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Abstract

Currently, the Generative Pre-trained Trans-001
former model (GPT-2) has achieved remark-002
able performance in document-grounded di-003
alogue generation since high-frequency pat-004
terns in the large corpora are well memorized005
during its pre-train procedure. However, it006
is still hard to capture low-frequency task-007
specific patterns especially when directly tak-008
ing given documents and dialogue context as009
input. Here we propose an encoder-decoder010
framework including a semantic-oriented en-011
coder and GPT-2 decoder with knowledge-012
aware classification, which strengthens the013
learning of two following task-specific pat-014
terns. One pattern is how to semantically se-015
lect the crucial information of dialogue context016
and corresponding history knowledge from017
documents; the other is when to generate a re-018
sponse with knowledge since many responses019
do not contain it. With learned high- and low-020
frequency patterns, empirical study shows that021
our method has better generative performance022
than state-of-the-arts.023

1 Introduction024

In the last years, there are tons of elaborate work025

thrusting into the field of open-domain dialogue026

generation and reaching good results (Vinyals and027

Le, 2015; Serban et al., 2016; Tian et al., 2017;028

Zhang et al., 2018a; Zheng et al., 2020b; Huang029

et al., 2020; Wang et al., 2021). However, the030

generic generation remains, which refers to the gen-031

erated responses that are meaningless and boring,032

such as, "Yes, of course." They make conversa-033

tions between agents and users difficult to continue.034

Many works (Xing et al., 2017; Chen et al., 2018;035

Ghazvininejad et al., 2018; Zheng et al., 2020b)036

attempted to address this problem using different037

techniques, but there is still much room to improve.038

Recently, some researchers have realized that039

document-grounded conversation is an effective040

solution to solve generic responses, i.e., generat-041

ing informative responses by selecting appropriate 042

knowledge from given documents with dialogue 043

context (Zheng et al., 2020a). In general, there are 044

two key steps to generate document-grounded re- 045

sponses. The former step is to learn a background 046

pattern that can capture the crucial information 047

from dialogue context and corresponding history 048

knowledge as candidate information for the gen- 049

eration. The latter one is to acquire a selection 050

pattern that obtains most related parts in candidate 051

information to select appropriate knowledge from 052

given documents and then generate informative and 053

coherent responses. 054

There is a line of research to learn the patterns 055

better. In earlier work (Zhou et al., 2018; Zhao 056

et al., 2019), an RNN-based model is used to learn 057

the background pattern and encode dialogue con- 058

text and documents. Meanwhile, another RNN- 059

based model with the general attention mecha- 060

nism (Bahdanau et al., 2015) is employed to learn 061

the selection pattern and generate responses. Later, 062

with the great success of Transformer (Vaswani 063

et al., 2017), some research works (Dinan et al., 064

2018; Tang and Hu, 2019; Li et al., 2019; Kim 065

et al., 2019, 2020) utilize its encoder to acquire a 066

better semantic representation for dialogue context 067

and documents, as well as, its decoder is employed 068

for better dialogue generation. More importantly, 069

the multi-head and dot-product attention of Trans- 070

former are effectively used to learn the background 071

and selection patterns. 072

Very recently, large-scale pre-trained language 073

models exhibit compelling performance in NLP 074

generation task, such as GPT2 (Radford et al., 075

2019). Especially for open-domain dialogue, the 076

prototype DialoGPT (Zhang et al., 2020) can reach 077

unprecedented results, i.e., better semantic coher- 078

ent responses with more contextual details. Then, 079

the TransferTransfo (Thomas et al., 2019) initially 080

utilizes the GPT-2 to address document-ground di- 081

alogue generation (i.e., the conversation based on 082
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Document

…The film stars Macaulay Culkin as
Kevin McCallister, a boy who is
mistakenly left behind when his family
flies to Paris for their Christmas…

Context

A: Hello! How did you like the
movie Home Alone?
B: It was entertaining, funny, and
moving. How did you like it?

Human

A: I thought Culkin did a nice job as
Kevin McCallister. It was entertaining.
But it has mediocre reviews. I wonder
why.

TransferTransfo
A: I thought it was an interesting movie
and I was very interested in watching it.

Our model
A: I thought it was a great family movie.
I think Macaulay Culkin did a great job
portraying Kevin McCallister.

Figure 1: An example from testing datasets of
CMU_DoG.

given documents containing the agent’s persona).083

Without the task-specific architectures, the Trans-084

ferTransfo directly put all kinds of information085

(containing dialogue context and all documents)086

into the GPT2 with the simple losses of a cross087

entropy and next-utterance classification, and its088

performance is also state-of-the-art at that time.089

One reason is that high-frequency patterns in090

large corpora learned by the pre-train are well mem-091

orized by the GPT-2, such as grammar (Vig, 2019;092

Clark et al., 2019), syntactic (Hewitt and Manning.,093

2019), commonsense (Davison et al., 2019) and094

even world knowledge (Petroni et al., 2020; Wang095

et al., 2020). They greatly improve the semantic096

coherence and appropriateness of knowledge selec-097

tion in generated responses. For example, in the098

line 4 of Figure 1, the proper word "interesting"099

is more likely generated when the commonsense100

"Entertaining, funny, and moving usually means101

interesting" is pre-learned by the GPT-2.102

Although the trend of the new paradigm (Brown103

et al., 2020) is to remove the need for task-specific104

architectures and directly fine-tune pre-trained105

models for downstream tasks, here we argue that106

1) high-frequency patterns cannot replace low-107

frequency patterns (e.g., background and selection108

patterns) (Shin et al., 2020; Liu et al., 2021); 2)109

without task-specific architectures, simultaneously110

training background and selection patterns signifi-111

cantly increase the difficulty of learning. In Table 1,112

TransferTransfo can generate a coherent response113

but it does not capture appropriates specific knowl-114

edge from given documents.115

Targeting the problems, we propose a document-116

grounded Double-classification Dialogue gener- 117

ation model (DcDial) with an encoder-decoder 118

framework for learning separate. To learn the back- 119

ground pattern, our semantic-oriented encoder se- 120

quentially utilizes two modules to semantically se- 121

lect contextual key information and correspond- 122

ing history knowledge as background information 123

since a good response is a correct semantic exten- 124

sion of the dialogue context. Meanwhile, our GPT- 125

2 decoder is primarily responsible for knowledge 126

selection through one classification task. Generally, 127

existing methods ignored the truth that many utter- 128

ances do not contain knowledge from given docu- 129

ments. Thus, a binary classification task is intro- 130

duced into the decoder as a soft gate for knowledge 131

selection. It emphasizes the learning of knowledge- 132

awareness for response generation. 133

To further reduce the difficulty of learning and re- 134

move potential noise from the encoder (Zhao et al., 135

2020), inspired by the wake-sleep algorithm (Ikeda 136

et al., 1999), in the beginning, we first train the en- 137

coder separately and then train the decoder. Hence, 138

a next-utterance classification task is set on the 139

encoder as a binary classification, which distin- 140

guishes a correct next utterance from randomly 141

sampled utterances from training datasets. Until 142

the parameters of the encoder have converged by 143

the classification task, the decoder is trained (fine- 144

tuning) to optimize a combination of two-loss func- 145

tions: a knowledge-aware binary classification loss 146

and the cross-entropy loss between predicted word 147

distribution and the true one. 148

Our contributions in this paper are three-fold: 149

• proposing an encoder-decoder framework 150

for document-grounded dialogue generation, 151

the semantic-oriented encoder and the GPT- 152

2 decoder with knowledge-aware classifica- 153

tion can successfully learn task-specific back- 154

ground and selection patterns respectively; 155

• separately training the encoder and decoder 156

that siginificantly reduce the difficulty of 157

learning and potential noise from the encoder; 158

• carried out a set of experiments on various 159

datasets and the results show that our method 160

outperforms other SOTA baselines. 161

2 Related work 162

Document-grounded dialogue generation is to gen- 163

erate informative responses by absorbing the proper 164

knowledge from given documents. So far, most 165
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related works use an encoder-decoder framework166

plus a document/knowledge-selection module to167

generate responses. With the rapid development168

of neural networks, the three parts in generative169

methods continue to evolve from time to time.170

In earlier work, RNN and standard atten-171

tion (Bahdanau et al., 2015) are dominated. (Zhou172

et al., 2018) uses a shared bi-LSTM for encod-173

ing dialogue context and given documents while174

the decoder and knowledge selection module are175

implemented by another LSTM with global atten-176

tion (Luong et al., 2015) and copy mechanism (See177

et al., 2017). (Ye et al., 2020) first use two bi-GRU178

for encoding dialogue context and ground-truth179

responses and 1D-CNN for documents encoding,180

then a double-attention mechanism on context and181

documents is implemented for knowledge selection.182

Finally, the decoder based on CVAE summarizes183

encoded information to guide response generation.184

Later, following the framework of Trans-185

former (Vaswani et al., 2017), many works (Di-186

nan et al., 2018; Tang and Hu, 2019; Li et al.,187

2019; Kim et al., 2019, 2020) attempted to utilize188

Transformer’s dot-product and multi-head atten-189

tion to build their methods. For instance, in (Dinan190

et al., 2018), dialogue context and documents are191

encoded by a shared Transformer encoder as back-192

ground information. Then the dot-product attention193

for the knowledge selection is applied to utilizing194

the context vector to select documents vectors. The195

concatenation of selected document and dialogue196

context vectors is feed into a Transformer decoder197

for response generation. In (Li et al., 2019), the198

authors provide an incremental encoder with multi-199

head self-attention for encoding dialogue context200

and corresponding documents sequentially. A two-201

pass Transformer decoder is used to improve con-202

text coherence (in the first pass) and the knowl-203

edge relevance (in the second pass). In (Tang and204

Hu, 2019) and (Kim et al., 2020), the variants of205

the Transformer’s encoder and decoder are used206

for learning background information and response207

generation while VAE and deliberation models are208

used for knowledge selection respectively.209

Nowadays, the pre-trained model is profoundly210

changing the domain in deep learning, like211

BERT (Devlin et al., 2019), GPT (Brown et al.,212

2020; Radford et al., 2018, 2019) and their vari-213

ants (Lewis et al., 2020). They not only inherit the214

advantages of Transformer but also enjoy the bene-215

fits of the large-scale pre-trained parameters. More216

researchers try to use only a pre-trained model 217

to address a downstream task by fine-tuning task- 218

specific datasets, such as the following works. The 219

authors in TransferTransfo first directly use GPT- 220

2 for document-grounded conversation and reach 221

a SOTA performance. Unlike the previous work, 222

the GPT-2 model handles all three parts of learn- 223

ing, i.e., the encoder for background learning, at- 224

tention modules for knowledge-selection learning 225

and the decoder for generation. It strongly proves 226

that high-frequency patterns in language captured 227

by large-scale parameters are significantly helpful 228

for three-part learning. Following (Thomas et al., 229

2019), KnowledGPT (Zhao et al., 2020) propose a 230

more practical GPT-based conversation model. But 231

the difference is that a retrieval-like module based 232

on the BERT tailors given documents to meet the 233

length constraint for a GPT-2 model. 234

Unlike (Thomas et al., 2019) and (Zhao et al., 235

2020), our model build on the classical encoder- 236

decoder framework instead of one main GPT-2 237

model in order to separately learn low-frequency 238

patterns for background and knowledge selection. 239

Such task-specific modules help to reduce the 240

burden of GPT-2 on learning low-frequency pat- 241

terns. In addition, the traditionally training method 242

(training the encoder and decoder together) will 243

lead to vanishing phenomenon since the decoder 244

(GPT2) is stronger than our encoder, i.e., the out- 245

put of the encoder is ignored and the whole model 246

degenerated into a GPT-2 model (like Transfer- 247

Transfo) when the quality of the encoder result 248

is low at the beginning phase of the training pro- 249

cess (Fu et al., 2019; Bowman et al., 2016). Thus, 250

we introduce new classification task and different 251

optimizing method to address the problem. 252

3 Problem formalization 253

The problem is formally defined as follows. At 254

the T -th turn, let X = {U1, ..., Ut, ..., UT } be a 255

dialogue history (also referred as dialogue con- 256

text) and each Ut represents an utterance from 257

a user or an agent. Each utterance is a se- 258

quence of discrete words with varying length Ut = 259

{wt,1, wt,2, ..., wt,|Ut|} where wt,i(1 ≤ i ≤ |Ut|) 260

is the i-th word and |Ut| is the length of utter- 261

ance Ut. For each utterance Ut, there is a specified 262

relevant document Dt = {dt,1, ..., dt,|Dt|} where 263

dt,j(1 ≤ j ≤ |Dt|) is the j-th word and |Dt| is the 264

length of document Dt. Note that D1, ..., DT+1 265

may be identical. Our goal is to generate a next 266
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response ŪT+1 given its dialogue context X , its267

relevant documents D≤T and DT+1 (which are the268

knowledge of ŪT+1 selected from).269

P (ŪT+1|X,D≤T+1; θ) =

|ŪT+1|∏
i=1

P (wT+1,i|wT+1,<i, X,D≤T+1; θ)
(1)270

where wT+1,<i = wT+1,1, ..., wT+1,i−1.271

4 Our model272

Our model is based on an encoder-decoder frame-273

work, i.e., the semantic-oriented encoder with next-274

utterance classification and the GPT-2 decoder with275

a knowledge-aware classification. Figure 2 shows276

the overview of our model.277

4.1 Semantic-oriented encoder278

As we mentioned before, a good response must be279

a correct semantic extension of its dialogue context280

with the knowledge, and usually the last utterance281

is the bond to connect the response and the context.282

Thus, first we use one shared self-attention mod-283

ule from Transformer to encode dialogue context284

X and last utterance UT respectively. For each285

module, its input is Ut embedded as follows:286

Em(Ut) =[e(wt,1), ..., e(wt,|Ut|)] (2)287

where e(wt,i) (1 ≤ t ≤ T ) is the word embed-288

ding implemented by one matrix borrowed from289

the counterpart of GPT-2 model (Radford et al.,290

2019). Each self-attention module contains a stack291

of N identical layer, each layer has two sub-layers,292

the first sub-layer is a multi-head self-attention.293

Each head attention takes a query matrix Q, a key294

matrix K and a value matrix V as input and the295

attention function is shown in Equation 3. Here296

Q, K and V are from the products of the ma-297

trix [Em(U1), ..., Em(UT )] and three different ma-298

trixes due to the self-attention.299

Zi = Softmax(
QKT

√
dk

)V (3)300

where i ≤ h (h is the number of the heads) is301

the head index and dk is the size of the dimension302

of K. The output of the first layer is the matrix303

A = [Z1; ...;Zh]W o (W o a transformation ma-304

trix). The second sub-layer is fully connected feed-305

forward network (FFN). The FFN includes two306

linear transformations with ReLU activation func-307

tion, its input and output are A and Y = FFN(A)308

(FFN(x) = max(0, xW1 + b1)W2 + b2). Notice 309

that residual connection and layer normalization 310

are used in each layer as sub-layers. For simplicity, 311

they are omitted here. 312

After encoding dialogue context and last utter- 313

ance, the encoded last utterance is used to select 314

the information from the encoded context through 315

a context-attention module, which contains N lay- 316

ers and each one has three sublayers: a multi-head 317

self-attention, a multi-head context-attention and 318

a FFN. Here the multi-head context-attention is 319

almost same as the aforementioned self-attention 320

except that K and V are the output of the multi- 321

head attention for U<T . 322

Similarly, the relevant documents of dialogue 323

context are encoded by another self-attention mod- 324

ule and its key information is learned by a knowl- 325

edge attention module. For the knowledge atten- 326

tion, its K and V are the encoded history docu- 327

ments and Q is the output of the context-attention 328

module that contains the learned key information 329

of dialogue context. It means that the crucial infor- 330

mation (i.e., knowledge) of documents is learned 331

by the selected dialogue context. After a knowl- 332

edge attention module, so far, the output of the 333

encoder is YT (the encoder result) that has semanti- 334

cally acquired the key information of context and 335

documents guided by the last utterance. 336

4.2 Next-utterance classification 337

In order to ensure that the background information 338

learned by the encoder is useful, we take the en- 339

coder result out and concatenate it with the wrong 340

reply or the golden reply separately plus a CLS 341

token in the end for classification as follows. 342

In = [YT ;Em(UF )/Em(UT+1);C] (4) 343

where Em(UF ) and Em(UT+1) is the embedded 344

false reply randomly sampling from the rest re- 345

sponses and the golden reply respectively (here 346

the ratio of the number of UT+1 to the number 347

of UF is 1
5 ) and C is the embedded CLS token. 348

Then In is input into the aforementioned multi- 349

head self-attention module (MultiHead()) and a 350

linear transformation (Linear()) is build on the 351

attention for classification, as Equation 5 352

Re = Linear(MultiHead(In, In, In)) (5) 353

where Re is 2-D vector representing the prob- 354

abilities of the distribution on True and False re- 355

sponse. Note that only the hidden state of the CLS 356
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Figure 2: The overview of our model.

token is sent to the linear layer for classification357

task, which can capture whether the encoder re-358

sult has learned the correct semantic meaning of359

dialogue context and corresponding knowledge. Al-360

though our next-utterance classification is simple361

but it successfully pushes the encoder to learn the362

background information very well.363

4.3 GPT-2 decoder with knowledge-aware364

classification365

Generally, existing methods ignore the truth that366

many utterances do not contain knowledge from367

given documents. They directly stuff the knowl-368

edge into the model and do not consider whether369

generated responses require the knowledge. Mean-370

while, most available datasets for document-371

grounded dialogue rarely indicate whether the re-372

sponse includes the knowledge, and it is the reason373

why existing methods neglect this problem.374

To achieve real knowledge-ware responses, we375

selected n daily and non-informative utterances376

from the datasets labelled as "excluded", other re-377

sponses are marked as "included". Our purpose is378

not to encourage our model to generate knowledge-379

excluded responses but is to let our model to gener-380

ate responses with knowledge at the right time.381

For each utterance, we calculated the semantic382

similarity between the utterance and given docu-383

ments (knowledge), then we also calculated the384

semantic similarities between the utterance and n385

selected knowledge-excluded responses.386

scorein = sim(UT+1, DT+1) (6)387

where UT+1 is the response to generate and sim()388

is the cosine similarity function. DT+1 is the rele-389

vant document of UT+1. 390

scoreex = max
1≤i≤n

(sim(UT+1, Ui)) (7) 391

where Ui is the i-th utterance of n selected utter- 392

ances. 393

The labeling rule is shown in Equation 8, i.e., 394

if an utterance is more similar with its relevant 395

document than the most similar one among selected 396

knowledge-excluded utterances, its tag is set to 1, 397

otherwise, it is 0. 398

tag =

{
0, scoreex > scorein,

1, scoreex ≤ scorein.
(8) 399

where 0 is the tag for knowledge unused and 1 is for 400

knowledge used. After labeling, the classification 401

task is introduced to the GPT-2 decoder. Then a 402

CLS token is added at the last position of the input 403

of the decoder and finally its hidden state are input 404

into the linear classifier which is same as the next- 405

utterance linear classifier. 406

4.4 Training procedure 407

Unlike traditional encoder and decoder training to- 408

gether, we divide the training procedure into two 409

stages. Firstly the encoder is trained at the first 410

stage individually by using the next-utterance clas- 411

sification until the parameters converges. Then, the 412

decoder is trained with the basis of the trained en- 413

coder at the second stage. Equation 9 shows the 414

loss of the first stage. 415

`1 = −
m∑
i=1

logP (yi1|U i
≤T , R

i
f/U

i
T+1, D

i
≤T )

(9)
416
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where i is the index of training examples and yi1 is417

the labels of the i-th example.418

`2 = −
m′∑
i=1

(λ logP (yi2|U i
≤T , D

i
≤T+1, Y

i
T )+

|U i
T+1|∑
j=1

logP (wi
T+1,j |wi

<j , U
i
≤T+1, D

i
T+1, Y

i
T ))

(10)

419

where `2 is the loss function of the second stage,420

λ is the hyper-parameter, y2 is the label of the j421

example. The former/latter item of Equation 10422

and is the classification/cross entropy loss.423

5 Experiments424

5.1 Dataset425

We evaluate our model with CMU Docu-426

ment Grounded Conversations (CMU_DoG) and427

PERSONA-CHAT datasets. They are built upon428

crowd-sourcing where human conversations are429

based on given documents. The CMU_DoG dataset430

records the conversations between two persons431

who discuss the given movie document. The432

PERSONA-CHAT dataset contains multi-turn dia-433

logues between two persons conditioned on artifi-434

cial personas. Two datasets are downloaded from435

the URLs1 2. Their statistics is shown in Table 1.436

Statistics CMU_DoG PERSONA-CHAT
training 13541 16878
evaluation 780 1000
testing 2476 1000
#T/C 21.4 14.8
#W/U 18.6 11.2
#W/D 229 7.2

Table 1: Statistics of CMU_DoG and PERSONA-
CHAT datasets. (training/evaluation/testing: the num-
ber of examples in training/evaluation/testing datasets;
T/C is the average number of turns per conversation;
W/U and W/D are the average lengths of utterances and
given documents respectively.)

5.2 Baselines437

We compare our model with the SOTA models: 1)438

[TMN]: A transformer-based dialogue model (Di-439

nan et al., 2018) using given documents, the code440

is downloaded from the URL3; 2) [ITDD:]The441

1
https://github.com/festvox/datasets-CMU_DoG

2
https://s3.amazonaws.com/datasets.huggingface.co/

personachat/personachat_self_original.json
3
https://github.com/facebookresearch/ParlAI/blob/master/

projects/wizard_of_wikipedia

model uses an incremental encoder and deliber- 442

ation decoder (Li et al., 2019). We implement the 443

model code from the URL4; 3) [TransferTransfo:] 444

A model based on GPT-2 (Thomas et al., 2019) 445

concatenates documents, dialogue context and re- 446

sponses into a sequences for generation. The code 447

is available at the URL5; 4) [DRD:] With the short- 448

age of the datasets of knowledge-grounded dia- 449

logues, the model (Zhao et al., 2019) isolates the pa- 450

rameters trained by knowledge-grounded dialogues 451

from the pre-trained parameters for ungrounded di- 452

alogues and documents. 453

5.3 Evaluation Metrics 454

We compare the performance of all models with 455

automatic and manual metrics: 456

Automatic Metrics: Following (Zhang et al., 457

2018b), Avglen and Entropy are used to measure 458

response diversity, and Avglen is the average length 459

of generated responses, i.e.,the number of tokens. 460

BLEU (Papineni et al., 2002), Rouge-L (Lin, 2004), 461

METEOR (Lavie and Agarwal, 2007), F1 mea- 462

sure (Dinan et al., 2018) and perplexity(PPL) (Ben- 463

gio et al., 2003) are used to measure word level 464

similarity between golden reply and reply gener- 465

ated from different perspectives. For evaluating the 466

sentence-level performance, we use Embedding 467

metrics (Liu et al., 2016) : Average, Extrema and 468

Greedy (Liu et al., 2016; Serban et al., 2017), which 469

they describe the semantic similarity between gen- 470

erated and golden responses. 471

Manual Metrics: since there is only one golden 472

reply while dialogue answers are flexible (Liu et al., 473

2016; Tao et al., 2018), we introduce three man- 474

ual metrics to evaluate generated answers from 475

different angles. (1) Fluency evaluates gener- 476

ated responses in terms of naturalness and fluency; 477

(2) Knowledge Relevance evaluates whether gen- 478

erated responses include the knowledge from docu- 479

ments or not; (3) Knowledge Fitness indicates that 480

knowledge is selected based on dialogue context; 481

five volunteers who are not involved in our work 482

are given 300 examples for each dataset, and they 483

need to choose the best answer for the 600 exam- 484

ples at each manual metric.To be fair, the model 485

name of each response is hidden and the examples 486

are randomly selected. 487

4
https://github.com/lizekang/ITDD

5
https://github.com/huggingface/

transfer-learning-conv-ai

6

https://github.com/festvox/datasets-CMU_DoG
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https://github.com/huggingface/transfer-learning-conv-ai
https://github.com/huggingface/transfer-learning-conv-ai


Model ParamsNum F1 PPL Average Extrema Greedy AvgLen Entropy Rouge-L METEOR BLEU
TMN 8× 107 11.8 32.3 0.814 0.427 0.640 12.9 10.0 0.111 0.063 0.02
ITDD 11× 107 9.9 26.0 0.765 0.383 0.592 11.7 10.6 0.117 0.051 0.02
TransferTransfo 12× 107 12.4 15.7 0.823 0.430 0.649 10.0 10.7 0.115 0.058 0.02
DRD - 10.8 46.1 0.791 0.406 0.613 - - - - -
KnowledGPT 24× 107 13.5 20.6 0.837 0.437 0.654 - - - - -
DcDial 17× 107 14.6 16.0 0.825 0.448 0.657 9.9 9.8 0.146 0.071 0.03

Table 2: The results of automatic evaluation on CMU_DoG dataset. ("-": no data in the paper (Zhao et al., 2020).)

Model F1 PPL Average Extrema Greedy AvgLen Entropy Rouge-L METEOR BLEU
TMN (Dinan et al., 2018) 13.8 32.5 0.850 0.466 0.660 9.1 9.2 0.118 0.065 0.02
ITDD (Li et al., 2019) 13.8 22.1 0.849 0.480 0.663 8.9 7.4 0.146 0.063 0.03
TransferTransfo (Thomas et al., 2019) 13.2 14.3 0.833 0.462 0.651 9.5 10.2 0.117 0.068 0.02
DcDial 18.7 13.8 0.868 0.500 0.685 9.4 9.3 0.161 0.091 0.04

Table 3: The results of automatic evaluation on PERSONA-CHAT dataset.(DRD and KnowledGPT have no data)

5.4 Implementation Details488

We implement our model based on the work489

of (Thomas et al., 2019) 6. All models are trained490

using 20 epochs and tested on the server with three491

2080ti GPUs. Our DcDial uses the Adam optimiza-492

tion method (Kingma and Ba, 2014) and GPT-2493

(117M). Learning rate starts from 6.25e-5 and re-494

duces linearly to 0 during training. The drop rate495

is 0.1. The number of transformer layers in the496

encoder is N = 3 and the number of transformer497

layers in the next-sentence classifier is 1. The hyper498

parameter λ of Equation 10 is 1. The training batch499

size at stage 1/2 is 33/3. The hidden dimension is500

768 and the number of attention heads is 12.501

5.5 Experimental Results502

Table 2 and 3 shows the automatic evaluation re-503

sults of baselines and our model on CMU_DoG504

and PERSONA-CHAT datasets. Except the PPL,505

the larger value indicates the better performance.506

Because KnowledGPT and DRD did not publish507

the training code, their metric values are directly508

quoted from the original paper (Zhao et al., 2020).509

5.5.1 Automatic evaluation510

From the two tables, we have two observations:511

one is that all models based on GPT-2 have bet-512

ter results than the rest ones; the other is that our513

model performs the best on most metrics. For the514

first observation, the performance of ITDD and515

TransferTransfo has an obvious gap even if the516

numbers of their parameters. It demonstrates high-517

frequency patterns leaned by GPT-2 are very help-518

ful for improving the generation capability. For the519

second observation, we first compare our model520

with TransferTransfo. In Table 3, our model signif-521

icantly outperforms TransferTransfo at all metrics522

6
The code of our model and metrics are open source at https://github.com/

hanying980919/DcDial.

except "AvgLen" and "Entropy". It proves that gen- 523

erated responses of our model contain more iden- 524

tical words and similar semantics with the ground 525

truth based on the learned low-frequency patterns. 526

Note that If our background learning and infor- 527

mation selection do not work, our model will de- 528

generate into (or even worse than) the Transfer- 529

Transfo model. For "AvgLen" and "Entropy", a 530

very likely reason is that our encoder ’filters out’ 531

much irrelevant information from dialogue context 532

and documents and it could reduce the diversity 533

of generation. Table 2 has similar results with Ta- 534

ble 3 but is slightly worse. It is probably caused 535

by that the knowledge documents of CMU_DoG 536

are much bigger than the documents for describing 537

persons (see Table 1). It reduces the performance 538

of our task-specific architectures and our model 539

degenerates into TransferTransfo. 540

There is an interesting phenomenon, e.g. 541

the performance of KnowledGPT is between 542

ours and TransferTransfo. In Table 2, our 543

model/KnowledGPT wins 4 out of 5 metrics com- 544

pared with KnowledGPT/TransferTransfo. As we 545

mentioned, KnowledGPT has an extra knowledge- 546

selection module based on BERT. Although the 547

module is to tailor given knowledge documents 548

to meet the length constraint for a GPT-2 model 549

or even shorter, fewer documents reduce the com- 550

plex of the learning of GPT2. More importantly, 551

the selection process utilizes dialogue context to 552

rank related document, which works like our back- 553

ground pattern at coarse-grained level. 554

5.5.2 Ablation study 555

Here we remove the knowledge-aware classifica- 556

tion, the encoder and the two-stage training pro- 557

cedure respectively to to verify their contribution. 558

Table 5 is the result of ablation experiment and we 559

have the following observations: 1) Removing the 560
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Model F1 PPL Average Extrema Greedy AvgLen Entropy rouge-l meteor BLEU
DcDial 14.6 16.0 0.825 0.448 0.657 9.9 9.8 0.146 0.071 0.03
-classification 14.0 16.2 0.820 0.445 0.652 11.0 9.9 0.139 0.065 0.03
-encoder 13.1 16.8 0.819 0.435 0.649 10.7 9.7 0.128 0.063 0.03
-stage 12.0 17.0 0.814 0.428 0.641 10.0 10.2 0.117 0.052 0.02

Table 4: Ablation study on CMU_DoG (-classification: remove the classification in decoder; -stage: train the
encoder and decoder together instead of separate training;-encoder: remove the encoder.).

knowledge-aware classification (-classification) in561

decoder leads to an apparently worse results. With-562

out the module, our model could wrongly introduce563

more knowledge into generated responses whose564

ground truth do not include knowledge from given565

documents. 2) Cutting off the encoder (-encoder)566

significantly reduce the performance of our model,567

the F1 and Rough-L metrics drop more than 11%.568

3) Stopping two-stage training (-stage) results in569

the greatest decline in most of metrics. The maxi-570

mum drop can reach around 20% since the vanish-571

ing phenomenon makes the output of the encoder572

noise. All observations shows that our specific-task573

architectures can indeed improve the performance574

of document-grounded dialogue.
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Figure 3: Heat map of attention distributions.

575
5.5.3 Visualization576

Here we visualized the attention distribution of577

the last layer of the decoder when generating the578

last word. Figure 3 is the heat map of attention579

distribution on each input of the decoder. In this580

case, x-axis is the position ID and y-axis is 12581

head attentions. The position IDs from 0 to 256582

represent the embeddings of the relevant document583

DT+1, the position IDs of the encoder result YT is584

from 257 to 272, and the embeddings of dialogue585

context sit in the position IDs from 273 to the end.586

Subfigure (a)/(b) shows the attention distribution 587

with training together/separately. Subfigure (c)/(d) 588

is the encoder results of Subfigure(a)/(b). Here we 589

can find that 1) the position IDs of the encoder 590

result in sub-figure(c) has much less weights (very 591

light red), which shows the vanishing phenomenon; 592

2) the position IDs of the encoder result in sub- 593

figure(b) has more weights than others (darker red), 594

which prove the advantages of two-stage training. 595

5.5.4 Human evaluation 596

Table 5 is the voting results in terms of three as- 597

pects. For Fluency, the results of TransferTransfo 598

and DcDial models are comparable and outper- 599

form others since both models are based on the 600

GPT-2 model, which has advantages in language 601

mode learning. For Knowledge Relevance, the 602

votes of TransferTransfo is accounted for 33% and 603

more than ours (30%). The reason is that, com- 604

pared to our model, TransferTransfo do not learn 605

the knowledge-aware classification and tends to 606

insert more knowledge into generated responses. 607

For Knowledge Fitness, our model has better per- 608

formance than others benefit from the semantic- 609

oriented encoder and the large-scale GPT-2.

Fluency Knowledge
Relevance

Knowledge
Fitness

TMN 12% 17% 18%
TransferTransfo 30% 33% 22%
ITDD 27% 20% 25%
DcDial 31% 30% 35%

Table 5: The result of human evaluation.
6106 Conclusion 611

In this paper, we proposed a semantic-oriented 612

knowledge-aware model (DcDial) for document- 613

grounded dialogue generation. Through the 614

semantic-oriented encoder with utterance predic- 615

tion, the model can learn the specific low-frequency 616

for accurately capturing background information. 617

Meanwhile, the GPT-2 decoder with the knowledge 618

prediction can implement real knowledge-aware di- 619

alogue generation. Empirical results show that our 620

model can generate responses with much more co- 621

herence and knowledge-filled compared with the 622

state-of-the-art baselines. 623
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