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ABSTRACT

In this paper, we focus on the out-of-distribution (OOD) generalization of self-
supervised learning (SSL). By analyzing the mini-batch construction during the
SSL training phase, we first give one plausible explanation for SSL having OOD
generalization. Then, from the perspective of data generation and causal infer-
ence, we analyze and conclude that SSL learns spurious correlations during the
training process, which leads to a reduction in OOD generalization. To address
this issue, we propose a post-intervention distribution (PID) grounded in the Struc-
tural Causal Model. PID offers a scenario where the spurious variable and label
variable is mutually independent. Besides, we demonstrate that if each mini-batch
during SSL training satisfies PID, the resulting SSL model can achieve optimal
worst-case OOD performance. This motivates us to develop a batch sampling
strategy that enforces PID constraints through the learning of a latent variable
model. Through theoretical analysis, we demonstrate the identifiability of the la-
tent variable model and validate the effectiveness of the proposed sampling strat-
egy. Experiments conducted on various downstream OOD tasks demonstrate the
effectiveness of the proposed sampling strategy.

1 INTRODUCTION

Self-supervised learning (SSL) has emerged as a powerful paradigm for training machine learning
models without relying on labeled data. SSL models aim to generate general-purpose representa-
tions and are typically used as pre-trained weights to effectively initialize downstream tasks. They
have demonstrated significant progress in computer vision, achieving competitive or superior perfor-
mance on various downstream tasks compared to supervised learning approaches (Chen et al., 2020;
Grill et al., 2020a; Zbontar et al., 2021; He et al., 2022; Tong et al., 2022). However, despite their
superior performance, SSL models face significant challenges in generalizing to out-of-distribution
(OOD) data. Understanding and improving the OOD generalization capabilities of SSL is crucial
for deploying these models in real-world scenarios where the data distribution can shift over time.

To investigate the OOD generalization properties of SSL, we propose examining the batch con-
struction process during training. SSL methods are generally categorized into two main types:
discrimination-based SSL (D-SSL) (Chen et al., 2020; Grill et al., 2020a) and generation-based SSL
(G-SSL) (He et al., 2022; Tong et al., 2022). The core principle of D-SSL is augmentation invari-
ance, ensuring that the feature representations of two different augmentations of the same sample
are similar. In contrast, G-SSL focuses on the mask and reconstruction principle, where a portion
of a sample is masked and then reconstructed using an encoder-decoder structure. Leveraging these
principles, augmented samples derived from the same original sample, as well as samples before and
after masking, can be considered anchor-related pairs. During SSL training, each pair is treated as a
distinct class, effectively framing each mini-batch as a multi-class learning task. Consequently, the
SSL training process can be perceived as learning a distribution over tasks based on discrete training
tasks, enabling the trained SSL model to generalize to new, unseen tasks, thus demonstrating its
OOD generalization capability. However, machine learning is prone to learning spurious correla-
tions that vary between classes and environments (Wang et al., 2023a; 2022). Therefore, although
SSL is highly effective in OOD generalization, from a multi-task perspective, different mini-batches
in the SSL training process can be considered as different tasks or environments. Consequently, it
may still face the challenge of mitigating spurious correlations.”
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Building upon the analysis presented in Section 3, we examine the aforementioned challenge from
the perspectives of data generation and causal inference. First, we conclude that the similarity or
reconstruction between samples within a pair is affected by several unobservable factors, such as
background or texture information independent of the foreground. We also find that the spurious
correlation between the anchor and the unobservable variable can vary with the tasks, making it
difficult to eliminate it using the unified causal criterion proposed by (Pearl et al.; Pearl, 2009).
Furthermore, we demonstrate that, under these circumstances, the SSL model learns to measure
similarity or reconstruct using spurious causal factors. This reliance leads to a lack of discriminabil-
ity within each mini-batch task, preventing the SSL model from effectively learning the true task
distribution and consequently resulting in diminished OOD generalization. To address this issue,
we define a new distribution called the post-intervention distribution (PID), characterized by mutual
independence between the unobservable variable and the anchor. We demonstrate that when the
task distribution adheres to PID, the SSL model trained under this condition achieves the lowest
worst-case risk, thereby attaining optimal worst-case OOD performance. This insight motivates us
to design a new mini-batch sampling strategy that ensures the resulting mini-batches satisfy PID
constraints, thereby enhancing the OOD generalization capability of SSL.

Based on the above analysis and discussion, we propose a novel mini-batch sampling strategy con-
sisting of two stages. In the first stage, we aim to learn a latent variable model to capture the
correlations between different variables, i.e., conditional distributions. We prove the identifiability
and uniqueness of the resulting latent variable model under a given equivalence relation. In the sec-
ond stage, we propose a sufficient condition to obtain the balancing score. Using this, we obtain the
mini-batch samples through balancing score matching. We also provide a theoretical guarantee that
the mini-batches obtained by the proposed sampling strategy approximately satisfy the PID.

In summary, we make the following contributions: 1) Analysis of SSL Batch Construction: We pro-
vide a detailed analysis of how mini-batch construction in SSL influences OOD generalization; 2)
Causal Framework for SSL: We introduce a causal framework to understand and mitigate the impact
of spurious correlations on SSL models; 3) PID-Based Sampling Strategy: We propose a theoret-
ically grounded mini-batch sampling strategy that ensures the generated batches conform to PID,
improving OOD performance; 4) Empirical Validation: We validate our approach through extensive
experiments, demonstrating significant improvements in OOD generalization across multiple tasks.

2 REVISITING SSL FROM A PAIRWISE PERSPECTIVE

During the training phase, the training data is structured into mini-batches, with each mini-batch
denoted as Xtr = {xi}Ni=1, where xi represents the i-th sample and N is the total number of
samples. In D-SSL methods such as SimCLR (Chen et al., 2020), BYOL (Grill et al., 2020a), and
Barlow Twins (Zbontar et al., 2021), each sample in Xtr undergoes stochastic data augmentation to
generate two augmented views, e.g., for xi ∈ Xtr, the augmented samples can be represented as
x1i and x2i . For G-SSL methods, like MAE (He et al., 2022) and VideoMAE (Tong et al., 2022),
xi is first divided into multiple small blocks, with some blocks masked, and the remaining blocks
reassembled into a new sample, denoted as x1i . The original sample is then referred to as x2i . Thus,
the augmented dataset in SSL (whether D-SSL or G-SSL) is represented as Xaug

tr = {x1i , x2i }Ni=1.
The pair {x1i , x2i } forms the i-th pair, and SSL aims to learn a feature extractor f from these pairs.

The objective of D-SSL methods typically consists of two components: alignment and regularization
(Wang & Isola, 2020; Chen et al., 2021a). The alignment part is to maximize the similarity between
samples that share the same pair in the embedding space, and the regularization part aims to constrain
the learning behavior via inductive bias, e.g., SimCLR (Chen et al., 2020) constrains the feature
distribution to satisfy a uniform distribution. Meanwhile, G-SSL methods (He et al., 2022) can
be regarded as implementing alignment of samples within a pair based on an encoding-decoding
structure, by inputting sample x1i into this structure to generate a sample, and making it as consistent
as possible with sample x2i . It is noteworthy that “alignment” in D-SSL is often implemented based
on anchor points, that is, viewing one sample in a pair as an anchor, the training process of such
SSL methods can be seen as gradually pulling the other sample in this pair towards the anchor.
The concept of anchor is also applicable to G-SSL, where x2i is viewed as the anchor, and thus the
training process of such SSL methods can be viewed as gradually constraining x1i to approach x2i .
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Based on the above discussion, when we consider the anchor as the label or the center of clustering,
each mini-batch in the SSL training phase thus can be viewed as a multi-class classification task.
Specifically, Xaug

tr = {x+i , xanchor
i }2Ni=1 consists of data from N categories, where x+i is the positive

sample of the i-th category whose clustering center is xanchor
i . Furthermore, the variability of data

across mini-batches implies that each mini-batch corresponds to a distinct training task or domain.

3 MOTIVATION AND CAUSAL ANALYSIS

In this section, we first offer a plausible explanation for the OOD generalization capability of SSL
models from a task distribution perspective. Next, based on data generation principle and causal in-
ference, we demonstrate that SSL methods may measure similarity or reconstruction using spurious
correlations between pairs, which reduces their OOD generalization performance. Finally, through
theoretical analysis, we present that even in the case of spurious associations, we can further improve
the OOD generalization of SSL by constraining the data distribution.

3.1 FORMATION OF THE PROBLEM: CAUSAL PERSPECTIVE

According to Section 2, different mini-batches correspond to distinct classification tasks. Therefore,
the training process of SSL can be described as follows: given a distribution over tasks and a data
distribution for each task (refer to Appendix E for more details), the SSL model is learned based
on various training tasks and their corresponding data. The performance of the SSL model is then
evaluated on test tasks that are disjoint from the training tasks. This learning paradigm involves
estimating the true task distribution from discrete training tasks (refer to Appendix E for more
details), enabling the SSL model to generalize to new, unseen tasks (i.e., test tasks). This also
explains well why the SSL model exhibits good performance in transfer tasks (Chen et al., 2020;
Grill et al., 2020a; Zbontar et al., 2021), i.e., it has good OOD generalization. However, machine
learning models are prone to learning spurious correlations during the training phase (Wang et al.,
2023a; 2022). For example, compared to the foreground features of input data, researchers have
found that machine learning models tend to rely on the superficial texture information or background
information of the data for decision-making (Geirhos et al., 2018; Qiang et al., 2022; Xu et al., 2020).
Therefore, although the SSL model has been effective in OOD generalization, we find that it still
faces the challenge of spurious correlations.

s

�+ �label

�

Figure 1: The SCM for Equation (1).

We further analyze the above challenge from the
perspective of data generation and causal inference.
Without loss of generality, for each pair in the SSL
training process, we denote the anchor as xlabel and
the other sample as x+. Based on (Zimmermann
et al., 2021; Von Kügelgen et al., 2021), x+ can be
regarded as caused by anchor xlabel, an unobserved
latent variable s ∈ R

n and an independent noise
variable ϵ with the following formulation:

x+ = F (s, xlabel) + ϵ, (1)

where F is a reversible injective function. From a causal perspective, Equation (1) can be reformu-
lated as the Structural Causal Model (SCM) shown in Figure 1. The solid arrow indicates that there
is a direct causal relationship between the two variables, e.g., xlabel → x+ states that xlabel is the
direct cause of obtaining x+. The dotted line indicates that the relationship between the variables
is not clear and varies with different environments. Notably, this paper focuses exclusively on sce-
narios where the semantic information within x+ is related only to xlabel, that is, s does not contain
any causal semantics related to the task. Next, we examine two examples illustrated in Figure 2. In
Figure 2 (a), s represents the assigned color, for example, the color of numbers varies by category,
as in the ColoredMNIST dataset (Arjovsky et al., 2019). Here, eid denotes the class index. Con-
sequently, within a mini-batch during training, samples from different classes may have a different
texture color. In Figure 2 (b), s indicates assigned stylistic attributes, e.g., sketches, cartoon styles,
or photographs, and eid denotes the batch index. This scenario commonly occurs in multi-view or
domain generalization contexts, like the tasks in the PACS dataset (Li et al., 2017). Therefore, dur-
ing training, different batches may exhibit different styles, with samples under each style possessing
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backgrounds, textures, 
etc. that are unique to 
pair, e.g., the color of 
small number is red.

�

s

�+ �label

stylistic attributes of 
samples, e.g., 
sketches, cartoon 
images, photographs

�

(a) Example task related to ColoredMNIST dataset (b) Example task related to PACS dataset

�id

batch 
index

�id

class 
index

Figure 2: Two specific instances illustrate the variability in the causal relationship between xlabel and
s due to environmental changes. The black squares are variables and the arrows indicate causality.

unique appearance attributes. In both figures, s does not capture the foreground semantics between
xlabel and x+, and the correlation between xlabel and x+ may vary depending on the settings.

Based on Figure 2 (a) and (b), we obtain that the causal relationship between xlabel and s changes
with unknown environmental variations, making it difficult to eliminate based on a unified causal
criterion proposed in (Pearl et al.). From Figure 2 (a), due to the existence of path xlabel · · · ·s→ x+,
the following proposition states that the correlation between xlabel and x+ is influenced by s.

Proposition 3.1 Revisiting SSL from a pairwise perspective and assuming that the two samples in
each pair satisfy Equation (1), we can obtain that the learned SSL model will use non-causal factor,
i.e., the unobserved latent variable s, to measure the similarity or reconstruct in a pair.

Detailed proof of Proposition 3.1 is provided in Appendix A.1. Notably, when SSL models mea-
sure the similarity or reconstruct between paired elements using non-causal factors, the extracted
representations may incorporate semantics irrelevant to the task. From the pairwise perspective, this
may result in SSL failing to effectively learn each specific task, thereby hindering the modeling of
the task distribution and ultimately reducing the OOD generalization ability of SSL.

3.2 MOTIVATION: POST-INTERVENTION DISTRIBUTION

As shown in Figure 2, regardless of the correlation between s and xlabel, the generation mechanism
of x+ is invariant. Becuase SCMs can also be considered as a joint probability distribution, thus, we
use the following distribution set to represent the joint probability distribution related to Figure 1:

D =

{
p(x+, xlabel, s) = p(x+|xlabel, s)p(xlabel)p(s|xlabel)

∣∣∣∣p(xlabel), p(s|xlabel) > 0

}
. (2)

Instead of exploring what the specific structure of xlabel · · · ·s→ x+, we propose to consider using
Post-Intervention Distribution (PID) to model p(x+, xlabel, s), which can be defined as:

Definition 3.2 If p(x+, xlabel, s) = p(x+|xlabel, s)p(xlabel)p(s), then p(x+, xlabel, s) is defined as
PID. In other words, xlabel and s are independent in PID.

s

𝑥+ 𝑥label

𝜖

Figure 3: The SCM for pPI(x+, xlabel, s).

We use pPI to denote distributions belonging to
the PID family. As we can see, p(x+|xlabel, s) is
both a component of pPI(x+, xlabel, s) and a result
of the unchanged causal mechanism s → x+ ←
xlabel in Figure 1. Then, the corresponding SCM
of pPI(x+, xlabel, s) is shown as Figure 3. In this
new distribution, because there are no paths between
s and xlabel, we can obtain that x+ and xlabel are
only correlated through the stable causal relation
x+ ← xlabel. Then, from a probabilistic perspective, what we argue is that compared to SSL models
trained on batches satisfying other distribution constraints in D, SSL models trained on batches that
meet the PID distribution constraint have the lowest worst-case risk. To support this statement, we
build upon (Pearl, 2009) by introducing an assumption regarding the invertibility of functions:

Assumption 3.3 There exist functions Fxlabel , Fs and noise variables ϵxlabel , ϵs , such that
(xlabel, s) = F−1(x+ − ϵ) = (Fxlabel(x+ − ϵxlabel), Fs(x

+ − ϵs)), and εxlabel⊥⊥PIϵs.
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Assumption 3.3 implies that xlabel⊥⊥PIs|x+, and the intuitive explanation of Assumption 3.3 can
be found in Appendix F. Based on Section 2 and Section 3.1, both D-SSL and G-SSL share a
common learning objective: aligning the positive sample in a pair with its corresponding anchor.
Thus, the learning objectives of D-SSL and G-SSL can be unified as maximizing pf (xlabel|x+). The
difference lies in how they achieve pf (xlabel|x+). For example, the training data is first projected to
the feature space by f , then SimCLR uses a contrastive loss to achieve pf (xlabel|x+), while MAE
employs the L2-norm achieve pf (xlabel|x+). We can then obtain the following conclusion:

Theorem 3.4 From a Bayesian perspective, the alignment part of the SSL learning objective, e.g.,
constrain samples under the same pair to be similar in the feature space, can be expressed as
max pf (x

label|x+). Given f , the risk on a batch with e ∈ D as the distributional constraint can be
presented as: Le(f) = Epe(x+,xlabel) − log pf (x

label|x+), where pe(x+, xlabel) denotes the joint
distribution. Under Assumption 3.3, when f∗ = argminLe(f), s.t. e ∈ PID, we have f∗ is the
minimax optimal across all elements in D, e.g., f∗ = argf minmaxe∈DLe(pf (xlabel|x+)).

Detailed proof of Theorem 3.4 is provided in Appendix A.2. Theorem 3.4 implies that when D is
sufficiently large and diverse, no other f obtained from training on any distribution can achieve bet-
ter worst-case OOD performance than the PID. Notablely, transferring Figure 1 to Figure 3 is similar
to backdoor adjustment in causal inference (Pearl et al.). However, from backdoor adjustment pe-
spective, it is straightforward to explain why PID can improve the OOD performance of D-SSL:
during the learning of each task, PID eliminates the influence of background semantic confound-
ing (Qiang et al., 2022). However, for G-SSL, regardless of the relationship between s and xlabel,
G-SSL inherently requires encoding background semantics. Thus, explaining the improvement of
OOD performance of G-SSL from the backdoor adjustment perspective is incorrect. Therefore,
Theorem 3.4 is provided to explain why PID can improve the OOD performance of both D-SSL
and G-SSL simultaneously. Also, an intuitive explanation of Theorem 3.4 is shown in Appendix F.
Moreover, Theorem 3.4 motivates us to design a new mini-batch sampling strategy to ensure that
the resulting mini-batches satisfy PID, thereby improving the OOD generalization of SSL.

4 THE PROPOSED METHOD

In this section, we present the proposed method which consists of two stages. In the first stage,
we use a latent variable model, e.g., variational autoencoder (VAE) (Kingma & Welling, 2013a), to
learn the underlying distribution p(x+, xlabel, s) for each batch task. In the second stage, we use the
learned distribution to obtain a sampling strategy that can create a PID based on training data.

4.1 LEARNING LATENT VARIABLE MODEL

As shown in Equation (2), to learn the underlying joint distribution p(x+, xlabel, s) for each
batch task, we need to know p(x+|xlabel, s), p(xlabel), p(s|xlabel) in each batch task. Because
that p(x+|xlabel, s) is the unchanged causal mechanism, so we can use a unified f to model
p(x+|xlabel, s) in all tasks. Based on the discussion in Section 2, we obtain that xlabel is regarded
as the label. So, p(xlabel) can be regarded as the label distribution, and we can represent it with the
same uniform distribution in all tasks. Based on the mean-field approximation (Blei et al., 2017;
Sriperumbudur et al., 2013) which can be expressed as a closed form of the true prior, we obtain
that when the causal relationship between the latent covariate and the label changes with the tasks,
an exponential family distribution has the ability to model the conditional distribution p(s|xlabel),
thus, we have the following assumption for each batch task:

Assumption 4.1 Denote the mini-batch task index as e, the correlation between xlabel and s in the
data distribution pe(x+, xlabel, s) of a task is characterized by:

peT,λe(s|xlabel) =
n∏
i=1

Qi(si)

Ke
i (x

label)
exp[

k∑
j=1

Tij(si)λ
e
ij(x

label)], (3)

where n is the dimension of the latent variable s, k is the dimension of each sufficient statistic, si is
the i-th element of s, Q = [Qi]: s→ R

n is the base measure, T = [Tij ]: s→ R
nk is the sufficient

statistics, Ke = [Ke
i ]: x

label → R
n is the normalizing constraint, and λe = [λeij ]: x

label → R
nk.
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Note that k, Q, and T are determined by the type of chosen exponential family distribution and thus
independent of e, this guides us to constrain all batch tasks to share these parameters during the train-
ing phase. For ease of calculation, we set Qi(·) = exp(·/− 2) and Ke as the feature normalization
operator. For λe, since it varies with e, we implement it as the output of a network. Specifically, we
first average all the data of a batch, then feed it into a learnable network g, and output the correspond-
ing λe. For T, we need to guarantee it to be a sufficient statistic, one simple way to implement this
is the constant transformation. Considering the identifiability of the parameters, we implement it as
Tij(·) = aij×·, where A = [aij ] is a learnable parameter. Up to this point, we obtain the implemen-
tation of peT,λe(s|xlabel) as pg,A(s|xlabel). Then, we implement the conditional generative model in
each e ∈ D with parameters θ = (f, g,A) as: peθ(x

+, s|xlabel) = pf(x
+|s, xlabel)pg,A(s|xlabel).

Motivated by the VAE, we estimate the above conditional generative model with the following reg-
ularized evidence lower bound (ELBO) in each batch distribution e:

Leθ,ϕ = Eqϕ(s|x+,xlabel)[log pf(x
+|s, xlabel)]−KL(qϕ(s|x+, xlabel) || pg,A(s|xlabel))− α

∑
i,j A·,i·A·,j, (4)

where A·,i is the column vector of A, KL(·) is the KL-divergence, and α is a hyperparameter. As
for qϕ(s|x+, xlabel), it is implemented by a learnable network ϕ that outputs the mean and variance,
and we use reparameterization trick (Kingma & Welling, 2013b) to deal with it during training. The
last term of Equation (4) is to constrain the column vector orthogonality of A. The training process
of Equation (4) is similar to meta-learning, e.g., Prototype Networks (Snell et al., 2017), because
that we construct a series of tasks during the training phase. Thus, from a meta-learning perspective,
training with Equation (4) also indicates that the learned θ can be adaptable for all available tasks.

We further show that we can uniquely recover the model parameter θ up to an equivalence relation.
Specifically, we first give the definition of the equivalence relation based on (Motiian et al., 2017):

Definition 4.2 (f, g,A)∼W(f ′, g′,A′), if and ony if there exists an invertible matrix W ∈ Rnk×nk
and a vector b ∈ Rnk, such that A(f−1(x)) = WA′(f ′

−1
(x)) + b,∀x ∈ Xaug

tr .

Then, motivated by (Khemakhem et al., 2020), the identifiability condition of θ can be presented as:

Theorem 4.3 Suppose that peθ(x
+, s|xlabel) = pf(x

+|s, xlabel)pg,A(s|xlabel) and the generation
process of X+ can be represented by the SCM depicted in Figure 1, a sufficient condition for θ =
(f, g,A) to be ∼A-identifiable is given as: 1) Suppose that pϵ(x+− f(xlabel, s)) = pf(x

+|xlabel, s),
ϕε is the characteristic function of pϵ(x+ − f(xlabel, s)), and the set {x+|ϕε(x+) = 0} has mea-
sure zero; 2) The sufficient statistics T are differentiable almost everywhere, and [Tij ]1≤j≤k are
linearly independent on any subset of X+ with measure greater than zero; 3) There exist nk + 1
distinct pairs (xlabel0 , e0), · · · , (xlabeln k, enk) such that the nk × nk matrix L = (λe1(xlabel1 ) −
λe0(xlabel0 ), · · · , λenk(xlabelnk )− λe0(xlabel0 )) is invertible.

Detailed proof of Theorem 4.3 is provided in Appendix A.3. In Equation (4), we constrain the
column vector orthogonality of A, this can lead to the linearly independence of elements of T, thus,
the second assumption of Theorem 4.3 holds. Meanwhile, according to Section 2, we can obtain
that each ancestor training sample can be regarded as a class, by combining different classes with
each other, we can construct adequate tasks, thus, the third assumption of Theorem 4.3 can easily
holds. Therefore, based on Theorem 4.3, we can obtain that θ can be uniquely recovered. Moreover,
the detailed explanation of the identifiability of spurious variable s is provided in Appendix G.

4.2 THE PROPOSED MINI-BATCH SAMPLING STRATEGY

As shown in (Rosenbaum & Rubin, 1981), balancing score matching has become a useful tool in
the average treatment effect estimation. One of its purposes is to reveal the true causal relationship
from the observational data. It is defined as:

Definition 4.4 A balancing score ba(s) is a function of covariate s that satisfies: s⊥⊥xlabel|ba(s).

From (Rosenbaum & Rubin, 1981), we can obtain that many functions can be used as a balancing
score, among them, propensity score p(xlabel|s) is the coarsest one. Motivated by this, given the
batch task with nu pairs, we define the propensity score under the SSL scenario as:

6
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Definition 4.5 The propensity score for a batch task in SSL scenario is mi(s) = [p(xlabelj |s)]nuj=1.

Then, given a function ba(s), we present a sufficient condition that it can be the balancing score:

Corollary 4.6 Let ba(s) be a function of s, a sufficient condition that ba(s) can be regarded as a
balancing score is that there exists a function ψ such that mi(s) = ψ(ba(s)).

The proof of Corollary 4.6 can be directly obtained based on Theorem 1 and Theorem 2 in Rosen-
baum & Rubin (1981). We use bae(s) to denote the balancing score for a specific batch task e of
SSL. Then, the corresponding propensity score can be represented as mie(s) = [pe(xlabelj |s)]nuj=1,
which can be derived from peT,λe(s|xlabel) as defined in Equation (3):

pe(xlabelj |s) =
pg,A(s|xlabelj )pe(xlabelj )∑nu
j=1 pg,A(s|xlabelj )pe(xlabelj )

, (5)

where pe(xlabelj ) = 1/nu, because that pe(xlabelj ) is defined empirically as a uniform distribution.

Based on Corollary 4.6, we set ψ as identical transformation and propose to use the propensity
score computed from Equation (5) directly as our balancing score, e.g., ba(s) = mie(s). Next, we
derive the proposed sampling strategy. When given the training data Xtr = {x+i , xlabeli }mu

i=1 with
mu pairs, we can obtain λe of Equation (5) based on the mean of the entire dataset. Then, for each
pair, we firstly obtain s based on the learned qeϕ(s|x+, xlabel) and secondly obtain ba(s) by setting
nu = mu in Equation (5). Finally, the proposed sampling strategy is constructed by matching ba(s)
of the selected pair with 1 ≤ a ≤ N − 1 different pairs that have the same/closest balancing score.
The detailed sampling strategy is shown as follows:

Algorithm 1: The Proposed Mini-Batch Sampling Strategy.

Input: Training datasets Xtr = {x+i , xlabeli }mu
i=1, a balancing score ba(·) inferred from each

training pair (x1i , x
2
i ), and a distance metrics d : ba(·)× ba(·)→ R;

Output: A mini-batch of data DPI consisting of a+ 1 examples;
DPI ← Empty; i← 0;
for i = 0 do

Randomly sample a pair (x+i , x
label
i ) from Xaug

tr , add it to DPI;
Compute balancing score ba(si) from (x+i , x

label
i );

Set i← i+ 1;
for 1 ≤ i ≤ a do

j = argminx+
j ∈Xaug

tr \DPI d(ba(sj), ba(si));

Add (x+j , x
label
j ) to DPI;

Set i← i+ 1.

We denote the data distribution obtained from Algorithm 1 as p̂(x+, xlabel, s), then we have:

Theorem 4.7 If d(ba(sj), ba(si)) = 0 in Algorithm 1, the obtained mini-batch is regarded as sam-
pling from a PID, e.g., p̂(xlabel|s) = pPI(xlabel).

Detailed proof and high-level explanation of Theorem 4.7 is provided in Appendix A.4 and F.
Based on Theorem 4.7, if at each step, we achieve perfect matching (i.e., ba(sj) = ba(si)), and the
obtained mini-batch samples can be regarded as sampled from the PID. However, an exact match
of the balancing score is unlikely during the SSL training phase (each pair has only one positive
sample), so a larger a can introduce noise. This can be mitigated by selecting a smaller a, which
increases the dependency between xlabel and s. Thus, in practice, the choice of a reflects a trade-off
between the quality of balancing score matching and the degree of dependency between xlabel and s.

5 EXPERIMENTS

In this section, we first introduce the datasets used in experiments. Next, we evaluate our method
on multiple tasks, including unsupervised learning, semi-supervised learning, transfer learning, and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

few-shot learning. We introduce the experimental setups in the corresponding sections. Finally, we
perform ablation studies. All results reported are the averages of five runs performed on NVIDIA
RTX 4090 GPUs. More experiments are shown in Appendix C due to space limitations.

5.1 BENCHMARK DATASETS

For unsupervised learning, we select ImageNet-100 (Tian et al., 2020) and ImageNet (Deng et al.,
2009) for analysis. For semi-supervised learning, we select ImageNet (Deng et al., 2009) for eval-
uation. For transfer learning, we select PASCAL VOC (Everingham et al., 2010) and COCO (Lin
et al., 2014) for analysis. For few-shot learning, we evaluate the proposed method on Omniglot
(Lake et al., 2019), miniImageNet (Vinyals et al., 2016), and CIFAR-FS (Bertinetto et al., 2018).

5.2 EMPIRICAL ANALYSIS

In this article, we primarily addresses the OOD generalization of SSL. Our experimental design
consists of the following steps: First, we validate that the proposed sampling strategy enhances
the performance of SSL methods in in-distribution scenarios using unsupervised tasks. Second,
we classify OOD tasks by difficulty into semi-supervised tasks, transfer learning tasks, and few-shot
learning tasks, and subsequently evaluate the proposed sampling strategy on these tasks. Meanwhile,
we also conduct experiments on generative SSL, the evaluation are provided in Appendix C.1.

Experimental setup. Our proposed sampling strategy can be applied to any D-SSL and G-SSL
models. It only changes the mini-batch generation mechanism without affecting the training process
or altering the hyperparameter settings. Therefore, the hyperparameter settings for all our experi-
ments are consistent with the methods we are comparing, and we will not elaborate on them here.

Results on unsupervised learning tasks. Table 1 shows the top-1 and top-5 linear classification
accuracies on ImageNet-100 and ImageNet for unsupervised learning task. We can observe that
applying the proposed method achieves stable performance improvement, and significantly outper-
forms the state-of-the-art (SOTA) methods on all datasets and all the SSL baselines.

Results on semi-supervised learning tasks. Table 2 shows the results on ImageNet for semi-
supervised learning task. We can observe that no matter 1% or 10% of the labels are available in
1000 epochs, the improvement brought by the proposed methods reaches more than 3% on Top-1
and 2% on Top-5 results. This further demonstrate the effectiveness of the proposed method.

Results on transfer learning tasks. Table 3 shows the results on the most commonly used object
detection and instance segmentation protocol Chen et al. (2020); Zbontar et al. (2021) for transfer
learning. The results shows that introducing the proposed method achieve stable improvements in
all the metrics, tasks, and baselines, reaching an average improvement of nearly 3.8%.

Results on few-shot learning tasks. Table 4 shows the effect of the proposed sampling strategy on
standard few-shot transfer learning tasks. From the results, we can see that compared to the orig-
inal baselines, introducing our proposed method achieves remarkable performance improvement,
achieving more than 5% improvement. These results demonstrate the superiority of the proposed
method under data-scarce conditions and further proves its effectiveness.

In summary, from all the experimental results, we can observe that when the SSL methods are
trained based on mini-batches generated by our proposed sampling strategy, they all further improve
their performance and by at least 2%. This shows that our sampling strategy is effective in further
reducing the false correlation information in the distribution of the mini-batch task, which leads to
better causal learning and improves the OOD generalization of the SSL model.

5.3 ABLATION STUDY

Influence of the batch size hyperparameter a. According to Algorithm 1, a is the hyperparameter
of the proposed sampling strategy, which represent the batch size. As shown in Theorem 4.7, we
can obtain that a suitable a is important. To explore whether the SSL model is more sensitive to
the original batch size or to a, we conduct experiments based on ImageNet and BYOL, and the
corresponding results are shown in Figure 4. We can observe that the performance of BYOL rapidly
deteriorates with batch size. In contrast, the performance of BYOL + Ours remains stable over a

8
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Table 1: The Top-1 and Top-5 classification
accuracies of linear classifier on the ImageNet-
100 dataset and the Top-1 results for ImageNet
dataset with ResNet-50 as feature extractor.

Method
ImageNet-100 ImageNet

Top-1 Top-5 400 Epochs 1000 Epochs

SimCLR (Chen et al., 2020) 70.15 ± 0.16 89.75 ± 0.14 69.24 ± 0.21 70.45 ± 0.30
MoCo (He et al., 2020) 72.80 ± 0.12 91.64 ± 0.11 69.76 ± 0.14 71.16 ± 0.23
SimSiam (Chen & He, 2021) 73.01 ± 0.21 92.61 ± 0.27 70.86 ± 0.34 71.37 ± 0.22
Barlow Twins (Zbontar et al., 2021) 75.97 ± 0.23 92.91 ± 0.19 70.22 ± 0.15 73.29 ± 0.13
SwAV (Caron et al., 2020) 75.78 ± 0.16 92.86 ± 0.15 70.78 ± 0.34 75.32 ± 0.11
DINO (Caron et al., 2021) 75.43 ± 0.18 93.32 ± 0.19 71.98 ± 0.26 73.94 ± 0.29
RELIC v2 (Tomasev et al., 2022) 75.88 ± 0.15 93.52 ± 0.13 71.84 ± 0.21 72.17 ± 0.20
MEC (Liu et al., 2022a) 75.38 ± 0.17 92.84 ± 0.20 72.91 ± 0.27 75.07 ± 0.24
VICRegL (Bardes et al., 2022) 75.96 ± 0.19 92.97 ± 0.26 72.14 ± 0.20 75.07 ± 0.23

SimCLR + Ours 73.32 ± 0.15 91.74 ± 0.18 72.24 ± 0.20 73.66 ± 0.25
MoCo + Ours 74.71 ± 0.22 93.89 ± 0.17 72.04 ± 0.21 74.06 ± 0.20
SimSiam + Ours 75.66 ± 0.18 95.02 ± 0.21 72.96 ± 0.22 73.67 ± 0.17
Barlow Twins + Ours 77.77 ± 0.18 94.99 ± 0.20 73.08 ± 0.21 75.89 ± 0.17
SwAV + Ours 76.99 ± 0.11 95.03 ± 0.20 73.25 ± 0.24 77.42 ± 0.21
DINO + Ours 77.47 ± 0.15 96.01 ± 0.17 74.21 ± 0.20 75.99 ± 0.17
VICRegL + Ours 78.20 ± 0.14 95.07 ± 0.21 74.91 ± 0.14 77.77 ± 0.21

Table 2: The semi-supervised learning accura-
cies (± 95% confidence interval) on the Ima-
geNet dataset with the ResNet-50 pre-trained on
the Imagenet dataset.

Method Epochs
1% 10%

Top-1 Top-5 Top-1 Top-5

MoCo (He et al., 2020) 200 43.8 ± 0.2 72.3 ± 0.1 61.9 ± 0.1 84.6 ± 0.2
BYOL (Grill et al., 2020b) 200 54.8 ± 0.2 78.8 ± 0.1 68.0 ± 0.2 88.5 ± 0.2

BYOL + Ours 200 46.5 ± 0.2 74.4 ± 0.2 63.6 ± 0.3 85.6 ± 0.2
MoCo + Ours 200 57.4 ± 0.2 80.1 ± 0.2 71.4 ± 0.2 90.2 ± 0.1

SimCLR (Chen et al., 2020) 1000 48.3 ± 0.2 75.5 ± 0.1 65.6 ± 0.1 87.8 ± 0.2
MoCo (He et al., 2020) 1000 52.3 ± 0.1 77.9 ± 0.2 68.4 ± 0.1 88.0 ± 0.2
BYOL (Grill et al., 2020b) 1000 56.3 ± 0.2 79.6 ± 0.2 69.7 ± 0.2 89.3 ± 0.1
SimSiam (Chen & He, 2021) 1000 54.9 ± 0.2 79.5 ± 0.2 68.0 ± 0.1 89.0 ± 0.3
Barlow Twins (Zbontar et al., 2021) 1000 55.0 ± 0.1 79.2 ± 0.1 67.7 ± 0.2 89.3 ± 0.2
RELIC v2 (Tomasev et al., 2022) 1000 55.2 ± 0.2 80.0 ± 0.1 68.0 ± 0.2 88.9 ± 0.2
MEC (Liu et al., 2022a) 1000 54.8 ± 0.1 79.4 ± 0.2 70.0 ± 0.1 89.1 ± 0.1
VICRegL (Bardes et al., 2022) 1000 54.9 ± 0.1 79.6 ± 0.2 67.2 ± 0.1 89.4 ± 0.2

SimCLR + Ours 1000 50.8 ± 0.2 77.8 ± 0.2 67.3 ± 0.1 89.9 ± 0.2
MoCo + Ours 1000 53.9 ± 0.2 78.9 ± 0.2 71.2 ± 0.1 89.5 ± 0.1
BYOL + Ours 1000 58.9 ± 0.2 81.9 ± 0.2 72.1 ± 0.2 91.2 ± 0.1
Barlow Twins + Ours 1000 57.6 ± 0.2 80.6 ± 0.1 68.9 ± 0.2 91.8 ± 0.2

Table 3: The results of transfer learning on object detection and instance segmentation with C4-
backbone as the feature extractor. “AP” is the average precision, “APN” represents the average
precision when the IoU (Intersection and Union Ratio) threshold is N%.

Method
VOC 07 detection VOC 07+12 detection COCO detection COCO instance segmentation

AP50 AP AP75 AP50 AP AP75 AP50 AP AP75 APmask
50 APmask APmask

75

Supervised 74.4 42.4 42.7 81.3 53.5 58.8 58.2 38.2 41.2 54.7 33.3 35.2

SimCLR (Chen et al., 2020) 75.9 46.8 50.1 81.8 55.5 61.4 57.7 37.9 40.9 54.6 33.3 35.3
MoCo (He et al., 2020) 77.1 46.8 52.5 82.5 57.4 64.0 58.9 39.3 42.5 55.8 34.4 36.5
BYOL (Grill et al., 2020b) 77.1 47.0 49.9 81.4 55.3 61.1 57.8 37.9 40.9 54.3 33.2 35.0
SimSiam (Chen & He, 2021) 77.3 48.5 52.5 82.4 57.0 63.7 59.3 39.2 42.1 56.0 34.4 36.7
SwAV (Caron et al., 2020) 75.5 46.5 49.6 82.6 56.1 62.7 58.6 38.4 41.3 55.2 33.8 35.9
MEC (Liu et al., 2022a) 77.4 48.3 52.3 82.8 57.5 64.5 59.8 39.8 43.2 56.3 34.7 36.8
VICRegL (Bardes et al., 2022) 75.9 47.4 52.3 82.6 56.4 62.9 59.2 39.8 42.1 56.5 35.1 36.8

SimCLR + Ours 77.6 50.1 51.7 85.3 58.4 63.9 59.2 40.6 43.9 57.1 35.9 37.1
MoCo + Ours 79.4 50.2 54.9 86.1 60.2 66.1 614 42.1 44.9 59.2 36.9 38.8
BYOL + Ours 79.1 50.4 51.9 83.9 58.7 64.1 60.6 39.9 43.7 56.2 35.1 38.6
SimSiam + Ours 80.5 50.8 54.4 85.2 59.5 66.1 62.3 42.5 43.9 58.1 37.2 39.8
SwAV + Ours 77.9 49.3 51.8 84.9 58.1 65.8 62.1 40.2 43.9 56.9 37.3 37.9
VICRegL + Ours 77.9 50.4 53.9 85.2 58.8 65.3 63.1 42.2 45.3 59.1 37.8 39.9

wide range of batch sizes from 256 to 4096, and only drops for smaller values. Thus, we can obtain
that although the proposed sampling strategy has a high requirement on a, the SSL method is less
sensitive to a compared to the original batch size, which implies the effectiveness of our strategy.

Influence of α. In Equation 4, α as a hyperparameter, controls the weight of the term that constrains
the orthogonality of the column vectors in the matrix A. This constraint prevents the model from
learning redundant or interdependent features, enhancing its generalization and stability. To evaluate
its impact, we assess the performance of SimCLR+Ours and MoCo+Ours with varying α (ranging
in [0.001, 0.01, 0.1, 1, 10]) on ImageNet-100, using the same configurations as in SSL. The results
in Figure 5 show that performance peaks at α = 1, which is also our setting.

6 RELATED WORK

SSL is an effective unsupervised representation learning paradigm, aimed at learning general rep-
resentations suitable for various downstream tasks. From (Jaiswal et al., 2020; Kang et al., 2023),
existing SSL models can be divided into two main types, i.e., D-SSL and G-SSL. The D-SSL meth-
ods, e.g., SimCLR (Chen et al., 2020), BYOL (Grill et al., 2020a), Barlow Twins (Zbontar et al.,
2021), DINO (Caron et al., 2021), and Mocov3 (Chen et al., 2021b), are modeled based on the
augmentation invariance principle. The G-SSL methods, e.g., MAE (He et al., 2022), VideoMAE
(Tong et al., 2022), iBOT (Zhou et al.), SMA (Xie et al., 2024), are modeled based on the mask
and reconstruction principle. In real-world scenarios, the data distribution can shift over time. Thus,
improving the OOD generalization of SSL is crucial. Ni et al. (Ni et al., 2021) proposed to increase
OOD generalization of SSL by meta-learning. MEC (Liu et al., 2022b) presents that a generaliz-
able representation should be the one that admits the maximum entropy. AugSelf (Lee et al., 2021)
encourages to preserve augmentation-aware information, which could be beneficial for feature trans-
ferability. KRR-ST (Lee et al., 2023) finds that distillation of SSL features using external knowledge
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Table 4: Few-shot transfer learning accuracies (± 95% confidence interval) on miniImageNet, Om-
niglot, and CIFAR-FS datasets with C4 as the backbone.

Method Omniglot miniImageNet CIFAR-FS
(5,1) (5,5) (20,1) (5,1) (5,5) (20,1) (5,1) (5,5) (20,1)

SimCLR (Chen et al., 2020) 90.83 ± 0.21 97.67 ± 0.21 81.67 ± 0.23 42.32 ± 0.38 51.10 ± 0.37 36.36 ± 0.36 49.44 ± 0.30 60.02 ± 0.29 39.29 ± 0.30
MoCo (He et al., 2020) 87.83 ± 0.20 95.52 ± 0.19 80.03 ± 0.21 40.56 ± 0.34 49.41 ± 0.37 36.52 ± 0.38 45.35 ± 0.31 58.11 ± 0.32 37.89 ± 0.32
SwAV (Caron et al., 2020) 91.28 ± 0.19 97.21 ± 0.20 82.02 ± 0.20 44.39 ± 0.36 54.91 ± 0.36 37.13 ± 0.37 49.39 ± 0.29 62.20 ± 0.30 40.19 ± 0.32

SimCLR + Ours 95.05 ± 0.22 98.96 ± 0.16 91.15 ± 0.20 47.14 ± 0.21 62.88 ± 0.21 39.97 ± 0.16 53.18 ± 0.24 67.91 ± 0.14 46.94 ± 0.21
MoCo + Ours 93.22 ± 0.21 97.93 ± 0.19 88.93 ± 0.22 46.93 ± 0.21 61.22 ± 0.21 41.12 ± 0.24 51.76 ± 0.22 66.42 ± 0.21 44.93 ± 0.23
SwAV + Ours 96.24 ± 0.26 98.76 ± 0.22 91.96 ± 0.21 49.15 ± 0.21 64.28 ± 0.29 42.22 ± 0.21 52.64 ± 0.24 70.18 ± 0.21 48.19 ± 0.14
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Figure 4: Influence of the hyperparameter a.
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Figure 5: Influence of the hyperparameter α.

can effectively improve OOD generalization. COLT (Bai et al., 2023) attempts to extend additional
training samples from OOD datasets for improved SSL long-tailed learning. While various methods
have been proposed with impressive performance, a remaining challenge is these approaches have
to contend with trade-offs between inductive biases or approaches without theoretical guarantees.
In this paper, we extend the understanding of SSL by analyzing its OOD generalization through the
lens of causal inference and batch construction. Our proposed method addresses the limitations of
existing approaches and offers a new direction for enhancing the OOD generalization of SSL.

Causality Analysis in SSL plays a crucial role by helping to identify and understand the underlying
relationships between variables. Recent works Sontakke et al. (2021); Zuo et al. (2021); Qiang et al.
(2022); Wang et al. (2024a) have focused on developing methods that leverage causal inference to
extract more robust feature representations. For instance, Song et al. (2023) used causal invariance
to obtain causal SSL representations and improve learning efficiency. Von Kügelgen et al. (2021)
studied the identifiability of latent representations based on paired views of observations to study the
effect of data augmentation performed in practice. However, most of them build causal analysis on
in-distribution, but ignore the influence of spurious correlations under OOD generalization settings.
In this paper, we explore the essential reasons for spurious correlations in SSL and propose a method
that makes the relationships between variables free from the influence of spurious correlations.

7 CONCLUSION

In this paper, we focus on the OOD generalization of SSL models. First, we establish the connec-
tion between mini-batches formed during the SSL training phase and multi-class tasks. Next, we
explain the rationale for OOD generalization of SSL from a multi-task learning perspective. We
then analyze how existing SSL models, when learning mini-batch tasks, rely on spurious correla-
tions to measure sample similarity, leading to suboptimal performance. This reliance affects the SSL
model’s approximation of the task distribution, resulting in reduced OOD generalization. We pro-
vide a causal analysis of this issue and theoretically examine the intrinsic reasons for incorporating
spurious correlations during the learning process. Based on our causal analysis, we demonstrate that
when mini-batches satisfy a specific distribution, e.g., PID, SSL models achieve optimal worst-case
OOD performance. This insight guides us to propose a new mini-batch sampling strategy that en-
sures the resulting mini-batches satisfy the PID constraints. We provide a theoretical analysis of the
effectiveness of this method and validate its efficacy through various downstream tasks.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

For the theoretical results, this work offers clear assumptions and complete proofs in the Appendix.
The algorithm’s source code is also submitted as supplementary materials. For the experimental
datasets, detailed data processing steps and the experimental setup are provided in the Appendix.
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APPENDIX

The Appendix provides supplementary material and additional details to support the main findings
and methods proposed in this paper. It is organized into several sections:

• Appendix A contains the proofs of the presented theorems.

• Appendix B provides details for the experimental settings for each experiment.

• Appendix C showcases additional experiments that were omitted in the main text due to
page limitations.

• Appendix D provides the related works for spurious correlation in SSL.

• Appendix E explains the differences and connections between task distribution and data
distribution.

• Appendix F provides the intuitive explanation of several concepts, assumption, and theo-
rems mentioned in the proposed methodology.

• Appendix G provides explanation of the identifiability of spurious variable.

A PROOFS

This section provides the complete proof of Proposition and Theorem in the main text.

A.1 PROOF OF PROPOSITION 3.1

Before giving the detailed proofs of Proposition 3.1, we first provide the problem definition. Given
multiple pairs of samples in an SSL task, let xlabel be the anchor of a specific pair, then the remaining
samples involving two classes of being xlabel and not xlabel. Let xlabel and x̄label represent the label
variables of being xlabel and not xlabel, since these are binary classification tasks, xlabel and x̄label
belong to the set ±1. Note that any multi-classification task can be decomposed into binary tasks.

We assume that the labels are drawn from two different probabilities, with balanced sampling prob-
abilities for label values, i.e., P (xlabel = 1) = P (xlabel = −1) = 0.5. Our conclusions also hold
for imbalanced distributions. Next, we consider two d-dimensional factors Fx+ and Fs representing
the knowledge to tackle the two labels. Both are drawn from the Gaussian distribution:

Fx+ ∼ N (xlabel · µlabel, σ
2
labelI)

Fs ∼ N (x̄label · µs, σ2
sI)

where µlabel, µs ∈ RNs denote the mean vectors, while σ2
label and σ2

s denote the covariance vectors.
We examine the spurious correlations in SSL. To simplify our analysis, we define psc as the varying
correlations that result from different spurious correlations across batches.

Proposition 3.1 Revisiting SSL from a pairwise perspective and assuming that the two samples in
each pair satisfy Equation (1), we can obtain that the learned SSL model will use non-causal factor,
i.e., the unobserved latent variable s, to measure the similarity or reconstruct in a pair.

Proofs: Training a single model will result in the optimal model for the target incorporating non-
causal features from the other sample pairs. To substantiate this, we derive the optimal SSL model
as follows:

P (xlabel|Fx+ , Fs) =
P (xlabel, Fx+ , Fs)

P (Fx+ , Fs)

=
P (xlabel, Fx+ , Fs)∑

xlabel∈{−1,1} P (x
label, Fx+ , Fs)
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where the probability P (xlabel, Fx+ , Fs) can be written as:

P (xlabel, Fx+ , Fs) = P (xlabel, Fx+) · P (Fs|xlabel, Fx+)

= P (xlabel, Fx+) · P (Fs|xlabel)

= P (xlabel, Fx+) ·
∑

x̄label∈{−1,1}

P (Fs, x̄
label|xlabel)

= P (xlabel)P (Fx+ |xlabel) ·
∑

x̄label∈{−1,1}

P (Fs|x̄label)P (x̄label|xlabel)

Assuming that Fx+ and Fs are drawn from Gaussian distributions, and P (Yi/j , Fx+ , Fs) =

sigmoid
(
µlabel

σ2
label

Fx+ + µs

σ2
s
Fs

)
, where µlabel

σ2
label

and µs

σ2
s

are the regression vectors for the optimal
Bayesian classifier, we have:

P (xlabel, Fx+ , Fs) = P (xlabel, Fx+) · P (Fs|xlabel, Fx+)

= P (xlabel)P (Fx+ |xlabel) ·
∑

x̄label∈{−1,1}

P (Fs|x̄label)P (x̄label|xlabel)

∝ e
xlabel·µlabel

σ2
label

Fx+

(
psce

xlabel·µs
σ2
s
Fs

+ (1− psc)e
−xlabel·µs

σ2
s
Fs

)
= psce

xlabel·
(

µlabel
σ2
label

Fx++µs
σ2
s
Fs

)
+ (1− psc)e

xlabel·
(

µlabel
σ2
label

Fx+−µs
σ2
s
Fs

)
Let:

β+ =
µlabel

σ2
label

Fx+ +
µs
σ2
s

Fs

β− =
µlabel

σ2
label

Fx+ − µs
σ2
s

Fs

Substituting β+ and β− back into the original equation, we have:

P (xlabel|Fx+ , Fs) =
1

1 + pscex
label·β++(1−psc)exlabel·β−

psce−xlabel·β++(1−psc)e−xlabel·β−

When the samples are easy to distinguish, e.g., the similarity of the augmented sample from different
pairs is not 1:

P (xlabel|Fx+ , Fs) =
1

1 + exlabel·(β++β−)

Combining with the expressions for β+ and β−, we get:

P (xlabel|Fx+ , Fs) =
1

1 + e
2xlabel·

(
µlabel
σ2
label

Fx+

)

In this case, the optimal SSL model only utilizes its own factor Fx+ and assigns zero weight to the
non-causal factor Fs from task τj . Thus, if it is difficult to distinguish between the different pairs,
the optimal model has non-zero weights for non-causal factors for each task.

When the samples are difficult to distinguish, e.g., in the most extreme case, the similarity of the
augmented sample from different pairs is equal to 1, we have:

P (xlabel|Fx+ , Fs) =
1

1 + e2xlabel·β+

Combining with the expressions for β+ and β−, we get:

P (xlabel|Fx+ , Fs) =
1

1 + e
2xlabel·

(
µlabel
σ2
label

Fx++µs
σ2
s
Fs

)

In this case, the optimal classifier incorporates both factors Fx+ and Fs. Thus, if psc ̸= 0.5, the
optimal classifier assigns non-zero weights to non-causal factors for each task.
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A.2 PROOF OF THEOREM 3.4

Theorem 3.4 From a Bayesian perspective, the alignment part of the SSL learning objective, e.g.,
constrain samples under the same pair to be similar in the feature space, can be expressed as
max pf (x

label|x+). Given f , the risk on a batch with e ∈ D as the distributional constraint can be
presented as: Le(f) = Epe(x+,xlabel) − log pf (x

label|x+), where pe(x+, xlabel) denotes the joint
distribution. Under Assumption 3.3, when f∗ = argmaxLPID(f), we have f∗ is the minimax
optimal across all elements in D, e.g., f∗ = argf minmaxe∈DLe(pf (xlabel|x+)).

Proofs: Here, we provide proof of the minimax optimality of the SSL model trained on PID. The
SSL model trained on PID pPI(x+, xlabel) has pf (xlabel|x+) = pPI(xlabel|x+). Now, consider the
expected cross-entropy loss of this classifier on an unseen test distribution pe:

Le(pPI(xlabel|x+)) = −Epe(x+,xlabel) log p
PI(xlabel|x+)

= −Epe(x+,xlabel) log p
PI(xlabel) + Epe(x+,xlabel) log

pPI(xlabel)

pPI(xlabel|x+)

= Le(pPI(xlabel)) + Epe(X,xlabel,s)

[
log

pPI(xlabel)

pPI(xlabel|x+)

]
= Le(pPI(xlabel)) + Epe(xlabel,s)

[
EpPI(X|xlabel,s)

[
log

pPI(xlabel)

pPI(xlabel|x+)

]]
Consider that xlabel⊥⊥PIs and xlabel⊥⊥PIs|x+, we get:

Le(pPI(xlabel|x+)) = Le(pPI(xlabel)) + Epe(xlabel,s)

[
EpPI(x+|xlabel,s)

[
log

pPI(xlabel|s)
pPI(xlabel|x+, s)

]]
= Le(pPI(xlabel)) + Epe(xlabel,s)

[
EpPI(x+|xlabel,s)

[
log

pPI(x+|s)
pPI(x+|xlabel, s)

]]
= Le(pPI(xlabel))− Epe(xlabel,s)KL[p

PI(x+|xlabel, s)||pPI(x+|s)].
Thus we have the cross entropy loss of pPI(x+, xlabel) in any environment e is smaller than that of
pPI(xlabel) = 1

m (random guess):

Le(pPI(xlabel|x+))− Le(pPI(xlabel)) ≤ −Epe(xlabel,s)KL[p
PI(x+|xlabel, s)||pPI(x+|s)] ≤ 0,

which means:
max
e′∈E

[
Le

′
(pPI(xlabel|x+))− Le

′
(pPI(xlabel))

]
≤ 0.

where the performance of pPI(x+, xlabel) is at least as good as a random guess in any environ-
ment. Since we assume the environment diversity, that is for any pe with xlabel⊥⊥es, there exists an
environment e′ such that pe(xlabel|x+) performs worse than a random guess. So we have:

max
e′∈E

[
Le

′
(pPI(xlabel|x+))− Le

′
(pPI(xlabel))

]
≤ 0 < max

e′∈E

[
Le

′
(pe(xlabel|x+))− Le

′
(pPI(xlabel))

]
.

Now we want to prove that ∀e ∈ E , xlabel⊥⊥es, xlabel⊥⊥es|x+, pe(xlabel) = 1
m =⇒

pe(xlabel|x+) = pPI(xlabel|x+). For any s ∈ S, we have:
pe(xlabel|x+) = pe(xlabel|x+, s)

= pe(xlabel)
pe(x+|xlabel, s)

Epe(xlabel|s)[pe(x+|s, xlabel)]

= pPI(xlabel)
pPI(x+|xlabel, s)

EpPI(xlabel)[pPI(x+|s, xlabel)]
= pPI(xlabel|x+, s) = pPI(xlabel|x+).

Thus we have the following minimax optimality:
pPI(xlabel|x+) = arg min

pf∈F
max
e∈E
Le(pψ(xlabel|x+)).

Thus, we have f∗ is the minimax optimal across all elements in D, e.g., f∗ =
argf minmaxe∈DLe(pf (xlabel|x+)).
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A.3 PROOF OF THEOREM 4.3

Theorem 4.3 Suppose that peθ(x
+, s|xlabel) = pf(x

+|s, xlabel)pg,A(s|xlabel) and the generation
process of X+ can be represented by the SCM depicted in Figure 1, a sufficient condition for θ =
(f, g,A) to be ∼A-identifiable is given as: 1) Suppose that pϵ(x+− f(xlabel, s)) = pf(x

+|xlabel, s),
ϕε is the characteristic function of pϵ(x+ − f(xlabel, s)), and the set {x+|ϕε(x+) = 0} has mea-
sure zero; 2) The sufficient statistics T are differentiable almost everywhere, and [Tij ]1≤j≤k are
linearly independent on any subset of X+ with measure greater than zero; 3) There exist nk + 1
distinct pairs (xlabel0 , e0), · · · , (xlabeln k, enk) such that the nk × nk matrix L = (λe1(xlabel1 ) −
λe0(xlabel0 ), · · · , λenk(xlabelnk )− λe0(xlabel0 )) is invertible.

Proofs: We now establish Theorem 4.3, demonstrating the identifiability of the essential parameters
that capture spuriously correlated covariate features in the VAE. The proof consists of three steps:
(i) We use both e and xlabel as auxiliary variables; (ii) We include xlabel in the causal mechanism of
generating x+ by x = f(xlabel, s) + ϵ = f labelx (x) + ϵ.

First, we transform the equality of the marginal distributions over the observed data into the equality
of a noise-free distribution. Suppose we have two sets of parameters, θ = (f, g,A) and θ′ =
(f ′, g′,A′), such that pθ(x+|xlabel, e) = pθ′(x

+|xlabel, e) for all e ∈ Etrain. Then:∫
Z
pg,A(Z|xlabel, e)pf (x

+|Z, xlabel)dZ =

∫
Z
Pg′,A′(Z|xlabel, e)p′f (x

+|Z, xlabel)dZ∫
Z
pg,A(Z|xlabel, e)pϵ(x

+ − f label
x (Z))dZ =

∫
Z
pg′,A′(Z|xlabel, e)pϵ(x

+ − f
′label
x (Z))dZ

(6)

Then, we denote the volume of a matrix A as volA :=
√

det(A⊤A), J as the Jacobian, and change
the variable on the left-hand side to x+ = f labelx (Z) and on the right-hand side to x̄+ = f̄ labelx (Z).
Since f is injective, we have f−1(x̄+) = (xlabel, Z). Here, we specifically use f−1(x̄+) to denote
the recovery of Z, i.e., f−1(x̄+) = Z. Then, we get:∫

Rd

p̃g,A,f,xlabel,e(x̄
+)pϵ(x

+ − x̄+)dx̄+ =

∫
Rd

p̃g′,A′,f′,xlabel,e(x̄
+)pϵ(x

+ − x̄+)dx̄+ (7)

(8)

Next, we introduce

p̃g,A,f,xlabel,e(x
+) = pg,A(f

label
x

−1
(x+)|xlabel, e)volJf label

x
−1(x+)1§+(x

+),

on the left-hand side, and similarly on the right-hand side:

(p̃g,A,f,xlabel,e ∗ pϵ)(x
+) = (p̃g′,A′,f′,xlabel,e ∗ PE)(x

+) (9)

(10)

Then, we use ∗ for the convolution operator, and use F [·] to designate the Fourier transform. The
characteristic function of ϵ is then ϕϵ = F [pϵ]. Exploit the properties of the Fourier transform to
transform the convolution into a multiplication. This means that in the Fourier domain, we have
F [(p̃g,A,f,xlabel,e ∗ pϵ)(x+)] = F [p̃g,A,f,xlabel,e](ω) · F [pϵ](ω) Meanwhile, we dropped ϕϵ(ω) from
both sides as it is non-zero almost everywhere (by assumption of the Theorem).

p̃g,A,f,xlabel,e(x
+) = p̃g′,A′,f′,xlabel,e(x

+). (11)

For the second step, in this step, we remove all terms that are either a function of x+ or xlabel or e.
By taking logarithm on both sides of Equation 11 and replacing pg,A by its expression, we get:

log volJf−1(x+) +

n∑
i=1

(logQi(f
−1
i (x+))− logW e

i (x
label) +

k∑
j=1

Ti,j(f
−1
i (x+))λei,j(x

label))

= log volJf′−1(x+) +

n∑
i=1

(logQ′
i(f

′−1
i (x+))− logW ′e

i (xlabel) +

k∑
j=1

T ′
i,j(f

′−1
i (x+))λ′ei,j(x

label)).
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Let (e0, xlabel0 ), (e1, x
label
1 ), ..., (enk, x

label
nk ) be the points provided by assumption (3) of the Theo-

rem. We evaluate the above equations at these points to obtain k+1 equations, and subtract the first
equation from the remaining k equations to obtain:

⟨T (f−1(x+)), λel(xlabell )− λe0(xlabel0 )⟩+
n∑
i=1

log
W e0
i (xlabel0 )

W el
i (xlabell )

=⟨T ′(f−1(x+)), λ′el(xlabell )− λ′e0(xlabel0 )⟩+
n∑
i=1

log
W ′e0
i (xlabel0 )

W ′el
i (xlabell )

. (12)

Let L be the matrix defined in assumption (3) and L′ similarly defined for λ′ (L′ is not necessarily

invertible). Define bl =
∑n
i=1 log

W
′e0
i (xlabel

0 )W
el
i (xlabel

l )

W
e0
i (xlabel

0 )W
′el
i (xlabel

l )
and b = [bl]

nk
l=1.

Then Equation 12 can be rewritten in the matrix form:

LTT (f−1(x+)) = L′TT ′(f ′−1(x+)) + b. (13)

We multiply both sides of Equation 13 by L−T to get:

T (f−1(x+)) = AT ′(f ′−1(x+)) + c. (14)

Where A = L−TL′ and c = L−T b. To complete the proof, we must demonstrate that A is invertible.
By the definition of T , its Jacobian exists and is an nk × n matrix with rank n. Consequently, the
Jacobian of T ′ ◦ f ′−1 also exists and has rank n, which implies that A is of rank n as well. We
mainly consider two cases:

If k = 1, then A is invertible since A ∈ Rn×n.

If k > 1, define x̄ = f−1(x) and Ti(x̄i) = (Ti,1(x̄i), . . . , Ti,k(x̄i)).

Suppose for any choice of x̄1i , x̄
2
i , . . . , x̄

k
i , the family

(
dTi(x̄

1
i )

dx̄1
i
, . . . ,

dTi(x̄
k
i )

dx̄k
i

)
is never linearly inde-

pendent. This implies that Ti(R) lies within a subspace of Rk with a dimension of at most k − 1.
Let h be a non-zero vector orthogonal to Ti(R). Then for all x ∈ R, we have

〈
dTi(x)
dx , h

〉
= 0. By

integrating, we find that ⟨Ti(x), h⟩ = const.

Since this holds for all x ∈ R and h ̸= 0, we conclude that the distribution is not
strongly exponential. Thus, by contradiction, there must exist k points x̄1i , x̄

2
i , . . . , x̄

k
i such that(

dTi(x̄
1
i )

dx̄1
i
, . . . ,

dTi(x̄
k
i )

dx̄k
i

)
are linearly independent.

Next, collect these points into k vectors (x̄1, . . . , x̄k) and concatenate the k Jacobians JT (x̄l) eval-
uated at each of those vectors horizontally into the matrix Q = (JT (x̄

1), . . . , JT (x̄
k)). Similarly,

defineQ′ as the concatenation of the Jacobians of T ′(f ′−1◦f(x̄)) evaluated at those points. Then the
matrix Q is invertible. By differentiating Equation 14 for each xl, we get Q = AQ′ The invertibility
of Q implies the invertibility of A and Q′. This completes the proof.

A.4 PROOF OF THEOREM 4.7

Theorem 4.7 If d(ba(sj), ba(si)) = 0 in Algorithm 1, the obtained mini-batch is regarded as sam-
pling from a PID, e.g., p̂(xlabel|s) = pPI(xlabel).

Proofs: In Algorithm 1, by uniformly sampling a different labels, we mean sampling xlabelalt =
{xlabel1 , xlabel2 , ..., xlabela } using the following procedure:
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xlabel1 ∼ U{1, 2, ...,mu} \ {xlabele }
xlabel2 ∼ U{1, 2, ...,mu} \ {xlabele , xlabel1 }

...

xlabela ∼ U{1, 2, ...,mu} \ {xlabele , xlabel1 , xlabel2 , ..., xlabela−1 },

where U denotes the uniform distribution.

Suppose Dbalanced ∼ p̂B(x+, xlabel), and the data distribution De ∼ p(x+, xlabel). Assume we have
an exact match every time we match a balancing score. Then for all e ∈ Etrain, we have:

p̂B(xlabel|bae(s)) = p(xlabel|bae(s)). (15)

By the definition of a balancing score, p(xlabel|s) = p(xlabel|bae(s)) and p̂B(xlabel|s) =
p̂B(xlabel|bae(s)), then we have:

p̂B(xlabel|s) = p(xlabel|s).

Thus, we have p̂B(xlabel|s) = U{1, 2, ...,mu}, which means p̂B(x+, xlabel, s) = pB(x+, xlabel, s).
This implies that Dbalanced can be regarded as sampled from a PID.

B EXPERIMENTAL SETTINGS

In this section, we provide the details of the settings and datasets for each experiment.

Unsupervised Learning Following the widely adopted protocol Chen et al. (2020); Wang et al.
(2024b), we freeze the feature extractor and train a supervised linear classifier on top of it. The
Adam optimizer is used, with Momentum set to 0.8 and weight decay set to 10−4. The linear
classifier is trained for 500 epochs, with a batch size of 128. The learning rate starts at 5 × 10−2

and decays to 5 × 10−6. For this experiment, we utilize several benchmark datasets to evaluate
the model’s performance. CIFAR-10 and CIFAR-100 are small-scale image classification datasets
consisting of 60,000 32×32 color images in 10 and 100 classes, respectively. STL-10 is another
small-scale dataset that contains 100,000 unlabeled images and 5,000 labeled examples from 10
classes, with a higher image resolution (96×96). Tiny ImageNet contains 100,000 64×64 images
across 200 classes and serves as a more challenging small-scale benchmark. For these datasets, we
use ResNet-18 as the feature extractor. For larger datasets, we employ ImageNet-100 (a subset of
ImageNet with 100 classes) and the full ImageNet dataset, which consists of over 1.2 million images
in 1,000 classes, using ResNet-50 as the feature extractor.

Semi-Supervised Learning In accordance with the standard protocol Zbontar et al. (2021), we
create two balanced subsets by sampling 1% and 10% of the training dataset. Specifically, we use
the ImageNet dataset, a large-scale benchmark for visual recognition tasks, comprising 1.2 million
images in 1,000 categories. The subsets contain 1% and 10% of the labeled training data, which are
used for fine-tuning the model. The models are fine-tuned for 50 epochs, with learning rates set to
0.05 and 1.0 for the classifier and 0.0001 and 0.01 for the backbone on the 1% and 10% subsets,
respectively.

Transfer Learning We conduct three transfer learning experiments, including object detection and
instance segmentation, transfer to other domains, and video-based tasks. For object detection, we
evaluate the model on two benchmark datasets: Pascal VOC and COCO. Pascal VOC is widely
used for object detection tasks, containing around 20,000 images across 20 categories. We train a
Faster R-CNN Ren et al. (2015) model on the combined VOC 2007 and 2012 datasets (VOC 07+12),
which contains around 16,000 images, and adjust the learning rate at 18K and 22K iterations. We
also conduct experiments on a smaller version of Pascal VOC, the VOC 07 set (5K images), with
a reduced number of iterations. For instance segmentation, we use the COCO 2017 dataset, which
contains over 118,000 images and covers 80 object categories. We train a Mask R-CNN He et al.
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(2017) with the standard 1× schedule and C4-backbone Wu et al. (2019), reporting results on the
validation split.

Few-shot Learning The protocol outlined in Wang et al. (2024b; 2023b) is followed for few-shot
learning, where we evaluate the proposed method on three standard few-shot learning benchmarks:
miniImageNet, Omniglot, and CIFAR-FS. miniImageNet is a widely used few-shot learning bench-
mark derived from the ImageNet dataset, consisting of 60,000 84×84 images across 100 classes.
Omniglot is a dataset designed for character recognition, containing 1,623 different characters from
50 different alphabets, making it suitable for testing few-shot learning algorithms. CIFAR-FS is a
few-shot version of the CIFAR-100 dataset, specifically adapted for few-shot learning tasks, con-
taining 100 classes with 600 images per class. For each task, N samples without class-level overlap
are randomly selected, and K-times data augmentation is applied to create an N -way K-shot task.
The model is optimized using stochastic gradient descent (SGD) with momentum and weight de-
cay values set to 0.9 and 10−4, respectively. The trained model’s performance is then evaluated on
unseen samples drawn from new classes, testing its ability to generalize in few-shot scenarios.

C ADDITIONAL EXPERIMENTS

C.1 EVALUATION ON GENERATIVE SSL

To examine the model’s impact on generating SSL, we conducted a series of experiments using
the ImageNet-1K dataset (Deng et al., 2009). We started with self-supervised pre-training on the
ImageNet-1K (IN1K) training set. Next, we evaluated the representations through supervised train-
ing using two methods: (i) end-to-end fine-tuning and (ii) linear probing. We reported the top-1
validation accuracy for a single 224×224 crop. For these experiments, we employed ViT-Large
(ViT-L/16) (Dosovitskiy et al., 2020) as the backbone. ViT-Large is significantly larger (an order of
magnitude bigger) than ResNet-50 (He et al., 2016) and has a tendency to overfit. The following
section provides a comparison of the models.

Table 5: Comparison between models.

Method scratch, original scratch, our impl. baseline MAE MAE + Ours

Top 1 76.5 82.5 84.9 86.4

Table 6: Comparisons with previous results on ImageNet-1K using the ImageNet-1K training set for
pre-training, except for the tokenizer in BEiT, which was pre-trained on 250M DALLE data (Ramesh
et al., 2021).

Method pre-train data ViT-B ViT-L ViT-H ViT-H448

DINO IN1K 82.8 - - -
MoCo IN1K 83.2 84.1 - -
BEiT IN1K+DALLE 83.2 85.2 - -
MAE IN1K 83.6 85.9 86.9 87.8

MAE+Ours IN1K 85.9 87.4 88.6 89.3

Comparisons with self-supervised methods. In Table 6 we compare the fine-tuning results of self-
supervised ViT models. Our method has shown steady improvement from bigger models. We obtain
88.6% accuracy using ViT-H (224 size). The previous best accuracy, among all methods, using only
IN1K data, is 87.1% (512 size) (Yuan et al., 2022), based on advanced networks. We improve over
the state-of-the-art by a nontrivial margin in the highly competitive benchmark of IN1K (no external
data). Our result is based on vanilla ViT, and we expect advanced networks will perform better.

Object detection and segmentation. We fine-tune Mask R-CNN (He et al., 2017) end-to-end on
COCO (Lin et al., 2014). The ViT backbone is adapted for use with FPN (Lin et al., 2017). We
apply this approach to all entries in Table 3. We report box AP for object detection and mask AP

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 7: COCO object detection and segmentation using a ViT Mask R-CNN baseline.

Method pre-train data
APbox APmask

ViT-B ViT-L ViT-B ViT-L

supervised IN1K w/ labels 47.9 49.3 42.9 43.9
MoCo v3 IN1K 47.9 49.3 42.7 44.0
BEiT IN1K+DALLE 49.8 53.3 44.4 47.1
MAE IN1K 50.3 53.3 44.9 47.2

MAE + Ours IN1K 52.5 55.9 46.4 49.7

Table 8: Performance on for text recognition.

Methods IIIT5K IC03
SimCLR Chen et al. (2020) 1.7 3.8
SeqCLR Aberdam et al. (2021) 35.7 43.6

SimCLR + Ours 18.7 19.0
SeqCLR + Ours 38.5 47.4

for instance segmentation. Compared to supervised pre-training, our MAE performs better under all
configurations (Table 7).

C.2 EVALUATION ON MORE MODALITIES

The proposed method can be applied in various fields and domains, e.g., instance segmentation,
video tracking, sample generation, etc., as mentioned before. Here, we provide the experiments of
the proposed method on text modality-based datasets, i.e., IC03 and IIIT5K Yasmeen et al. (2020),
which we have conducted before. We follow the same experimental settings as mentioned in Ab-
erdam et al. (2021). The results shown in Table 8 demonstrate that the proposed method achieves
stable effectiveness and robustness in various modalities combined with the above experiments.

Table 9: Performance comparison on PACS dataset.

Method Photo Sketch Cartoon Painting (Unseen) Average
SimCLR 86.4 85.1 87.2 74.3 80.7
SimCLR+Ours 88.0 87.4 90.1 79.2 85.0
BYOL 83.9 84.6 82.7 64.5 74.2
BYOL+Ours 84.2 86.9 85.0 70.8 78.9

C.3 EVALUATION ON OOD TASKS

Table 11: Performance comparison on Col-
oredMNIST dataset.

Method Accuracy(%)
SimCLR 85.2
SimCLR + Ours 88.6

In addition to validating the proposed method on
standard and few-shot transfer learning scenarios, we
also specifically test it on benchmark datasets target-
ing the out-of-distribution (OOD) problem, including
PACS, OfficeHome, and ColoredMNIST. Specifically,
we evaluate the performance of SSL baselines before
and after introducing the proposed PID on these three
datasets. For PACS, we follow the experimental setup in Section 5.2 to evaluate the most commonly
used SSL baselines, SimCLR and BYOL, on three domains—Photo, Sketch, and Cartoon—training
on these domains and testing on all four domains, including Photo, Art, Cartoon, and Sketch, as
well as the average performance. The results are shown in Table 9. For OfficeHome, we randomly
select one domain as the source domain for training and another as the target domain. The labels for
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Table 10: Performance comparison on OfficeHome dataset

Method A→ C A→ P A→ R C→ A C→ P C→ R P→ A P→ C P→ R R→ A R→ C R→ P
SimCLR 58.2 63.5 69.8 78.9 69.7 66.8 63.4 52.3 58.4 56.1 72.9 71.0
SimCLR+Ours 61.1 65.2 71.9 81.1 72.0 68.2 67.5 59.1 59.9 61.2 74.8 73.5

the source domain are predefined, whereas the labels for all target domains are unknown. We then
evaluate the performance change of SimCLR before and after introducing PID, with results shown
in Table 10. Finally, for ColoredMNIST, we follow the experimental setup in Gat et al. (2020),
assessing the model’s performance on new classes after training on base classes, with results shown
in Table 11. The results demonstrate that PID consistently improves performance, confirming its
effectiveness on OOD tasks.

D RELATED WORKS FOR SPURIOUS CORRELATION

In the recent work on SSL, there has been growing interest in understanding its vulnerability to
spurious correlations Hamidieh et al. (2024); Wang et al. (2022; 2023a). These correlations arise
when models learn associations from data that do not truly reflect the underlying causal structure, but
instead are coincidental or context-specific patterns Pearl (2009). This susceptibility can undermine
the effectiveness of SSL, particularly when dealing with diverse data environments.

Some works have been proposed to alleviate the effects of spurious correlations in SSL. Hamidieh
et al. Hamidieh et al. (2024) introduced a method that counteracts these correlations by expanding
the feature space, thereby providing more diverse training views to mitigate misleading associations.
Park et al. Park et al. (2024) proposed that spuriously correlated attributes make neural networks in-
ductively biased towards encoding lower effective rank representations and used rank regularization
to eliminate biased samples. Another notable contribution comes from Chen et al.Zhu et al. (2023),
who explored the use of a data reweighting strategy to reduce the importance of data samples that
may contain spurious correlations. These methods attempt to eliminate spurious correlations by
filtering or enhancing SSL samples at the sample level. Although this approach has proven effec-
tive—by excluding samples that may contain spurious correlations—it is difficult to ensure that the
learned features are still reliable due to the partial unobservability of spurious correlations and vari-
able coupling. In contrast, our work directly addresses the impact that spurious correlations might
cause, utilizing the independence between unobserved variables and anchors under post-intervention
distributions to ensure the reliability of the learned representations.

E TASK DISTRIBUTION & DATA DISTRIBUTION

Task Distribution: Task distribution refers to a set of tasks and their underlying distribution, where
each task has its own specific objectives and associated data distribution. It is often used in meta-
learning or multi-task learning scenarios to describe the diversity and variation across tasks.

For example, in a meta-learning scenario, the task distribution could include:

• A ”cat vs dog” classification task (Task 1).

• A ”car vs airplane” classification task (Task 2).

• A ”bird vs fish” classification task (Task 3).

These tasks form the task distribution, and the meta-learning model is trained across this task space.

Data Distribution: Data distribution refers to the statistical distribution of data samples within a
single task, typically described as the joint distribution P (X,Y ) of input X and labels Y .

Task distribution describes the variability between tasks in a learning system, focusing on gener-
alization across tasks. Data distribution focuses on the variability within a single task, addressing
adaptation to specific data characteristics. The two concepts are hierarchical: task distribution gov-
erns the diversity of tasks, while each task has its own distinct data distribution.
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Reformulation of OOD generalization as generalization on task distributions: We organize the
whole process into the following steps:

Step 1: First, we provide the formal definition of task distribution.

Without loss of generality, let us use a classification task as an example. We define Xa
tr =

{(xai , yai )}Ni=1 as a training dataset, where xai represents a sample, yai represents the correspond-
ing label, a denotes the dataset index, and N denotes the number of samples in the dataset. For a
classification task, the goal is to learn a classifier pa(yai |xai ), so that for any given sample xai , the
corresponding label can be predicted.

If N → +∞, Xa
tr can be approximated as containing all the information necessary for the classi-

fication task and can thus be regarded as a complete dataset for a classification task. Simply put,
the elements of a classification task include: the classifier and the dataset. We denote a task as
(Xa

tr, p
a(yai |xai )). Then, the discrete distribution of tasks can be expressed as {Xa

tr, p
a(yai |xai )}Ma=1,

where M represents the number of tasks.

Furthermore, when a is different, the label space corresponding to yai is also different. For example,
when a = 1, the label space is {Cat,Dog}, and when a = 2, the label space is {Plane, Train}. If
M → +∞, {Xa

tr, p
a(yai |xai )}Ma=1 can be regarded as a complete task distribution.

Step 2: Next, we reformulate SSL from the perspective of task distribution.

In Section 2 and Section 3.1, we explain why a mini-batch in SSL can be viewed as a task. Simply
put, for a given mini-batch, it can be expressed as: Xaug

tr,a = {xia, xianchor,a}2Ni=1, where N denotes
the number of ancestor samples in the mini-batch, a represents the index of the mini-batch, and
xianchor,a can be regarded as the label of the augmented sample. Meanwhile, the classifier to be
learned for each mini-batch is modeled as pa(xianchor,a|xia).

Notably, the classifiers for all tasks in SSL are learned using the same classifier, i.e., the classifiers
for all tasks aim to learn p(xianchor,a|xia). For example, SimCLR models the classifier using a
contrastive loss, while MAE models it using the L2-norm. Therefore, whether D-SSL or G-SSL
is used, as M → +∞, {(Xaug

tr,a , p(x
i
anchor,a|xia))}Ma=1 can be approximated as a task distribution,

where M represents the number of tasks.

Step 3: Finally, we reformulate the OOD generalization of SSL as generalization on task distribu-
tions.

In traditional machine learning, given training data, the goal is to learn p(y|x). This can be under-
stood as modeling the data distribution p(x, y) as p(x)p(y|x), where p(y|x) is learned from the train-
ing data and transferred to the test data distribution p(x). This approach assumes that the training
and test data are identically and independently distributed, i.e., p(xtrain) = p(xtest) = p(x), and
p(xtrain, ytrain) = p(xtest, ytest) = p(x, y). Consequently, p(x)ptrain(y|x) = p(x)ptest(y|x),
leading to ptrain(y|x) = ptest(y|x).
By analogy, when each data sample is treated as a task, the corresponding learning objective be-
comes p(pa(xianchor,a|xia)|X

aug
tr,a ). This learning goal is similar to that in meta-learning [1-2], where

the goal is to learn a function that can output the classifier for a given task dataset. Therefore, when
the training data are drawn from a task distribution, the learning objective is to model the task dis-
tribution, i.e., to learn p(pi(y|x)|p(task i)), such that it applies to both training and test tasks. Since
training and test tasks are different, from the perspective of the training tasks, the test tasks represent
OOD scenarios. However, from the perspective of the task distribution, both training and test tasks
belong to the same task distribution.

Thus, from the viewpoint of traditional machine learning, SSL can be considered as training with
mini-batches of size 1, where each training sample is a training task. One open problem is how
to model p(pi(y|x)|p(task i)). Since we define the classifier p(xianchor,a|xia) for each SSL training
task as identical, p(pi(y|x)|p(task i)) can be directly modeled as p(xianchor,a|xia), which applies to
any sample from any task.

In conclusion, combining Step 1-3, we reformulate OOD generalization as generalization on task
distributions.
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F INTUITIVE EXPLANATIONS FOR ASSUMPTION 3.3 AND THEOREM 4.7

Assumption 3.3 illustrates that regardless of whether e ∈ D or e ∈ PID, x+ is generated under the
control of two variables, s and xlabel. Therefore, given x+, s and xlabel are conditionally indepen-
dent, regardless of the correlation between them.

From Assumption 3.3, the optimal f should be Fxlabel . However, without additional constraints, it
is difficult to obtain this optimal f . Theorem 3.4 provides a way to obtain another good f , defined
as f∗ in the theorem. Why is f∗ considered good? This is because Theorem 3.4 implies that when
D is sufficiently large and diverse, an optimal f∗ trained on one distribution will perform worse
than random guessing in some other environment. Under such conditions, no other f obtained from
training on any distribution can achieve better worst-case OOD performance than the PID. Why
is focusing on the worst-case scenario better than other cases? During training, we minimize the
worst-case scenario, which involves minimizing: maxe∈DLe(pf (xlabel|x+)).. For any f , the term
maxe∈DLe(pf (xlabel|x+)) is always greater than or equal to Le(pf (xlabel|x+)) for any specific
environment e. If we learn an f that minimizes the worst-case term maxe∈DLe(pf (xlabel|x+)),
then we naturally minimize Le(pf (xlabel|x+)) for all e in D. This ensures robustness across all
scenarios, making the worst-case optimization strategy effective for improving OOD performance.

The high-level explanation of Theorem 4.7 can be presented as follows: 1) From Definition 4.4, it
follows that if ba(s) can be identified, then s and xlabel are conditionally independent given ba(s);
2) In this paper, ba(s) is implemented as described in Equation (5) in the main text. The key chal-
lenge lies in obtaining s. As shown in Section 4.1, we explain the identifiability of s, as well as how
each label is modeled using a distribution for s. During implementation, we sample from this distri-
bution to generate a series of discrete vectors that approximate s associated with a specific label; 3)
From Equation (2) in the main text, we have: p(x+, xlabel, s) = p(x+|xlabel, s)p(xlabel)p(s|xlabel).
If we select sample pairs for a mini-batch such that all pairs share the same ba(s), the resulting
mini-batch can be considered as constructed under the same ba(s). In other words, the samples
in the mini-batch are conditioned on ba(s). Combined with the argument in Point 1), we have:
p(x+, xlabel, s) = p(x+|xlabel, s)p(xlabel)p(s), which ensures that the mini-batch satisfies PID.
The key to achieving PID is ensuring that all sampled examples in the mini-batch have consistent
ba(s), i.e., the background information is the same. This allows SSL training to focus on foreground
information while disregarding background information.

G MORE EXPLANATION FOR THE IDENTIFIABILITY OF SPURIOUS VARIABLE

To better address the identifiability of spurious variables in the context of SSL, we organize the
response into the following steps:

Step 1: First, we need to clarify that in Section 2 and Section 3.1, we propose a new perspective for
understanding SSL. Taking classification as an example, under this new perspective, each mini-batch
during the training phase of SSL can be treated as an independent multi-classification task. Different
mini-batches correspond to different classification tasks. In contrast, the traditional perspective of
SSL considers the entire dataset as a single task for unsupervised learning.

Therefore, under the new perspective, the training samples in each mini-batch can be considered
labeled. Whether these labels are accurate is not our concern for now, as this falls under the domain
of Bayesian error. Consequently, in this sense, spurious variables can be identifiable.

Step 2: We first explain what we mean by the distribution of tasks, using classification as an ex-
ample. A learning task can be narrowly defined as assigning a label to each sample in a dataset,
where the label types are finite. This dataset can represent the task, and the entirety of the dataset
can be regarded as the data distribution of that task. Thus, different tasks correspond to different
datasets, with distinct label types (tasks with the same label types are considered the same). In this
way, a task distribution is essentially the distribution over these datasets, with each element of the
task distribution corresponding to a specific dataset.

Step 3: Next, we point out that in this paper, the spurious variable s indeed takes values in an infinite
space since it is represented by a high-dimensional vector. The values of this vector can be arbitrary.
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We must define s as taking infinite values because, as discussed in Section 2 and Section 3.1, we
reinterpret SSL as learning a task distribution where the label types involved are infinite.

Different labels may correspond to different latent variables. These differences are represented
by different distributions, i.e., we model the distribution qϕ(s|x+, xlabel) using a latent variable
model. This allows us to derive the distribution of the spurious variable s for any given label.
The values of the probability density can be understood as the degree of correlation between a
specific label and a particular value of the latent variable. Hence, given a label, once its conditional
distribution qϕ(s|x+, xlabel) is determined, we can estimate the corresponding spurious variable s
through sampling.

Step 4: We do not theoretically prove that the latent variable model can directly identify the spurious
variable s. In this paper, the identification of s is based on a strong assumption—Assumption 4.1
in the paper. This assumption is justified as follows:

Based on the literature (Blei et al., 2017; Sriperumbudur et al., 2013), which expresses the true prior
in closed form, we deduce that when the causal relationship between the latent covariate and the label
changes with the tasks, an exponential family distribution is capable of modeling the conditional
distribution p(s|xlabel).
Combining Step 1, Step 2, and Step 3, we satisfy the condition that the causal relationship between
the latent covariate and the label changes with the tasks.

Step 5: Theorem 4.3 is also based on Assumption 4.1. The key result of Theorem 4.3 is that we
can uniquely identify ϕ and (f, g,A). However, this strong assumption imposes certain limitations
on the accuracy of spurious variable identification, which is a topic for future research. Despite this
strong assumption, our experimental results demonstrate the effectiveness of our method.
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