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Abstract

Currently, the Generative Pre-trained Trans-
former model (GPT-2) has achieved remark-
able performance in document-grounded di-
alogue generation since high-frequency pat-
terns in the large corpora are well memorized
during its pre-train procedure. However, it
is still hard to capture low-frequency task-
specific patterns especially when directly tak-
ing given documents and dialogue context as
input. Here we propose an encoder-decoder
framework including a semantic-oriented en-
coder and GPT-2 decoder with knowledge-
aware classification, which strengthens the
learning of two following task-specific pat-
terns. One pattern is how to semantically se-
lect the crucial information of dialogue context
and corresponding history knowledge from
documents; the other is when to generate a re-
sponse with knowledge since many responses
do not contain it. With learned high- and low-
frequency patterns, empirical study shows that
our method has better generative performance
than state-of-the-arts.

1 Introduction

In the last years, there are tons of elaborate work
thrusting into the field of open-domain dialogue
generation and reaching good results (Vinyals and
Le, 2015; Serban et al., 2016; Tian et al., 2017;
Zhang et al., 2018a; Zheng et al., 2020b; Huang
et al., 2020; Wang et al., 2021). However, the
generic generation remains, which refers to the gen-
erated responses that are meaningless and boring,
such as, "Yes, of course." They make conversa-
tions between agents and users difficult to continue.
Many works (Xing et al., 2017; Chen et al., 2018;
Ghazvininejad et al., 2018; Zheng et al., 2020b)
attempted to address this problem using different
techniques, but there is still much room to improve.

Recently, some researchers have realized that
document-grounded conversation is an effective
solution to solve generic responses, i.e., generat-

ing informative responses by selecting appropriate
knowledge from given documents with dialogue
context (Zheng et al., 2020a). In general, there are
two key steps to generate document-grounded re-
sponses. The former step is to learn a background
pattern that can capture the crucial information
from dialogue context and corresponding history
knowledge as candidate information for the gen-
eration. The latter one is to acquire a selection
pattern that obtains most related parts in candidate
information to select appropriate knowledge from
given documents and then generate informative and
coherent responses.

There is a line of research to learn the patterns
better. In earlier work (Zhou et al., 2018; Zhao
et al., 2019), an RNN-based model is used to learn
the background pattern and encode dialogue con-
text and documents. Meanwhile, another RNN-
based model with the general attention mecha-
nism (Bahdanau et al., 2015) is employed to learn
the selection pattern and generate responses. Later,
with the great success of Transformer (Vaswani
et al., 2017), some research works (Dinan et al.,
2018; Tang and Hu, 2019; Li et al., 2019; Kim
et al., 2019, 2020) utilize its encoder to acquire a
better semantic representation for dialogue context
and documents, as well as, its decoder is employed
for better dialogue generation. More importantly,
the multi-head and dot-product attention of Trans-
former are effectively used to learn the background
and selection patterns.

Very recently, large-scale pre-trained language
models exhibit compelling performance in NLP
generation task, such as GPT2 (Radford et al.,
2019). Especially for open-domain dialogue, the
prototype DialoGPT (Zhang et al., 2020) can reach
unprecedented results, i.e., better semantic coher-
ent responses with more contextual details. Then,
the TransferTransfo (Thomas et al., 2019) initially
utilizes the GPT-2 to address document-ground di-
alogue generation (i.e., the conversation based on



..The film stars Macaulay Culkin as
Kevin McCallister, a boy who is
mistakenly left behind when his family
flies to Paris for their Christmas...

A: Hello! How did you
movie Home Alone?

Context B: It was entertaining, funny, and
moving. How did you like it?

Document

like the

A: | thought Culkin did a nice job as
Kevin McCallister. It was entertaining.
But it has mediocre reviews. | wonder
why.

Human

A: | thought it was an interesting movie

TransferTransfo and | was very interested in watching it.

A: | thought it was a great family movie.
| think Macaulay Culkin did a great job
portraying Kevin McCallister.

Our model

Figure 1:
CMU_DoG.

An example from testing datasets of

given documents containing the agent’s persona).
Without the task-specific architectures, the Trans-
ferTransfo directly put all kinds of information
(containing dialogue context and all documents)
into the GPT2 with the simple losses of a cross
entropy and next-utterance classification, and its
performance is also state-of-the-art at that time.

One reason is that high-frequency patterns in
large corpora learned by the pre-train are well mem-
orized by the GPT-2, such as grammar (Vig, 2019;
Clark et al., 2019), syntactic (Hewitt and Manning.,
2019), commonsense (Davison et al., 2019) and
even world knowledge (Petroni et al., 2020; Wang
et al., 2020). They greatly improve the semantic
coherence and appropriateness of knowledge selec-
tion in generated responses. For example, in the
line 4 of Figure 1, the proper word "interesting"
is more likely generated when the commonsense
"Entertaining, funny, and moving usually means
interesting" is pre-learned by the GPT-2.

Although the trend of the new paradigm (Brown
et al., 2020) is to remove the need for task-specific
architectures and directly fine-tune pre-trained
models for downstream tasks, here we argue that
1) high-frequency patterns cannot replace low-
frequency patterns (e.g., background and selection
patterns) (Shin et al., 2020; Liu et al., 2021); 2)
without task-specific architectures, simultaneously
training background and selection patterns signifi-
cantly increase the difficulty of learning. In Table 1,
TransferTransfo can generate a coherent response
but it does not capture appropriates specific knowl-
edge from given documents.

Targeting the problems, we propose a document-

grounded Double-classification Dialogue gener-
ation model (DcDial) with an encoder-decoder
framework for learning separate. To learn the back-
ground pattern, our semantic-oriented encoder se-
quentially utilizes two modules to semantically se-
lect contextual key information and correspond-
ing history knowledge as background information
since a good response is a correct semantic exten-
sion of the dialogue context. Meanwhile, our GPT-
2 decoder is primarily responsible for knowledge
selection through one classification task. Generally,
existing methods ignored the truth that many utter-
ances do not contain knowledge from given docu-
ments. Thus, a binary classification task is intro-
duced into the decoder as a soft gate for knowledge
selection. It emphasizes the learning of knowledge-
awareness for response generation.

To further reduce the difficulty of learning and re-
move potential noise from the encoder (Zhao et al.,
2020), inspired by the wake-sleep algorithm (Ikeda
et al., 1999), in the beginning, we first train the en-
coder separately and then train the decoder. Hence,
a next-utterance classification task is set on the
encoder as a binary classification, which distin-
guishes a correct next utterance from randomly
sampled utterances from training datasets. Until
the parameters of the encoder have converged by
the classification task, the decoder is trained (fine-
tuning) to optimize a combination of two-loss func-
tions: a knowledge-aware binary classification loss
and the cross-entropy loss between predicted word
distribution and the true one.

Our contributions in this paper are three-fold:

e proposing an encoder-decoder framework
for document-grounded dialogue generation,
the semantic-oriented encoder and the GPT-
2 decoder with knowledge-aware classifica-
tion can successfully learn task-specific back-
ground and selection patterns respectively;

e separately training the encoder and decoder
that siginificantly reduce the difficulty of
learning and potential noise from the encoder;

e carried out a set of experiments on various
datasets and the results show that our method
outperforms other SOTA baselines.

2 Related work

Document-grounded dialogue generation is to gen-
erate informative responses by absorbing the proper
knowledge from given documents. So far, most



related works use an encoder-decoder framework
plus a document/knowledge-selection module to
generate responses. With the rapid development
of neural networks, the three parts in generative
methods continue to evolve from time to time.

In earlier work, RNN and standard atten-
tion (Bahdanau et al., 2015) are dominated. (Zhou
et al., 2018) uses a shared bi-LSTM for encod-
ing dialogue context and given documents while
the decoder and knowledge selection module are
implemented by another LSTM with global atten-
tion (Luong et al., 2015) and copy mechanism (See
et al., 2017). (Ye et al., 2020) first use two bi-GRU
for encoding dialogue context and ground-truth
responses and 1D-CNN for documents encoding,
then a double-attention mechanism on context and
documents is implemented for knowledge selection.
Finally, the decoder based on CVAE summarizes
encoded information to guide response generation.

Later, following the framework of Trans-
former (Vaswani et al., 2017), many works (Di-
nan et al., 2018; Tang and Hu, 2019; Li et al.,
2019; Kim et al., 2019, 2020) attempted to utilize
Transformer’s dot-product and multi-head atten-
tion to build their methods. For instance, in (Dinan
et al., 2018), dialogue context and documents are
encoded by a shared Transformer encoder as back-
ground information. Then the dot-product attention
for the knowledge selection is applied to utilizing
the context vector to select documents vectors. The
concatenation of selected document and dialogue
context vectors is feed into a Transformer decoder
for response generation. In (Li et al., 2019), the
authors provide an incremental encoder with multi-
head self-attention for encoding dialogue context
and corresponding documents sequentially. A two-
pass Transformer decoder is used to improve con-
text coherence (in the first pass) and the knowl-
edge relevance (in the second pass). In (Tang and
Hu, 2019) and (Kim et al., 2020), the variants of
the Transformer’s encoder and decoder are used
for learning background information and response
generation while VAE and deliberation models are
used for knowledge selection respectively.

Nowadays, the pre-trained model is profoundly
changing the domain in deep learning, like
BERT (Devlin et al., 2019), GPT (Brown et al.,
2020; Radford et al., 2018, 2019) and their vari-
ants (Lewis et al., 2020). They not only inherit the
advantages of Transformer but also enjoy the bene-
fits of the large-scale pre-trained parameters. More

researchers try to use only a pre-trained model
to address a downstream task by fine-tuning task-
specific datasets, such as the following works. The
authors in TransferTransfo first directly use GPT-
2 for document-grounded conversation and reach
a SOTA performance. Unlike the previous work,
the GPT-2 model handles all three parts of learn-
ing, i.e., the encoder for background learning, at-
tention modules for knowledge-selection learning
and the decoder for generation. It strongly proves
that high-frequency patterns in language captured
by large-scale parameters are significantly helpful
for three-part learning. Following (Thomas et al.,
2019), KnowledGPT (Zhao et al., 2020) propose a
more practical GPT-based conversation model. But
the difference is that a retrieval-like module based
on the BERT tailors given documents to meet the
length constraint for a GPT-2 model.

Unlike (Thomas et al., 2019) and (Zhao et al.,
2020), our model build on the classical encoder-
decoder framework instead of one main GPT-2
model in order to separately learn low-frequency
patterns for background and knowledge selection.
Such task-specific modules help to reduce the
burden of GPT-2 on learning low-frequency pat-
terns. In addition, the traditionally training method
(training the encoder and decoder together) will
lead to vanishing phenomenon since the decoder
(GPT?2) is stronger than our encoder, i.e., the out-
put of the encoder is ignored and the whole model
degenerated into a GPT-2 model (like Transfer-
Transfo) when the quality of the encoder result
is low at the beginning phase of the training pro-
cess (Fuet al., 2019; Bowman et al., 2016). Thus,
we introduce new classification task and different
optimizing method to address the problem.

3 Problem formalization

The problem is formally defined as follows. At
the T-th turn, let X = {Uy,...,Uy,...,Ur} be a
dialogue history (also referred as dialogue con-
text) and each U; represents an utterance from
a user or an agent. FEach utterance is a se-
quence of discrete words with varying length Uy =
{we1, we2, . wy ju, } where we; (1 < i < [Uy])
is the i-th word and |U| is the length of utter-
ance U;. For each utterance Uy, there is a specified
relevant document Dy = {dy 1, ...,dy|p, } Where
dy (1 < j < |Dy|) is the j-th word and | Dy| is the
length of document D;. Note that Dy, ..., Dry1
may be identical. Our goal is to generate a next



response Uz, 1 given its dialogue context X, its
relevant documents D<7 and D741 (which are the
knowledge of U1 selected from).

P(Ur41|X, D<ri1;0) =

|Uz 41 (1)

H P(wri1ilwrit,<i, X, D<ri1;6)
=1

where wri1,<i = Wr41,1, 0 W11
4 Our model

Our model is based on an encoder-decoder frame-
work, i.e., the semantic-oriented encoder with next-
utterance classification and the GPT-2 decoder with
a knowledge-aware classification. Figure 2 shows
the overview of our model.

4.1 Semantic-oriented encoder

As we mentioned before, a good response must be
a correct semantic extension of its dialogue context
with the knowledge, and usually the last utterance
is the bond to connect the response and the context.
Thus, first we use one shared self-attention mod-
ule from Transformer to encode dialogue context
X and last utterance Ur respectively. For each
module, its input is U; embedded as follows:

Em(U) =le(wi1), . e(wyu,)]  (2)

where e(w;) (1 < ¢t < T) is the word embed-
ding implemented by one matrix borrowed from
the counterpart of GPT-2 model (Radford et al.,
2019). Each self-attention module contains a stack
of N identical layer, each layer has two sub-layers,
the first sub-layer is a multi-head self-attention.
Each head attention takes a query matrix (), a key
matrix K and a value matrix V' as input and the
attention function is shown in Equation 3. Here
@, K and V are from the products of the ma-
trix [Em(U1), ..., Em(Ur)] and three different ma-
trixes due to the self-attention.

QK™ 3

Z; = Softmax( NG 1% 3)
where ¢ < h (h is the number of the heads) is
the head index and dj, is the size of the dimension
of K. The output of the first layer is the matrix
A = [Zy;...; Zp)W° (W? a transformation ma-
trix). The second sub-layer is fully connected feed-
forward network (FFN). The FFN includes two
linear transformations with ReLLU activation func-
tion, its input and output are Aand Y = FFN(A)

(FFN(x) = maz(0,zW; + b1) W + b2). Notice
that residual connection and layer normalization
are used in each layer as sub-layers. For simplicity,
they are omitted here.

After encoding dialogue context and last utter-
ance, the encoded last utterance is used to select
the information from the encoded context through
a context-attention module, which contains N lay-
ers and each one has three sublayers: a multi-head
self-attention, a multi-head context-attention and
a FFN. Here the multi-head context-attention is
almost same as the aforementioned self-attention
except that K and V are the output of the multi-
head attention for Ur.

Similarly, the relevant documents of dialogue
context are encoded by another self-attention mod-
ule and its key information is learned by a knowl-
edge attention module. For the knowledge atten-
tion, its K and V are the encoded history docu-
ments and () is the output of the context-attention
module that contains the learned key information
of dialogue context. It means that the crucial infor-
mation (i.e., knowledge) of documents is learned
by the selected dialogue context. After a knowl-
edge attention module, so far, the output of the
encoder is Y7 (the encoder result) that has semanti-
cally acquired the key information of context and
documents guided by the last utterance.

4.2 Next-utterance classification

In order to ensure that the background information
learned by the encoder is useful, we take the en-
coder result out and concatenate it with the wrong
reply or the golden reply separately plus a CLS
token in the end for classification as follows.

In = [Yr; Em(Ur)/Em(Urs1); O] (4)

where Em(Ur) and Em(Ur41) is the embedded
false reply randomly sampling from the rest re-
sponses and the golden reply respectively (here
the ratio of the number of Ur,; to the number
of Ur is %) and C is the embedded CLS token.
Then In is input into the aforementioned multi-
head self-attention module (Multi Head()) and a
linear transformation (Linear()) is build on the
attention for classification, as Equation 5

Re = Linear(MultiHead(In,In,In)) (5)

where Re is 2-D vector representing the prob-
abilities of the distribution on True and False re-
sponse. Note that only the hidden state of the CLS
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Figure 2: The overview of our model.

token is sent to the linear layer for classification
task, which can capture whether the encoder re-
sult has learned the correct semantic meaning of
dialogue context and corresponding knowledge. Al-
though our next-utterance classification is simple
but it successfully pushes the encoder to learn the
background information very well.

4.3 GPT-2 decoder with knowledge-aware
classification

Generally, existing methods ignore the truth that
many utterances do not contain knowledge from
given documents. They directly stuff the knowl-
edge into the model and do not consider whether
generated responses require the knowledge. Mean-
while, most available datasets for document-
grounded dialogue rarely indicate whether the re-
sponse includes the knowledge, and it is the reason
why existing methods neglect this problem.

To achieve real knowledge-ware responses, we
selected n daily and non-informative utterances
from the datasets labelled as "excluded", other re-
sponses are marked as "included". Our purpose is
not to encourage our model to generate knowledge-
excluded responses but is to let our model to gener-
ate responses with knowledge at the right time.

For each utterance, we calculated the semantic
similarity between the utterance and given docu-
ments (knowledge), then we also calculated the
semantic similarities between the utterance and n
selected knowledge-excluded responses.

scorei, = sim(Uri1, Dri1) 6)

where Urp 1 is the response to generate and sim()
is the cosine similarity function. Dy is the rele-

vant document of Ur 1.

SCOT €y = 112%>%(sim(UT+1, Uy)) 7
where U; is the ¢-th utterance of n selected utter-
ances.

The labeling rule is shown in Equation 8, i.e.,
if an utterance is more similar with its relevant
document than the most similar one among selected
knowledge-excluded utterances, its tag is set to 1,
otherwise, it is 0.

fag — 0, scorec, > score;n, ®
1, scoree, < score;,.

where 0 is the tag for knowledge unused and 1 is for
knowledge used. After labeling, the classification
task is introduced to the GPT-2 decoder. Then a
CLS token is added at the last position of the input
of the decoder and finally its hidden state are input
into the linear classifier which is same as the next-
utterance linear classifier.

4.4 Training procedure

Unlike traditional encoder and decoder training to-
gether, we divide the training procedure into two
stages. Firstly the encoder is trained at the first
stage individually by using the next-utterance clas-
sification until the parameters converges. Then, the
decoder is trained with the basis of the trained en-
coder at the second stage. Equation 9 shows the
loss of the first stage.

b= —ZlogP(yﬂU%T, ;/Uii“-uaDigT)

i=1
©)



where i is the index of training examples and ¥} is
the labels of the i-th example.

!

m

Ly ==Y (Mog P(ys|Uky, Digy, Yi)+
=1

U% 14

Z log P(whyq jlwk ;, Ubp iy, Doy, Y1)
j=1
(10)

where £ is the loss function of the second stage,
A is the hyper-parameter, ys is the label of the j
example. The former/latter item of Equation 10
and is the classification/cross entropy loss.

5 Experiments

5.1 Dataset

We evaluate our model with CMU Docu-
ment Grounded Conversations (CMU_DoG) and
PERSONA-CHAT datasets. They are built upon
crowd-sourcing where human conversations are
based on given documents. The CMU_DoG dataset
records the conversations between two persons
who discuss the given movie document. The
PERSONA-CHAT dataset contains multi-turn dia-
logues between two persons conditioned on artifi-
cial personas. Two datasets are downloaded from
the URLs' 2. Their statistics is shown in Table 1.

Statistics CMU_DoG PERSONA-CHAT
training 13541 16878
evaluation 780 1000
testing 2476 1000
#T/C 21.4 14.8
#W/U 18.6 11.2
#W/D 229 7.2
Table 1: Statistics of CMU_DoG and PERSONA-

CHAT datasets. (training/evaluation/testing: the num-
ber of examples in training/evaluation/testing datasets;
T/C is the average number of turns per conversation;
W/U and W/D are the average lengths of utterances and
given documents respectively.)

5.2 Baselines

We compare our model with the SOTA models: 1)
[TMN]: A transformer-based dialogue model (Di-
nan et al., 2018) using given documents, the code
is downloaded from the URL?; 2) [ITDD:]The

1
https://github.com/festvox/datasets-CMU_DoG

https://s3.amazonaws.com/datasets.huggingface.co/
personachat/personachat_self_original.json

3
https://github.com/facebookresearch/ParlAI/blob/master/
projects/wizard_of_wikipedia

model uses an incremental encoder and deliber-
ation decoder (Li et al., 2019). We implement the
model code from the URL?; 3) [TransferTransfo:]
A model based on GPT-2 (Thomas et al., 2019)
concatenates documents, dialogue context and re-
sponses into a sequences for generation. The code
is available at the URL?; 4) [DRD:] With the short-
age of the datasets of knowledge-grounded dia-
logues, the model (Zhao et al., 2019) isolates the pa-
rameters trained by knowledge-grounded dialogues
from the pre-trained parameters for ungrounded di-
alogues and documents.

5.3 Evaluation Metrics

We compare the performance of all models with
automatic and manual metrics:

Automatic Metrics: Following (Zhang et al.,
2018b), Avglen and Entropy are used to measure
response diversity, and Avglen is the average length
of generated responses, i.e.,the number of tokens.
BLEU (Papineni et al., 2002), Rouge-L (Lin, 2004),
METEOR (Lavie and Agarwal, 2007), F1 mea-
sure (Dinan et al., 2018) and perplexity(PPL) (Ben-
gio et al., 2003) are used to measure word level
similarity between golden reply and reply gener-
ated from different perspectives. For evaluating the
sentence-level performance, we use Embedding
metrics (Liu et al., 2016) : Average, Extrema and
Greedy (Liu et al., 2016; Serban et al., 2017), which
they describe the semantic similarity between gen-
erated and golden responses.

Manual Metrics: since there is only one golden
reply while dialogue answers are flexible (Liu et al.,
2016; Tao et al., 2018), we introduce three man-
ual metrics to evaluate generated answers from
different angles. (1) Fluency evaluates gener-
ated responses in terms of naturalness and fluency;
(2) Knowledge Relevance evaluates whether gen-
erated responses include the knowledge from docu-
ments or not; (3) Knowledge Fitness indicates that
knowledge is selected based on dialogue context;
five volunteers who are not involved in our work
are given 300 examples for each dataset, and they
need to choose the best answer for the 600 exam-
ples at each manual metric.To be fair, the model
name of each response is hidden and the examples
are randomly selected.

4
https://github.com/lizekang/ITDD

5
https://github.com/huggingface/
transfer-learning-conv-ai
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Model ParamsNum F1 PPL Average Extrema Greedy Avglen Entropy Rouge-L. METEOR BLEU
TMN 8 x 107 11.8 323 0.814 0.427 0.640 12.9 10.0 0.111 0.063 0.02
ITDD 11 x 107 9.9 260 0.765 0.383 0.592 11.7 10.6 0.117 0.051 0.02
TransferTransfo 12 x 107 124 157 0.823 0.430 0.649 10.0 10.7 0.115 0.058 0.02
DRD - 10.8 46.1 0.791 0.406 0.613 - - - - -
KnowledGPT 24 x 107 135 206 0.837 0.437 0.654 - - - - -
DcDial 17 x 107 14.6 16.0 0.825 0.448 0.657 9.9 9.8 0.146 0.071 0.03

Table 2: The results of automatic evaluation on CMU_DoG dataset. ("-": no data in the paper (Zhao et al., 2020).)

Model F1  PPL Average Extrema Greedy AvglLen Entropy Rouge-L METEOR BLEU
TMN (Dinan et al., 2018) 13.8 325 0.850 0.466 0.660 9.1 9.2 0.118 0.065 0.02
ITDD (Li et al., 2019) 13.8 221 0.849 0.480 0.663 8.9 7.4 0.146 0.063 0.03
TransferTransfo (Thomas et al., 2019) 13.2 143 0.833 0.462 0.651 9.5 10.2 0.117 0.068 0.02
DcDial 18.7 138 0.868 0.500 0.685 9.4 9.3 0.161 0.091 0.04

Table 3: The results of automatic evaluation on PERSONA-CHAT dataset.(DRD and KnowledGPT have no data)

5.4 Implementation Details

We implement our model based on the work
of (Thomas et al., 2019) 6. All models are trained
using 20 epochs and tested on the server with three
2080ti GPUs. Our DcDial uses the Adam optimiza-
tion method (Kingma and Ba, 2014) and GPT-2
(117M). Learning rate starts from 6.25e-5 and re-
duces linearly to O during training. The drop rate
is 0.1. The number of transformer layers in the
encoder is N = 3 and the number of transformer
layers in the next-sentence classifier is 1. The hyper
parameter \ of Equation 10 is 1. The training batch
size at stage 1/2 is 33/3. The hidden dimension is
768 and the number of attention heads is 12.

5.5 Experimental Results

Table 2 and 3 shows the automatic evaluation re-
sults of baselines and our model on CMU_DoG
and PERSONA-CHAT datasets. Except the PPL,
the larger value indicates the better performance.
Because KnowledGPT and DRD did not publish
the training code, their metric values are directly
quoted from the original paper (Zhao et al., 2020).

5.5.1 Automatic evaluation

From the two tables, we have two observations:
one is that all models based on GPT-2 have bet-
ter results than the rest ones; the other is that our
model performs the best on most metrics. For the
first observation, the performance of ITDD and
TransferTransfo has an obvious gap even if the
numbers of their parameters. It demonstrates high-
frequency patterns leaned by GPT-2 are very help-
ful for improving the generation capability. For the
second observation, we first compare our model
with TransferTransfo. In Table 3, our model signif-
icantly outperforms TransferTransfo at all metrics

6 . .
The code of our model and metrics are open source at https://github.com/
hanying980919/DcDial.

except "AvglLen" and "Entropy". It proves that gen-
erated responses of our model contain more iden-
tical words and similar semantics with the ground
truth based on the learned low-frequency patterns.
Note that If our background learning and infor-
mation selection do not work, our model will de-
generate into (or even worse than) the Transfer-
Transfo model. For "AvglLen" and "Entropy", a
very likely reason is that our encoder ’filters out’
much irrelevant information from dialogue context
and documents and it could reduce the diversity
of generation. Table 2 has similar results with Ta-
ble 3 but is slightly worse. It is probably caused
by that the knowledge documents of CMU_DoG
are much bigger than the documents for describing
persons (see Table 1). It reduces the performance
of our task-specific architectures and our model
degenerates into TransferTransfo.

There is an interesting phenomenon, e.g.
the performance of KnowledGPT is between
ours and TransferTransfo. In Table 2, our
model/KnowledGPT wins 4 out of 5 metrics com-
pared with KnowledGPT/TransferTransfo. As we
mentioned, KnowledGPT has an extra knowledge-
selection module based on BERT. Although the
module is to tailor given knowledge documents
to meet the length constraint for a GPT-2 model
or even shorter, fewer documents reduce the com-
plex of the learning of GPT2. More importantly,
the selection process utilizes dialogue context to
rank related document, which works like our back-
ground pattern at coarse-grained level.

5.5.2 Ablation study

Here we remove the knowledge-aware classifica-
tion, the encoder and the two-stage training pro-
cedure respectively to to verify their contribution.
Table 5 is the result of ablation experiment and we
have the following observations: 1) Removing the


https://github.com/hanying980919/DcDial
https://github.com/hanying980919/DcDial

Model F1 PPL  Average Extrema Greedy AvglLen Entropy rouge-l meteor BLEU
DcDial 146 16.0 0.825 0.448 0.657 9.9 9.8 0.146 0.071 0.03
-classification 14.0 16.2 0.820 0.445 0.652 11.0 9.9 0.139 0.065 0.03
-encoder 13.1 16.8 0.819 0.435 0.649 10.7 9.7 0.128 0.063 0.03
-stage 120 17.0 0.814 0.428 0.641 10.0 10.2 0.117 0.052 0.02

Table 4: Ablation study on CMU_DoG (-classification: remove the classification in decoder; -stage: train the
encoder and decoder together instead of separate training;-encoder: remove the encoder.).

knowledge-aware classification (-classification) in
decoder leads to an apparently worse results. With-
out the module, our model could wrongly introduce
more knowledge into generated responses whose
ground truth do not include knowledge from given
documents. 2) Cutting off the encoder (-encoder)
significantly reduce the performance of our model,
the F1 and Rough-L metrics drop more than 11%.
3) Stopping two-stage training (-stage) results in
the greatest decline in most of metrics. The maxi-
mum drop can reach around 20% since the vanish-
ing phenomenon makes the output of the encoder
noise. All observations shows that our specific-task
architectures can indeed improve the performance
of document-grounded dialogue.

heads
110 987 65 43210

(b)

heads
heads

(c) (@)

Figure 3: Heat map of attention distributions.

5.5.3 Visualization

Here we visualized the attention distribution of
the last layer of the decoder when generating the
last word. Figure 3 is the heat map of attention
distribution on each input of the decoder. In this
case, x-axis is the position ID and y-axis is 12
head attentions. The position IDs from 0 to 256
represent the embeddings of the relevant document
D71, the position IDs of the encoder result Yr is
from 257 to 272, and the embeddings of dialogue

context sit in the position IDs from 273 to the end.

Subfigure (a)/(b) shows the attention distribution
with training together/separately. Subfigure (c)/(d)
is the encoder results of Subfigure(a)/(b). Here we
can find that 1) the position IDs of the encoder
result in sub-figure(c) has much less weights (very
light red), which shows the vanishing phenomenon;
2) the position IDs of the encoder result in sub-
figure(b) has more weights than others (darker red),
which prove the advantages of two-stage training.
5.5.4 Human evaluation

Table 5 is the voting results in terms of three as-
pects. For Fluency, the results of TransferTransfo
and DcDial models are comparable and outper-
form others since both models are based on the
GPT-2 model, which has advantages in language
mode learning. For Knowledge Relevance, the
votes of TransferTransfo is accounted for 33% and
more than ours (30%). The reason is that, com-
pared to our model, TransferTransfo do not learn
the knowledge-aware classification and tends to
insert more knowledge into generated responses.
For Knowledge Fitness, our model has better per-
formance than others benefit from the semantic-
oriented encoder and the large-scale GPT-2.

Fluency Knowledge Knowledge
Relevance Fitness

TMN 12% 17% 18%

TransferTransfo 30% 33% 22%

ITDD 27% 20% 25%

DcDial 31% 30% 35%

Table 5: The result of human evaluation.

6 Conclusion

In this paper, we proposed a semantic-oriented
knowledge-aware model (DcDial) for document-
grounded dialogue generation. Through the
semantic-oriented encoder with utterance predic-
tion, the model can learn the specific low-frequency
for accurately capturing background information.
Meanwhile, the GPT-2 decoder with the knowledge
prediction can implement real knowledge-aware di-
alogue generation. Empirical results show that our
model can generate responses with much more co-
herence and knowledge-filled compared with the
state-of-the-art baselines.
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