
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT FINE-TUNING WITH DECOMPOSED FOUN-
DATION MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning billion-scale large language models (LLMs) is challenging due to the
extremely large model size, particularly in memory-constrained scenarios, even
with parameter-efficient fine-tuning (PEFT) and quantization. To address this
challenge, we propose a novel method based on the decomposition then fine-
tuning (DeFT) paradigm, which effectively decomposes the foundation model and
reduces the number of model parameters during fine-tuning, while retaining model
quality. DeFT introduces a highly efficient layer importance aware search algo-
rithm for fine-grained model decomposition and successfully repurposes model
decomposition for fine-tuning. Additionally, DeFT can seamlessly integrate with
PEFT and quantization methods to enhance fine-tuning efficiency further. Ex-
tensive experiments on various LLM backbones demonstrate that DeFT achieves
comparable or even better performance than the baseline PEFT and quantization
methods, while improving both memory efficiency and computation efficiency for
fine-tuning. Remarkably, DeFT enables fine-tuning of a 65B model on a consumer
GPU with just 24GB of memory, all without relying on offloading strategies, sav-
ing significant expenses for purchasing or renting high-end GPUs.

1 INTRODUCTION

Transformer-based language models have been extensively studied since the proposal of the self-
attention mechanism (Vaswani et al., 2017) and the foundation of the pre-training paradigm (Peters
et al., 2018; Devlin et al., 2019). Following the scaling law (Kaplan et al., 2020), modern large
language models (LLMs) have billions of model parameters for better predictive accuracy (Brown
et al., 2020; Zhang et al., 2022; Touvron et al., 2023). Consequently, full fine-tuning of such large
LLMs is extremely expensive due to the required computing resources and time consumption.

Figure 1: Memory cost of fine-tuning a
65B model of different methods.

To reduce the cost of LLM fine-tuning, researchers have
proposed parameter-efficient fine-tuning (PEFT) tech-
niques, where a large portion of the model parameter is
frozen and only a very small part of the parameters needs
to be updated (Houlsby et al., 2019; Hu et al., 2022;
Li & Liang, 2021; Zaken et al., 2022). These works
achieve competitive predictive accuracy while reducing
memory costs compared with full fine-tuning. To further
cut down memory footprint, researchers propose to incor-
porate quantization into fine-tuning by storing the founda-
tion model in low-bit floating point numbers (e.g., 4-bit).
QLoRA (Dettmers et al., 2023) and LoftQ (Li et al., 2024)
are two representative approaches. Despite the success
of PEFT and quantization-aware fine-tuning in reducing
memory consumption, the foundation model sizes remain
unchanged, and exorbitant memory consumption by tens of billions of model parameters poses con-
siderable challenges to fine-tuning, especially in memory-constraint scenarios (Liao et al., 2023).

In this work, we propose a novel method based on the decomposition then fine-tuning paradigm
(namely DeFT), which can be flexibly integrated with PEFT and quantization to further improve the
memory efficiency and computation efficiency. DeFT first conducts model decomposition to reduce

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the number of foundation model parameters and then fine-tunes the decomposed model to accom-
modate the downstream tasks. To mitigate the decomposition overhead and boost the model quality,
DeFT exploits (i) activation-aware singular value decomposition (SVD), by taking advantages of
the closed-form property of compression loss in SVD (Eckart & Young, 1936; Wang et al., 2024) to
provide a fast evaluation on the reconstruction error; (ii) a highly efficient search algorithm to enable
fine-grained decomposition, built on top of our detailed analysis of model decomposition. Further-
more, we optimize DeFT to facilitate usabilities, such as cache mechanisms and selective model
loading/quantization. Therefore, DeFT enables fine-tuning a 65B model on a consumer GPU with
24GB of memory, as shown in Figure 1, demonstrating its practical value in memory-constrained
scenarios. Additionally, with DeFT, we can save significant expenses for purchasing or renting
high-end GPUs. To summarize, our main contributions in this paper are as follows.

• We propose a novel fine-tuning method based on the decomposition then fine-tuning paradigm
(DeFT). It first introduces a highly efficient layerwise importance aware search algorithm for
fine-grained foundation model decomposition, and then fine-tunes the decomposed model.

• DeFT is seamlessly incorporated with representative PEFT and quantitation-aware fine-tuning
methods, and extensive experiments are carried out to demonstrate repurposing model decom-
position for fine-tuning. DeFT effectively reduces the number of foundation model parameters
while achieving comparable or even better performance than the baselines.

• DeFT showcases the memory efficiency and computation efficiency benefits for fine-tuning. No-
tably, it enables fine-tuning a 65B model on a consumer GPU with 24GB memory without using
offloading, saving significant costs associated with buying or renting high-end GPUs.

2 METHODOLOGY

The success of quantization-aware fine-tuning inspires us to explore other model compression tech-
niques to further improve fine-tuning efficiency. To make the compression effective for fine-tuning,
two major concerns must be addressed: (i) the overhead of model compression must be small enough
to achieve efficiency gains in terms of the end-to-end fine-tuning time cost; (ii) fine-tuning perfor-
mance degradation needs to be limited to an acceptable range.

To address these two concerns, model decomposition could be an appropriate solution. It is a matrix
decomposition technique that can be executed in a one-step process, significantly reducing excessive
overhead. Moreover, its mathematical guarantee makes it easy to estimate fine-tuning performance
through theoretical compression loss. Singular value decomposition (SVD) has been extensively
studied and proven to be a practicable solution for model decomposition (Saha et al., 2023; Yuan
et al., 2023; Wang et al., 2024). However, its potential to in fine-tuning remains unexplored. To
this end, we propose a novel method, DeFT, that can effectively incorporate model decomposition
to reach a graceful balance between fine-tuning performance and efficiency. In this section, we
first introduce the workflow of DeFT. After that, we discuss the feasibility of repurposing model
decomposition for fine-tuning and elaborate on the technical details of DeFT.

2.1 NOTATIONS AND THE WORKFLOW OF DEFT

The overview of DeFT is shown in Figure 2, and its workflow is particularized as follows: (i)
DeFT constructs calibration data from the downstream task dataset. (ii) DeFT collects the input
feature X and outlier weighted layer importance for each layer al and then obtains the Cholesky
decomposition of XXT , denoted as S. Subsequently, it decomposes WS with SVD, and the inverse
of scaling matrix, i.e., S−1, are absorbed into the V matrix, where W ∈ Rd×d is a pretrained
weight, d is the hidden size of the pretrained model, and W ≃ W ′ = UΣV S−1. (iii) For an LLM
with n layers, DeFT searches for the best truncation positions θl for each layer l with an efficient
layer importance aware algorithm (See equation 3 - equation 6 for more details), and the results
are cached on disks. (iv) DeFT loads the truncated singular values, leverages their tail parts, i.e.,
A ∈ Rr×d and B ∈ Rd×r, to initialize the LoRA module, and utilizes the rest, i.e., Wu ∈ Rd×(θl−r)

and Wv ∈ R(θl−r)×d, to replace the pre-trained weights. (v) Fine-tuning starts. The decomposed
foundation model is frozen, and only the LoRA module A∗ and B∗ is trainable. (vi) After fine-
tuning, the weight difference, i.e.,, the adapter weight compared to the original pre-trained weight,
can be obtained by WuWv +B∗A∗ −W .

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Pretrained
Weight

𝑊 ∈ ℝ!×!

Whitened
Pretrained

Weight
𝑊𝑆 ∈ ℝ!×!

𝑊#𝑊$+𝐵*𝐴*-𝑊
Adapter

𝑊∗ ∈ ℝ!×!

layer 0

layer 𝑙

layer 𝑛
…

…

Foundation Model

Fine-Tuned Model

Reconstructed Weight (SVD)

𝑊# 𝐵

×

𝜃&

𝑟
𝑊$

𝐴

×

Training

Layer Importance Aware Search Algorithm

layer 0

layer 𝑙

layer 𝑛

…
…

…

Truncation Positions
σ' σ(σ)

𝜃&

𝜃& − 𝑟 𝑟

𝑊$ 𝐴*

𝐵*𝑊# Frozen

Learnable

Dataset

Whitening

LoRA

𝑋𝑋!

Figure 2: The overview of DeFT.

2.2 REPURPOSE MODEL DECOMPOSITION FOR FINE-TUNING

Conventional truncated SVD provides mathematical proof for the closed-form solution of the com-
pression loss, i.e., Eckart-Young Theorem (Eckart & Young, 1936), which is a reliable method to
directly measure the reconstruction error of a matrix and its low-rank approximation:

L = ∥W −W ′∥F , (1)

where W is a weight matrix, and W ′ is the low-rank approximation of W . When it comes to
model compression, although the vanilla truncated SVD can accomplish the model decomposition,
it suffers from significant performance degradation since it does not consider the distribution of
inputs and outputs (Yu & Wu, 2023; Yuan et al., 2023).

Recent research regarding SVD in LLM decomposition leverages activation to mitigate reconstruc-
tion error brought by outliers (Yuan et al., 2023; Yu & Wu, 2023). Wang et al. (2024) propose a
whitening technique to capture data distribution of inputs. It first collects inputs X and then obtains
the Cholesky decomposition of XXT , denoted as S. Subsequently, WS is being decomposed with
SVD, where the compression loss L is formulated as the following equation 2 instead of equation 1.

L = ∥WX −W ′X∥F (2)

Moreover, it gives the mathematical proof for the closed-form of the compression loss, i.e., Theo-
rem 1, offering an efficient and reliable way to assess model quality that requires only theoretical
calculations of the compression loss L, rather than expensive benchmarking.
Theorem 1. (Wang et al., 2024) Given an input X and a weight matrix W , let S be the Cholesky
decomposition of XXT and its singular value decomposition results UΣV T derived from applying
SVD to WS. The activation-aware compression loss of truncating the smallest singular values
{σm+1, σm+2, ...σk} is L2 = ∥WX −W ′X∥2F = ∥

∑k
i=m+1 σiuiv

T
i S

−1X∥2F =
∑k

i=m+1(σi)
2

and such truncating leads to the lowest loss, where ui and vi are the i-th left singular value and
right singular value respectively.

Many existing approaches uniformly compress all the layers under a preset compression rate, over-
looking the varying compression sensitivity of different layers (Wang et al., 2024). However, sensi-
tivity differences exist among layers (Geva et al., 2021; Sharma et al., 2023). This inevitably intro-
duces unnecessary reconstruction errors, which could be extremely fatal for fine-tuning. The model
reconstruction error could be too large to make fine-tuning converge, preventing it from achieving
performance comparable to that of conventional fine-tuning methods.

To repurpose model decomposition for fine-tuning, a fine-grained search for layerwise truncation
positions is essential, as models with lower reconstruction errors tend to yield higher accuracy on
downstream tasks. To this end, we propose a decomposition then fine-tuning (DeFT) method, which
models layer importance with layerwise outliers distribution and exploits it for fine-grained founda-
tion model decomposition, reaching a graceful balance between performance and efficiency.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.3 FORMULATION OF FINE-GRAINED DECOMPOSITION

According to Theorem 1, we can leverage singular values of a certain matrix to compute its corre-
sponding reconstruction error under specific truncation positions. Thus we can define the perfor-
mance score of layer l through:

f(θl) =

∑θl
i=0 σ

2
i∑

σ2
i

, (3)

where θl ∈ Z+ denotes the SVD truncation position for layer l, and σ is the singular values of layer
l. The larger the performance score is, the less reconstruction error is.

To enable fine-grained truncation position configurations, we introduce layerwise outlier distribu-
tion (Yin et al., 2024) as a coefficient to balance the memory budget allocation among layers that
have different sensitivity to compression. It is proven to be effective in modeling layer sensitivity
(Yin et al., 2024) by computing the ratio of outliers in the activations (output features) of an LLM:

αl =

∑N
i=1

∑M
i=1 I(Al

ij > T Āl)

M ×N
, (4)

where αl represents the outlier weighted importance for layer l; N and M represent the input and
output channel of the pre-trained weight matrix, respectively; Al is the absolute values of activation
outputs of layer l; Āl is the mean of Al; I(·) denotes an indicator function returning 1 if Al

ij is
larger than Āl else 0; and T is a hyperparameter which is set to 5 following (Yin et al., 2024). Then,
the truncation position selection problem can be formalized as follows.

2.3.1 PROBLEM DEFINITION

For a large language model, given its layers l ∈ L, layers’ corresponding performance scorer func-
tion f , memory consumption function g, and layer importance αl, to fit the compressed model into

0 2048 4096 6144 8192
Top-k Singular Values

(b)(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rfo

rm
an

ce
 S

co
re

s

0

10

20

30

40

50

60

70

La
ye

r P
os

iti
on

Truncation Positio
n

 for Layer 1

(1)

Truncation Position

 for Layer 2
(

2)

Perform
ance Scores

Surface Spanned by Solutions

Figure 3: (a) A surface spanned by solutions, i.e.,
Cartesian product of θ1 and θ2, where surface
represent values of f(θ1) + f(θ2). (b) Perfor-
mance score for each “v proj” layer (the hidden
size is 8192) from LLaMA-65B, which is com-
puted by Equation equation 3 and normalized into
[0, 1]. The Y-axis “Layer position” denotes the i-
th transformer block.

a limited memory B, the truncation position
selection algorithm finds truncation positions
for each layer, i.e., θl, where it has the maxi-
mal weighted sum αlf(θl) while satisfying the
memory constraint and performance function
lower-bound constrain:

argmax
θ

∑
αlf(θl)

s.t.
∑

g(θl) ≤ B

f(θl) ≥ Pl,

(5)

where Pl is the lower bound of performance
score at layer l. This optimization problem is
a typical integer programming problem with a
vast solution space, where the exhaustive search
is infeasible. Therefore, we propose an approx-
imate algorithm to get a solution that achieves
good performance and is efficient.

2.4 SOLUTION SPACE
OF TRUNCATION POSITIONS SELECTION

According to equation 3, the objective function is a weighted sum of the performance scores, whose
values are located on a hypersurface in a high dimensional space and the constraints define a set of
boundaries. To better understand this concept, we visualize the solution space in Figure 3(a) with a
simplified objective function including two performance score functions.

We visualize performance scores defined by equation 3 in Figure 3(b). For singular values of a
specific layer, the square sum of its head part occupies the largest proportion of the total and it
showcases the marginal increment when accumulating the tail part, exhibiting a strong long-tail

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

distribution. This indicates layers can be compressed to a large extent with only small compression
loss. Moreover, from the overview of the performance scores, we can observe the differences among
layers. Such differences strongly suggest that truncation positions should use layerwise selection
rather than a uniform setting.

Here is another intuitive observation that can help identify where the optimal solution should be lo-
cated: the more parameters are preserved, the less reconstruction error of the model is, and too many
preserved parameters could lead to dissatisfaction with the memory budget constraint. Therefore,
the inequation constraint regarding memory budget can be rewritten into an equation constraint.
Since our problem is an integer programming problem, the optimal solution should be located on or
very close to the hyperplane. Based on this, we design an approximate algorithm that starts outside
the feasible domain and stops once entering the feasible domain, i.e., crossing the hyperplane.

2.5 SEARCH FOR THE MOST PROFITABLE TRUNCATION

Visualization of Loss

200 400 800 1000600
(b)

1000

800

600

400

200

Illustration of Search Algorithm

4
0

5
0

60

(a)

∆𝑓(𝜃1) ∆𝑓(𝜃2)

∆𝑔(𝜃2)∆𝑔(𝜃1)

𝑙𝑜𝑠𝑠2
𝑙𝑜𝑠𝑠1

current solution

𝜃2

𝜃1

Figure 4: (a) Visualization of the loss. (b) Demo
of how the search algorithm works, where the blue
line denotes the hyperplane derived by the bud-
get constraint, and the algorithm starts at the black
dot and stops at the red dot. These two figures il-
lustrate a simplified scenario, where only two dif-
ferent dimensions are under consideration and the
outlier weighted layer importance is ignored.

Initially, we force performance scores of each
layer l ∈ L equal to a very high value, i.e.,
0.999. Generally, this leads to dissatisfaction
with the constraint

∑
g(θl) < B. Then, the al-

gorithm works in an iterative manner. In each
iteration, the algorithm evaluates the effect of
truncation position reduction of each layer:

lossl = (1 + ηαl)
△f(θl)

△g(θl)

= (1 + ηαl)
f(θl)− f(θl −G)

g(θl)− g(θl −G)
,

(6)

where η is a coefficient to scale the impact of
layer importance, and G is the granularity that
limits the feasible truncation positions.

Figure 4(a) illustrates the mechanism of how
this metric works. It assesses the collaborative
effects of variations in the performance scores
and memory budget consumption. Moreover, it
incorporates outlier weighted layer importance
as a coefficient to penalize compression over
sensitive layers. The larger lossl is, the more likely the truncation position reduction is to dam-
age the overall performance. In each step, the algorithm selects the move that leads to the minimal
negative effects and applies it. The algorithm stops once it reaches or goes across the hyperplane,
where layers that only have trivial parameter reduction remain the same. A simplified algorithm
demo is presented in Figure 4(b), and Algorithm 1 in Appendix A outlines the search process.

Note that through this approximate algorithm, we can perform the search process within a few
seconds. Besides, the model decomposition can also be finished in a short time. For example, for a
7B model, it takes about 10 minutes for model decomposition, and the decomposition results can be
cached on the local disk and reused later.

2.6 MECHANISMS TO FACILITATE USABILITY

In addition to leveraging model decomposition to improve efficiency, we further optimize DeFT to
improve its usability on devices that have limited memory resources.

Cache Mechanism We design a cache mechanism to reduce the overhead of DeFT, where singular
vectors are decomposed offline and cached on the disks for reuse. That means, for different settings
of compression rates, we do not need to repeat the SVD decomposition process, saving notable
computation cost. The decomposition results are used as input for the search algorithm to find the
best truncation positions. For each start of fine-tuning, DeFT first reads user-defined constraints and
performs the search algorithm, which can be finished within a few seconds or a few minutes. Once

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Fine-tuning performance on the arithmetic reasoning tasks. Full FT: full fine-tuning.
Models Methods #Params #Trainable AddSub SingleEq MultiArith SVAMP GSM8k Avg.

GPT-3.5175B - - - 56.40 69.90 83.80 88.10 85.30 76.70

LLaMA-7B
Full FT 6.74B 6.74B 82.04 76.97 79.83 48.40 32.22 63.89
QLoRA 6.74B 72M 79.66 80.84 78.01 44.93 30.2 62.73
+DeFT 5.73B 72M 82.28 80.01 76.19 46.63 29.39 62.90

LLaMA-65B
Zero shot 65.29B 0M 2.03 0.98 1.26 1.90 2.20 1.67

QLoRA 65.29B 357M 85.49 91.20 86.41 71.40 59.04 78.71
+DeFT 55.49B 357M 90.46 92.39 86.98 75.67 58.70 80.84

LLaMA-2 13B

Zero shot 13.02B 0M 11.14 16.14 9.24 12.00 7.20 11.14
Full FT 13.02B 13.02B 88.61 91.34 87.39 68.60 53.75 77.94
QLoRA 13.02B 112M 83.04 89.17 84.87 63.00 48.29 73.67
+DeFT 11.06B 112M 84.3 89.57 83.19 66.20 45.11 73.67
LoRA 13.02B 112M 86.58 91.34 84.87 69.00 52.77 76.91
+DeFT 11.06B 112M 87.09 92.52 86.55 67.30 47.31 76.15

LLaMA-3 70B QLoRA 70.55B 372M 93.67 94.29 92.44 85.30 74.91 88.12
+DeFT 60.10B 372M 92.15 95.28 91.18 84.50 75.74 87.77

Qwen-2.5 7B

Full FT 7.62B 7.62B 91.65 93.11 92.02 88.40 78.54 88.74
QLoRA 7.62B 74M 91.90 95.87 91.60 86.00 72.63 87.60
+DeFT 6.51B 74M 93.16 95.08 90.34 83.40 70.13 86.42
LoRA 7.62B 74M 93.42 95.08 92.86 84.70 73.46 87.90
+DeFT 6.51B 74M 93.16 96.06 93.28 84.70 71.42 87.72

Qwen-3 32B QLoRA 32.76B 241M 92.66 95.67 93.70 86.60 78.54 89.43
+DeFT 28.00B 241M 92.15 95.28 94.96 85.10 79.45 89.39

the algorithm stops, it dynamically selects the desired singular vectors of each layer according to the
search results, and caches them on the disks.

Selective Model Loading/Quantization Existing practice replaces the original weight with its
decomposed one. For LLMs that have over tens of billions of model parameters (e.g., LLaMA-65B),
it is impossible to load the whole model into a single device with limited memory even under 4-bit
quantization (Dettmers et al., 2023). To bridge this gap, we optimize model loading, preventing the
original pre-trained weight from being loaded or quantized in advance, but straightforwardly loading
and quantizing its corresponding decomposed singular values. With its help, we can successfully
fine-tune a 65B model on a consumer GPU with 24GB of memory.

3 EXPERIMENTS

3.1 EXPERIMENT SETUPS

Foundation Models and Baselines Foundation models used in our experiments include the
LLaMA family (Touvron et al., 2023), Mistral-7B v0.3 (Jiang et al., 2023) and the Qwen fam-
ily (Team, 2024; 2025). For performance evaluation, we adopted the widely used LoRA (Hu et al.,
2022) and QLoRA (Dettmers et al., 2023) as our baselines to demonstrate DeFT’s effectiveness in
combining with such PEFT and quantization methods.

Downstream Tasks LLMs are commonly employed for generation and reasoning tasks, which
can faithfully well reflect the performance of fine-tuning. Therefore, our experiments mainly
focus on arithmetic reasoning and summarizing tasks. For the arithmetic reasoning task, we
adopted five widely used datasets covering various difficulties: AddSub (Hosseini et al., 2014),
SingleEq (Koncel-Kedziorski et al., 2015), MultiArith (Roy & Roth, 2016), SVAMP (Patel et al.,
2021), and GSM8k (Cobbe et al., 2021). Sequences were extracted from each dataset and then com-
posed into the training dataset that has 10000 sequences. The evaluation was performed after the
fine-tuning, covering the test set of each dataset, and we used the pass@1 accuracy as the metric.
Besides, we followed Hu et al. (2023) and used the scores obtained by GPT-3.5 text-Davinci-003
with Zero-shot Chain-of-Thought (Kojima et al., 2022) as the reference. For the summarizing task,
we adopted XSum (Narayan et al., 2018), which is collected from BBC, covering a wide variety of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison on text summarizing tasks
Models Methods #Params #Trainable Rouge1 Rouge2 RougeL

LLaMA-13B QLoRA 13.02B 112M 42.62 17.99 34.67
+DeFT 11.06B 112M 42.99 18.27 34.99

Qwen-3 32B
Zero shot 32.76B 0M 18.60 3.41 13.09

QLoRA 32.76B 241M 41.86 17.70 33.97
+DeFT 28.00B 241M 41.39 17.17 33.78

8 16 32 64 128 256 512
LoRA Ranks

(a)

50

55

60

65

70

75

Av
er

ag
e

Sc
or

es

QLoRA
DeFT

100% 85% 80% 75% 70%
Preserved Model Parameters

(b)

0.7

0.8

0.9

1.0

Re
la

tiv
e

Pe
rfo

rm
an

ce

LLaMA-7B
Qwen-2.5 7B
LLaMA-13B
LLaMA-65B

Figure 5: (a) LLaMA-7B’s fine-tuning performance on arithmetic reasoning tasks with varying
LoRA ranks. (b) DeFT’s relative performance against QLoRA under different compression rates.

domains. We use the first 10000 pieces as the training set. The metrics we employed are Rouge
scores (Lin, 2004), the most widely used metric to evaluate the similarity between model-generated
and manual summaries. For the implementation details, please refer to Appendix C.

3.1.1 OVERALL PERFORMANCE

We report the fine-tuning performance on the downstream tasks in Table 1 and Table 2. Combining
DeFT with LoRA/QLoRA achieves comparable or even better performance than LoRA/QLoRA
across various pre-trained backbones, which demonstrates the effectiveness of DeFT. Additionally,
the performance degradation of LoRA+DeFT compared to full fine-tuning is in an acceptable range.
For large models such as LLaMA-65B, Qwen-3 32B and LLaMA-3 70B, we do not report their full
fine-tuning results, since we have limited training resources.

Why DeFT Can Outperform LoRA/QLoRA Sometimes? Large, over-parameterized models may
have weights that are noisy or contain components that are not essential for a specific downstream
task. The SVD process, guided by our activation-aware search, acts as a form of low-rank regular-
ization. It effectively prunes away the singular components that contribute the least to the feature
transformations on the downstream task data (as captured by our calibration data). This removes
“distracting” or noisy directions in the weight space, leading to a more stable and task-relevant
feature representation. Furthermore, DeFT is not a blind compression but a task-adaptive decompo-
sition. By using calibration data from the downstream task and an outlier-aware importance metric,
DeFT prioritizes preserving the weight components that are most critical for the target domain. In
contrast, the full QLoRA model retains all parameters, including those that might be optimized for
general pre-training knowledge but are less relevant or even counter-productive for the fine-tuning
task. Therefore, DeFT isn’t just making the model smaller, but making it more ”specialized” by
concentrating its representational power on the most salient features for the task at hand.

Varying LoRA Ranks We present the performance comparison under different LoRA ranks be-
tween QLoRA and DeFT on the reasoning tasks. Specifically, we used LLaMA-7B as the backbone
and set the ratio of model parameters of DeFT to 85%. Results are reported in Figure 5(a). Com-
paring with QLoRA, DeFT consistently achieves competitive or better performance under different
LoRA ranks, while benefiting from fewer model parameters.

Varying Compression Rates Figure 5(b) presents DeFT’s relative performance against QLoRA
under different compression rates, where the “100%” represents QLoRA’s performance. We can

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Ablation study.
Methods PPL (Wiki) PPL (Train) Scores

DeFT 16.2646 2.5731 62.90
w/ Vanilla Init 16.2646 2.5731 62.52

w/o Importance 15.7393 2.57111 61.86
w/o Search 14.0243 2.6526 57.60
1Unaligned comparison due to change of the coefficient

observe a slight performance improvement at a low compression rate. When the compression rate
increases, the performance drops, especially for smaller foundation models. However, this phe-
nomenon gets alleviated when scaling up the model size. For LLaMA-65B, DeFT achieves similar
fine-tuning performance against QLoRA when preserving 70% foundation model parameters, and
its performance drops 2.2% compared to QLoRA when only preserving 55% parameters (For the
details, please refer to Appendix D.4).

3.2 IN-DEPTH ANALYSIS OF DEFT

3.2.1 ABLATION STUDY

To validate the effectiveness of each component in DeFT, we carried out an abla-
tion study on the reasoning tasks using LLaMA-7B as the backbone. We preserve

0 20 40 60 80
Layer Index

(a)

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 W

ei
gh

te
d

La
ye

r I
m

po
rta

nc
e

0 2048 4096 6144 8192
Top-k Singular Values

(b)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rfo

rm
an

ce
 S

co
re

s

0 20 40 60 80
Layer Index

(c)

0

1000

2000

3000

4000

5000

Tr
un

ca
tio

n
Po

sit
io

ns

0 20 40 60 80
Layer Index

(d)

0.96

0.97

0.98

0.99

1.00

Tr
un

ca
te

d
Pe

rfo
rm

an
ce

s S
co

re
s

q_proj
k_proj
v_proj

up_proj
gate_proj
down_proj

0

10

20

30

40

50

60

70

La
ye

r P
os

iti
on

Figure 6: (a) Normalized outlier weighted layer
importance (into [0, 1]). (b) Variation of perfor-
mance score for each “v proj” layer, where the
score is normalized into [0, 1]. (c) Truncation po-
sitions of model decomposition. (d) Correspond-
ing performance score to the truncation positions.

85% model parameters of DeFT and the results
are shown in Table 3, where we respectively
disabled the LoRA initialization using the tails
of the truncated singular values, the outlier
weighted layer importance, and the search for
layerwise truncation position.

As shown in Table 3, we compared the fine-
tuning performance and also the perplexity of
the compressed models on the Wikitext dataset.
We can notice a clear discrepancy between the
perplexity and fine-tuning performance, where
lower perplexity does not indicate better per-
formance. To explore the correlation between
fine-tuning performance and the reconstruction
error, we evaluated the reconstruction error by
computing the compressed model’s perplexity
on the training set. The result is consistent with
our presumption, i.e., lower reconstruction er-
ror leads to better fine-tuning performance. The
ablation study clearly demonstrates the effec-
tiveness of the proposed layerwise importance
aware fine-grained compression for fine-tuning.

3.2.2 MODULE SENSITIVITY

DeFT performs a search to determine truncation positions according to equation 6, which considers
innate differences among layers. To better illustrate this concept, we explore DeFT which retains
60% of the foundation model parameters of LLaMA-65B (the hidden size is 8192) to showcase
the layer difference and how it affects truncation positions. The results are shown in Figure 6. As
presented in Figure 6(a) and 6(b), we can observe variations in the component-wise importance and
layerwise performance scores, which straightforwardly lead to diverse truncation patterns. For in-
stance, the outlier weighted layer importance of “v proj” is small for most layers, but “v proj” in
most of the deeper layers has not been decomposed. This is because small changes of the truncation
position could lead to dramatic performance score drops for the deeper layers (see Figure 6(b)).
DeFT thus selects other components that allow more aggressive truncation positions for decom-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

position. The final truncation positions and their corresponding performance scores are shown in
Figure 6(c) and Figure 6(d), respectively.

3.2.3 EFFICIENCY IMPROVEMENT

One efficiency bottleneck for fine-tuning LLMs with billions of model parameters is data movement.
Reducing memory footprint can significantly improve the utilization of high-bandwidth memory
I/O, curtailing fine-tuning time expense. DeFT improves both the memory efficiency and end-to-end
computation efficiency (including the model decomposition cost and the search cost) for fine-tuning,
as shown in Table 4. Compared with QLoRA, DeFT with a compression rate of 55% reduces 22.4%-
36.1% memory footprint, improves the throughput by 31.6%-50.6%, and reduces 24.0%-33.6%
overall training time under different batch sizes. Furthermore, with a batch size of two, DeFT allows
extremely large LLM fine-tuning on resource-constrained devices. For instance, LLaMA-65B, with
55% of its parameters preserved, can be fine-tuned on an NVIDIA RTX4090 with 24GB memory,
completing the fine-tuning process in about 15.9 hours.

Table 4: End-to-end fine-tuning efficiency comparison on LLaMA-65B using an NVIDIA A800.
Method Batch size Memory1 Throughput2 Cost3

Full FT 1 530.04 - -

QLoRA

1 35.95 136.2 950.9
2 36.34 214.5 637.9
4 38.76 300.4 478.2
8 43.62 366.9 410.3
16 52.72 411.8 383.0

+DeFT

1 22.99↓36.1% 179.3↑31.6% 722.5↓24.0%
2 23.37↓35.7% 322.3↑50.3% 424.5↓33.5%
4 25.78↓33.5% 452.3↑50.6% 317.6↓33.6%
8 33.87↓22.4% 546.7↑49.0% 275.3↓32.9%
16 40.34↓23.5% 617.3↑49.9% 255.5↓33.3%

1Gigabytes (GB), 2Tokens/sec, 3Minutes, 4Estimated

3.2.4 IMPACT OF OUTLIER WEIGHTED LAYER IMPORTANCE

Here, we use LLaMA-7B with DeFT preserving 85% model parameters to explore the impact of η

Table 5: Fine-tuning performance un-
der different η.

η
0 0.1 0.5 1

61.86 58.84 60.13 62.9

on the fine-tuning performance. Results on the arithmetic
reasoning tasks are reported in Table 5. There is a clear
performance gap when enabling the scaling coefficient,
and the performance gradually increases with η getting
larger. This demonstrates the assumption in our motiva-
tion, i.e., evenly compressing all the layers under a preset
compression rate overlooks the varying compression sen-
sitivity of different layers.

3.2.5 INTEGRATION WITH ANOTHER QUANTIZATION METHOD LOFTQ

DeFT is a plug-and-play method which can be integrated with PEFT methods (e.g., LoRA) and
quantization methods (e.g., QLoRA) to further improve fine-tuning efficiency while matching their
performance. Our main experiments in Table 1 select LoRA and QLoRA as two representative
methods to combine with DeFT to demonstrate DeFT’s effectiveness. However, DeFT can combine
with other variants of LoRA and QLoRA. Here, we present the results of combining DeFT with
another quantization-based method LoftQ (Li et al., 2024). Specifically, as the open-source codes
of LoftQ currently do not support Qwen models, we use LLaMA-2 13B as the backbone to conduct
the experiments on the arithmetic reasoning tasks (other settings are the same as in Table 1), and
the results are shown in Table 6. The results reveal that beyond LoRA and QLoRA, DeFT is also
effective when combining with LoftQ, indicating its good compatibility.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 6: Combining DeFT with LoftQ on the arithmetic reasoning tasks using LLaMA-2 13B.
Methods AddSub SingleEq MultiArith SVAMP GSM8k Avg.

LoftQ 86.58 89.96 85.71 67.80 50.19 76.05
LoftQ + DeFT 87.09 92.32 83.61 67.50 47.23 75.55

4 RELATED WORKS

Parameter-efficient fine-tuning PEFT methods can be roughly categorized into the following
few types: adapter-based methods (Houlsby et al., 2019; Hu et al., 2023; He et al., 2022), masking-
based methods (Guo et al., 2021; Zaken et al., 2022), LoRA-based methods, and Prompt Tun-
ing (Li & Liang, 2021; Liu et al., 2022). Among these PEFT methods, LoRA (Hu et al., 2022)
proposes to freeze the pre-trained model and only optimize the newly added low-rank matrices.
QLoRA (Dettmers et al., 2023) enhances LoRA by quantizing the pre-trained model into 4-bit pre-
cision and utilizing paged optimizers to manage memory spikes. Additionally, quantization-aware
fine-tuning is receiving more and more attention and proves to be a practical way to incorporate
quantization into model fine-tuning (Li et al., 2024; Xu et al., 2024; Guo et al., 2024).

Model Decomposition for LLM Inference Considerable efforts have been devoted to studying
activation-aware model decomposition. It mitigates reconstruction errors brought by vanilla trun-
cated SVD’s failure of capturing data distribution (Yuan et al., 2023; Yu & Wu, 2023; Kaushal et al.,
2023; Wang et al., 2024). As for truncation position selection, some propose to adopt uniform set-
tings in order to get lower perplexity (Wang et al., 2024), while others try to find the most appropriate
configurations for each layer (Yuan et al., 2023; Ji et al., 2024). Despite these considerable efforts
of model decomposition for LLM inference, its potential for LLM fine-tuning remains unexplored.
In this paper, we propose the first work based on the decomposition then fine-tuning paradigm.

5 CONCLUSION

In this paper, we introduce a novel method DeFT based on the decomposition then fine-tuning
paradigm for LLMs. DeFT is empowered with fine-grained foundation model decomposition by
an efficient layer importance aware search algorithm. It effectively reduces the number of founda-
tion model parameters during fine-tuning while maintaining the model quality. Besides, DeFT is
feasible to incorporate with PEFT and quantization. Experimental results show that DeFT achieves
comparable performance or even outperforms the baselines on the arithmetic reasoning and summa-
rizing tasks, while improving both memory and computation efficiency. Impressively, DeFT enables
fine-tuning a 65B model on a consumer GPU without using offloading strategies, demonstrating its
significant practical value in memory-constrained scenarios.

REFERENCES

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners.
https://arxiv.org/abs/2005.14165v4, May 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient Finetun-
ing of Quantized LLMs. Advances in Neural Information Processing Systems, 36:10088–10115,
December 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Confer-
ence of the North, pp. 4171–4186, Minneapolis, Minnesota, 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1423.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, September 1936. ISSN 1860-0980. doi: 10.1007/BF02288367.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 5484–5495, 2021.

Demi Guo, Alexander Rush, and Yoon Kim. Parameter-Efficient Transfer Learning with Diff Prun-
ing. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4884–4896, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.378.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. ICLR 2024, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a Unified View of Parameter-Efficient Transfer Learning. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022, 2022. doi: 10.48550/
arXiv.2110.04366.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2).

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 523–533, 2014.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-Efficient Transfer Learning for
NLP. In Proceedings of the 36th International Conference on Machine Learning, pp. 2790–2799.
PMLR, May 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In ICLR 2022,
April 2022.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning
of Large Language Models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 5254–5276,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.319.

Yixin Ji, Yang Xiang, Juntao Li, Wei Chen, Zhongyi Liu, Kehai Chen, and Min Zhang. Feature-
based Low-Rank Compression of Large Language Models via Bayesian Optimization, May 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws for Neural Language
Models, January 2020.

11

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ayush Kaushal, Tejas Vaidhya, and Irina Rish. LORD: Low Rank Decomposition Of Monolingual
Code LLMs For One-Shot Compression, September 2023.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
Language Models are Zero-Shot Reasoners. Advances in Neural Information Processing Systems,
35:22199–22213, December 2022.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas
Ang. Parsing algebraic word problems into equations. Transactions of the Association for Com-
putational Linguistics, 3:585–597, 2015.

Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing Continuous Prompts for Generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353.

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. In ICLR, 2024.

Baohao Liao, Shaomu Tan, and Christof Monz. Make pre-trained model reversible: From parameter
to memory efficient fine-tuning. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-Tuning:
Prompt Tuning Can Be Comparable to Fine-tuning Across Scales and Tasks. In Smaranda Mure-
san, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 61–68, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.8.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization. ArXiv, abs/1808.08745,
2018.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. Deep Contextualized Word Representations. In Marilyn Walker, Heng Ji,
and Amanda Stent (eds.), Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pp. 2227–2237, New Orleans, Louisiana, June 2018. Association for Computational
Linguistics. doi: 10.18653/v1/N18-1202.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
Fusion: Non-Destructive Task Composition for Transfer Learning. In Paola Merlo, Jorg Tiede-
mann, and Reut Tsarfaty (eds.), Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume, pp. 487–503, Online, April 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.39.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint
arXiv:1608.01413, 2016.

Rajarshi Saha, Varun Srivastava, and Mert Pilanci. Matrix Compression via Randomized Low Rank
and Low Precision Factorization. Advances in Neural Information Processing Systems, 36:18828–
18872, December 2023.

12

https://openreview.net/forum?id=Bkg6RiCqY7

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The Truth is in There: Improving Reasoning
in Language Models with Layer-Selective Rank Reduction, December 2023.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation
Language Models, February 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red
Hook, NY, USA, December 2017. Curran Associates Inc. ISBN 978-1-5108-6096-4.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. SVD-LLM: Truncation-aware Singular Value
Decomposition for Large Language Model Compression, April 2024.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen, Xi-
aopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
models. In ICLR, 2024.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal,
Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, and Shiwei Liu. Outlier
Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity,
May 2024.

Hao Yu and Jianxin Wu. Compressing Transformers: Features Are Low-Rank, but Weights Are
Not! Proceedings of the AAAI Conference on Artificial Intelligence, 37(9):11007–11015, June
2023. ISSN 2374-3468. doi: 10.1609/aaai.v37i9.26304.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. ASVD:
Activation-aware Singular Value Decomposition for Compressing Large Language Models, De-
cember 2023.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. BitFit: Simple Parameter-efficient Fine-
tuning for Transformer-based Masked Language-models. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pp. 1–9. Association for Computational Linguistics, 2022.
doi: 10.18653/V1/2022.ACL-SHORT.1. URL https://doi.org/10.18653/v1/2022.
acl-short.1.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
OPT: Open Pre-trained Transformer Language Models, June 2022.

A DISCLOSE OF LLM USAGE

We only use LLMs to polish our writing, e.g., grammar checking. We do not use LLMs to directly
generate the content of this paper.

13

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2505.09388
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B LAYER IMPORTANCE AWARE TRUNCATION POSITION SEARCH
ALGORITHM

Given Layer set L, memory budget B, granularity G, layer importance weights αl, performance
score function f , memory function g, and scaling coefficient η, Algorithm 1 starts with initializing
the truncation positions θl to the smallest value such that the performance score f(θl) is at least
0.999 (cf. Line 1). Then the loop continues until the total memory consumption of all layers is
within the budget B (cf. Line 2). For each layer, it computes the loss if the truncation positions
are reduced by granularity G. The loss combines the change in performance score and memory,
weighted by the layer importance (cf. Line 3-11). Subsequently, it selects the layer l∗ whose trun-
cation reduction causes the least performance loss per memory saved (cf. Line 12), and reduces the
truncation position for layer l∗ by G (cf.Line 13). Finally, it returns the final truncation positions θ
(cf. Line 16).

Algorithm 1 Layer Importance Aware Truncation Position Search
Require: Layers L, memory budget B, granularity G, layer importance weights αl, performance

score function f , memory function g, scaling coefficient η
Ensure: Truncation positions θl for all l ∈ L

1: Initialize θl ← argmaxr{f(r) ≥ 0.999} for all l ∈ L
2: while

∑
l∈L g(θl) > B do

3: for each layer l ∈ L do
4: if θl −G ≥ 0 then
5: ∆fl ← f(θl)− f(θl −G)
6: ∆gl ← g(θl)− g(θl −G)

7: lossl ← (1 + ηαl) · ∆fl
∆gl

8: else
9: lossl ←∞

10: end if
11: end for
12: l∗ ← argminl∈L lossl
13: θl∗ ← θl∗ −G
14: end while
15:
16: return θ

C IMPLEMENTATION DETAILS

To ensure fair and reproducible experiments, all the baseline implementation and model fine-tuning
are based on the publicly available codebases Huggingface Transformers5 and Huggingface PEFT6.
The evaluation procedure is adopted from the publicly available evaluation suite (Hu et al., 2023).

Hyperparameters For LoRA, QLoRA and DeFT, we selected the learning rate from {1e-4, 3e-4,
5e-4}, and set the batch size to 16, the LoRA rank r to 32 with a coefficient of 16. We used the
AdamW (Loshchilov & Hutter, 2019) optimizer with default configurations, where beta1 was set to
0.9 and beta2 to 0.999. For full fine-tuning, the learning rate was selected from {5e-6, 1e-5, 2e-5,
5e-5}, and other settings remained the same. For DeFT, we adopted η = 1 from η ∈ {0, 0.1, 0.5,
1.0}, and T in layer importance modeling was set to 5 following Yin et al. (2024). Models were
evaluated on the test set after 3 epochs of fine-tuning. To make the best use of NVIDIA hardware7,
we set the granularity G to 32. Additionally, the calibration data for DeFT contains 256 samples.

Model Loading/Quantization Optimization in DeFT For model loading in existing model com-
pression techniques, the Huggingface Transformers library first loads all model weights into the

5https://github.com/huggingface/transformers
6https://github.com/huggingface/peft
7https://docs.nvidia.com/cuda/cublas/index.html#tensor-core-usage

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

CPU memory and then calls the quantizer to do the quantization. Then it substitutes pre-trained
weights with compressed weights. This is impractical for GPUs that have limited memory, e.g.,
loading LLaMA-65B on an NVIDIA RTX4090 (24GB).

To mitigate the gap, we further optimize this part in DeFT. With modifying the Huggingface Trans-
formers library, DeFT uses its search results to prevent corresponding weights from being processed
in advance. It can directly load and quantize the decomposed weights, i.e., singular vectors, and thus
successfully loads LLaMA-65B on an NVIDIA RTX4090.

Prompts and Training Examples Supervised fine-tuning engaged in this paper adopted two kinds
of prompts. For the arithmetic reasoning tasks, we adopted the prompt format from Alpaca:

Below is an instruction that describes a task. Write a response that appropriately completes the
request.

Instruction: {instruction}
Response: {response}

LLMs fine-tuned with arithmetic reasoning datasets are trained to learn how to use chain-of-thoughts
to perform reasoning. Here is an example from the training data:

Below is an instruction that describes a task. Write a response that appropriately
completes the request.
Instruction:
Wyatt’s mother gave him $74 to go to the store. Wyatt bought 5 loaves of bread
and 4 cartons of orange juice. Each loaf of bread cost $5 and each carton of
orange juice cost $2. How much money does Wyatt have left?
Response:
Step 1: Find the total cost of the bread by multiplying the cost per loaf by the
number of loaves: 5 loaves x $5/loaf = $25.
Step 2: Find the total cost of the orange juice by multiplying the cost per carton
by the number of cartons: 4 cartons x $2/carton = $8.
Step 3: Find the total cost of the items by adding the cost of the bread and the cost
of the orange juice: $25 + $8 = $33.
Step 4: Subtract the total cost of the items from the amount of money Wyatt started
with: $74 - $33 = $41.
Therefore, Wyatt has $41 left.

For the text summarizing tasks, we adopted a straightforward prompt to fine-tune LLMs to complete
this downstream task, which is listed as follows:

original text: {text}
summary: {summary}

Here is an example from the training data:

original text: Veronica Vanessa Chango-Alverez, 31, was killed and another man
injured when an Audi A3 struck them in Streatham High Road at 05:30 GMT
on Saturday. Ten minutes before the crash the car was in London Road, Croydon,
when a Volkswagen Passat collided with a tree. Police want to trace Nathan Davis,
27, who they say has links to the Audi. The car was abandoned at the scene. Ms
Chango-Alverez died from multiple injuries, a post-mortem examination found.
No arrests have been made as yet, police said. Ms Chango-Alverez was staying
at her mother’s home in Streatham High Road. She was born in Ecuador and had
lived in London for 13 years, BBC London reporter Gareth Furby said. At the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: More experimental results on the arithmetic reasoning tasks.
Models Methods #Params #Trainable AddSub SingleEq MultiArith SVAMP GSM8k Avg.

OPT-6.7B
Full FT 6.66B 6.66B 58.73 55.51 55.88 28.00 11.68 41.96
QLoRA 6.66B 75M 58.48 55.32 50.84 26.50 13.12 40.85
+DeFT 6.17B 75M 57.98 53.74 51.68 28.30 12.21 40.99

LLaMA-13B
Full FT 13.02B 13.02B 85.06 85.43 79.41 62.90 43.22 71.20
QLoRA 13.02B 112M 82.03 84.05 78.43 57.97 41.57 68.81
+DeFT 11.06B 112M 87.43 87.99 79.41 60.30 38.41 70.71

LLaMA-33B QLoRA 32.53B 218M 86.08 90.49 85.01 65.30 53.05 75.98
+DeFT 27.65B 218M 89.20 91.27 83.75 67.10 51.10 76.49

Mistral-7B v0.3

Zero shot 7.25B 0M 79.24 74.80 64.29 66.90 47.23 66.49
Full FT 7.25B 7.25B 89.11 92.72 87.82 69.90 54.06 78.72

QLoRA 7.25B 75M 88.61 94.29 88.66 70.30 54.44 79.26
+DeFT 6.20B 75M 88.86 93.11 86.13 67.70 53.90 77.94
LoRA 7.25B 75M 89.62 92.91 87.82 69.90 52.99 78.65
+DeFT 6.20B 75M 86.33 93.70 87.39 68.30 55.57 78.26

time of the crash, she was on her way to work in a hotel. The remains of the bus
stop, which was extensively damaged in the crash, have been removed. Flowers
have been left at the site in tribute to the victim. A statement from her brother
Kevin Raul Chango-Alverez said: ”My family has had its heart torn out, at this
Christmas time, we will never be the same again. ”On Friday night we were to-
gether as a family with Veronica meeting her newly born nephew and preparing
for Christmas. ”I last saw her alive as she left to go to work on Saturday morn-
ing, but moments later I was holding her hand as she passed away in the street.”
Describing the crash as ”horrific” Det Insp Gordon Wallace, said: ”The family
are devastated. The memory of this senseless death will be with them each time
they leave their home. ”The driver fled the scene abandoning the grey Audi, which
was extensively damaged. ”We are looking to speak to Mr Nathan Davis in rela-
tion to this collision.” The 51-year-old man injured at the bus stop remains in a
critical condition in hospital while the condition of the 29-year-old driver of the
Volkswagen is now stable.
summary: A man with links to a car that was involved in a fatal bus stop crash in
south London is being sought by police.

Models are fine-tuned based on the ground-truth, i.e., “{response}” and “{summary}”.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL RESULTS OF FINE-TUNING PERFORMANCE

In this section, we present additional experimental results of different pre-trained backbones on
the arithmetic reasoning tasks, as detailed in Table 7. It is shown that DeFT consistently delivers
competitive performance alongside QLoRA across various pretrained backbones, e.g., OPT, LLaMA
and Mistral. This consistency further underscores the effectiveness of DeFT.

Beyond the arithmetic reasoning tasks, here we present additional results on another more challeng-
ing task MATH (Hendrycks et al.). We conduct the experiments using two different models, i.e.,
LLaMA-2 13B and Qwen-2.5 7B. We fine-tune the model on the training data for three epochs and
evaluate on the MATH-500 test set. The accuracy@1 results are shown in Table 8. These results
further demonstrate DeFT’s effectiveness even on such challenging tasks.

Table 8: Fine-tuning performance on the MATH task.
Method LLaMA-2 13B Qwen-2.5 7B

QLoRA 4.80 36.3
QLoRA + DeFT 6.80 36.0

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.2 ADDITIONAL RESULTS OF FINE-TUNING EFFICIENCY

Here, we present the end-to-end fine-tuning efficiency (including the model decomposition and
search cost) comparison on LLaMA-33B using a single NVIDIA RTX4090 GPU, where the ra-
tio of the preserved model parameters of DeFT is set to 75%. The results are presented in Table 9.
Compared with QLoRA, DeFT achieves up to 19.6%, 49.0% and 32.4% improvements in terms of
memory efficiency, throughput and end-to-end training time, respectively, consistently demonstrat-
ing the efficiency benefits of DeFT.

Table 9: End-to-end Fine-tuning efficiency comparison on LLaMA-33B using a single NVIDIA
RTX4090 GPU.

Method Batch Size Memory1 Throughput2 Cost3

QLoRA
1 19.45 146.5 884.2
2 20.56 245.1 558.1
4 22.54 350.9 409.5

+DeFT
1 16.59↓14.7% 218.3↑49.0% 597.3↓32.4%
2 16.54↓19.6% 351.1↑43.2% 393.2↓29.5%
4 19.26↓14.6% 488.8↑39.3% 311.6↓31.4%

1Gigabytes (GB), 2Tokens/sec, 3Minutes

D.3 IMPACT OF THE CALIBRATION DATA SIZE

Activation-aware singular value decomposition methods usually require calibration data to capture
activation information and reduce decomposition errors. Existing practice tends to construct cal-
ibration data out of the pre-training dataset since it seeks to retain generation quality on general
tasks. However, for DeFT, we aim to repurpose model decomposition for fine-tuning. Therefore,
we construct calibration data from the downstream tasks. To explore how this affects the fine-tuning
performance, we use DeFT preserving 85% model parameters on LLaMA-7B to investigate the fine-
tuning performance under different sizes of calibration data. The results are reported in Table 10.
We notice that with a calibration data size of 256, DeFT achieves the highest score. Therefore, we
adopted this in our experiments.

Table 10: Fine-tuning performance under different calibration data sizes.
#Calibration 32 64 128 256

Avg. Score 62.64 61.10 61.88 62.90

Additionally, we investigate the impact of different calibration data subsets on the final performance.
Specifically, we use Qwen-2.5 7B as the backbone and randomly select the calibration data with
three different random seeds. We present the average performance on the arithmetic reasoning tasks,
as shown in Table 11. The results reveal that the performance of DeFT is sensitive to the calibration
data subset, which is reasonable since the quality of the selected calibration data has an important
impact on the model decomposition. For our experiments in this paper, we have fixed the random
seed for calibration data selection to eliminate the impact of this factor.

Table 11: Fine-tuning performance under different calibration data subsets.
Random seed 42 43 44

Avg. Score 86.42 85.65 87.11

D.4 RESULTS OF 65B MODEL VARYING COMPRESSION RATES

Figure 7 presents the performance of DeFT across different preserved model parameters on LLaMA-
65B. DeFT outperforms QLoRA when the compression rate is smaller, i.e., more preserved model
parameters (85% and 75%). When the model is aggressively compressed, e.g., only preserving 55%
model parameters, there is an inevitable performance drop, but the drop range is acceptable, i.e.,
2.2%. These results demonstrate the strong performance-efficiency trade-off of DeFT.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

85% 75% 65% 55%
Preserved Model Parameters

72
74
76
78
80
82
84

Pe
rfo

rm
an

ce

80.84
79.43

78.17
76.56

DeFT
QLoRA

Figure 7: Performance of DeFT across different preserved model parameters on LLaMA-65B.

D.5 COMPARISON WITH ADAPTER-TUNING METHODS

Here, we compare DeFT with existing widely-used adapter-tuning methods (Houlsby et al., 2019;
Pfeiffer et al., 2021). In more detail, we present the performance comparison on the reasoning
tasks and text summarizing tasks using LLaMA-7B and LLaMA-13B as the backbones. For the
adapter-tuning baselines, we kept the batch size to 16 and conducted a grid search for the learning
rate and learning rate scheduler settings from {1e-6, 2e-6, 5e-6, 1e-5, 2e-5} and {constant, cosine}.
Other fine-tuning and evaluation procedures are kept the same for a fair comparison. The results are
reported in Table 12. We can see that DeFT significantly outperforms the adapter-tuning methods,
especially on the summarizing tasks.

Table 12: Performance comparison with adapter-tuning methods, where scores for reasoning tasks
are the average pass@1 accuracy and scores for summarizing tasks are RougeL.

Task Model Full FT Series* Parallel* QLoRA DeFT

Reasoning 7B 63.98 60.64 62.53 62.73 62.90
13B 71.20 70.50 65.60 68.81 70.71

Summarizing 7B 34.28 25.53 25.98 33.53 34.03
13B 35.29 26.37 26.88 34.67 34.99

* Adapter-based tuning.

D.6 PERFORMANCE STABILITY

With model parameters reduced, the decomposed models inevitably suffer from increasing recon-
struction error, making their fine-tuning performance less stable, especially for smaller models. We
conducted repeated experiments on the reasoning tasks under three different random seeds and com-
puted the standard deviations of the average scores, which are reported in Table 13. For LLaMA-
7B/33B, the standard deviations of the average scores increase with the reduction of the model
parameters. However, such phenomena are mitigated when it comes to LLaMA-65B. This is be-
cause, for smaller foundation models, the reconstruction error could be relatively too large to be
compensated, whereas for larger models, the same level of error becomes relatively small due to
greater parameter redundancy.

Table 13: Standard deviations of scores on the reasoning tasks
DeFT LLaMA-7B LLaMA-33B LLaMA-65B

85% 0.52 0.93 0.32
80% 0.68 1.74 0.41
75% 1.09 2.27 0.49
70% 2.27 2.31 0.51

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 14: Performance of full fine-tuning DeFT on the reasoning tasks with Qwen-2.5 7B.
DeFT AddSub SingleEq MultiArith SVAMP GSM8k

+ LoRA 93.16 96.06 93.28 84.70 71.42
+ Full FT 85.82 90.55 87.39 72.70 57.24

D.7 PERFORMANCE OF INCORPORATING DEFT WITH FULL FINE-TUNING

In addition to combining DeFT with PEFT and quantization methods, one may consider whether
DeFT can be combined with full fine-tuning, i.e.,, directly fine-tuning the decomposed model. To
answer this question, we explore the performance of full fine-tuning DeFT on the reasoning tasks
using Qwen-2.5 7B as the backbone, and the results are shown in Table 14. It can be observed that
DeFT + LoRA significantly outperforms DeFT + Full fine-tuning.

There are two reasons for this phenomenon. The first one is the inconsistent optimization objective
between model decomposition and fine-tuning. For model decomposition, we aim to minimize the
compression loss ∥WX − W ′X∥F , where W is the original pre-trained weight, W ′ is its low-
rank approximation, which is reconstructed based on the decomposed weights, and X is the input.
However, for LLM fine-tuning, the goal is to use the downstream task-specific data to maximize the
probability of the model to predict the right next token, typically by minimizing the cross-entropy
loss. Therefore, if directly fine-tuning the decomposed weights, the fine-tuned weight may no longer
be the low-rank approximation of the original weight. Instead, by applying LoRA fine-tuning to
the decomposed model, we can keep the decomposed weights frozen and only update the LoRA
modules. As such, the decomposed weights are still an approximation to the original weights. The
second reason is also mentioned in the work of SVD-LLM (Wang et al., 2024): the derivatives of
the decomposed weights are interdependent during the fine-tuning process, where optimization of
one matrix may interfere with the optimization of the other, leading to a performance drop. Due to
these two reasons, we cannot achieve satisfactory performance by full fine-tuning DeFT.

19

	Introduction
	Methodology
	Notations and the Workflow of DeFT
	Repurpose Model Decomposition for Fine-tuning
	Formulation of Fine-grained Decomposition
	Problem Definition

	Solution Space of Truncation Positions Selection
	Search for the Most Profitable Truncation
	Mechanisms to Facilitate Usability

	Experiments
	Experiment Setups
	Overall Performance

	In-depth Analysis of DeFT
	Ablation Study
	Module Sensitivity
	Efficiency Improvement
	Impact of Outlier Weighted Layer Importance
	Integration with Another Quantization Method LoftQ

	Related Works
	Conclusion
	Disclose of LLM Usage
	Layer Importance Aware Truncation Position Search Algorithm
	Implementation Details
	Additional Experimental Results
	Additional Results of Fine-tuning Performance
	Additional Results of Fine-tuning Efficiency
	Impact of the Calibration Data Size
	Results of 65B model varying compression rates
	Comparison with Adapter-Tuning Methods
	Performance Stability
	Performance of incorporating DeFT with Full Fine-tuning

