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Abstract

SVGD is a popular particle-based variational inference algorithm with well studied1

mean-field dynamics. However, its finite-particle behavior is far less understood.2

Our work introduces the notion of virtual particles to develop novel stochastic ap-3

proximations of mean-field SVGD dynamics in the space of probability measures,4

that are exactly realizable using finite particles. As a result, we design two compu-5

tationally efficient variants of SVGD (VP-SVGD and GB-SVGD) with provably6

fast finite-particle convergence rates. Our algorithms are specific random-batch7

approximations of SVGD which are computationally more efficient than ordinary8

SVGD. We show that the n output particles of VP-SVGD and GB-SVGD, run9

for T steps with batchsize K, are as good as i.i.d samples from a measure whose10

Kernel Stein Discrepancy to the target is at most O(d
1/3
/(KT )1/6) under standard11

assumptions. We prove similar results under a mild growth condition on the score12

function, which is weaker than the assumptions of prior works. Our convergence13

rates for the empirical measure (of the particles output by VP-SVGD and GB-14

SVGD) to the target distribution enjoys a double exponential improvement over15

the best known finite-particle analysis of SVGD. Furthermore, our results give the16

first known polynomial oracle complexity in dimension, completely eliminating the17

curse of dimensionality exhibited by previously known finite-particle rates.18

1 Introduction19

Sampling from a distribution over Rd whose density π⋆(x) ∝ exp(−F (x)) is known only upto20

a normalizing constant, is a fundamental problem in mahine learning [44, 19, 25] and statistics21

[35, 31, 15]. Stein Variational Gradient Descent (SVGD) by Liu and Wang [27] is a popular algorithm22

for this problem. It uses a positive definite kernel k to evolve n interacting particles (x(i)
t )i∈[n],t∈N:23

x
(i)
t+1 ← x

(i)
t −

γ

n

n∑
j=1

[
k(x

(i)
t ,x

(j)
t )∇F (x

(j)
t )−∇2k(x
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t )

]
(1)

SVGD exhibits remarkable empirical performance in various Bayesian inference, generative mod-24

eling and reinforcement learning tasks [27, 43, 21, 29] and usually converges rapidly to the target25

density while using only a few particles, often outperforming Markov Chain Monte Carlo methods.26

However, in contrast to its wide practical applicability, theoretical analysis of its behavior is relatively27

unexplored. Prior works on the analysis of SVGD [23, 14, 26, 36, 7] mainly consider the mean-field28

limit (or population limit), where the number of particles n → ∞. These works assume that the29

initial distribution of the (infinite number of) particles has a finite KL divergence to the target π⋆30

and subsequently, interpret mean-field SVGD dynamics as ‘Projected’ Gradient Descent (GD) of KL31

divergence on the space of probability measures, equipped with the Wasserstein geometry. Under32

suitable assumptions on the target density, these works use the theory of Wasserstein Gradient Flows33
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Result Algorithm Assumption Rate
Oracle

Complexity

Korba et al. [23]
Population Limit

SVGD
Uniformly Bounded
KSDπ⋆(µ̄t||π⋆) poly(d)√

T

Not
Implementable

Salim et al. [36]
Population Limit

SVGD Sub-gaussian π⋆ d
3/2
√
T

Not
Implementable

Shi and Mackey [37] SVGD Sub-gaussian π⋆ poly(d)√
log lognΘ(1/d)

poly(d)
ϵ2 eΘ(de

poly(d)/ϵ2 )

Ours, Corollary 1 VP-SVGD Sub-gaussian π⋆ (d/n)1/4 + (d/n)1/2 d4
/ϵ12

Ours, Corollary 1 GB-SVGD Sub-gaussian π⋆ d
1/3
/n1/12 + (d/n)1/2 d6

/ϵ18

Ours, Corollary 1 VP-SVGD Sub-exponential π⋆ d
1/3

n1/6
+ d

n1/2
d6
/ϵ16

Ours, Corollary 1 GB-SVGD Sub-exponential π⋆ d
3/8

n1/16
+ d

n1/2
d9
/ϵ24

Table 1: Comparison of our results with prior works. d, T , and n denote the dimension, no. of
iterations and no. of output particles respectively. Oracle Complexity denotes number of evaluations
of ∇F needed to achieve KSDπ⋆(·||π⋆) ≤ ϵ (with n and T appropriately optimized), and Rate denotes
convergence rate w.r.t KSD metric. Note that: 1. Population Limit SVGD is not implementable as it
requires infinite particles 2. The uniformly bounded KSDπ⋆(µ̄t||π⋆) assumption is much stronger
than subgaussianity and cannot be verified apriori (see Salim et al. [36] Section 1.2.1)

[1] to establish non-asymptotic (in time) convergence of mean-field SVGD to π⋆ in the Kernel Stein34

Discrepancy (KSD) metric. While this framework suffices to explain the behavior of SVGD in35

the mean-field limit, the same techniques are insufficient for analyzing finite-particle regime. This36

is mainly due to the fact that the empirical measure µ̂(n) of a finite number of particles does not37

admit a density (w.r.t Lebesgue Measure), and thus, its KL divergence to the target is always infinite.38

Moreover, a direct analysis of the dynamics of finite-particle SVGD becomes prohibitively difficult39

due to complex inter-particle dependencies. To the best of our knowledge, Shi and Mackey [37]40

is the only result that obtains an explicit convergence rate for finite-particle SVGD by tracking the41

deviation between the law of n-particle SVGD and mean-field SVGD. The authors show that for42

subgaussian π⋆, the empirical measure of n-particle SVGD converges to π⋆ at O(
√

poly(d)
log lognΘ(1/d) )43

rate in KSD (we explicate the d dependence in Shi and Mackey [37] by closely following their44

analysis). The obtained rate (which suffers from curse of dimensionality) is quite slow and fails to45

adequately explain the practical performance of SVGD.46

Our work deliberately avoids computing the deviation between mean-field SVGD and finite-particle47

SVGD. Instead, we directly analyze the dynamics of KL divergence along a carefully constructed48

trajectory in the space of distributions. Our proposed algorithm, Virtual Particle SVGD (VP-SVGD)49

devises an unbiased stochastic approximation (in the space of measures) to mean-field SVGD. We50

achieve this by considering additional particles called virtual particles which evolve in time but aren’t51

part of the output (i.e. real particles). These virtual particles are used only to compute information52

about the current population-level distribution of the real particles, and enable exact implementation53

of our stochastic approximation to mean-field SVGD, while using only a finite number of particles.54

Our analysis is similar in spirit to non-asymptotic analyses of Stochastic Gradient Descent (SGD)55

that do not attempt to track GD (analogous to mean-field SVGD in this case), but instead track56

the evolution of the objective function along the SGD trajectory using appropriate descent lemmas57

[20, 11]. The key feature of our proposed stochastic approximation is the fact that it can be exactly58

implemented using only a finite number of particles. This allows us to design faster variants of SVGD59

with provably fast finite-particle convergence.60

1.1 Contributions and Technical Chellenges61

1.2 Contributions62

VP-SVGD and GB-SVGD We propose two variants of SVGD that enjoy provably fast finite-particle63

convergence guarantees: Virtual Particle SVGD (VP-SVGD, Algorithm 1) and Global Batch SVGD64

(GB-SVGD, Algorithm 2). VP-SVGD is a conceptually elegant stochastic approximation (in the65

space of probability measures) of mean-field SVGD, and GB-SVGD is a practically efficient version66

of SVGD which achieves good empirical performance. Our analysis of GB-SVGD builds upon that67

of VP-SVGD. When the potential F is smooth and satisfies a quadratic growth condition (which68
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holds under subgaussianity of π⋆, a common assumption in prior works [36, 37]), we show that69

the n particles output by T steps of our algorithms, run with batch-size K, are at least as good as70

i.i.d draws from a distribution whose KSD to π⋆ is at most O(d
1/3
/(KT )1/6). Our results also hold71

under a mild subquadratic growth condition for F , which is much weaker than isoperimetric (e.g.72

Poincare Inequality) or information-transport (e.g. Talagrand’s Inequality T1) assumptions generally73

considered in the sampling literature [41, 36, 37, 8, 2].74

State-of-the-art Finite Particle Guarantees As corollaries of the above result, we establish that75

VP-SVGD and GB-SVGD exhibit the best known finite-particle guarantees in the literature which76

significantly outperform that of prior works. Our results are summarized in Table 1. In particular,77

under subgaussianity of π⋆, we show that the empirical measure of the n particles output by VP-78

SVGD converges to π⋆ in KSD at aO((d/n)1/4+(d/n)1/2) rate. Similarly, the empirical measure of the79

n output particles of GB-SVGD converges to π⋆ at a KSD rate of O(d
1/3
/n1/12 +(d/n)1/2). Both these80

results are a double exponential improvement over the O( poly(d)√
log lognΘ(1/d)

) KSD rate of n-particle81

SVGD obtained by Shi and Mackey [37], which, to our knowledge, is the best known finite-particle82

rate for SVGD so far. In terms of gradient oracle complexity (i.e., the number of ∇F evaluations83

required to achieve KSDπ⋆(·||π⋆) ≤ ϵ), we show that for subgaussian π⋆, the oracle complexity84

of VP-SVGD is O(d
4
/ϵ12) while that of GB-SVGD is O(d

6
/ϵ18). To the best of our knowledge, our85

result presents the first known oracle complexity guarantee with polynomial dimension dependence,86

and consequently, does not suffer from a curse of dimensionality unlike prior works. Furthermore,87

as discused above, the conditions under which our result holds is far weaker than subgaussianity88

of π⋆, and as such, includes sub-exponential targets and beyond. In particular, our guarantees for89

sub-exponential target distributions are (to the best of our knowledge) the first of its kind.90

Empirical Evaluation Our experiments in Appendix 8 show that GB-SVGD obtains similar perfor-91

mance as SVGD but requires fewer computations.92

Our analysis resolves the following important technical challenges of independent interest:93

Stochastic Approximation in the Space of Probability Measures Stochastic approximations are94

widely used in optimization and and sampling [24, 44]. In sampling, such approximations are95

generally implemented in path space, e.g., Stochastic Gradient Langevin Dynamics [44] takes96

a stochastic approximation of the form xt+1 = xt − η
K

∑K−1
j=0 ∇f(xt, ξj) +

√
2ηϵt, ϵt ∼97

N (0, I); E[f(xt, ξj)|xt] = F (xt). Such stochastic approximations are analyzed using the the-98

ory of stochastic processes over Rd [12, 34, 22]. However, when viewed in the space of probability99

measures (i.e, µt = Law(xt)), the time-evolution of these algorithms is deterministic. In contrast, our100

approach designs stochastic approximations in the space of probability measures. In particular, the101

time-evolution of the law of any particle in VP-SVGD and GB-SVGD are a stochastic approximation102

of the dynamics of mean-field SVGD. Careful design ensures that our stochastic approximation103

requires only a finite number of particles for exact implementation.104

Tracking KL Divergence in the Finite-Particle Regime The population limit (n→ ∞) ensures that105

the initial empirical distribution (µ0) of SVGD admits a density (w.r.t the Lebesgue measure). Prior106

works on population-limit SVGD analyze the time-evolution of the KL divergence to π⋆. However,107

this approach cannot be directly used for finite-particle SVGD since the empirical distribution of a108

finite number of particles does not admit a density, and thus its KL divergence to π⋆ is infinite. Our109

analysis of VP-SVGD and GB-SVGD circumvents this obstacle by considering the dynamics of an110

infinite number of particles, whose empirical measure then admits a density. However, the careful111

design ensures that the dynamics of n of these particles can be computed exactly, using only a finite112

total number of (real + virtual) particles. When conditioned on the virtual particles, these particles113

are i.i.d. and their conditional law is close to the target distribution with high probability.114

2 Notation and Problem Setup115

We use ∥ · ∥, ⟨·, ·⟩ to denote the Euclidean norm and inner product over Rd respectively, while other116

norms and inner products are subscripted with their underlying space. B(R) denotes the ball of radius117

R in (Rd, ⟨·, ·⟩). P2(Rd) denotes the space of probability measures on Rd with finite second moment,118

with the Wasserstein-2 metric denoted as W2 (µ, ν) for µ, ν ∈ P2(Rd). For any two probability119

measures µ, ν, we denote their KL divergence as KL (µ||||||ν). For any function f : X → Y and120
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any probability measure µ over X , we let f#µ denote the law of f(x) : x ∼ µ. Given a sigma121

algebra F over some space Ω, and a measurable space X , µ(· ; ·) : F × X → R+ is a probability122

kernel if ∀ x ∈ X , µ(· ;x) is a measure over F and ∀ A ∈ F , the map x→ µ(A ;x) is measurable.123

We use probability measures µ(· ;x), where x is a random element of some appropriate space X ,124

resulting in random probability measures. We use [m] and (m) to denote the sets {1, . . . ,m} and125

{0, . . . ,m− 1} respectively, and S(m) to denote the set of all permutations of (m). We use the O126

notation to characterize the dependence of our rates on the number of iterations T , dimension d and127

batch-size K, suppressing numerical and problem-dependent constants. We use ≲ to denote ≤ upto128

universal constants. We fix a symmetric positive definite kernel k : Rd × Rd → R and denote the129

corresponding reproducing kernel Hilbert space (RKHS) [38] as H0. We denote the product RKHS130

as H =
∏d

i=1 H0, equipped with the standard inner product for product spaces. We assume k is131

differentiable in both its arguments and let ∇2k(x,y) denote its gradient w.r.t the second argument.132

For any µ ∈ P2(Rd), we assume H ⊂ L2(µ) and the inclusion map iµ : H → L2(µ) is continuous.133

We use Pµ : L2(µ) → H to denote the adjoint of iµ, i.e., the unique operator which satisfies134

⟨f, iµg⟩L2(µ) = ⟨Pµf, g⟩H for any f ∈ L2(µ), g ∈ H. Carmeli et al. [6] shows that Pµ can be135

expressed as a kernel convolution, i.e., (Pµf)(x) =
∫
k(x,y)f(y)dµ(y). We define the function h :136

Rd×Rd → R as h(x,y) = k(x,y)∇F (y)−∇2k(x,y) and hµ ∈ H as hµ = Pµ(∇x log(
dµ
dπ⋆ (x)))137

for any µ ∈ P2(Rd). Integration by parts shows that hµ(x) =
∫
h(x,y)dµ(y). Similar to prior138

works [36, 23, 37] we use Kernel Stein Discrepancy (KSD) as a convergence metric.139

Definition 1 (Kernel Stein Discrepancy[28, 9]). Define the Langevin Stein Operator of π⋆ acting140

on any differentiable g : Rd → Rd as (Tπ⋆g)(x) = ∇ · g(x) − ⟨∇F (x), g(x)⟩. Then, for any141

two probability measures µ, ν, the Kernel Stein Discrepancy between µ and ν w.r.t π⋆ is defined as142

KSDπ⋆(µ||ν) = sup∥g∥H≤1 Eµ[Tπ⋆g]− Eν [Tπ⋆g] = ∥hµ − hν∥H.143

3 Background on Mean-Field SVGD144

We briefly introduce the analysis of mean-field SVGD using the theory of Wasserstein Gradient Flows145

and refer the readers to prior work [23, 36] for a detailed treatment. The metric space (P2(Rd),W2) is146

called the Wasserstein space, which admits the following Riemannian structure : For any µ ∈ P2(Rd),147

the tangent space TµP2(Rd) can be identified with the Hilbert space L2(µ). We can then define148

differentiable functionals L : P2(Rd) → R and compute their Wasserstein gradients ∇W2
L. Note149

that the target π⋆ is the unique minimizer over of the functional L[µ] = KL (µ||||||π⋆) over P2(Rd), and150

its Wasserstein Gradient is ∇W2L[µ] = ∇x log(
dµ
dπ⋆ (x)) [1]. This powerful machinery has served as151

a backbone for the analysis of algorithms such as LMC [45, 3] and mean-field SVGD [14, 23, 36].152

In particular, mean-field SVGD can be viewed as ‘Projected’ Gradient Descent in P2(Rd). To infer153

this, let µ̂n
t denote the empirical measures of the SVGD particles (x(i)

t )i∈[n] at step t and recall that154

hµ(x) = Pµ(∇x log(
dµ
dπ⋆ ))(x) =

∫
h(x,y)dµ(y) (Sec. 2). The SVGD updates in (1) can be recast155

as µ̂n
t+1 = (I − γhµ̂n

t
)#µ̂

t
n. In the limit of infinite particles n→ ∞, suppose the empirical measure156

µ̂n
t converges to the population measure µ̄t. In this mean-field limit, the updates can be expressed as,157

µ̄t+1 = (I − hµ̄t)# µ̄t =
(
I − γPµ̄t

(
∇ log( dµ̄t

dπ⋆ )
))

#
µ̄t = (I − γPµ̄t (∇W2KL (µ̄t||||||π⋆)))# µ̄t

Recall from Sec. 2 that Pµ̄t
: L2(µ̄t) → H is the adjoint of iµ̄t

. Since H ⊂ L2(µ̄t),158

the updates of mean-field SVGD can be seen as ‘Projected’ Wasserstein Gradient Descent for159

L[µ] = KL (µ||||||π⋆), with the Wasserstein Gradient at each step being projected onto the RKHS H.160

Assuming KL (µ̄0||||||π⋆) <∞, convergence of population limit SVGD is then established by tracking161

the evolution of KL (µ̄t||||||π⋆) under appropriate structural assumptions (such as subgaussianity) on π⋆.162

4 Algorithm and Intuition163

In this section, we derive VP-SVGD (Algorithm 1), and build upon it to obtain GB-SVGD. Consider164

a countably infinite collection of particles x(l)
0 ∈ Rd, l ∈ N ∪ {0}, sampled i.i.d from a measure165

µ0, having a density w.r.t. the Lebesgue measure. By the strong law of large numbers, the empirical166

measure of x(l)
0 is almost surely equal to µ0 [13, Theorem 11.4.1]. Let K ∈ N denote the batch size167

and define the filtration Ft = σ({x(l)
0 | l ≤ Kt− 1}), ∀ t ∈ N with F0 being the trivial σ algebra.168
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Algorithm 1 Virtual Particle SVGD (VP-SVGD)
Input: Number of steps T , number of output particles n, batch size K, Initial positions
x
(0)
0 , . . . ,x

(n+KT−1)
0

i.i.d.∼ µ0, Kernel k, step size γ.
1: for t ∈ {0, . . . , T − 1} do
2: for s ∈ {0, . . . ,KT + n− 1} do
3: x

(s)
t+1 = x

(s)
t − γ

K

∑K−1
l=0 [k(x

(s)
t ,x

(tK+l)
t )∇F (x

(tK+l)
t )−∇2k(x

(s)
t ,x

(tK+l)
t )]

4: end for
5: end for
6: Draw S uniformly at random from {0, . . . , T − 1}
7: Output (y(0), . . . ,y(n−1)) = (x

(TK)
S , . . . ,x

(TK+n−1)
S )

For ease of exposition, we discuss the case of K = 1 below and present a complete derivation for169

arbitrary K ≥ 1 in Section C. Recall from Section 3 that the updates of mean-field SVGD in P2(Rd)170

is as follows:171

µ̄t+1 = (I − γhµ̄t)#µ̄t (2)

We aim to design a stochastic approximation in P2(Rd) for the updates (2), such that it admits a172

finite-particle realization. To this end, we propose the following dynamics in Rd173

x
(s)
t+1 = x

(s)
t − γh(x

(s)
t ,x

(t)
t ), s ∈ N ∪ {0} (3)

Now, for each time-step t, we focus on the time evolution of the particles (x(l)
t )l≥t (called the lower174

triangular evolution). From (3), we observe that for any t ∈ N and l ≥ t, x(l)
t depends only on175

x
(0)
0 , . . . ,x

(t−1)
0 ,x

(l)
0 . Therefore there exists a deterministic, measurable function Ht such that:176

x
(l)
t = Ht(x

(0)
0 , . . . ,x

(t−1)
0 ,x

(l)
0 ) ; for every l ≥ t (4)

Since x
(0)
0 , . . . ,x

(t−1)
0 ,x

(l)
0

i.i.d.∼ µ0, we conclude from (4) that (x(l)
t )l≥t are i.i.d when conditioned177

on x
(0)
0 , . . . ,x

(t−1)
0 . To this end, we define the random measure µt|Ft as the law of x(t)

t conditioned178

on Ft, i.e., µt|Ft is a probability kernel µt(· ;x(0)
0 , . . . ,x

(t−1)
0 ), where µ0|F0 := µ0. By the strong179

law of large numbers, µt|Ft is equal to the empirical measure of (x(l)
t )l≥t conditioned on Ft. We180

will use µt|Ft and µt(· ;x(0)
0 , . . . ,x

(t−1)
0 ) interchangeably.181

Define the random function gt : Rd → Rd as gt(x) := h(x,x
(t)
t ). From (4), we note that gt is Ft+1182

measurable. From (3), we infer that the particles satisfy the following relation:183

x
(s)
t+1 = (I − γgt)(x

(s)
t ), s ≥ t+ 1

Recall that x(s)
t+1|x

(0)
0 , . . . ,x

(t)
0 ∼ µt+1|Ft+1 for any s ≥ t+ 1. Furthermore, from Equation (4), we184

note that for s ≥ t + 1, x(s)
t depends only on x

(0)
0 , . . . ,x

(t−1)
0 and x

(s)
0 . Hence, we conclude that185

Law(x
(s)
t |x(0)

0 , . . . ,x
(t)
0 ) = Law(x

(s)
t |x(0)

0 , . . . ,x
(t−1)
0 ) = µt|Ft ∀ s ≥ t+ 1. With this insight, the186

dynamics of the lower-triangular evolution in P2(Rd) that the following holds almost surely:187

µt+1|Ft+1 = (I − γgt)#µt|Ft (5)

x
(t)
t |Ft ∼ µt|Ft implies E[gt(x)|Ft] = hµt|Ft

(x). Thus lower triangular dynamics (5) is a stochas-188

tic approximation in P2(Rd) to the population limit of SVGD (2). Setting the batch size to general189

K and tracking the evolution of the first KT + n particles, we obtain VP-SVGD (Algorithm 1).190

Virtual Particles In Algorithm 1, (x(l)
t )KT≤l≤KT+n−1 are the real particles which constitute the191

output. (x(l)
t )l<KT are virtual particles which propagate information about the probability measure192

µt|Ft to enable computation of gt, an unbiased estimate of the projected Wasserstein gradient hµt|Ft
.193

Intuition Behind GB-SVGD We note that VP-SVGD (Algorithm 1)is a without-replacement194

random-batch approximation of SVGD (1), where a different batch is used across timesteps, but195

the same batch is used across particles given a fixed timestep. With i.i.d. initialization, picking the196

‘virtual particles’ in a fixed order or from a random permutation does not change the evolution of the197

real particles. With this insight, we design GB-SVGD (Algorithm 2) where we consider n particles198

and output n particles (instead of wasting KT particles as ‘virtual particles’) via a random-batch199
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approximation of SVGD. In GB-SVGD, with replacement sampling means selecting a batch of K200

particles i.i.d. from Uniform((n)). Without replacement sampling means fixing a random permutation201

σ ∼ Uniform(S(n)) and selecting the batches in the order specified by σ (essentially ensuring that no202

data point is repeated during an iteration).

Algorithm 2 Global Batch SVGD (GB-SVGD)

Input: # of time steps T , # of particles n, x(0)
0 , . . . ,x

(n−1)
0

i.i.d.∼ µ0, Kernel k, step size γ, Batch size K,
Sampling method ∈ {with replacement,without replacement}
1: for t ∈ {0, . . . , T − 1} do
2: Kt ← random subset of [n] of size K (via. sampling method)
3: for s ∈ {0, . . . , n− 1} do
4: x

(s)
t+1 = x

(s)
t − γ

K

∑
r∈Kt

[k(x
(s)
t ,x

(r)
t )∇F (x

(r)
t )−∇2k(x

(s)
t ,x

(r)
t )]

5: end for
6: end for
7: Draw S uniformly at random from {0, 1, . . . , T − 1}
8: Output (ȳ(0), . . . , ȳ(n−1)) = (x

(0)
S , . . . ,x

(n−1)
S )

203

5 Assumptions204

We now discuss the key assumptions required for our analysis of VP-SVGD and GB-SVGD.205

Assumption 1 (L-Smoothness). ∇F exists and is L Lipschitz. Moreover ∥∇F (0)∥ ≤
√
L.206

Lipschitzness of ∇F is standard in optimization and sampling. It is also easy find a point x∗ such207

that ∥∇F (x∗)∥ ≤
√
L (e.g., using Θ(1) steps of GD [32]) and center the initialization at x∗. We208

take x∗ = 0 without loss of generality. We now impose the following growth condition on F .209

Assumption 2 (Growth Condition). There exist α, d1, d2 > 0 such that F (x) ≥ d1∥x∥α − d2210

Note that Assumption 1 ensures α ≤ 2. Assumption 2 is a tail decay assumption on π⋆(x) ∝ e−F (x),211

ensuring that its tails decay as ∝ e−∥x∥α

. Thus, it holds with α = 2 when π⋆ is subgaussian and with212

α = 1 when π⋆ is subexponential (See Appendix B for proofs). Subgaussianity is equivalent to π⋆213

satisfying the T1 inequality [5], commonly assumed in prior works on SVGD [36, 37]. Moreover,214

subexponentiality holds whenever π⋆ satisfies the Poincare Inequality [4], which is a mild condition in215

the sampling literature [41, 8, 2, 12, 7]. This makes Assumption 1 much weaker than the isoperimetric216

or information-transport assumptions considered in prior works. We also make the following mild217

assumptions on the k that appear in prior work [23, 17] and are satisfied by several standard kernels218

(e.g. RBF Kernels, Matérn kernels of order ≥ 3/2)219

Assumption 3 (Kernel Regularity). For any y ∈ Rd, k(·,y) satisfies ∥k(·,y)∥H0
≤ B and220

∇2k(·,y) ∈ H with ∥∇2k(·,y)∥H ≤ B. Moreover, there exist A1, A2, A3 > 0 such that221

0 ≤ k(x,y) ≤ A1

1+∥x−y∥2 , ∥∇2k(x,y)∥ ≤ A2, and ∥∇2k(x,y)∥2 ≤ A3k(x,y).222

For ease of exposition, we make the following mild assumption on the initialization.223

Assumption 4 (Initialization). The initial density is µ0 = Uniform(B(R)) with KL (µ0||||||π⋆) <∞.224

Since N (0, I) and Uniform(B(R)) are nearly indistinguishable with high probability when R =225

Θ̃(
√
d), Assumption 4 can be easily replaced by the Gaussian initialization assumed in prior works.226

Furthermore, we show in Appendix B that R =
√

d/L ensures KL (µ0||||||π⋆) = O(d)227

6 Results228

6.1 VP-SVGD229

Our first result, proved in Appendix C, shows that the law of the real particles of VP-SVGD , when230

conditioned on the virtual particles, is close to π⋆ in KSD. Consequently, it shows that the particles231

output by VP-SVGD are i.i.d. samples from a random probability measure µ̄(·;x(0)
0 , . . . ,x

(KT−1)
0 , S)232

which is close to π⋆ in KSD. Appendix C also presents a high-probability version of Theorem 1.233
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Theorem 1 (Convergence of VP-SVGD). Let µt be as defined in Section 4. Let Assumptions 1 2, 3,234

and 4 be satisfied and let γ ≤ min{1/2A1L, 1/(4+L)B}. There exist (ζi)0≤i≤3 depending polynomially235

on A1, A2, A3, B, L, d1, d2 for any fixed α ∈ (0, 2], such that whenever γξ ≤ 1
2B , with ξ =236

ζ0 + ζ1(γT )
1/α + ζ2(γ

2T )1/α + ζ3R
2/α, the following holds:237

1

T

T−1∑
t=0

E
[
KSD2

π⋆(µt|Ft||π⋆)
]
≤ 2KL (µ0||||||π⋆)

γT
+

γB(4 + L)ξ2

K

Define the probability kernel µ̄(· ; ·) as follows: For any xτ ∈ Rd, τ ∈ (KT ) and s ∈ (T ),238

µ̄(· ;x0, . . . , xKT−1, s) := µs(· ;x0, . . . , xKs−1) and µ̄(· ;x0, . . . , xKT−1, s = 0) := µ0(·). Con-239

ditioned on x
(0)
τ = xτ , S = s for every τ ∈ (KT ), the outputs y(0), . . . ,y(n−1) of VP-SVGD are240

i.i.d samples from µ̄(· ;x0, . . . , xKT−1, s). Furthermore,241

E[KSD2
π⋆(µ̄(· ;x(0)

0 , . . . ,x
(KT−1)
0 , S)||π⋆)] ≤ 2KL (µ0||||||π⋆)

γT
+

γB(4 + L)ξ2

K

Convergence Rates Setting R =
√

d/L ensures KL (µ0||||||π⋆) = O(d) (see Appendix B). Hence,242

choosing γ = O( (Kd)η

T 1−η ) ensures that E[KSD2
π⋆(µ̄||π⋆)] = O( d1−η

(KT )η ) where η = α
2(1+α) . Thus, for243

α = 2, (i.e, sub-Gaussian π⋆), KSD2 = O( d
2/3

(KT )1/3
). For α = 1 (i.e, sub-Exponential π⋆), the rate244

(in squared KSD) becomes O( d
3/4

(KT )1/4
). To the best of our knowledge, our convergence guarantee245

for sub-exponential π⋆ is the first of its kind.246

Comparison with Prior Works Salim et al. [36] analyzes population-limit SVGD for subgaussian247

π⋆, obtaining KSD2 = O(d
3/2
/T) rate. We note that population-limit SVGD is not implementable248

whereas VP-SVGD is an implementable algorithm whose outputs are samples from a distribution249

with guaranteed convergence to π⋆.250

6.2 GB-SVGD251

We now use VP-SVGD as the basis to analyze GB-SVGD. Assume n > KT . Then, with probability252

≥ 1−K2T 2
/n (for with-replacement sampling) and 1 (for without-replacement sampling), the random253

batches Kt in GB-SVGD (Algorithm 2) are disjoint and contain distinct elements. Conditioned on254

this event E , we note that the n−KT particles that were not included in any random batch Kt evolve255

exactly like the n real particles of VP-SVGD. With this insight, we show that, conditioned on E , the256

outputs of VP-SVGD and GB-SVGD can be coupled such that the first n−KT particles output by257

both the algorithms are exactly equal. This can be used to derive the following squared KSD bound258

between their empirical measures. We prove this result in Appendix D259

Theorem 2 (KSD Bounds for GB-SVGD). Let n > KT and let Y = (y(0), . . . ,y(n−1)) and260

Ȳ = (ȳ(0), . . . , ȳ(n−1)) denote the outputs of VP-SVGD and GB-SVGD respectively. Moreover, let261

µ̂(n) = 1
n

∑n−1
i=0 δy(i) and ν̂(n) = 1

n

∑n−1
i=0 δȳ(i) denote their respective empirical measures. Under262

the assumptions and parameter settings of Theorem 1, there exists a coupling of Y and Ȳ such that:263

E[KSD2
π⋆(ν̂(n)||µ̂(n))] ≤

{
2K2T2ξ2

n2 (without replacement sampling)
2K2T2ξ2

n2

(
1− K2T2

n

)
+ 2K2T2ξ2

n
(with replacement sampling)

(6)

6.3 Convergence of the Empirical Measure to the Target264

As a corollary of Theorem 1 and Theorem 2, we show that the empirical measure of the output of265

VP-SVGD and GB-SVGD rapidly converges to π⋆ in KSD. We refer to Appendix E for the full266

statement and proof.267

Corollary 1 (VP-SVGD and GB-SVGD: Fast Finite Particle Rates). Let the assumptions and268

parameter settings of Theorem 1 be satisfied. Let µ̂(n) be the empirical measures of the n particles269

output by VP-SVGD, run with run with KT = d
α

2+α , R =
√

d/L and appropriately chosen γ. Then:270

E[KSD2
π⋆(µ̂(n)||π⋆)] ≤ O( d

2
2+α

n

α
2+α

+
d
2/α

n
)
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Let ν̂(n) be the empirical measure of the output of GB-SVGD under without-replacement sampling,271

run with KT =
√
n, R =

√
d/L and appropriately chosen γ. Then, the following holds:272

E[KSD2
π⋆(ν̂(n)||π⋆)] ≤ O(

d
2/α

n
+

d
1

1+α

n
1+2α
2(1+α)

+
d

2+α
2(1+α)

n
α

4(1+α)

)

Comparison to Prior Work For subgaussian π⋆ (i.e. α = 2), VP-SVGD has a finite-particle rate273

of E[KSDπ⋆(µ̂(n)||π⋆)] = O((d/n)1/4 + (d/n)1/2) while that of GB-SVGD is E[KSDπ⋆(ν̂(n)||π⋆)] =274

O(d
1/3
/n1/12 + (d/n)1/2). Both these rates are a double exponential improvement over the275

Õ( poly(d)√
log lognΘ(1/d)

) KSD rate obtained by Shi and Mackey [37] for SVGD with subgaussian π⋆.276

For subexponential π⋆ (i.e. α = 1) the KSD rate of VP-SVGD is O( d
1/3

n1/6
+ d

n1/2
) while that of277

GB-SVGD is O( d
3/8

n1/16
+ d

n1/2
). To our knowledge, both these results are the first of their kind.278

Oracle Complexity As illustrated in Section E.3, for subgaussian π⋆, the oracle complexity of279

VP-SVGD to achieve ϵ-convergence in KSD is O(d
4
/ϵ12) and that of GB-SVGD is O(d

6
/ϵ18). To our280

knowledge, these results are the first known oracle complexities for this problem with polynomial281

dimension dependence, and significantly improve upon theO( poly(d)ϵ2 eΘ(de
poly(d)/ϵ2 )) oracle complexity282

of SVGD as implied by Shi and Mackey [37]. For subexponential π⋆, the oracle complexity of283

VP-SVGD is O(d
6
/ϵ16) and that of GB-SVGD is O(d

9
/ϵ24).284

7 Proof Sketch285

We now present a sketch of our analysis. As shown in Section 4, the particles (x(l)
t )l≥Kt are i.i.d286

conditioned on the filtration Ft, and the random measure µt|Ft is the law of (x(Kt)
t ) conditioned on287

x
(0)
0 , . . . ,x

(Kt−1)
0 . Moreover, from equation (5), we know that µt|Ft is a stochastic approximation288

of population limit SVGD dynamics, i.e., µt+1|Ft+1 = (I − γgt)#µt|Ft. Lemma 1 (similar to289

Salim et al. [36, Proposition 3.1] and Korba et al. [23, Proposition 5]) shows that under appropriate290

conditions, the KL between µt|Ft and π⋆ satisfies a (stochastic) descent lemma . Hence µt|Ft admits291

a density and KL (µt|Ft||||||π⋆) is almost surely finite.292

Lemma 1 (Descent Lemma for µt|Ft). Let Assumptions 1, 3 and 4 be satisfied and let β > 1 be an293

arbitrary constant. On the event γ∥gt∥H ≤ β−1
βB , the following holds almost surely294

KL (µt+1|Ft+1||||||π⋆) ≤ KL (µt|Ft||||||π⋆)− γ
〈
hµt|Ft , gt

〉
H +

γ2(β2 + L)B

2
∥gt∥2H

Lemma 1 is analogous to the noisy descent lemma which is used in the analysis of SGD for smooth295

functions. Notice that E[gt|Ft] = hµt|Ft
(when interpreted as a Gelfand-Pettis integral [40], as296

discussed in Appendix B and Appendix C) and hence in expectation, the KL divergence decreases in297

time. In order to apply Lemma 1, we establish an almost-sure bound on ∥gt∥H below.298

Lemma 2. Let Assumptions 1, 2, 3 and 4 hold. Then, for γ ≤ 1/2A1L, ∥gt∥H ≤ ξ holds almost surely,299

where ξ is as defined in Theorem 1300

LetK = 1 for clarity. To prove Lemma 2, we first note via smoothness of F (·) and Assumption 3 that301

∥gt∥H ≤ C0∥x(t)
t ∥+C1, and then bound ∥x(t)

t ∥. Now, gs(x) = k(x,x
(s)
s )∇F (x(s)

s )−∇2k(x,x
(s)
s ).302

When ∥x(s)
s − x∥ is large, ∥gs(x)∥ is small due to decay assumptions on the kernel (Assumption 3)303

implying that the particle does not move much. When x(s)
s ≈ x, we have gs(x) ≈ k(x,x

(s)
s )∇F (x)−304

∇2k(x,x
(s)
s ) and k(x,x(s)

s ) ≥ 0. This is approximately a gradient descent update on F (·) along with305

a bounded term ∇2k(x,x
(s)
s ). Thus, the value of F (x(l)

t ) cannot grow too large after T iterations.306

By Assumption 2, F (x(l)
t ) being small implies that ∥x(l)

t ∥ is small.307

Equipped with Lemma 2, we set the step-size γ to ensure that the descent lemma (Lemma 1) always308

holds. The remainder of the proof involves unrolling through Lemma 1 by taking iterated expectations309

on both sides. To this end we control
〈
hµt|Ft

, gt
〉
H and ∥gt∥2H in expectation, in Lemma 3.310

Lemma 3. Let Assumptions 1,2,3 and4 hold and ξ be as defined in Theorem 1. Then, for γ ≤ 1/2A1L,311

E
[〈
hµt|Ft

, gt
〉
H |Ft

]
= ∥hµt|Ft

∥2H and E[∥gt∥2H] ≤ ξ2/K + ∥hµt|Ft
∥2H312
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8 Experiments313

We compare the performance of GB-SVGD and SVGD on the standard baselines used by prior work314

[27]. We take n = 100 and use the Laplace kernel with h = 1 for both the algorithms. We pick the315

stepsize γ by a grid search independently for each algorithm. For both our experimental setups, we316

observe that while SVGD takes fewer iterations to converge, the compute time for GB-SVGD is317

considerably lower. This is similar to the typical behavior of stochastic optimization algorithms like318

SGD.

(a) MMD vs Compute Time (b) MMD vs Iterations

Figure 1: Gaussian Experiment Comparing SVGD and GB-SVGD averaged over 10 experiments.

319

(a) Accuracy vs Compute Time (b) Accuracy vs Iterations

Figure 2: Covertype Experiment, averaged over 50 runs. The error bars represent 95% CI.

Sampling from Isotropic Gaussian (Figure 1): As a sanity check, we set π⋆ = N (0, I) with d = 5.320

We pick K = 10 for GB-SVGD. The metric of convergence is MMD with respect to the empirical321

measure of 1000 i.i.d. sampled Gaussians.322

Bayesian Logistic Regression (Figure 2) We consider the Covertype dataset which contains ∼323

580, 000 data points with d = 54. We consider the same priors suggested in Gershman et al. [16]324

and implemented in Liu and Wang [27]. We take K = 40 for GB-SVGD. For both VP-SVGD and325

GB-SVGD, we use AdaGrad with momentum to set the step-sizes as per Liu and Wang [27]326

We ran our experiments using Python 3 on a 2.20 GHz Intel Xeon CPU with 13 GB of memory.327

9 Conclusion328

We develop two computationally efficient variants of SVGD with provably fast convergence guar-329

antees in the finite-particle regime, and present a wide range of improvements over prior work.330

A promising avenue of future work could be to establish convergence guarantees for SVGD with331

general non-logconcave targets, as was considered in recent works on LMC and SGLD [2, 12]. Other332

important avenues include establishing minimax lower bounds for SVGD and related particle-based333

variational inference algorithms. Beyond this, we also conjecture that the rates of GB-SVGD can be334

improved even in the regime n≪ KT . However, we believe this requires new analytic tools.335
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A Additional Notation and Organization481

We use Γ to denote the Gamma function Γ(x) =
∫∞
0
tx−1e−tdt, and recall that for any n ∈ N,482

Γ(n) = (n − 1)!. For any Lebesgue measurable A ⊆ Rd, we use vol(A) to denote it’s Lebesgue483

Measure and Uniform(A) to denote the uniform distribution supported on A. We use B(R) to denote484

the ball of radius R centered at the origin, and recall that vol(B(R)) = π
d/2

Γ(d/2+1)R
d. For ease of485

exposition, we assume d ≥ 2. We further assume π⋆(x) = e−F (x). We note that this can be easily486

ensured by absorbing the normalizing constant into F (0), and does not affect the dynamics of SVGD,487

VP-SVGD or GB-SVGD (since they only use the gradient information of F ). We highlight that488

both these assumptions are made purely for the sake of clarity and are very easily removable with489

negligible changes to our analysis.490

We empirically benchmark SVGD and GB-SVGD in Appendix 8. In Appendix B, we discuss the491

technical lemmas used in our analysis, and present a short exposition to the Gelfand-Pettis integral492

in Appendix B.1, which we use to analyze VP-SVGD. We analyze VP-SVGD in Appendix C and493

GB-SVGD in Appendix D. Convergence guarantees for the empirical measure of VP-SVGD and494

GB-SVGD are presented in Appendix E. We give a brief review of the related work in Section F.495

B Preliminaries496

The following lemma shows that setting the initial distribution µ0 = Uniform(B(R)) withR =
√

d/L497

suffices to ensure KL (µ0||||||π⋆) = O(d).The proof of this result is similar to that of Vempala and498

Wibisono [41, Lemma 1] with the Gaussian initialization replaced by Uniform(B(R)) initialization.499

Lemma 4 (KL Upper Bound for Uniform Initialization). Let Assumption 1 be satisfied and let500

µ0 = Uniform(B(R)) with R =
√

d/L. Then, the following holds:501

KL (µ0||||||π⋆) ≤ d

2
log(L/2π) + d+ F (0) + 1/2 ≤ O(d)

Proof. For any x ∈ Rd, the following holds by Assumption 1502

F (x) ≤ F (0) + ⟨∇F (0),x⟩+ L
2 ∥x∥

2

≤ F (0) +
√
L∥x∥+ L

2 ∥x∥
2

≤ F (0) + 1/2 + L∥x∥2

where the second inequality uses ∥∇F (0)∥ ≤
√
L and the Cauchy Schwarz inequality, and the last503

inequality uses the identity ab ≤ a2 + b2/4. It follows that,504

Ex∼µ0
[F (x)] ≤ F (0) + 1/2 + LR2

By a slight abuse of notation, let µ0 denote the density of Uniform(B(R)). Clearly. µ0(x) =505
1

vol(B(R)) Ix∈B(R). It follows that,506 ∫
Rd

µ0(x) ln(µ0(x))dx =

∫
B(R)

1
vol(B(R)) log(

1/vol(B(R)))dx = − log(vol(B(R)))

Now, vol(B(R)) = π
d/2

Γ(
d
2+1)

Rd. Furthermore, by Stirling’s Approximation, (x/e)x−1 ≤ Γ(x) ≤507

(x/2)x−1. Hence,508

d

2
log

(
2πR2

d/2 + 1

)
≤ log(vol(B(R))) ≤ d

2
log

(
eπR2

d/2 + 1

)
Without loss of generality, assume π⋆(x) = e−F (x) (this can be easily ensured by appropriately509

adjusting F (0) upto constant factors). It follows that,510

KL (µ0||||||π⋆) =

∫
Rd

µ0(x) log(
µ0(x)
π⋆(x) )dx =

∫
Rd

µ0(x) ln(µ0(x))dx+ Ex∼µ0 [F (x)]

≤ − log(vol(B(R))) + F (0) + 1/2 + LR2

≤ d

2
log

(
d/2 + 1

2πR2

)
+ F (0) + 1/2 + LR2
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Setting R =
√

d/L, we conclude that,511

KL (µ0||||||π⋆) ≤ d

2
log(L/2π) + d+ F (0) + 1/2 ≤ O(d)

512

We now show that the growth condition on F , i.e. Assumption 2 is more general than specific513

concentration assumptions on π⋆ (e.g. subgaussianity, subexponentiality etc.). To this end, we define514

the notion of α-tail decay as follows:515

Definition 2 (α-Tail Decay). A probability distribution ν on Rd is said to satisfy α-tail decay for516

some α > 0 if there exists some C > 0 such that Ex∼ν

[
exp

(
∥ x
C ∥α

)]
<∞517

The α-tail decay condition essentially implies that the tails of π⋆ decay as ∝ e−∥x∥α

. In particular,518

Vershynin [42, Proposition 2.5.2 and Proposition 2.7.1] shows that π⋆ satisfying the tail decay519

condition with α = 2 is equivalent to π⋆ being subgaussian, whereas tail deay with α = 1 is520

equivalent to π⋆ being subexponential.521

In the following lemma, we establish that, under smoothness of F , the α-tail decay condition is522

equivalent to the growth condition on F with the same exponent α. Consequently, Assumption 2 is523

much weaker than the standard isoperimetric and information transport assumptions generally used524

in the literature.525

Lemma 5 (Growth Condition and Tail Decay). Let Assumption 2 be satisfied for some α > 0. Then,526

π⋆ satisfies the α-tail decay condition. Conversely, let Assumption 1 be satisfied and suppose π⋆527

satisfies the α-tail decay condition. Then, F satisfies Assumption 2 with the same exponent α.528

Proof. Growth Condition Implies Tail Decay Since Assumption 2 is satisfied, F (x) ≥ d1∥x∥α−d2529

for some d1, d2, α > 0. Let C = (2/d1)
1/α. It follows that,530

Ex∼π⋆

[
e∥

x/C∥α
]
=

∫
Rd

e
d1

2 ∥x∥α

π⋆(x)dx

≤
∫
Rd

e
d1

2 ∥x∥α−d1∥x∥α+d2dx

= ed2

∫
Rd

e−
d1

2 ∥x∥α

dx <∞

From Definition 2, we conclude that π⋆ satisfies α-tail decay.531

Smoothness and Tail Decay Imply the Growth Condition Since F is smooth, it suffices to consider532

α ∈ (0, 2]. By Assumption 1, the following inequalities hold,533

F (y)− F (x) ≤ ∥∇F (x)∥∥y − x∥+ L

2
∥y − x∥2 ≤ (L∥x∥+

√
L)∥y − x∥+ L

2
∥y − x∥2 (7)

Ww now prove this result by contradiction. Since π⋆ satisfies α-tail decay, there exists a constant534

C > 0 such that Ex∼π⋆ [e∥x/C∥α

] <∞. Now, suppose F does not satisfy the growth condition with535

exponent α, i.e., assume there does not exist any d1, d2 > 0 such that F (x) ≥ d1∥x∥α−d2 ∀ x ∈ Rd.536

This implies that, lim inf∥x∥→∞
F (x)
∥x∥α = 0. Thus, without loss of generality, we can assume there537

exists a diverging sequence an ∈ R and a diverging sequence xn ∈ Rd that satisfy the following for538

every n ∈ N :539

F (xn)

∥xn∥α
≤ 1

an
, ∥xn∥ ≥ 2n, ∥xn+1 − xn∥ ≥ 1 (8)

where, without loss of generality, we assume an, ∥xn∥ > 0. Now, let rn = 1
∥xn∥2 and Bn ⊆ Rd540

denote the ball of radius rn centered at xn. Since rn ≤ 1/4n2 and ∥xn+1 − xn∥ ≥ 1, Bn is a family541

of disjoint subsets of Rd. We shall now prove that there exists some diverging sequence bn ∈ R such542

that F (y)
∥y∥α ≤ 1

bn
for every y ∈ Bn.543
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Consider any arbitrary n ∈ N and let y ∈ Bn. Applying (7) to y and xn, we obtain,544

F (y)

∥xn∥α
≤ F (xn)

∥xn∥α
+
L∥xn∥rn
∥xn∥α

+
rn
√
L

∥xn∥α
+

Lr2n
2∥xn∥α

≤ 1

an
+

L

∥x∥α+1
+

√
L

∥xn∥α+2
+

L

2∥xn∥α+4
(9)

where we use (8) and rn = 1/∥xn∥2. Moreover, we note that545

∥y∥ ≥ ∥xn∥ − ∥y − xn∥ ≥ ∥xn∥ − rn = ∥xn∥ −
1

∥xn∥2
≥ ∥xn∥

2
(10)

where we use the fact that ∥xn∥ ≥ 2n > 21/3. It follows that,546

F (y)

∥y∥α
≤ 2αF (y)

∥xn∥α

≤ 4

an
+

4L

∥x∥α+1
+

4
√
L

∥xn∥α+2
+

2L

∥xn∥α+4
(11)

where we use (9) and the fact that α ∈ (0, 2]. We now define the sequence bn ∈ R as follows:547

bn =

(
4

an
+

4L

∥x∥α+1
+

4
√
L

∥xn∥α+2
+

2L

∥xn∥α+4

)−1

Since α > 0, and an, ∥xn∥ → ∞, it is clear that bn is a diverging sequence. Furthermore, from (11),548

we conclude that F (y)
∥y∥α ≤ 1

bn
∀ y ∈ Bn. Equipped with this construction, we note that549

Ex∼π⋆

[
exp

(
∥x∥α

Cα

)]
=

∫
Rd

exp

(
∥y∥α

Cα

)
exp(−F (y))dy

≥
∞∑

n=1

∫
Bn

exp

(
∥y∥α

Cα

)
exp(−F (y))dy

≥
∞∑

n=1

∫
Bn

exp

(
∥y∥α

Cα
− ∥y∥α

bn

)
dy

where the second inequality use the fact that Bn is a disjoint family of subsets of Rd and the third550

inequality uses the fact that F (y)
∥y∥α ≤ 1

bn
∀ y ∈ Bn. Since bn is a diverging sequence, there exists551

some N0 ∈ N such that bn ≥ 2Cα ∀ n ≥ N0. It follows that,552

Ex∼π⋆

[
exp

(
∥x∥α

Cα

)]
≥

∞∑
n=1

∫
Bn

exp

(
∥y∥α

Cα
− ∥y∥α

bn

)
dy

≥
∞∑

n=N0

∫
Bn

exp

(
∥y∥α

2Cα

)
dy

=

∞∑
n=N0

vol(Bn)Ey∼Uniform(Bn)

[
exp

(
∥y∥α

2Cα

)]

Consider the function g : [0,∞) → [0,∞) defined as g(t) = et
α

. We note that for α ≥ 1, g is a553

convex function for every t ≥ 0, and for α ∈ (0, 1), g is convex for every t ≥ (1/α − 1)1/α. From554

(10), we note that ∥y∥ ≥ ∥x∥/2 ≥ n for every y ∈ Bn. Hence, there exists an N1 ∈ N such that et
α

555
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is a convex function for all t ≥ ∥y∥/2, ∀ y ∈ Bn, n ≥ N1. Let N = max{N0, N1}+ 1. Then,556

Ex∼π⋆

[
exp

(
∥x∥α

Cα

)]
≥

∞∑
n=N0

vol(Bn)Ey∼Uniform(Bn)

[
exp

(
∥y∥α

2Cα

)]

≥
∞∑

n=N

vol(Bn) exp
(

1
2CαEy∼Uniform(Bn)[∥y∥]

α
)

≥
∞∑

n=N

vol(Bn) exp
(

1
2Cα ∥Ey∼Uniform(Bn)[y]∥

α
)

≥
∞∑

n=N

vol(Bn) exp
(

1
2Cα ∥xn∥α

)
=

∞∑
n=N

Cd(rn)
d exp

(
1

2Cα ∥xn∥α
)

=

∞∑
n=N

Cd exp
(

1
2Cα ∥xn∥α

)
∥xn∥2d

where Cd = π
d/2

Γ(d/2+1) . Let k be any positive integer such that αk ≥ 2d+ 1. It follows that,557

exp
(

1
2Cα ∥xn∥α

)
∥xn∥2d

≥ Cd

2kk!Cαk
∥xn∥αk−2d ≥ Cdn

2k−1k!Cαk

Thus, we infer that,558

Ex∼π⋆

[
exp

(
∥x∥α

Cα

)]
≥ Cd

2k−1k!Cαk

∞∑
n=N0

n = ∞

which is a contradiction. Thus, there exists some d1, d2 > 0 such that F (x) ≥ d1∥x∥α − d2, i.e., F559

satisfies the growth condition with exponent α.560

The following lemma establishes boundedness and contractivity properties of the function h(x,y) =561

k(x,y)∇F (y)−∇2k(·,y), that are vital for proving almost-sure bounds such as Lemma 2.562

Lemma 6 (Properties of h). Let Assumptions 1 and 3 be satisfied. Then, the following holds,563

∥h(.,y)∥H ≤ BL∥y∥+B∥∇F (0)∥+B

∥h(x,y)∥ ≤ A1L

2
+A2 + k(x,y)∥∇F (x)∥

− ⟨∇F (x), h(x,y)⟩ ≤ − 1
2k(x,y)∥∇F (x)∥

2 + L2A1 +A3

Proof. Recalling the definition of h from Section 2, we observe that,564

h(·,y) = k(·,y)∇F (y)−∇2k(·,y)
Thus, by triangle inequality of ∥ · ∥H, Assumptions 1 and 3, we obtain565

∥h(·,y)∥H ≤ ∥∇F (y)∥∥k(·,y)∥H0
+ ∥∇2k(·,y)∥H

≤ BL∥y∥+B∥∇F (0)∥+B

To prove the remaining inequalities, we first note that,566

h(x,y) = k(x,y)∇F (y)−∇2k(x,y)

= k(x,y)∇F (x) + k(x,y) [∇F (y)−∇F (x)]−∇2k(x,y) (12)

Using Assumptions 1 and 3, we note that,567

∥h(x,y)∥ ≤ k(x,y)∥∇F (x)∥+ LA1∥x− y∥
1 + ∥x− y∥2

+A2

≤ A1L

2
+A2 + k(x,y)∥∇F (x)∥
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where the second inequality uses the fact t
1+t2 ≤ 1/2568

To prove the last inequality, we infer the following from (12)569

−⟨∇F (x), h(x,y)⟩ ≤ −k(x,y)∥∇F (x)∥2 + k(x,y)∥∇F (x)−∇F (y)∥∥∇F (x)∥
+ ∥∇2k(x,y)∥∥∇F (x)∥

≤ −k(x,y)∥∇F (x)∥2 + L
√
k(x,y)

√
A1∥x− y∥2
1 + ∥x− y∥2

∥∇F (x)∥

+
√
A3k(x,y)∥∇F (x)∥

≤ −1

2
k(x,y)∥∇F (x)∥2 + L2A1 +A3

where the second inequality uses Assumptions 1 and 3, and the last inequality uses the identity570

ab ≤ a2 + b2/4571

To analyze the dynamics of VP-SVGD in the Wasserstein space, we use the following lemma572

presented in Salim et al. [36]573

Lemma 7 (Salim et al. [36], Proposition 3.1). Let Assumptions 1 and 3 be satisfied. Consider any574

ν0 ∈ P2(Rd) with KL (ν0||||||π⋆) < ∞, f ∈ H and let ν1 = (I − ηf)#ν0 with η∥f∥H ≤ β−1
βB for575

some β > 1. Then, the following holds,576

KL (µ1||||||π⋆) ≤ KL (µ0||||||π⋆)− η ⟨hµ0
, f⟩+ η2(β2 + L)B

2
∥f∥2H

B.1 Gelfand-Pettis Integrals for Reproducing Kernel Hilbert Spaces577

The Gelfand-Pettis integral is a generalization of the Lebesgue integral to functions that take values578

in an arbitrary topological vector space. In this section, we describe the Gelfand-Pettis integral for579

an arbitrary Hilbert space (V, ⟨·, ·⟩V ) and refer the readers to Talagrand [40] for a more general580

treatment.581

Let (X,Σ, λ) be a measure space and (V, ⟨·, ·⟩V ) be a Hilbert Space. A function g : X → V582

is said to be Gelfand-Pettis integrable if there exists a vector wg ∈ V such that ⟨u,wg⟩V =583 ∫
X
⟨u, g(x)⟩V dλ(x) ∀ u ∈ V . The vector wg is called the Gelfand-Pettis integral of g584

We now establish the following lemma for Gelfand-Pettis integrals with respect to the RKHS H,585

which is a key component of our analysis of VP-SVGD.586

Lemma 8. Let µ be a probability measure on Rd. Let G : Rd × Rd be a function such that587

for every y ∈ Rd, G(.,y) ∈ H with ∥G(.,y)∥H ≤ C holding µ-almost surely. Let Gµ(x) =588

Ey∼µ[G(x,y)]. Then, the map ψ : Rd → H defined as ψ(y) = G(·,y) is Gelfand-Pettis integrable589

and Gµ is the Gelfand-Pettis integral of ψ with respect to µ, i.e. Gµ ∈ H and for any f ∈ H,590

Ey∼µ[⟨f,G(.,y)⟩H] = ⟨f,Gµ⟩H591

Proof. Let Φ : H → R denote the map Φ(f) = Ey∼µ[⟨f,G(.,y)⟩H] ∀ f ∈ H. By linear-592

ity of expectations and inner products, we note that Φ is a linear functional on H. Further-593

more, since ∥G(.,y)∥H ≤ C holds µ-almost surely, we note that for any f ∈ H, |Φ(f)| ≤594

Ey∼µ[| ⟨f,G(.,y)⟩H |] ≤ C∥f∥H by Jensen’s inequality and Cauchy Schwarz inequality for H. We595

conclude that Φ is a bounded linear functional of H. Thus, by Reisz Representation Theorem [10],596

there exists g ∈ H such that for any f ∈ H, the following holds597

Ey∈µ[⟨f,G(.,y)⟩H] = ⟨f, g⟩H
Hence, we conclude that the map ψ is Gelfand-Pettis integrable. We now use the reproducing property598

of H to show that g = Gµ, i.e., Gµ is the Gelfand-Pettis integral of ψ. To this end, let x ∈ Rd be599

arbitrary. Setting f = k(x, .) and using the fact that g ∈ H, G(.,y) ∈ H for any y ∈ Rd,600

g(x) = Ey∈µ[G(x,y)] = Gµ(x)

Hence, g = Gµ, i.e., Ey∼µ[⟨f,G(.,y)⟩H] = ⟨f,Gµ⟩H601
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C Analysis of VP-SVGD602

In this section, we present our analysis of VP-SVGD. Throughout this section, we define the random603

function gt : Rd×Rd as gt(x) = 1
K

∑K−1
l=0 h(x,x

(Kt+l)
t ) where t ∈ N∪{0}, K is the batch-size of604

VP-SVGD, and h : Rd × Rd is as defined in Section 2, i.e., h(x,y) = k(x,y)∇F (y)−∇2k(x,y).605

After proving the key lemmas required for our analysis of VP-SVGD, we present the proof of606

Theorem 1 in Appendix C.4. We also present a high-probability version of Theorem 1 in Appendix607

C.5608

C.1 Population Level Dynamics : Proof of Lemma 1609

Proof. We now derive the population-limit dynamics of VP-SVGD for arbitrary batch-size K, and610

subsequently prove the descent lemma (i.e. Lemma 1) for VP-SVGD. The arguments of this section611

are a straightforward generalization of that used in Section 4.612

To this end, we recall from Section 4 that the countably infinite number of particles x(l)
0 , l ∈ N ∪ {0}613

are i.i.d samples from the measure µ0, which has a density w.r.t the Lebesgue measure. Thus, by614

the strong law of large numbers (Dudley [13, Theorem 11.4.1]), the empirical measure of (x(l)
0 )l≥0615

is almost surely equal to µ0. Furthermore, we recall the filtration Ft defined in Section 4 as616

Ft = σ(x
(l)
0 | l ≤ Kt−1), t ∈ N with F0 being the trivial σ algebra. We now consider the following617

dynamics in Rd:618

x
(s)
t+1 = x

(s)
t − γ

K

K−1∑
l=0

h(x
(s)
t ,x

(tK+l)
t ), s ∈ N ∪ {0} (13)

We note that the above updates are the same as that of VP-SVGD for s ∈ {0, . . . ,KT + n − 1}.619

Now, for each time-step t, we focus on the lower triangular evolution, i.e., the time evolution of620

the particles (x(l)
t )l≥Kt. From (13), we infer that for any t ∈ N and s ≥ Kt, x(s)

t depends only on621

(x
(l)
0 )l≤Kt−1 and x

(s)
0 . Hence, there exists a measurable function Ht for every t ∈ N such that the622

following holds almost surely:623

x
(s)
t = Ht(x

(0)
0 , . . . ,x

(Kt−1)
0 ,x

(s)
0 ); ∀ s ≥ Kt (14)

Since x
(0)
0 , . . . ,x

(Kt−1)
0 ,x

(s)
0

i.i.d.∼ µ0, we conclude from (14) that (x(s)
t )s≥Kt are i.i.d when624

conditioned on x
(0)
0 , . . . ,x

(Kt−1)
0 . To this end, we define the random measure µt|Ft as the law of625

x
(Kt)
t conditioned on Ft, i.e. µt|Ft is a probability kernel µt(·;x(0)

0 , . . . ,x
(Kt−1)
0 ) with µ0|F0 := µ0.626

By the strong law of large numbers, µt|Ft is equal to the empirical measure of (x(l)
t )l≥Kt conditioned627

on Ft. Furthermore, we infer from (13) that the particles satisfy the following:628

x
(s)
t+1(I − γgt)(x

(s)
t ), s ≥ K(t+ 1)

Recall that x(s)
t+1|x

(0)
0 , . . . ,x

(K(t+1)−1)
0 ∼ µt+1|Ft+1 for any s ≥ K(t + 1). Furthermore, from629

Equation (14), we note that for s ≥ K(t+1), x(s)
t depends only on x

(0)
0 , . . . ,x

(Kt−1)
0 and x

(s)
0 , which630

implies that Law(x(s)
t |x(0)

0 , . . . ,x
(K(t+1)−1)
0 ) = Law(x

(s)
t |x(0)

0 , . . . ,x
(Kt−1)
0 ) = µt|Ft. Finally,631

we note that gt is an Ft+1-measurable random function. With these insights, we conclude that the632

population-level dynamics of the lower triangular evolution in P2(Rd) is almost surely described by633

the following update:634

µt+1|Ft+1 = (I − γgt)#µt|Ft (15)

Setting γ∥gt∥H ≤ β−1
βB for some arbitrary β > 1 and applying Lemma 7 to the population-level635

update (15), we conclude that the following holds almost surely:636

KL (µt+1|Ft+1||||||π⋆) ≤ KL (µt|Ft||||||π⋆)− γ
〈
hµt|Ft

, gt
〉
H +

γ2(β2 + L)B

2
∥gt∥2H

637
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C.2 Iterate Bounds : Proof of Lemma 2638

To establish almost sure bounds on ∥gt∥H, we prove the following result which is stronger than639

Lemma 2.640

Lemma 9 (Almost-Sure Iterate Bounds for VP-SVGD). Let Assumptions 1, 2, 3 and 4 be satisfied.641

Then, the following holds almost surely for any s ∈ N ∪ {0} and t ∈ (T + 1) whenever γ ≤ 1/2A1L642

∥x(s)
t ∥ ≤ ζ0 + ζ1(γT )

1/α + ζ2(γ
2T )

1/α + ζ3R
2/α

∥h(·,x(s)
t )∥H ≤ ζ0 + ζ1(γT )

1/α + ζ2(γ
2T )

1/α + ζ3R
2/α

∥gt∥H ≤ ζ0 + ζ1(γT )
1/α + ζ2(γ

2T )
1/α + ζ3R

2/α

where ζ0, . . . , ζ3 are problem-dependent constants that depend polynomially on643

A1, A2, A3, B, d1, d2, L for any fixed α.644

Proof. Let c(s)t = 1
K

∑K−1
l=0 k(x

(s)
t ,x

(Kt+l)
t ). Note that by Assumption 3, c(s)t ≥ 0 Since x

(s)
t+1 =645

x
(s)
t − γgt(x

(s)
t ), it follows from the smoothness of F that,646

F (x
(s)
t+1)− F (x(s)) ≤ −γ

〈
∇F (x(s)

t ), gt(x
(s)
t )
〉
+
γ2L

2
∥gt(x(s)

t )∥2 (16)

By Lemma 6, we note that,647

−γ
〈
∇F (x(s)

t ), gt(x
(s)
t )
〉
= − γ

K

K−1∑
l=0

〈
∇F (x(s)

t ), h(x
(s)
t ,x

(tK+l)
t )

〉
≤ γ

K

L−1∑
l=0

[
− 1

2k(x
(s)
t ,x

(tK+l)
t )∥∇F (x(s)

t )∥2 + L2A1 +A3

]
≤ −γc

(s)
t

2
∥∇F (x(s)

t )∥2 + γL2A1 + γA3 (17)

Moreover, by Jensen’s Inequality and Lemma 6648

∥gt(x(s)
t )∥2 ≤ 1

K

K−1∑
l=0

∥h(x(s)
t ,x

(Kt+l)
t )∥2

≤ 1

K

K−1∑
l=0

2(A1L/2 +A2)
2 + 2k(x

(s)
t ,x

(tK+l)
t )2∥F (x(s)

t )∥2

≤ 1

K

K−1∑
l=0

2(A1L/2 +A2)
2 + 2A1k(x

(s)
t ,x

(tK+l)
t )∥F (x(s)

t )∥2

≤ 2(A1L/2 +A2)
2 + 2A1c

(s)
t ∥F (x(s)

t )∥2 (18)

Substituting (17) and (18) into (16), we obtain,649

F (x
(s)
t+1)− F (x

(s)
t ) ≤ −γc

(s)
t

2
∥∇F (x(s)

t )∥2 + γL2A1 + γA3

+ γ2L(A1L/2 +A2)
2 + γ2LA1c

(s)
t ∥F (x(s)

t )∥2

≤ −γc
(s)
t

2
(1− 2A1Lγ)∥∇F (x(s)

t )∥2 + γA3 + γL2A1 + γ2L(A1L/2 +A2)
2

≤ γA3 + γL2A1 + γ2L(A1L/2 +A2)
2

where the last inequality uses the fact that c(s)t ≥ 0 and γ ≤ 1/2A1L. Now, iterating through the above650

inequality, we obtain the following for any t ∈ [T ], s ∈ N ∪ {0}651

F (x
(s)
t ) ≤ F (x

(s)
0 ) + γTL2A1 + γTA3 + γ2TL(A1L/2 +A2)

2 (19)
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Furthermore, by Assumption 1652

F (x
(s)
0 ) ≤ F (0) + ∥∇F (0)∥∥x(s)

0 ∥+ L

2
∥x(s)

0 ∥2

≤ F (0) + 1/2 + L∥x(s)
0 ∥2

Substituting the above inequality into (19), and using Assumption 2, we obtain the following for any653

t ∈ [T ], s ∈ N ∪ {0}654

d1∥x(s)
t ∥α − d2 ≤ F (xs

t ) ≤ F (0) + 1/2 + L∥x(s)
0 ∥2 + γTL2A1 + γTA3

+ γ2TL(A1L/2 +A2)
2

Rearranging and applying Assumption 4, we obtain655

∥x(s)
t ∥ ≤ d

−1/α
1

[
F (0) + 1/2 + LR2 + γTL2A1 + γTA3 + γ2TL(A1L+A2)

2
]1/α

≤ ζ̃0 + ζ̃1(γT )
1/α + ζ̃2(γ

2T )
1/α + ζ̃3R

2/α

where ζ̃0, . . . , ζ̃3 are constants that depend polynomially on L,A1, A2, A3, R. We note that, since656

0 < α ≤ 2, the above inequality also holds for t = 0.657

Using the above inequality Lemma 6 and Assumption 1, we conclude that the following holds almost658

surely for any t ∈ (T + 1), s ∈ N ∪ {0}659

∥h(·,x(s)
t )∥H ≤ BL∥x(s)

t ∥+B
√
L+B

≤ η̃0 + η̃1(γT )
1/α + η̃2(γ

2T )
1/α + η̃3R

2/α

where η̃0, . . . , η̃3 are constants that depend polynomially on L,B,A1, A2, A3, R. Using the above660

inequality, we conclude that the following also holds for any t ∈ (T + 1).661

∥gt∥H ≤ η̃0 + η̃1(γT )
1/α + η̃2(γ

2T )
1/α + η̃3R

2/α

Taking ζi = max{ζ̃i, η̃i}, the proof is complete.662

C.3 Controlling gt in Expectation : Proof of Lemma 3663

Proof. Let ξ = ζ0 + ζ1(γT )
1/α + ζ2(γ

2T )1/α + ζ3R
2/α where ζ0, . . . , ζ3 are as defined in Lemma664

9. Recall that gt = 1
K

∑K−1
l=0 h(.,x

(Kt+l)
t ). Since γ ≤ 1/2A1L, ∥h(·,x(Kt+l)

t )∥H ≤ ξ holds almost665

surely y Lemma 9.666

Consider any l ∈ (K). Conditioned on the filtration Ft, Law(x
(Kt+l)
t |Ft) = µt|Ft. Moreover,667

for any x ∈ Rd, E
x
(Kt+l)
t

[h(x,x
(Kt+l)
t )|Ft] = hµt|Ft

(x). Thus, from Lemma 8, we conclude that668

hµt|Ft
is the Gelfand-Pettis Integral of the map x → h(x,x

(Kt+l)
t ) with respect to µt|Ft. Hence, the669

following holds670

E
x
(Kt+l)
t

[〈
h(·,x(Kt+l)

t ), f
〉
H

∣∣∣∣Ft

]
=
〈
hµt|Ft

, f
〉
H

In particular, setting f = hµt|Ft
and using linearity of expectation, we conclude,671

E
[〈
gt, hµt|Ft

〉
H |Ft

]
=

1

K

K−1∑
l=0

E
x
(Kt+l)
t

[〈
h(·,x(Kt+l)

t ), hµt|Ft

〉
H

∣∣∣∣Ft

]
= ∥hµt|Ft

∥2H
To control E[∥gt∥2H|Ft], we note that,672

∥gt∥2H =
1

K2

K−1∑
l1,l2=0

〈
h(·,x(Kt+l1)

t ), h(·,x(Kt+l2)
t )

〉
H

=
1

K2

K−1∑
l=0

∥h(·,x(Kt+l)
t )∥2H +

∑
0≤l1 ̸=l2≤K−1

〈
h(·,x(Kt+l1)

t ), h(·,x(Kt+l2)
t )

〉
H

≤ ξ2

K
+

∑
0≤l1 ̸=l2≤K−1

〈
h(·,x(Kt+l1)

t ), h(·,x(Kt+l2)
t )

〉
H

22



where the last inequality uses the fact that ∥h(·,x(Kt+l)
t )∥H ≤ ξ almost surely as per Lemma 9.673

To control the off-diagonal terms, let i = Kt + l1 and j = Kt + l2 for any arbitrary l1, l2 with674

0 ≤ l1 ̸= l2 ≤ K − 1. Conditioned on Ft, x
(i)
t and x

(j)
t are i.i.d samples from µt|Ft. Thus, by675

Lemma 8 and Fubini’s Theorem,676

E
x
(i)
t ,x

(j)
t

[〈
h(·,x(i)

t ), h(·,x(j)
t )
〉
H

∣∣Ft

]
= E

x
(i)
t

[
E
x
(j)
t

[〈
h(·,x(i)

t ), h(·,x(j)
t )
〉
H

∣∣]]
= E

x
(i)
t

[〈
hµt|Ft

, h(·,x(i)
t )
〉
H

∣∣Ft

]
= ∥hµt|Ft

∥2H
Thus, we conclude that,677

E
[
∥gt∥2H|Ft

]
≤ ∥hµt|Ft

∥2H +
ξ2

K

678

C.4 Proof of Theorem 1679

Proof. Let ξ = ζ0 + ζ1(γT )
1/α + ζ2(γ

2T )1/α + ζ3R
2/α where ζ0, . . . , ζ3 are as defined in Lemma 9.680

Since γ ≤ 1/2A1L, ∥gt∥H ≤ ξ holds almost surely as per Lemma 9.681

Since γξ ≤ 1/2B, Lemma 1 ensures that the following holds almost surely682

KL (µt+1|Ft+1||||||π⋆) ≤ KL (µt|Ft||||||π⋆)− γ
〈
hµt|Ft

, gt
〉
H +

γ2(4 + L)B

2
∥gt∥2H

Taking conditional expectations w.r.t Ft on both sides and applying Lemma 3, we obtain,683

E [KL (µt+1|Ft+1||||||π⋆) |Ft] ≤ KL (µt|Ft||||||π⋆)− γ

(
1− γ(4 + L)B

2

)
∥hµt|Ft

∥2H +
γ2(4 + L)Bξ2

2K

≤ KL (µt|Ft||||||π⋆)− γ

2
∥hµt|Ft

∥2 + γ2(4 + L)Bξ2

2K

= KL (µt|Ft||||||π⋆)− γ

2
KSDπ⋆(µt|Ft||π⋆)2 +

γ2(4 + L)Bξ2

2K

where the second inequality uses the fact that γ ≤ 1/(4+L)B. Taking expectations on both sides and684

rearranging,685

γ

2
E
[
KSDπ⋆(µt|Ft||π⋆)2

]
≤ E [KL (µt|Ft||||||π⋆)− KL (µt+1|Ft+1||||||π⋆)] +

γ2(4 + L)Bξ2

2K

Telescoping and averaging, we conclude,686

1

T

T−1∑
t=0

E
[
KSDπ⋆(µt|Ft||π⋆)2

]
≤ 2KL (µ0|F0||||||π⋆)

γT
+
γ(4 + L)Bξ2

K
(20)

Now, recall from the proof of Lemma 1 in Section C.1 that for any t ∈ [T ] and l ≥ Kt, x(l)
t687

depends only on x
(0)
0 , . . . ,x

(Kt−1)
0 ,x

(l)
0 , i.e., there exists a deterministic measurable function Ht688

such that x(l)
t = Ht(x

(0)
0 , . . . ,x

(Kt−1)
0 ,x

(l)
0 ) holds almost surely. We note that the output Y =689

(y(0), . . . ,y(n−1)) satisfies y(l) = x
(KT+l)
S ∀ l ∈ (n), where S ∼ Uniform((T )) is sampled690

independently of everything else.691

Thus, we infer that y(l) depends only on x
(0)
0 , . . . ,x

(KT−1)
0 , S,x

(KT+l)
0 , i.e., there exists a determin-692

istic measurable function G such that y(l) = G(x
(0)
0 , . . . ,x

(KT−1)
0 , S,x

(KT+l)
0 ) for every l ∈ (n).693

Since x(KT )
0 , . . . ,x

(KT+n−1)
0

i.i.d.∼ µ0, we infer that y(0), . . . ,y(n−1) are i.i.d when conditioned on694

x
(0)
0 , . . . ,x

(KT−1)
0 , S.695

We now show that, when conditioned on x
(0)
0 , . . . ,x

(KT−1)
0 , S, y(l) is distributed as µ̄, where µ̄ is696

the probability kernel defined as µ̄(·;x(0)
0 = x0, . . . ,x

(KT−1)
0 = xKT−1, S = s) := µs(·,x(0)

0 =697
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x0, . . . ,x
(Ks−1)
0 = xKs−1). For any arbitrary fixed s ∈ (T ), note that, under the event S = s,698

y(l) = x
(KT+l)
s for every l ∈ (n). Thus, for any Borel measurable set A ⊆ Rd, {y(l) ∈ A} ∩699

{S = s} = {x(KT+l)
s ∈ A} ∩ {S = s}. For the sake of clarity, we denote the conditioning700

x
(0)
0 = x0,x

(KT−1)
0 = xKT−1 as C, only in this proof. Since S is independent of x(l)

t for every701

t ∈ (T + 1), l ∈ (KT + n), we infer the following:702

P
(
{y(l) ∈ A}

∣∣C, S = s
)
=

P
(
{y(l) ∈ A} ∩ {S = s}

∣∣C)
P (S = s)

= TP
(
{x(KT+l)

s ∈ A} ∩ {S = s}
∣∣C)

= TP ({S = s})P
(
{x(KT+l) ∈ A}

∣∣C)
= P

(
{x(KT+l)

s ∈ A}
∣∣C)

As discussed above, x
(KT+l)
s depends only on x

(0)
0 ,x

(Ks−1)
0 ,x

(KT+l)
0 . It follows that703

P
(
{x(KT+l)

s ∈ A}|C
)
= µs(A;x

(0)
0 = x0, . . . ,x

(Ks−1)
0 = xKs−1) and,704

P
(
{y(l) ∈ A}

∣∣C, S = s
)
= µs(A;x

(0)
0 = x0, . . . ,x

(Ks−1)
0 = xKs−1)

= µ̄(A;x
(0)
0 = x0, . . . ,x

(KT−1)
0 = xKt−1, S = s)

Thus, y(0), . . . ,y(n−1) are i.i.d samples from µ̄ when conditioned on x
(0)
0 , . . .x

(KT−1)
0 , S.705

We now obtain an upper bound on the expected squared KSD between µ̄ and π⋆. We recall from706

the proof of Lemma 1 in Section C.1 that, for any t ∈ (T + 1), conditioned on x
(0)
0 , . . . ,x

(Kt−1)
0 ,707

(x
(l)
t )l≥t are i.i.d samples from µt|Ft where µt|Ft := µt(·;x(0)

0 ,x
(Kt−1)
0 ). Hence, from (20), we708

conclude that,709

E[KSDπ⋆(µ̄(·; (x(l)
0 )l∈(KT ), S)||π⋆)2] =

1

T

T−1∑
t=0

E
[
E
[
KSDπ⋆(µ̄(·; (x(l)

0 )l∈(KT ), S = t)||π⋆)2
∣∣(x(l)

0 )l∈(KT )

]]
=

1

T

T−1∑
t=0

E
[
KSDπ⋆(µt(·;x(0)

0 , ·,x(Kt−1)
0 )||π⋆)2

]
=

1

T

T−1∑
t=0

E
[
KSDπ⋆(µt|Ft||π⋆)2

]
≤ 2KL (µ0|F0||||||π⋆)

γT
+
γ(4 + L)Bξ2

K

where we use the fact that S ∼ Uniform((T )) is sampled independent of everything else.710

C.5 High-Probability Guarantees711

We establish the convergence guarantee for VP-SVGD which holds with high probability, when712

conditioned on the virtual particles x(0)
0 , . . . ,x

(KT−1)
0713

Theorem 3 (VP-SVGD: High-Probability Rates). Let the assumptions and parameter settings of714

Theorem 1 apply and let δ ∈ (0, 1). Then, the following holds with probability at least 1− δ:715

1

T

T−1∑
t=0

KSDπ⋆(µt|Ft||π⋆)2 ≤ 4KL (µ0|F0||||||π⋆)

γT
+

2γ(4 + L)Bξ2

K

+
32ξ2 log(2/δ)

KT
+ 12γ(4 + L)Bξ2

√
log(2/δ)

T

Let µ̄(·;x(0)
0 , . . . ,x

(KT−1)
0 , S) be the probability kernel defined in the statement of Theorem 1. Then,716

conditioned on x
(0)
0 , . . . ,x

(KT−1)
0 , S, the n particles output by VP-SVGD are i.i.d samples from717
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µ̄(·;x(0)
0 , . . . ,x

(KT−1)
0 , S). Furthermore, with probability at least 1− δ718

ES [KSDπ⋆(µ̄(·;x(0)
0 , . . . ,x

(KT−1)
0 , S)||π⋆)2] ≤ 4KL (µ0|F0||||||π⋆)

γT
+

2γ(4 + L)Bξ2

K

+
32ξ2 log(2/δ)

KT
+ 12γ(4 + L)Bξ2

√
log(2/δ)

T

where ES denotes that the expectation is being taken only with respect to S ∼ Uniform((T ))719

Proof. Following the same steps as Theorem 1, we note that the following holds almost surely.720

KL (µt+1|Ft+1||||||π⋆) ≤ KL (µt|Ft||||||π⋆)− γ
〈
hµt|Ft

, gt
〉
H +

γ2(4 + L)B

2
∥gt∥2H

≤ KL (µt|Ft||||||π⋆)− γ

2
∥hµt|Ft

∥2H + γ
〈
hµt|Ft

, hµt|Ft
− gt

〉
H

+
γ2(4 + L)Bξ2

2K
+
γ2(4 + L)B

2

[
∥gt∥2H − ∥hµt|Ft

∥2H − ξ2

K

]
(21)

where the last inequality uses the fact that γ ≤ 1/(4+L)B. We now define ∆
(l)
t , ∆t and rt for721

l ∈ (K), t ∈ (T ) as follows:722

∆
(l)
t =

〈
hµt|Ft

, hµt|Ft
− h(·,x(Kt+l)

t )
〉
H

∆t =
1

K

K−1∑
l=0

∆
(l)
t =

〈
hµt|Ft

, hµt|Ft
− gt

〉
H

rt = ∥gt∥2H − ∥hµt|Ft
∥2H − ξ2

K

Substituting the above into (21), we obtain the following:723

KL (µt+1|Ft+1||||||π⋆) ≤ KL (µt|Ft||||||π⋆)− γ

2
∥hµt|Ft

∥2H + γ∆t +
γ2(4 + L)Bξ2

2K
+
γ2(4 + L)Brt

2

Telescoping and averaging both sides, and using ∥hµt|Ft
∥2H = KSDπ⋆(µt|Ft||π⋆)2, we obtain the724

following:725

1

T

T−1∑
t=0

KSDπ⋆(µt|Ft||π⋆)2 ≤ 4KL (µ0|F0||||||π⋆)

γT
+

2γ(4 + L)Bξ2

K

+
4

T

T−1∑
t=0

(
∆t −

∥hµt|Ft
∥2H

4

)
+

2γ(4 + L)B

T

T−1∑
t=0

rt (22)

We note that the first two terms are the same as that of the in-expectation guarantee for VP-SVGD in726

Theorem 1. The third and fourth term are random quantities that vanish in expectation. The remainder727

of our analysis upper bounds them with high probability.728

We begin by deriving a high probability upper bound for the fourth term in (22). To this end, we729

note that, since γ ≤ 1/2A1L, ∥h(·,x(Kt+l)
t )∥H ≤ ξ for any t ∈ (T ), l ∈ (K) as per Lemma 9.730

Furthermore, since E[h(·,x(Kt+l)
t |Ft] = hµt|Ft

(both pointwise and in the sense of the Gelfand-731

Pettis integral, see proof of Lemma 3 in Appendix C.3), it follows by Jensen’s inequality that732

∥hµt|Ft
∥H ≤ ξ. This further implies that |rt| ≤ 3ξ2. Moreover, rt is Ft+1 measurable (as gt is an733

Ft+1 measurable random function) with E[rt|Ft] ≤ 0 (as per Lemma 3)734

Thus, St =
∑t−1

s=0 rt is an F -adapted supermartingale difference sequence with bounded increments.735

Thus, by the Hoeffding-Azuma inequality, we conclude that the following holds with probability at736

least 1− δ/2737

1

T

T−1∑
t=0

rt ≤ 6ξ2
√

log(2/δ)

T
(23)
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We now proceed to control the third term in (22). Recall from the proof of Theorem 1 in Appendix738

C.4, that, for any fixed t ∈ (T ), (x(l)
t )l∈(KT ) are i.i.d when conditioned on Ft. As discussed739

above, E[h(·,x(Kt+l)
t )] = hµt|Ft

in the sense of the Gelfand-Pettis integral, implying E[∆(l)
t ] = 0.740

Moreover, |∆(l)∥t ≤ 2ξ∥hµt|Ft
∥. Thus, when conditioned on Ft, ∆

(l)
t are independent zero-mean741

bounded random variables. Hence, we conclude the following by Hoeffding’s Lemma742

E
[
eθ∆t |Ft

]
≤

K−1∏
l=0

E[e
θ∆

(l)
t

K |Ft] ≤ e
2θ2ξ2

K ∥hµt|Ft
∥2
H , ∀ θ ∈ R (24)

We now define the sequence Mt as follows, where λ = K/8ξ2743

Mt = exp(

t−1∑
s=0

λ∆s − λ
4 ∥hµs|Fs

∥2H)

Since gt is Ft+1 measurable, so is ∆t, which implies Mt is Ft+1 measurable. Furthermore,744

E[Mt|Ft] =Mt−1e
−λ

4 ∥hµt|Ft
∥2
HE[eλ∆t |Ft]

≤Mt−1e
(−λ

4 +
2λ2ξ2

K )∥hµt|Ft
∥2
H ≤Mt−1

Thus, Mt is an F-adapted supermartingale sequence. Following the same steps, we conclude745

E[M1] ≤ 1, which implies E[MT ] ≤ E[M1] ≤ 1. Thus, from Markov’s Inequality746

P

[
T−1∑
t=0

∆t − 1
4∥hµt|Ft

∥2H > x

]
≤ e−λxE[MT ] ≤ e−λx

Hence, the following holds with probability at least 1− δ/2.747

T−1∑
t=0

∆t − 1
4∥hµt|Ft

∥2H ≤ 8ξ2

K
log(2/δ) (25)

Substituting (24) and (25) into (20) and taking a union bound, we conclude that the following holds748

with probability at least 1− δ:749

1

T

T−1∑
t=0

KSDπ⋆(µt|Ft||π⋆)2 ≤ 4KL (µ0|F0||||||π⋆)

γT
+

2γ(4 + L)Bξ2

K

+
32ξ2 log(2/δ)

KT
+ 12γ(4 + L)Bξ2

√
log(2/δ)

T
(26)

Recall from the proof of Theorem 1 in Appendix C.4 that the outputs (y(l))l∈(n) of VP-750

SVGD are i.i.d samples from the random measure µ̄(·;x(0)
0 , . . . ,x

(0)
KT−1, S) when conditioned on751

x
(0)
0 , . . . ,x

(0)
KT−1, S. Furthermore, when conditioned on S = t, µ̄(·;x(0)

0 , . . . ,x
(0)
KT−1, S = t) =752

µt|Ft. Thus, from (26), we conclude that, upon taking an expectation over S ∼ Uniform((T )) while753

conditioning on the virtual particles x(0)
0 , . . . ,x

(KT−1)
0 , the following holds with probability at least754

1− δ:755

ES [KSDπ⋆(µ̄(·;x(0)
0 , . . . ,x

(KT−1)
0 , S)||π⋆)2] ≤ 1

T

T−1∑
t=0

KSDπ⋆(µt|Ft||π⋆)2

≤ 4KL (µ0|F0||||||π⋆)

γT
+

2γ(4 + L)Bξ2

K

+
32ξ2 log(2/δ)

KT
+ 12γ(4 + L)Bξ2

√
log(2/δ)

T

756
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D Analysis of GB-SVGD757

In this section, we present our analysis of GB-SVGD. For any t ∈ (T ), we use g̃t to denote the758

random function g̃t(x) = 1
K

∑
r∈Kt

h(x,x
(r)
t ) where Kt is the random batch of size K sampled at759

time-step t of GB-SVGD.760

In order to prove Theorem 2, we first establish an almost-sure iterate bound for GB-SVGD which is761

similar to that of Lemma 9 for VP-SVGD.762

Lemma 10 (Almost-Sure Iterate Bounds). Let Assumptions 1, 2, 3 and 4 be satisfied. Then, the763

following holds almost surely for any s ∈ N ∪ {0} and t ∈ (T + 1) whenever γ ≤ 1/2A1L764

∥x(s)
t ∥ ≤ ζ0 + ζ1(γT )

1/α + ζ2(γ
2T )

1/α + ζ3R
2/α

∥h(·,x(s)
t )∥H ≤ ζ0 + ζ1(γT )

1/α + ζ2(γ
2T )

1/α + ζ3R
2/α

∥g̃t∥H ≤ ζ0 + ζ1(γT )
1/α + ζ2(γ

2T )
1/α + ζ3R

2/α

where ζ0, . . . , ζ3 are problem-dependent constants that depend polynomially on765

A1, A2, A3, B, d1, d2, L for any fixed α.766

Proof. The proof of this Lemma is identical to that of Lemma 9. To this end, let c(s)t =767

1
K

∑
r∈Kt

k(x
(s)
t ,x

(r)
t ). Note that by Assumption 3, c(s)t ≥ 0 Since x

(s)
t+1 = x

(s)
t − γg̃t(x

(s)
t ),768

it follows from the smoothness of F that,769

F (x
(s)
t+1)− F (x(s)) ≤ −γ

〈
∇F (x(s)

t ), g̃t(x
(s)
t )
〉
+
γ2L

2
∥g̃t(x(s)

t )∥2 (27)

By Lemma 6, we note that,770

−γ
〈
∇F (x(s)

t ), g̃t(x
(s)
t )
〉
= − γ

K

∑
r∈Kt

〈
∇F (x(s)

t ), h(x
(s)
t ,x

(r)
t )
〉

≤ γ

K

∑
r∈Kt

[
− 1

2k(x
(s)
t ,x

(r)
t )∥∇F (x(s)

t )∥2 + L2A1 +A3

]
≤ −γc

(s)
t

2
∥∇F (x(s)

t )∥2 + γL2A1 + γA3 (28)

Moreover, by Jensen’s Inequality and Lemma 6771

∥g̃t(x(s)
t )∥2 ≤ 1

K

∑
r∈Kt

∥h(x(s)
t ,x

(r)
t )∥2

≤ 1

K

∑
r∈Kt

2(A1L/2 +A2)
2 + 2k(x

(s)
t ,x

(r)
t )2∥F (x(s)

t )∥2

≤ 1

K

∑
r∈Kt

2(A1L/2 +A2)
2 + 2A1k(x

(s)
t ,x

(r)
t )∥F (x(s)

t )∥2

≤ 2(A1L/2 +A2)
2 + 2A1c

(s)
t ∥F (x(s)

t )∥2 (29)

Substituting (28) and (29) into (27), we obtain,772

F (x
(s)
t+1)− F (x

(s)
t ) ≤ −γc

(s)
t

2
∥∇F (x(s)

t )∥2 + γL2A1 + γA3

+ γ2L(A1L/2 +A2)
2 + γ2LA1c

(s)
t ∥F (x(s)

t )∥2

≤ −γc
(s)
t

2
(1− 2A1Lγ)∥∇F (x(s)

t )∥2 + γA3 + γL2A1 + γ2L(A1L/2 +A2)
2

≤ γA3 + γL2A1 + γ2L(A1L/2 +A2)
2

where the last inequality uses the fact that c(s)t ≥ 0 and γ ≤ 1/2A1L. Now, iterating through the above773

inequality, we obtain the following for any t ∈ [T ], s ∈ N ∪ {0}774

F (x
(s)
t ) ≤ F (x

(s)
0 ) + γTL2A1 + γTA3 + γ2TL(A1L/2 +A2)

2 (30)
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Furthermore, by Assumption 1775

F (x
(s)
0 ) ≤ F (0) + ∥∇F (0)∥∥x(s)

0 ∥+ L

2
∥x(s)

0 ∥2

≤ F (0) + 1/2 + L∥x(s)
0 ∥2

Substituting the above inequality into (30), and using Assumption 2, we obtain the following for any776

t ∈ [T ], s ∈ N ∪ {0}777

d1∥x(s)
t ∥α − d2 ≤ F (xs

t ) ≤ F (0) + 1/2 + L∥x(s)
0 ∥2 + γTL2A1 + γTA3

+ γ2TL(A1L/2 +A2)
2

Rearranging and applying Assumption 4, we obtain778

∥x(s)
t ∥ ≤ d

−1/α
1

[
F (0) + 1/2 + LR2 + γTL2A1 + γTA3 + γ2TL(A1L+A2)

2
]1/α

≤ ζ̃0 + ζ̃1(γT )
1/α + ζ̃2(γ

2T )
1/α + ζ̃3R

2/α

where ζ̃0, . . . , ζ̃3 are constants that depend polynomially on L,A1, A2, A3, R. We note that, since779

0 < α ≤ 2, the above inequality also holds for t = 0.780

Using the above inequality Lemma 6 and Assumption 1, we conclude that the following holds almost781

surely for any t ∈ (T + 1), s ∈ N ∪ {0}782

∥h(·,x(s)
t )∥H ≤ BL∥x(s)

t ∥+B
√
L+B

≤ η̃0 + η̃1(γT )
1/α + η̃2(γ

2T )
1/α + η̃3R

2/α

where η̃0, . . . , η̃3 are constants that depend polynomially on L,B,A1, A2, A3, R. Using the above783

inequality, we conclude that the following also holds for any t ∈ (T + 1).784

∥g̃t∥H ≤ η̃0 + η̃1(γT )
1/α + η̃2(γ

2T )
1/α + η̃3R

2/α

Taking ζi = max{ζ̃i, η̃i}, the proof is complete.785

D.1 Proof of Theorem 2786

Proof. Let ξ = ζ0 + ζ1(γT )
1/α + ζ2(γ

2T )1/α + ζ3R
2/α where ζ0, . . . , ζ3 are constants as described787

in Lemma 9 and Lemma 10. Since the assumptions and parameter settings of Theorem 1 holds,788

γ ≤ 1/2A1L and thus, by Lemma 9 and Lemma 10, the particles output by VP-SVGD and GB-789

SVGD are bounded as ∥y(l)∥ ≤ ξ and ∥ȳ(l)∥ ≤ ξ.790

Let Y = (y(0), . . . ,y(n−1)) and Ȳ = (ȳ(0), . . . , ȳ(n−1)) denote the outputs of VP-SVGD and791

GB-SVGD. Let µ̂(n) = 1
n

∑n−1
i=0 δy(i) and ν̂(n) = 1

n

∑n−1
i=0 δȳ(i) be their respective empirical792

distributions. We shall now explicitly construct a coupling between the inputs of VP-SVGD and793

GB-SVGD such that the first n−KT particles of their respective outputs are equal. This in turn will794

allow us to control the expected squared KSD between µ̂(n) and ν̂(n).795

To this end, let E denote the event that each random batch Kt of GB-SVGD is disjoint and contains796

unique elements for every t ∈ (T ). Subsequently, let K denote the set of all indices that were chosen797

to be part of some random batch Kt. Let Λ be a uniformly random permutation over {0, . . . , n− 1}.798

We note that, conditioned on E , the distribution of the random set K is the same as the distribution of799

{Λ(0), . . . ,Λ(KT − 1)}. We can couple a uniformly random permutation Λ and Kt for 0 ≤ t ≤ T800

such that under the event E , K = {Λ(0), . . . ,Λ(KT −1)} and {Λ(tK), . . . ,Λ((t+1)K−1)} is the801

random batch Kt. Thus, under the event E , one can couple a uniformly random permutation Λ and802

Kt for t ∈ (T ) such that K = {Λ(0), . . . ,Λ(KT − 1)} and Kt = {Λ(tK), . . . ,Λ((t+ 1)K − 1)}803

With this insight, we couple VP-SVGD and GB-SVGDas follows. We note that, the random batch Kt804

in GB-SVGD is sampled independently of the initial particles. To this end, let x̄(0)
0 , . . . , x̄

(n−1)
0

i.i.d.∼805

µ0, and let the random batches Kt and permutation Λ be jointly distributed as described above,806

independently of x̄(0)
0 , . . . , x̄

(n−1)
0 , i.e.807

Λ ∼ Uniform(S(n)), Kt = {Λ(tK), . . . ,Λ((t+ 1)K − 1)}, t ∈ (T )
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We now define x
(0)
0 , . . . ,x

(KT+n−1)
0 as:808

x
(l)
0 :=

{
= x̄

(Λ(l))
0 for 0 ≤ l ≤ n− 1

∼ µ0 independent of everything else for n ≤ l ≤ KT + n− 1
(31)

Let x̄
(0)
0 , . . . , x̄

(n−1)
0 and Kt as the initialization and random batches for GB-SVGD, and let809

x
(0)
0 , . . . ,x

(KT+n−1)
0 be the initialization for GB-SVGD. We first show that this construction is810

indeed a valid coupling between VP-SVGD and GB-SVGD.811

Claim 1. Conditioned on E , the inputs to VP-SVGD and GB-SVGD, as constructed above is a valid812

coupling, i.e., the marginal distribution of x(0)
0 , . . . ,x

(KT+n−1)
0 is equal to the distribution of initial813

particles in VP-SVGD, and the marginal distribution of x̄(0)
0 , . . . , x̄

(n−1)
0 , (Kt)t∈(T ) is the same as814

the distribution of initial particles and random batches in Kt815

Proof. By construction x̄
(0)
0 , . . . , x̄

(n−1)
0

i.i.d.∼ µ0. Moreover, conditioned on E , the distribution of816

Kt = {Λ(tK), . . . ,Λ((t + 1)K − 1)}, has the distribution of a uniform random batch of size K817

since Λ ∼ Uniform(Sn). Furthermore, since Λ is sampled independently of x̄(0)
0 , . . . , x̄

(n−1)
0 , Kt818

is independent of x̄(0)
0 , . . . , x̄

(n−1)
0 for any t ∈ (T ). Thus, the coupling constructed above has the819

correct marginal with respect to GB-SVGD.820

To establish the same for VP-SVGD, we note that by (31), x(n)
0 , . . . ,x

(KT+n−1)
0

i.i.d.∼ µ0, sam-821

pled independently of everything else. Moreover, since x̄
(0)
0 , . . . , x̄

(n−1)
0

i.i.d.∼ µ0, we infer that822

x̄
(Λ(0))
0 , . . . , x̄

(Λ(n−1))
0

i.i.d.∼ µ0 for any arbitrary permutation Λ ∈ Sn. From this, and (31), we823

conclude that x(0)
0 , . . . ,x

(KT+n−1)
0

i.i.d.∼ µ0. Hence, the coupling constructed above has the correct824

marginal with respect to VP-SVGD.825

We now show that, under the constructed coupling, the time-evolution of the particles of VP-826

SVGD and GB-SVGD satisfy x̄
(Λ(l))
t = x

(l)
t , KT ≤ l ≤ n− 1, t ∈ (T + 1), when conditioned on827

the event E .828

Claim 2. Let the inputs to VP-SVGD and GB-SVGD be coupled as per the construction above. Then,829

conditioned on the event E , the particles x
(s)
t and x̄

(s)
t of VP-SVGD and GB-SVGD respectively,830

satisfy x̄
(Λ(l))
t = x

(l)
t for every KT ≤ l ≤ n− 1 and 0 ≤ t ≤ T831

Proof. We prove this by an inductive argument. Clearly, the claim holds for t = 0 by the construction832

of our coupling. Assume it holds for some arbitrary t ∈ (T ). Now, writing the update equation for833

GB-SVGD for KT ≤ l ≤ n− 1,834

x̄
(Λ(l))
t+1 = x̄

(Λ(l))
t − γ

K

∑
r∈Kt

h(x̄
(Λ(l))
t , x̄

(r)
t )

= x̄
(Λ(l))
t − γ

K

K−1∑
l=0

h(x̄
(Λ(l))
t , x̄

(Λ(Kt+l))
t )

= x
(l)
t − γ

K

K−1∑
l=0

h(x
(l)
t ,x

(Kt+l)
t ) = x

(l+1)
t

where the second equality uses the fact that Kt = {Λ(tK), . . . ,Λ((t+ 1)K − 1)} when conditioned835

on E and the third equality uses the induction hypothesis x̄(Λ(l))
t = x

(l)
t for KT ≤ l ≤ n− 1. Hence,836

the claim is proven true by induction.837

Equipped with the above coupling between the inputs of VP-SVGD and GB-SVGD, one can now838

couple their outputs by sampling an S ∼ Uniform((n)) and using this sampled S as the random839

timestep chosen by both VP-SVGD (Step 6 in Algorithm 1) and GB-SVGD (Step 7 in Algorithm 2)840

that are run with the coupled input constructed above. It is easy to see that this results in a coupling841
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of the outputs Y and Ȳ of VP-SVGD and GB-SVGD respectively. Furthermore, by Claim 2, we842

note that, conditioned on the event E , y(l−TK) = ȳ(Λ(l)) for every KT ≤ l ≤ n− 1. We now define843

the permutation τ ∈ S(n) as follows:844

τ(Λ(l)) =

{
l + n−KT for 0 ≤ l ≤ KT − 1

l −KT for KT ≤ l ≤ n− 1
(32)

It follows that ȳτ(l) = y(l) for KT ≤ l ≤ n− 1. Thus, by definition of Kernel Stein Discrepancy845

(Definition 1), we can infer that the following holds when conditioned on the event E846

E[KSD2
π⋆(ν̂(n)||µ̂(n))|E ] = E

[
∥hν̂(n) − hµ̂(n)∥2H | E

]
= E

[
∥ 1
n

n−1∑
l=0

h(·, ȳ(l))− 1

n

n−1∑
l=0

h(·,y(l))∥2H | E

]

=
1

n2
E[∥

n−1∑
l=0

h(·, ȳ(τ(l)))− h(·,y(l))∥2H | E ]

=
1

n2
E[∥

KT−1∑
l=0

h(·, ȳ(τ(l)))− h(·,y(l))∥2H | E ]

≤ KT

n2

KT−1∑
l=0

E[∥h(·, ȳ(τ(l)))− h(·,y(l))∥2H | E ]

≤ 2K2T 2ξ2

n2
(33)

where the second step uses the permutation invariance of summation, the third step uses the fact that847

ȳτ(l) = ȳ(l) for KT ≤ l ≤ n− 1, the fourth step uses the convexity of ∥ · ∥2H and the last step uses848

the almost-sure iterate bounds of Lemma 9 and 10849

Under the event Ec, we directly apply the almost-sure iterate bounds of Lemma 9 and 10 to obtain850

the following:851

E[KSD2
π⋆(ν̂(n)||µ̂(n))|Ec] = E

[
∥hµ̂(n) − hν̂(n)∥2H | Ec

]
=

1

n2
E[∥

n−1∑
l=0

h(·, ȳ(l))− h(·,y(l))∥2H | Ec]

≤ 2ξ2 (34)

From Equations (33) and (34), it follows that:852

E[KSD2
π⋆(ν̂(n)||µ̂(n))] = E[KSD2

π⋆(ν̂(n)||µ̂(n))|E ]P(E) + E[KSD2
π⋆(ν̂(n)||µ̂(n))|Ec]P(Ec)

≤ 2K2T 2ξ2

n2
P(E) + 2ξ2P(Ec)

Recall that P (E) = 1 under sampling without replacement and P (E) = 1− K2T 2

n under sampling853

with replacement. Thus, we conclude that the following holds under the constructed coupling of Y854

and Ȳ855

E[KSD2
π⋆(ν̂(n)||µ̂(n))] ≤

{
2K2T 2ξ2

n2 (without replacement sampling)
2K2T 2ξ2

n2

(
1− K2T 2

n

)
+ 2K2T 2ξ2

n (with replacement sampling)

856

E Finite-Particle Convergence Guarantees for VP-SVGD and GB-SVGD857

In this section, we show that the empirical measure of the particles output by VP-SVGD and GB-858

SVGD rapidly converge to the target distribution π⋆ in KSD. To this end, we prove the finite-particle859
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convergence rates for VP-SVGD in Appendix E.1 and that of GB-SVGD in Appendix E.2. Finally, we860

compare the oracle complexity (i.e., the number of evaluations of ∇F ) of VP-SVGD and GB-SVGD861

to that of SVGD in Appendix E.3862

E.1 VP-SVGD863

Corollary 2 (VP-SVGD : Fast Finite-Particle Convergence). Let the assumptions and parameter864

settings of Theorem 1 be satisfied. Let µ̂(n) denote the empirical measure of the n particles output by865

VP-SVGD.866

E[KSD2
π⋆(µ̂(n)||π⋆)] ≤ ξ2

n
+

2KL (µ0|F0||||||π⋆)

γT
+
γB(4 + L)ξ2

K

where ξ is as defined in Theorem 1. Setting R =
√

d/L, γ = O( (Kd)η

T 1−η ) with η = α
2(1+α) and867

KT = d
α

2+αn
2(1+α)
2+α suffices to ensure,868

E[KSD2
π⋆(µ̂(n)||π⋆)] ≤ O

 d
2

2+α

n
α

2+α

+
d2/α

n


Proof. Recall from Algorithm 1 that the outputs of VP-SVGD are x(KT )

S , . . . ,x
(KT+n−1)
S where S ∼869

Uniform({0, . . . , T −1}). Hence, their empirical measure µ̂(n) is given by µ̂(n) = 1
n

∑n−1
l=0 δx(KT+l)

S

.870

From the definition of the Kernel Stein Discrepancy (Definition 1), it follows that,871

KSD2
π⋆(µ̂(n)||π⋆) = ∥hµ̂(n)∥2H = ∥ 1

n

N∑
l=1

h(·,x(KT+l)
S )∥2H (35)

For the sake of clarity, only in this proof, we use C to denote the conditioning on the virtual particles872

x
(0)
0 , . . . ,x

(KT−1)
0 . Now, consider any arbitrary t ∈ {0, . . . , T − 1}. Taking conditional expectations873

on both sides of Equation (35) by conditioning on C and the event {S = t}, we obtain the following:874

E
[
KSD2

π⋆(µ̂(n)||π⋆) | C, S = t
]
= E

[
∥ 1
n

n−1∑
l=0

h(·,x(KT+l)
S )∥2H | C, S = t

]

= E

[
∥ 1
n

n−1∑
l=0

h(·,x(KT+l)
t )∥2H | (x(s)

0 )0≤s≤KT−1

]
(36)

Recall from Equation (14) in Appendix C.1 that for any l ∈ {0, . . . , n− 1} x
(KT+l)
t depends only875

on x
(0)
0 , . . . ,x

(Kt−1)
0 and x

(KT+l)
0 . Furthermore, from Appendix C.1, we recall that the filtration Ft876

is defined as Ft = σ({x(0)
0 , . . . ,x

(Kt−1)
0 }). It follows that,877

E

[
∥ 1
n

n−1∑
l=0

h(·,x(KT+l)
t )∥2H | (x(s)

0 )0≤s≤KT−1

]
= E

[
∥ 1
n

N∑
l=1

h(·,x(KT+l)
t )∥2H | (x(s)

0 )0≤s≤Kt−1

]

= E

[
∥ 1
n

n−1∑
l=0

h(·,x(KT+l)
t )∥2H | Ft

]
(37)

To control E
[
∥ 1
n

∑n−1
l=0 h(·,x

(KT+l)
t )∥2H | Ft

]
, we apply the arguments used in the proof of Lemma878

3. To this end, note that when conditioned on the virtual particles x(0)
0 , . . . ,x

(Kt−1)
0 , the particles879

x
(KT )
t , . . . ,x

(KT+n−1)
t

i.i.d.∼ µt|Ft. Furthermore, since γ ≤ 1/2A1L (as per the parameter settings880

of Theorem 1), ∥h(·,x(KT+l)
t )∥H ≤ ξ ∀ l ∈ (n) by Lemma 6. Finally, E[h(x,x(KT+l)

t )|Ft] =881

hµt|Ft
(x) ∀ l ∈ (n), x ∈ Rd. Hence, from Lemma 8, we conclude that hµt|Ft

is the Gelfand-Pettis882

integral of the map x → h(x,x
(KT+l)
t ) with respect to the measure µt|Ft, i.e.,883

E[
〈
h(·,x(KT+l)

t ), f
〉
H
|Ft] =

〈
hµt|Ft

, f
〉
∀ f ∈ H (38)
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To control E
[
∥ 1
n

∑n−1
l=0 h(·,x

(KT+l)
t )∥2H | Ft

]
, we proceed as follows:884

∥ 1
n

n−1∑
l=0

h(·,x(KT+l)
t )∥2H =

1

n2

n−1∑
l1,l2=0

〈
h(·,x(Kt+l1)

t ), h(·,x(Kt+l2)
t )

〉
H

=
1

n2

m−1∑
l=0

∥h(·,x(Kt+l)
t )∥2H +

1

n2

∑
0≤l1 ̸=l2≤n−1

〈
h(·,x(Kt+l1)

t ), h(·,x(Kt+l2)
t )

〉
H

≤ ξ2

n
+

1

n2

∑
0≤l1 ̸=l2≤n−1

〈
h(·,x(Kt+l1)

t ), h(·,x(Kt+l2)
t )

〉
H

where the last inequality uses the fact that ∥h(·,x(Kt+l)
t )∥H ≤ ξ almost surely as per Lemma 9.885

To control the conditional expectation of the off-diagonal terms, let i = Kt+ l1 and j = Kt+ l2886

for any arbitrary l1, l2 with 0 ≤ l1 ̸= l2 ≤ n− 1. Conditioned on Ft, x
(i)
t and x

(j)
t are i.i.d samples887

from µt|Ft. Thus, by Equation (38) and Fubini’s Theorem,888

E
x
(i)
t ,x

(j)
t

[〈
h(·,x(i)

t ), h(·,x(j)
t )
〉
H

∣∣Ft

]
= E

x
(i)
t

[
E
x
(j)
t

[〈
h(·,x(i)

t ), h(·,x(j)
t )
〉
H

∣∣Ft

]]
= E

x
(i)
t

[〈
hµt|Ft

, h(·,x(i)
t )
〉
H

∣∣Ft

]
= ∥hµt|Ft

∥2H
It follows that,889

E

[
∥ 1
n

n−1∑
l=0

h(·,x(KT+l)
t )∥2H | Ft

]
≤ ∥hµt|Ft

∥2H +
ξ2

n

Substituting the above into equation 36 and equation 37, we obtain the following:890

E
[
KSD2

π⋆(µ̂(n)||π⋆) | C, S = t
]
≤ ξ2

n
+ ∥hµt|Ft

∥2H =
ξ2

n
+ KSD2

π⋆(µt|Ft||π∗)

where the second step applies Definition 1. Finally, taking expectations with respect to C and891

S ∼ Uniform({0, . . . , T − 1}) on both sides of the above inequality, we get:892

E
[
KSD2

π⋆(µ̂(n)||π⋆)
]
≤ ξ2

n
+

1

T

T−1∑
t=0

E[KSD2
π⋆(µt|Ft||π⋆)]

Substituting the bound from Theorem 1 into the above inequality, we conclude that:893

E[KSD2
π⋆(µ̂(n)||π⋆)] ≤ ξ2

n
+

2KL (µ0|F0||||||π⋆)

γT
+
γB(4 + L)ξ2

K

We note that for γ = O( (Kd)η

T 1−η ) and R =
√

d/L, KL (µ0|F0||||||π⋆) = O(d) by Lemma 4 and894

ξ2 ≤ 4ζ0 + 4ζ1(γT )
2/α + 4ζ2(γ

2T )
2/α + 4ζ3R

4/α ≤ O

(
(KdT )

1
1+α + d

2/α

)
Furthermore,895

2KL (µ0|F0||||||π⋆)

γT
+
γB(4 + L)ξ2

K
≤ O

(
d

γT
+
γB(4 + L)ξ2

2K

)
≤ O

(
d1−η

(KT )η

)

≤ O

 d
2+α

2(1+α)

(KT )
α

2(1+α)


It follows that,896

E[KSD2
π⋆(µ̂(n)||π⋆)] ≤ O

d2/α

n
+

(KTd)
1

1+α

n
+

d
2+α

2(1+α)

(KT )
α

2(1+α)


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KT = d
α

2+αn
2(1+α)
2+α , we conclude:897

E[KSD2
π⋆(µ̂(n)||π⋆)] ≤ O

 d
2

2+α

n
α

2+α

+
d2/α

n


898

E.2 GB-SVGD899

Corollary 3 (GB-SVGD : Fast Finite-Particle Convergence). Let the assumptions and parameter900

settings of Theorem 1 be satisfied. Let ν̂(n) denote the empirical measure of the n particles output by901

GB-SVGD. Then, under without-replacement sampling of the minibatches, the following holds:902

E[KSD2
π⋆(ν̂(n)||π⋆)] ≤ 4K2T 2ξ2

n2
+

2ξ2

n
+

4KL (µ0|F0||||||π⋆)

γT
+

2γB(4 + L)ξ2

K

and the following holds under with-replacement sampling of the minibatches903

E[KSD2
π⋆(ν̂(n)||π⋆)] ≤ 4K2T 2ξ2

n2
(1− K2T 2

n
) +

4K2T 2ξ2

n
+

2ξ2

n
+

4KL (µ0|F0||||||π⋆)

γT
+

2γB(4 + L)ξ2

K

where ξ is as defined in Theorem 1. In particular, for GB-SVGD under without-replacement sampling904

of the minibatches, setting R =
√

d/L, γ = O( (Kd)η

T 1−η ) with η = α
2(1+α) and KT =

√
n suffices to905

ensure the following906

E[KSD2
π⋆(ν̂(n)||π⋆)] ≤ O

d2/α

n
+

d
1

1+α

n
1+2α
2(1+α)

+
d

2+α
2(1+α)

n
α

4(1+α)


Proof. Let Ȳ = (ȳ(0), . . . , ȳ(n−1)) denote the n particles output by GB-SVGD and let ν̂(n) =907
1
n

∑n−1
l=0 δȳ(l) denote their empirical measure. Let E denote the event that each random batch Kt908

of GB-SVGD is disjoint and contains unique elements for every t ∈ (T ). Moreover, let Y =909

(y(0), . . . ,y(n−1)) denote the n particles output by VP-SVGD, run with the parameter settings stated910

above, and coupled with Ȳ as per the coupling constructed in the proof of Theorem 2 in Appendix D.1.911

Let µ̂(n) = 1
n

∑n−1
l=0 δy(l) denote their empirical measure. By definition of Kernel Stein Discrepancy912

(Definition 1) and the convexity ∥ · ∥2H, it follows that:913

E[KSDπ⋆(ν̂(n)||π⋆)] = E[∥hν̂(n)∥2H]

= E[∥hν̂(n) − hµ̂(n) + hµ̂(n)∥2H]

≤ 2E[∥hν̂(n) − hµ̂(n)∥2H] + 2E[∥hµ̂(n)∥2H]

= 2E[KSD2
π⋆(ν̂(n)||µ̂(n))] + 2E[KSD2

π⋆(µ̂(n)||π⋆)]

Substituting the bounds of Theorem 2 and Corollary 2 into the above inequality, we conclude the914

following:915

E[KSD2
π⋆(ν̂(n)||π⋆)] ≤ 4K2T 2ξ2

n2
P(E) + 4ξ2P(Ec) +

2ξ2

n
+

4KL (µ0|F0||||||π⋆)

γT
+

2γB(4 + L)ξ2

K

We recall that, P(E) = 1 under without-replacement sampling of the random batches Kt and916

P(E) = 1− K2T 2
/n under with-replacement sampling. Thus, under without-replacement sampling,917

the following holds:918

E[KSD2
π⋆(ν̂(n)||π⋆)] ≤ 4K2T 2ξ2

n2
+

2ξ2

n
+

4KL (µ0|F0||||||π⋆)

γT
+

2γB(4 + L)ξ2

K

Moreover, the following holds under with-replacement sampling919

E[KSD2
π⋆(ν̂(n)||π⋆)] ≤ 4K2T 2ξ2

n2

(
1− K2T 2

n

)
+

4K2T 2ξ2

n
+

2ξ2

n
+

4KL (µ0|F0||||||π⋆)

γT
+

2γB(4 + L)ξ2

K
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Now, let us consider GB-SVGD without replacement with R =
√

d/L, γ = O( (Kd)η

T 1−η ) and KT =920

n1/2 It follows that KL (µ0|F0||||||π⋆) = O(d) by Lemma 4 and921

ξ2 ≤ 4ζ0 + 4ζ1(γT )
2/α + 4ζ2(γ

2T )
2/α + 4ζ3R

4/α

≤ O

(
(KdT )

1
1+α + d

2/α

)
≤ O

(
d

2/α + d
1

1+αn
1

2(1+α)

)
Furthermore,922

4KL (µ0|F0||||||π⋆)

γT
+

2γB(4 + L)ξ2

K
≤ O

(
d

γT
+
γB(4 + L)ξ2

2K

)
≤ O

(
d1−η

(KT )η

)

≤ O

 d
2+α

2(1+α)

n
α

4(1+α)


Hence, we conclude that,923

E[KSD2
π⋆(ν̂(n)||π⋆)] ≤ 4K2T 2ξ2

n2
+

2ξ2

n
+

4KL (µ0|F0||||||π⋆)

γT
+

2γB(4 + L)ξ2

K

≤ 6ξ2

n
+

4KL (µ0|F0||||||π⋆)

γT
+

2γB(4 + L)ξ2

K

≤ O

d2/α

n
+

d
1

1+α

n
1+2α
2(1+α)

+
d

2+α
2(1+α)

n
α

4(1+α)


924

E.3 Oracle Complexity of SVGD, VP-SVGD and GB-SVGD925

We now compare the gradient oracle complexity, (i.e., the number of evaluations of ∇F ) of VP-SVGD926

(as implied by Corollary 2) and GB-SVGD (as implied by Corollary 3) with that of SVGD as implied927

by the state-of-the-art finite particle guarantee of Shi and Mackey [37].928

E.3.1 SVGD929

From Equation (1), We note that T steps of SVGD run with n particles requires n2T evaluations of930

∇F .931

Subgaussian π⋆ For subgaussian π⋆, the finite-particle convergence rate obtained by Shi and932

Mackey [37] is KSDπ⋆(µ̂
(n)
SVGD||π⋆) = Õ( poly(d)√

log lognΘ(1/d)
), where µ̂(n)

SVGD denotes the empirical mea-933

sure of the n particles output by SVGD. By carefully following the analysis of Shi and Mackey934

[37], we infer that, to achieve KSDπ⋆(µ̂
(n)
SVGD||π⋆) ≤ ϵ, SVGD requires T = Õ( poly(d)ϵ2 ) and935

n = Õ(exp(Θ(de
poly(d)

ϵ2 ))). Thus the oracle complexity of SVGD (as implied by Shi and Mackey936

[37]) for achieving KSDπ⋆(µ̂
(n)
SVGD||π⋆) is Õ( poly(d)ϵ2 · exp(Θ(de

poly(d)
ϵ2 )))937

E.3.2 VP-SVGD938

From Algorithm 1, we note that T steps of VP-SVGD run with n particles and a batch-size of K939

requires K2T 2 +KTn evaluations of ∇F .940

Subgaussian π⋆ For subgaussian π⋆, Corollary 2 implies a finite-particle convergence rate of941

E[KSD2
π⋆(µ̂(n)||π⋆)] = O( d

1/2

n1/2
+ d

n ) (where µ̂(n) denotes the empirical measure of the n particles942

output by VP-SVGD) assuming KT = d1/2n3/2. Hence, to achieve E[KSDπ⋆(µ̂(n)||π⋆)] ≤ ϵ, VP-943

SVGD requires n = O( d
ϵ4 ) and KT = d1/2n3/2 = d2

ϵ6 . The resulting oracle complexity for achieving944
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E[KSDπ⋆(µ̂(n)||π⋆)] ≤ ϵ is O( d4

ϵ12 ). Compared to the oracle complexity of SVGD obtained above,945

this is a double exponential improvement in both d and 1/ϵ. Notably, the obtained oracle complexity946

guarantee completely eliminates the curse of dimensionality.947

Subexponential π⋆ For subexponential π⋆, Corollary 2 implies a finite-particle convergence rate of948

E[KSD2
π⋆(µ̂(n)||π⋆)] = O( d

2/3

n1/3
+ d2

n ) (where µ̂(n) denotes the empirical measure of the n particles949

output by VP-SVGD) assuming KT = d1/3n4/3. Hence, to achieve E[KSDπ⋆(µ̂(n)||π⋆)] ≤ ϵ, VP-950

SVGD requires n = O(d
2

ϵ6 ) and KT = d1/3n4/3 = d3

ϵ8 . The resulting oracle complexity for achieving951

E[KSDπ⋆(µ̂(n)||π⋆)] ≤ ϵ is O( d6

ϵ16 ).952

E.3.3 GB-SVGD953

From Algorithm 2, we note that T steps of GB-SVGD run with n particles and a batch-size of K954

requires KTn evaluations of ∇F .955

Subgaussian π⋆ For subgaussian π⋆, Corollary 3 implies a finite-particle convergence rate of956

E[KSD2
π⋆(ν̂(n)||π⋆)] = O( d

2/3

n1/6
+ d

n ) (where ν̂(n) denotes the empirical measure of the n particles957

output by GB-SVGD) assumingKT = n1/2. Hence, to achieve E[KSDπ⋆(ν̂(n)||π⋆)] ≤ ϵ, GB-SVGD958

requires n = d4

ϵ12 and KT =
√
n = d2

ϵ6 . Under this setting, the oracle complexity of GB-SVGD as959

implied by Corollary 3 is O( d6

ϵ18 ). Compared to the oracle complexity of SVGD obtained above,960

this is a double exponential improvement in both d and 1/ϵ. Notably, the obtained oracle complexity961

guarantee completely eliminates the curse of dimensionality962

Subexponential π⋆ For subexponential π⋆, Corollary 3 implies a finite-particle convergence rate of963

E[KSD2
π⋆(ν̂(n)||π⋆)] = O( d

3/4

n1/8
+ d2

n ) (where ν̂(n) denotes the empirical measure of the n particles964

output by GB-SVGD) assumingKT = n1/2. Hence, to achieve E[KSDπ⋆(ν̂(n)||π⋆)] ≤ ϵ, GB-SVGD965

requires n = d6

ϵ16 and KT =
√
n = d3

ϵ8 . Under this setting, the oracle complexity of GB-SVGD as966

implied by Corollary 3 is O( d9

ϵ24 ).967

F Literature Review968

Initial works on the analysis of SVGD such as Liu [26], Lu et al. [30], Duncan et al. [14], Chewi969

et al. [7], Nüsken and Renger [33] consider the continuous-time population limit, i.e., the limit of970

infinite particles and vanishing step-sizes. In this regime, Liu [26], Lu et al. [30], Nüsken and Renger971

[33] show that the behavior of SVGD is characterized by a Partial Differential Equation (PDE), and972

established asymptotic convergence of this PDE to the target distribution. The work of Duncan et al.973

[14] proposes the Stein Logarithmic Sobolev Inequality which ensures exponential convergence of974

this PDE to the target distribution. However, characterizing the conditions under which this inequality975

holds is an open problem. The work of Chewi et al. [7] show that the PDE governing SVGD in976

the continuous-time population limit can be interpreted as an approximate Wasserstein gradient977

flow of the Chi-squared divergence. To this end, Chewi et al. [7] shows that the (exact) Wasserstein978

gradient flow of the Chi-squared divergence exhibits exponential convergence to the target distribution979

when π⋆ satisfies a Poincare Inequality. To the best of our knowledge, the first discrete-time non-980

asymptotic convergence result for population-limit SVGD was established in Korba et al. [23], where981

the authors interpreted population-limit SVGD as projected Wasserstein gradient descent. Their result982

relied on the assumption that the Kernel Stein Discrepancy to the target is uniformly bounded along983

the trajectory of SVGD, a condition which is hard to verify apriori. This result was significantly984

improved in Salim et al. [36], which established convergence of population-limit SVGD assuming the985

potential F is smooth the target π⋆ ∝ e−F satisfies Talagrand’s inequality T1, an assumption which986

is equivalent to subgaussianity of π⋆. This result was extended in Sun et al. [39] to accommodate for987

potentials F that satisfy a more general smoothness condition.988

In comparison to prior works on population-limit SVGD, the literature on finite-particle SVGD989

is relatively sparse. The works of Liu [26] and Gorham et al. [18] establish that the dynamics of990

finite-particle SVGD asymptotically converge to that of population-limit SVGD in bounded Lipschitz991
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distance and Wasserstein-1 distance respectively, as the number of particles approaches infinity.992

Under the stringent condition of bounded F (which is violated in various scenarios, e.g. log-strongly993

concave π⋆), Korba et al. [23] derived a non-asymptotic bound between the expected Wasserstein-2994

distance between finite-particle SVGD and population-limit SVGD. To the best of our knowledge,995

Shi and Mackey [37] is the only prior work that explicitly establishes a non-asymptotic convergence996

guarantee of finite-particle SVGD to the target, which shows that the empirical measure of SVGD997

run with n particles converges to the target density in KSD at a rate of O
(√

poly(d)

log lognΘ(1/d)

)
998
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