gets minimal by Proposition 3.1,
log κℓ is monotone increasing to 0. Given that πℓ converges to π∗, and that monotony of Eq. (46),
there must exist some ℓ′ ∈ N such that

H(µ|µℓ) +H(ν|νℓ) ≥ − log κℓ, ℓ ≥ ℓ′. (47)

Therefore, for sufficiently large ℓ ≥ ℓ′ − 1

H(π∗|πℓ+1)−H(π∗|πℓ) = −[H(µ|µℓ) +H(ν|νℓ) + log κℓ] ≥ 0 (48)

holds, thereby completing the proof.

A.3 PROPOSITION 4.1

Using the fact that each SDE and time reversal drifts respectively follow the forward and backward
Kolmogorov (or Fokker–Planck) equations, we write

∂ρ

∂t
= −∇·(f+ρ) +∇2 ·

(
1
2gg

Tρ
)
, (49a)

∂ρ

∂t
= ∇·(f−ρ)−∇2 ·

(
1
2gg

Tρ
)
, (49b)

Adding two equations, we achieve the continuity equation:

∂ρ

∂t
+∇· (vρ) = 0. (50)

18



Under review as a conference paper at ICLR 2024

where v = 1
2f

+ − f−. Subtracting the forward and backward Kolmogorov equations also derives
another fundamental identity

(f+ + f−)ρ = ∇·
(
ggTρ

)
. (51)

Moreover, we can derive an explicit form of the score function:

(f+ + f−)ρ = ∇·
(
ggTρ

)
⇔ f+ + f− = ggT∇ log ρ+∇·ggT

⇔ ∇ logρ = (ggT)−1(f+ + f− −∇·ggT),
which can be considered as a general derivation of the Nelson’s first equation of the stochastic
calculus (Nelson, 2001) for multivariate SDEs. Generalizing the Nelson’s duality, define the current
and osmotic drifts for measures P and Q:

vP =
f+

P − f−
P

2
, uP =

f+

P + f−
P

2
, vQ =

f+

Q − f−
Q

2
, uQ =

f+

Q + f−
Q

2
, (52)

where (f+

P , f
−
P ) is drawn from SB-FBSDE (9) and (f−

P , f
−
Q ) is the base drifts, assuming that the .

Under they Girsanov theorem (Øksendal, 2003), we observe that

H(P|Q) = H(P0|Q0) + EP

[∫ T

0

1

2
∥f+

P − f+

Q∥
2dt

]
= H(PT |QT ) + EP

[∫ T

0

1

2
∥f−

P − f−
Q∥

2dt

]
Combining above two equations, we get

H(P|Q) =
1

2
H(P0|Q0) +

1

2
H(PT |QT ) + EP

[∫ T

0

1

4
∥f+

P − f+

Q∥
2 +

1

4
∥f−

P − f−
Q∥

2dt

]
=

1

2
H(P0|Q0) +

1

2
H(PT |QT ) + EP

[∫ T

0

1

4
∥vPt − vQt ∥2 +

1

4
∥uPt − uQt ∥2dt

]
.

Knowing that P0 = Q0 = µ and PT = QT = ν, and plugging SB-FBSDE derived in Appendix B,
we achieve

H(P|Q) = EP

[∫ T

0

1

8
∥∇ logΨ−∇ log Ψ̂∥2ggT +

1

8
∥∇ logΨ +∇ log Ψ̂∥2ggTdt

]
(53)

This is equivalent to∫ T

0

∫
Rd

(
1

2

∥∥(vt − ft)(x)
∥∥2 + 1

8

∥∥∇ logρt(x)
∥∥2
ggT

)
ρt(x)dxdt.

We note that when (Ψ, Ψ̂) satisfy Eq. (10), and also with the reversed time coordinate s, the conti-
nuity equation (50) in a logarithmic form.

Finally, we get the constrained problem:

inf
(ρ̃,ṽ)

∫ T

0

∫
Rd

(
1

2
∥ṽ(t, x)− f(t, x)∥2 + 1

8
∥∇ logρ̃(t, x)∥2ggT

)
ρ̃(x, t) dtdx,

such that
∂ρ̃

∂t
+∇· (ṽρ̃) = 0, ρ̃(0, ·) ≡ µ, ρ̃(T, ·) ≡ ν.

To solve this problem, we convert the problem to the Lagrangian function:

L(ρ, v) =
∫ T

0

∫
Rd

1

2
∥ṽ(t, x)− v(t, x)∥2ρ̃(t, x) + 1

8
∥∇ log ρ̃(t, x)∥2ggT ρ̃(t, x)

+ λ(t, x)

(
∂ρ̃

∂t
+∇· (ṽρ̃)

)
dx dt

where λ isC1,2-Lagrangian multiplier. After integration by part, assuming that limits for x→ ∞ are
zero, and observing that the boundary values are constant over Π(µ, ν), we resort to the following
problem:

inf
(ρ̃,ṽ)∈P×V

∫
Rn

∫ T

0

[
1

2
∥v(t, x)− ṽ(t, x)∥2 + 1

8
∥∇ log ρ̃(t, x)∥2 +

(
−∂λ
∂t

−∇λ · ṽ
)]
ρ̃(t, x)dtdx.

(54)
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Pointwise minimization with respect to ṽ for each fixed flow of probability densities ρ̃ gives

v∗ρ(x, t) = v(x, t) +∇λ(x, t).

Plugging this form of the optimal control into Eq. (54), we get the functional of ρ̃ ∈ P:

J (ρ̃) = −
∫
Rn

∫ T

0

[
∂λ

∂t
+ v ·∇λ+

1

2
∥∇λ∥2 + 1

8
∥∇ log ρ̃(t, x)∥2ggT

]
ρ̃(t, x) + dtdx

Utilizing the existence and uniqueness of SDE solutions, and by using the relation found in
Eqs. (52) and (53), we get

∂Φ(t, x)

∂t
+ vt ·∇Φ(t, x) =

1

4

∥∥∇ logΨ(t, x)
∥∥2
ggT

+
1

4

∥∥∇ log Ψ̂(s, x̄)
∥∥2
ggT

Φ(t, x) = 1/2
{
logΨ(t, x)− log Ψ̂(s, x)

}
, s := T − t

which completes the proof.

B DERIVATIONS OF THE SB-FBSDE

In this section, we introduce SB-FBSDE, a control dynamic formulation for describing SB (Chen
et al., 2022; Liu et al., 2022a). The formulation allows us to link the static SB problem into real-
world physical problems. Notably, we present detailed derivations on SB-FBSDE in multi-variate
case.

B.1 PRELIMINARIES FOR SB-FBSDE

First, we present the Itô’s lemma.
Lemma B.1 (Itô’s lemma (Itô, 1951)). Let Xt be the solution to the Itô SDE:

dXt = f(t,Xt) dt+ g(t,Xt)dWt

Then, the stochastic process u(t,Xt), where u ∈ C1,2([0, T ],Rd), is also an Itô process satisfying

du(t,Xt) =
∂u(t,Xt)

∂t
dt+

[
∇u(t,Xt)

Tf(t,Xt) +
1

2
Tr[ggT(t,Xt)∇2u(t,Xt)]dWt.

]
dt

+ [∇u(t,Xt)
Tg(t,Xt)]dWt

(55)

Next, we introduce Feynman-Kac Lemma, which predicts potentials, or value functions
Lemma B.2 (Nonlinear Feynman-Kac (Exarchos & Theodorou, 2018; Yong & Zhou, 1999)). Let
u ≡ u(x, t) be a function that is twice continuously differentiable in x ∈ Rd and once differentiable
in t ∈ [0, T ], i.e., u ∈ C1,2([0, T ],Rd). Consider the following second-order parabolic PDE,

∂u

∂t
+

1

2
Tr(ggT∇2u) +∇uTf(t, x) + h(t, x, u, gT∇u) = 0, u(T, ·) ≡ τ(·), (56)

where the functions f , g, h, and τ satisfy proper regularity conditions. Specifically, 1⃝ f , g, h, and
τ are continuous, 2⃝ f(t, x) and g(t, x) are uniformly Lipschitz in x, and 3⃝ h(t, x, y, z) satisfies
quadratic growth condition in z. Then, Eq. (56) exists a unique solution v = u such that the
following stochastic representation (known as the nonlinear Feynman-Kac transformation) holds:

Yt = u(t,Xt), Zt = gT(t,Xt)∇u(t,Xt) (57)

where (Xt, Yt, Zt) are the unique adapted solutions to the following FBSDEs:

dXt = f(Xt, t)dt+ g(Xt, t)dWt, X0 = x0, (58a)

dYt = −h(Xt, Yt, Zt, t)dt+ ZT
t dWt, YT = τ(XT ). (58b)

The original deterministic PDE solution v(x, t) can be recovered by taking conditional expectations:

E[Yt|Xt = x] = u(t, x), E[Zt|Xt = x] = g(t, x)T∇u(t, x).
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Lemma B.2 establishes an intriguing connection between a certain class of (nonlinear) PDEs (56)
and FBSDEs (58) via the nonlinear FK transformation Eq. (57).

SB-FBSDE. SB-FBSDE is a class of probabilistic models that, inspired by optimal control and
neural differential equations (Chen et al., 2022; Kirk, 1970; Chen et al., 2018), adopts Lemma B.2 to
generalize the score-based diffusion models. Since the PDEs (∂tΨ, ∂tΨ̂) in the SB Eq. (10) are both
of the parabolic form Eq. (56), one can apply Lemma B.2 and derive the corresponding FBSDEs. In
this appendix, we present a more general expression of SB-FBSDE than previous literature:

dXt = f+

t dt+ gTdWt = (ft + gZt)dt+ gTdWt

dYt =
1

2
∥Zt∥2dt+ ZT

t dWt

dŶt =

(
1

2
∥Ẑt∥2 + ẐT

t Zt +∇·f−
t + Gt

)
dt+ ẐT

t dWt

(59a)

(59b)

(59c)

where we define f−
t := −ft+ gtẐt and Gt := 1/2∇2 ·(ggTt ). The nonlinear FK transformation reads

Yt = logΨ(t,Xt), Zt = g(t,Xt)
T∇ logΨ(t,Xt),

Ŷt = logΨ̂(t,Xt), Ẑt = g(t,Xt)
T∇ logΨ̂(t,Xt),

which immediately suggests that

E[Yt|Xt = x] = logΨ(t, x), E[Ŷt|Xt = x] = logΨ̂(t, x). (60)

Since SB-FBSDE was primarily developed in the context of generative modeling (Song et al., 2021),
its training relies on computing the log-likelihood at the boundaries. These log-likelihoods can be
obtained by noticing that log ρ(x, t) = E[Yt + Ŷ t|Xt = x], as implied by the Hopf-cole transform
and Eq. (60). The above arguments also holds for the timeline of s with equivalent Ψ̂ and Ψ change
their roles, vice versa.

B.2 ON TIME DERIVATIVES OF KINETIC SYSTEMS

On second-order dynamic control of a kinetic system,1 we can substitutes its time derivative ∂tf with(
∇qf

Tq̇ +∇q̇f
Tq̈

)
where the control xt affects qt using arbitrary Hamiltonian, e.g., affine-control

(Lin et al., 2021; Liu et al., 2022a) .
Lemma B.3. Suppose h ∈ C1,2 and ℏ ∈ C1,1,2 where h(t, x(t)) = ℏ(qt, q̇t, xt) for t ∈ [0,+∞).
Let both functions satisfy growth and Lipchitz conditions. Then, the time derivative of h is drawn as

∂h

∂t
(t, x(t)) =

[
∂ℏ
∂q

+
∂ℏ
∂q̇

]
(qt, q̇t, xt), (61)

and ∇h and Tr(Hessh) corresponds to ∇xtℏ and Tr(Hessxt ℏ) respectively with every t.

Proof. Given standard drift and diffusion functions f and g recall the Itô lemma,

∂h

∂t
+Ath =

∂h

∂t
+∇hTf +

1

2
Tr(ggT Hessh) (62)

and the infinitesimal generation At depends on current (qt, q̇t, xt). Now let us define stochastic
process in combined coordinate d(qt, q̇t, xt) = µt dt+ σtdWt well defined, i.e.,

µt =

[
q̇t
q̈t
ft

]
and σt =

[
0d
0d
gt

]
.

It is evident the infinitesimal generation of ℏ and h matched since both process exhibits F (k)-
measurable Markovian kernel. Therefore, the time input incorporated for inputs of ℏ the Itô formula
for ∂ℏ∂t = 0 is expressed as

∇h+
1

2
σ2∆h =

∂ℏ
∂q

+
∂ℏ
∂q̇

+
1

2
ggT Tr(Hessξ ℏ) (63)

1This naturally extends to any settings with k-th order Markovian properties (k ∈ N).
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Equating algebraic expressions Eqs. (62) and (63),

∂h

∂t
=

∂ℏ
∂qt

+
∂ℏ
∂q̇t

, ∇h = Tr(Hess ℏ), and ∇ℏ = Tr(Hess ℏ), (64)

for arbitrary f and g. This concludes the proof.

This technique using the chain-rule is useful for solving the PDE in model-free manners.

B.3 DERIVATIONS FOR MULTI-VARIATE FBSDE

B.3.1 A HOPF-COLE TRANSFORMATION

For an Hamiltonian H, the general dynamic formulation is described with the following PDE:{
−∂tu+H(x,∇u)− 1

2 Tr(gg
T∇2u) = 0,

∂tρ−∇·(∇pH(x,∇u) ρ)− 1
2∇

2 · (ggTρ) = 0.
(65)

This can be viewed as blending of two optimality condition of PDEs; the first row indicates the HJE
and the second row indicates Fokker–Planck (FP) equation (Buckdahn et al., 2017). We use the
Hopf-Cole transform as follows

Ψ(t, x(t)) := exp(−u(t, x(t))), Ψ̂(ξ(t), t) := ρ(t, x(t)) exp
(
u(t, x(t))

)
.

This transform can be quite general since ρ(t, x) is the density function which represents arbitrary
measures. Multi-variate calculus yields

∇Ψ = − exp(−u)∇u, ∇2Ψ = exp(−u)[∇u∇uT −∇2u],

∇Ψ̂ = exp(u)(ρ∇u+∇ρ),∇2Ψ̂ = exp(u)
[
ρ∇u∇uT +∇ρ∇uT +∇u∇ρT +∇2ρ+ ρ∇2u

]
.

Hence, we can draw the following derivations regarding the control-affine Hamiltonian, i.e.,
H(x,∇u) = 1

2∥gT∇u∥
2 −∇uTf :

∂Ψ

∂t
= exp(−u)

(
−∂u
∂t

)
= exp(−u)

(
−1

2
∥gT∇u∥2 +∇uTf +

1

2
Tr(ggT∇2u)

)
= −1

2
Tr(ggT∇2Ψ)−∇ΨTf + λΨ logΨ

∂Ψ̂

∂t
= exp(u)

(
∂ρ

∂t
+ ρ

∂u

∂t

)
= exp(u)

((
∇· (ρ(ggT∇u− f)) +

1

2
∇2 · (ggTρ)

)
+ ρ

(
1

2
∥gT∇u∥2 −∇uTf − 1

2
Tr(ggT∇2u)

))
=

1

2
Tr(ggT∇2Ψ̂) +∇· (ggT)T∇Ψ̂ +

1

2
∇2 · (ggT)Ψ̂−∇Ψ̂Tf − Ψ̂∇·f

=
1

2
∇2 · (ggTΨ̂)−∇Ψ̂Tf − Ψ̂∇·f

= −∇· (Ψ̂f)

and we have derivations for the control PDE (10).

B.3.2 NONLINEAR MULTI-VARIATE FEYNMAN-KAC DERIVATIONS

Let us apply the Itô’s lemma to the u := logΨ(t,Xt) where Xt follows the forward equation:

d logΨ =
∂ logΨ

∂t
+

[
∇ logΨT

(
f + ggT∇ logΨ

)
+

1

2
Tr

(
ggT∇2 logΨ

)]
dt+ g∇ logΨTdWt.
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Notice that the PDE of ∂ log Ψ
∂t is achieved by applying the Hopf-Cole transform

∂ logΨ

∂t
=

1

Ψ

(
−∇ΨTf − 1

2
Tr(ggT∇2Ψ)

)
= −∇ logΨTf − 1

2
Tr(ggT∇2 logΨ)− 1

2
∥gT∇ logΨ∥2.

Therefore, combining above differential terms yields

d logΨ =
1

2
∥g∇ logΨ∥2 dt+ g∇ logΨT dWt. (66)

Also, apply the Itô lemma by instead substituting u := log Ψ̂(t,Xt)

d log Ψ̂ =
∂ log Ψ̂

∂t
dt+

[
∇ log Ψ̂T(f + ggT∇ logΨ) +

1

2
Tr(ggT∇2 log Ψ̂)

]
dt+ g∇ log Ψ̂TdWt.

Notice that the PDE of ∂ log Ψ̂
∂t obeys

∂ log Ψ̂

∂t
=

1

Ψ̂

(
−∇· (Ψ̂f) + 1

2
∇2 · (ggTΨ̂)

)
= −∇ logΨTf −∇·f +

1

2
∥gT∇ log Ψ̂∥2 + 1

2
Tr(ggT∇2 log Ψ̂) +

1

2
∇2 · (ggT)

where 1
2∇

2 · (ggT) is the adjustment term for non-constant diffusion g. This yields

d log Ψ̂ =

[
−∇·f +

1

2
∥gT∇ log Ψ̂∥2 + gT∇ log Ψ̂T∇ logΨ + Tr(ggT∇2 log Ψ̂)

]
dt+ g∇ log Ψ̂TdWt

=

[
1

2
∥gT∇ log Ψ̂∥2 + (gT∇ log Ψ̂)T(gT∇ logΨ) +∇· (ggT∇ log Ψ̂− f) +

1

2
∇2 · (ggT)

]
dt+ g∇ log Ψ̂TdWt,

Therefore, with the nonlinear FK transformation (Pereira et al., 2020), i.e.,

Yt ≡ Y (t,Xt) = logΨ(t,Xt), Zt ≡ Z(t,Xt) = gT∇ logΨ(t,Xt)

Ŷt ≡ Ŷ (t,Xt) = log Ψ̂(t,Xt), Ẑt ≡ Ẑ(t,Xt) = gT∇ log Ψ̂(t,Xt)
(67)

we can write the SB-FBSDE of the system system

dXt = (ft + gZt) dt+ g dWt

dYt =
1

2
∥Zt∥2 dt+ ZT

t dWt

dŶt =

[
1

2
∥Ẑt∥2 + ẐT

t Zt +∇·
(
gtẐt − ft

)
+

1

2
∇2 · (ggTt )

]
dt+ ẐT

t dWt

where we find forward control and reverse drift has the relationship with FK transformation as

f+

t = ft + gtZt and f−
t = gtẐt − ft

Derivation of the second FBSDEs system in time-reversal follows the identical flow, except that
we need to rebase the PDE to the “reversed” time coordinate s := T − t. This can be also done
by reformulating the HJE and FP equations under the s coordinate, then applying the following
Hopf-Cole transform:

Ψ̂(s, x) := exp(−u(s, x)), Φ(s, x) := ρ(s, x) exp(u(s, x)). (68)

Notice that we flip the role of Ψ̂ and Ψ of the timeline t and now relates to s coordinate. Omitting
the computation similar to Appendix B.3.1, we arrive at the following:{

∂Ψ̂(x,s)
∂s = ∇Ψ̂f − 1

2g
2∆Ψ̂

∂Ψ(x,s)
∂s = ∇· (Ψf) + 1

2g
2∆Ψ

s.t.
Ψ̂(·, 0)Ψ(·, 0) = ν

Ψ̂(·, T )Ψ(·, T ) = µ
(69)
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Apply to Itô’s lemma to u := log Ψ̂(s, X̄s) where X̄s evolves along the reversed SDE:

d log Ψ̂ =
∂ log Ψ̂

∂s
ds+

[
∇ logΨT

(
f + ggT∇ logΨ

)
+

1

2
Tr

(
ggT∇2 logΨ

)]
ds+ g∇ logΨTdWs.

(70)
and notice that the PDE of ∂ log Ψ

∂s now obeys

∂ log Ψ̂

∂s
=

1

Ψ̂

(
−∇Ψ̂Tf − 1

2
Tr(ggT∇2Ψ)

)
= −∇ log Ψ̂Tf − 1

2
Tr(ggT∇2 log Ψ̂)− 1

2
∥gT∇ log Ψ̂∥2.

This yields

d log Ψ̂ =
1

2
∥g∇ log Ψ̂∥2 ds+ g∇ log Ψ̂T dWs. (71)

Similarly, apply the Itô’s lemma to u := log Ψ̂(X̄s, s) where X̄s follows the reversed SDE.

d logΨ =
∂ logΨ

∂s
ds+

[
∇ log Ψ̂T(f + ggT∇ logΨ) +

1

2
Tr(ggT∇2 log Ψ̂)

]
dt+ g∇ log Ψ̂TdWt.

(72)
and using the PDE of ∂ log Ψ̂

∂s yields

d logΨ =

[
−∇·f +

1

2
∥gT∇ logΨ∥2 + gT∇ logΨT∇ log Ψ̂ + Tr(ggT∇2 logΨ)

]
dt+ g∇ logΨTdWt

=

[
1

2
∥gT∇ logΨ∥2 + (gT∇ logΨ)T(gT∇ log Ψ̂) +∇· (ggT∇ logΨ− f) +

1

2
∇2 · (ggT)

]
dt+ g∇ logΨTdWt,

Therefore, with a nonlinear FK transformation

Ys ≡ Y (X̄s, s) = logΨ(X̄s, s), Zs ≡ Z(X̄s, s) = g∇ logΨ(X̄s, s),

Ŷs ≡ Ŷ (X̄s, s) = log Ψ̂(X̄s, s), Ẑs ≡ Ẑ(X̄s, s) = g∇ log Ψ̂(X̄s, s),

we can rewrite the second FBSDE

dX̄s = (−fs + gẐt) ds+ gdWs

dYs =

[
1

2
∥Zs∥2 + ZT

s Ẑs +∇·
(
gsZs + fs

)
+ ZT

s +
1

2
∇2 · (ggTs )

]
dWs

dŶs =
1

2
∥Zs∥2 + ẐT

t dWs

where we find the relationship f+
s = fs + gsZs and f−

s = gsẐs − fs.

Finally, we present the SB-FBSDE for X(t)

SB-FBSDE

w.r.t. (9a)
:



dXt = f+

t dt+ gt dWt,

dYt =
1

2
∥Zt∥2dt+ ZT

t dWt,

dŶt =

(
1

2
∥Ẑt∥2 + ẐT

t Zt +∇·f−
t + Gt

)
dt+ ẐT

t dWt,

(73a)

(73b)

(73c)

where Gt := 1/2∇2 · (ggTt ). Also, the SB-FBSDE for the s time coordinate writes

SB-FBSDE

w.r.t. (9b)
:



dX̄s = f−
s ds+ g dWs,

dYs =

(
1

2
∥Zs∥2 + ZT

s Ẑs +∇·f+

s + Gs
)
ds+ ZT

s dWs,

dŶs =
1

2
∥Ẑs∥2dt+ ẐT

s dWs.

(74a)

(74b)

(74c)
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The FBSDEs comprise a system of evolution toward a unique solution with respect to the cost
of 1/2∥Z∥2 and 1/2∥Ẑ∥2. Since (Z, Ẑ) models the pure commitment of control, learning through
Eq. (73b) and Eq. (74c) corresponds to satisfying Hamilton-Jacobi solution of the minimum control.
Akin to temporal difference learning (Sutton & Barto, 2018) methods, Liu et al. (2022a) proposed
a multi-step TD method via backward stochastic integration of the BSDEs (73c) and (73b) which
iteratively elevates a variational lower bound of divergence.

B.4 FORWARD AND REVERSE HJE LOSS

In SSBM, the drift loss in Eq. (16) is possible without the base drift function f . Instead, we can
utilize another HJE loss function:

L+

HJE(ℓ) = Et,x
∣∣∣∣∂Yℓ∂t + f+

ℓ ·∇Yℓ +
1

2
Tr(ggT∇2Yℓ)−

1

2

∥∥∇Yℓ∥∥2ggT ∣∣∣∣ (75)

to satisfy the equivalent learning with Eq. (16a), where L−
HJE is symmetrically defined with Ŷ ℓ. First,

we can denote the forward and backward SDEs at iteration ℓ by

dX
(ℓ)
t = f+

ℓ

(
t,X

(ℓ)
t

)
dt+ g

(
t,X

(ℓ)
t

)
dWt, X(ℓ)

0 ∼ µ (76a)

dX̄(ℓ)
s = f−

ℓ (s, X̄
(ℓ)
s ) ds+ g(s, X̄(ℓ)

s ) dWs X̄(ℓ)
0 ∼ ν (76b)

The the probability density of random variableX(ℓ)
t is represented with ρ+ℓ and that of X̄(ℓ)

s with ρ−ℓ .

B.4.1 PRELIMINARY

Lemma B.4. The following equality holds at any point x ∈ Rn such that p(x) ̸= 0.

1

p(x)
∆p(x) = ∥∇ log p(x)∥2 +∆ log p(x)

where ∆ denotes the Laplacian operator.

Proof. This can be proved by the log-nabla trick 1
p(x)∆p(x) = 1

p(x)∇ · ∇p(x) = 1
p(x) ·

(p(x)∇ log p(x)). Applying the chain rule to the divergence ∇· yields the desired result.

Lemma B.5 (Proposition 1, Sect. 6.3.1, Vargas, 2021). In Eq. (76), denote respective densities ρ+ℓ
and ρ+ℓ . The following equation holds:

d log ρ−ℓ =

[
∇·f− + g

(
Zℓ + Ẑℓ

)T
∇ log ρ−ℓ − 1

2
∥g∇ log ρ−ℓ ∥

2

]
dt+ (g∇ log ρ−ℓ )

TdWt.

Proof. Invoking Itô lemma with respect to the parameterized forward SDE (76a),

d log ρ−ℓ =

[
∂ log ρ−ℓ
∂t

+ (∇ log ρ−ℓ )
Tf+

ℓ +
1

2
Tr[ggT∇2 log ρ−ℓ ]

]
where ∂ log ρ−ℓ

∂t obeys

−
∂ρ−ℓ
∂t

= −∇·
(
f−
ℓ ρ

−
ℓ

)
+

1

2
ggT∇2ρ−ℓ

=⇒ −
∂ log ρ−ℓ
∂t

= ∇·f−
ℓ +

(
gẐϕ − ft

)T

∇ log ρ−ℓ − 1

2ρ−ℓ
ggT∇2 log ρ−ℓ .

By using the Nelson’s duality (Nelson, 2001), substituting the above relation yields the desired
results.

Proposition B.6 (Proposition 1, Sect. 6.3.1, Vargas, 2021).

DKL(ρ
+

ℓ ∥ρ
−
ℓ ) =

∫ T

0

Eρ+ℓ (t,·)

[
1

2
∥Ẑℓ+Zℓ∥2+∇·f−

ℓ

]
(t, x) dt+Eρ+ℓ (0,·)[logµ(x)]−Eρ+ℓ (T,·)[log ν(x)]
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Proof. Recall that the parameterized backward SDE (76b) can be reversed (Song et al., 2021; Nel-
son, 2001) as

dX̄
(ℓ)
t =

(
ft − gẐℓ

(
t, X̄

(ℓ)
t

)
+ ggT∇ log ρ−ℓ

(
t, X̄

(ℓ)
t

))
dt+ g dWt.

Then, we have

DKL(ρ
+

ℓ ∥ρ
−
ℓ )

=

∫ T

0

Eρ+ℓ

[
1

2
∥Ẑℓ + Zℓ − g∇ log ρ−ℓ ∥

2

]
(t, x)dt+DKL

(
µ
∥∥ρ−ℓ (0, ·))

=

∫ T

0

Eρ+ℓ

[
1

2
∥Ẑℓ + Zℓ∥2 − g(Ẑℓ + Zℓ)

T∇ log ρ−ℓ +
1

2
∥g∇ log ρ−ℓ ∥

2

]
dt+DKL

(
µ
∥∥ρ−ℓ (0, ·))

=

∫ T

0

Eρ+ℓ

[
1

2
∥Ẑℓ + Zℓ∥2 +∇·

(
gẐℓ − ft

)]
dt− Eρ−ℓ

[∫ T

0

d log ρ−ℓ

]
+DKL

(
µ
∥∥ρ−ℓ (0, ·))

=

∫ T

0

Eρ+ℓ

[
1

2
∥Ẑℓ + Zℓ∥2 +∇·

(
gẐℓ − ft

)]
dt+ Eρ+ℓ (0,·)[logµ(x)]− Eρ+ℓ (T,·)[log ν(x)]

Therefore, the proof is complete.

C IMPLEMENTATION DETAILS

C.1 NETWORK ARCHITECTURE

For simulation with nonlinear functions, we utilize the deep neural network architecture proposed
by Liu et al. (2022a). The architecture is charecterized by following schema:

out = out mod(x mod(x) + t mod(emebdding(t)))

where each modele is

t mod = Linear → SiLU → Linear

x mod = Linear → SiLU → Linear → SiLU → Linear → SiLU → Linear

out mod = Linear → SiLU → Linear → SiLU → Linear.

We use the sinusoidal embedding for emebdding(·). For the physical control tasks, the architec-
ture is essential identical, except t is replaced with the positional and velocity vector (q, q̇) and
emebdding(·) is set to the identity function. We set hidden dimension to 256 for high-dimensional
Gaussian transportation, and 128 for the rest.

C.2 DETAILS ON EXPERIMENTS

For all the experiments, we used AdamW optimizer with the learning rate of 10−3 with decay 10−6.
We used Euler-Maruyama with the timestep ∆t = 0.01. For the control experiments, we used
Lemma B.3 to calculate the time derivatives and the LFSDE and LFSDE was replaced with L±

HJE defined
in Eq. (75). For the marginal distribution (µ, ν), We set N (0d, 0.2Id), and the rest of the dimension
is the Dirac delta function. This setting is possible since all the randomness is induced from the
filtration of stochastic control. The ground-truth second-order dynamical function was used for all
the control simulations, where we set 4 seconds for the time limit.
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