Under review as a conference paper at ICLR 2026

EFFICIENT FINE-TUNING WITH DECOMPOSED FOUN-
DATION MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning billion-scale large language models (LLMs) is challenging due to the
extremely large model size, particularly in memory-constrained scenarios, even
with parameter-efficient fine-tuning (PEFT) and quantization. To address this
challenge, we propose a novel method based on the decomposition then fine-
tuning (DeFT) paradigm, which effectively decomposes the foundation model and
reduces the number of model parameters during fine-tuning, while retaining model
quality. DeFT introduces a highly efficient layer importance aware search algo-
rithm for fine-grained model decomposition and successfully repurposes model
decomposition for fine-tuning. Additionally, DeFT can seamlessly integrate with
PEFT and quantization methods to enhance fine-tuning efficiency further. Ex-
tensive experiments on various LLM backbones demonstrate that DeFT achieves
comparable or even better performance than the baseline PEFT and quantization
methods, while improving both memory efficiency and computation efficiency for
fine-tuning. Remarkably, DeFT enables fine-tuning of a 65B model on a consumer
GPU with just 24GB of memory, all without relying on offloading strategies, sav-
ing significant expenses for purchasing or renting high-end GPUs.

1 INTRODUCTION

Transformer-based language models have been extensively studied since the proposal of the self-
attention mechanism (Vaswani et al.,[2017) and the foundation of the pre-training paradigm (Peters
et al., 2018} Devlin et al.l 2019). Following the scaling law (Kaplan et al., 2020), modern large
language models (LLMs) have billions of model parameters for better predictive accuracy (Brown
et al., 2020; |[Zhang et al., 2022; [Touvron et al., |2023). Consequently, full fine-tuning of such large
LLMs is extremely expensive due to the required computing resources and time consumption.

To reduce the cost of LLM fine-tuning, researchers have
proposed parameter-efficient fine-tuning (PEFT) tech-
niques, where a large portion of the model parameter is 530.00

frozen and only a very small part of the parameters needs o]

to be updated (Houlsby et al. [2019; [Hu et al., 2022; /| 7 x NvIDIA A800
L1 & Liang| 2021} [Zaken et al., |2022). These works .

achieve competitive predictive accuracy while reducing
memory costs compared with full fine-tuning. To further
cut down memory footprint, researchers propose to incor-
porate quantization into fine-tuning by storing the founda-

tion model in low-bit floating point numbers (e.g., 4-bit). Pl e Metod pert
QLoRA (Dettmers et al.,[2023)) and LoftQ (Li et al., 2024)

are two representative approaches. Despite the success Figure 1: Memory cost of fine-tuning a
of PEFT and quantization-aware fine-tuning in reducing 5B model of different methods.
memory consumption, the foundation model sizes remain

unchanged, and exorbitant memory consumption by tens of billions of model parameters poses con-
siderable challenges to fine-tuning, especially in memory-constraint scenarios (Liao et al., 2023)).

u
S
o

u
N

u
o
)

1x NVIDIA A6000
35.95
1x RTX 4090

w
o

S 8
AN\

Memory Footprint (GB)

=
o

In this work, we propose a novel method based on the decomposition then fine-tuning paradigm
(namely DeFT), which can be flexibly integrated with PEFT and quantization to further improve the
memory efficiency and computation efficiency. DeFT first conducts model decomposition to reduce

Under review as a conference paper at ICLR 2026

the number of foundation model parameters and then fine-tunes the decomposed model to accom-
modate the downstream tasks. To mitigate the decomposition overhead and boost the model quality,
DeFT exploits (i) activation-aware singular value decomposition (SVD), by taking advantages of
the closed-form property of compression loss in SVD (Eckart & Young,|1936;|Wang et al.,[2024) to
provide a fast evaluation on the reconstruction error; (ii) a highly efficient search algorithm to enable
fine-grained decomposition, built on top of our detailed analysis of model decomposition. Further-
more, we optimize DeFT to facilitate usabilities, such as cache mechanisms and selective model
loading/quantization. Therefore, DeFT enables fine-tuning a 65B model on a consumer GPU with
24GB of memory, as shown in Figure [I| demonstrating its practical value in memory-constrained
scenarios. Additionally, with DeFT, we can save significant expenses for purchasing or renting
high-end GPUs. To summarize, our main contributions in this paper are as follows.

* We propose a novel fine-tuning method based on the decomposition then fine-tuning paradigm
(DeFT). It first introduces a highly efficient layerwise importance aware search algorithm for
fine-grained foundation model decomposition, and then fine-tunes the decomposed model.

e DeFT is seamlessly incorporated with representative PEFT and quantitation-aware fine-tuning
methods, and extensive experiments are carried out to demonstrate repurposing model decom-
position for fine-tuning. DeFT effectively reduces the number of foundation model parameters
while achieving comparable or even better performance than the baselines.

* DeFT showcases the memory efficiency and computation efficiency benefits for fine-tuning. No-
tably, it enables fine-tuning a 65B model on a consumer GPU with 24GB memory without using
offloading, saving significant costs associated with buying or renting high-end GPUs.

2 METHODOLOGY

The success of quantization-aware fine-tuning inspires us to explore other model compression tech-
niques to further improve fine-tuning efficiency. To make the compression effective for fine-tuning,
two major concerns must be addressed: (i) the overhead of model compression must be small enough
to achieve efficiency gains in terms of the end-to-end fine-tuning time cost; (ii) fine-tuning perfor-
mance degradation needs to be limited to an acceptable range.

To address these two concerns, model decomposition could be an appropriate solution. It is a matrix
decomposition technique that can be executed in a one-step process, significantly reducing excessive
overhead. Moreover, its mathematical guarantee makes it easy to estimate fine-tuning performance
through theoretical compression loss. Singular value decomposition (SVD) has been extensively
studied and proven to be a practicable solution for model decomposition (Saha et al., [2023}; |Yuan
et al.| [2023; Wang et al 2024). However, its potential to in fine-tuning remains unexplored. To
this end, we propose a novel method, DeFT, that can effectively incorporate model decomposition
to reach a graceful balance between fine-tuning performance and efficiency. In this section, we
first introduce the workflow of DeFT. After that, we discuss the feasibility of repurposing model
decomposition for fine-tuning and elaborate on the technical details of DeFT.

2.1 THE WORKFLOW OF OUR PROPOSED DEFT

The overview of DeFT is shown in Figure[2] and its workflow is particularized as follows: (i) DeFT
constructs calibration data from the downstream task dataset. (ii) DeFT collects the input X and
outlier weighted layer importance for each layer and then obtains the Cholesky decomposition of
XXT denoted as S. Subsequently, it decomposes W S with SVD, and the inverse of scaling matrix,
i.e., S~ are absorbed into the V matrix, where W ~ W’ = ULV S~!. (iii) DeFT searches for
the best truncation positions with an efficient layer importance aware algorithm, and the results
are cached on disks. (iv) DeFT loads the truncated singular values, leverages their tail parts to
initialize the LoRA module and the rest to replace the pre-trained weights. (v) Fine-tuning starts.
The decomposed foundation model is frozen, and only the LoORA module is trainable.

2.2 REPURPOSE MODEL DECOMPOSITION FOR FINE-TUNING

Conventional truncated SVD provides mathematical proof for the closed-form solution of the com-
pression loss, i.e., Eckart-Young Theorem (Eckart & Young, |1936)), which is a reliable method to

Under review as a conference paper at ICLR 2026

’ . .ge
Truncation Positions \
1
Lo] [oo | oo fom |
1
1
1
1

70y = Zizo%t argr;xaxZalf(az)

(Foundation Model
,

layer 0

<

’
/
’

layer [

G # a0 6 ®@ S - o
\ Layer index 200 400 0 80 2008 _ e ———————— =N

AY
layer n v 1
- —) Whitened

\ /| Pretrained

| 1
! .
1 1
\/ . Pretrained ! N 1 w. !
| Weight [T——) o E>i m | s|xPN] - ix o
1 1
1 1

N dxd ~
(Fine-Tuned Model Y \\\ R WS € RAxd ~ y
7 N
' ’
Cmer 1 e B A
2 . VA <
Dataset / Training \

layer [

1 1
1 1
I—:: 1 1
1 1
4 3y T !
W, W, +B*A*- W ' L ‘v ! &Leamable
h LW a N\ |
\

W, B*
\ Adapter

layer n N W' e R4

1

Figure 2: The overview of DeFT.

directly measure the reconstruction error of a matrix and its low-rank approximation:
L=|[W—-W|g, (M

where W is a weight matrix, and W’ is the low-rank approximation of W. When it comes to
model compression, although the vanilla truncated SVD can accomplish the model decomposition,
it suffers from significant performance degradation since it does not consider the distribution of
inputs and outputs (Yu & Wu, [2023; [Yuan et al., 2023)).

Recent research regarding SVD in LLM decomposition leverages activation to mitigate reconstruc-
tion error brought by outliers (Yuan et al.l [2023; [Yu & Wul 2023). Wang et al.| (2024) propose a
whitening technique to capture data distribution of inputs. It first collects inputs X and then obtains
the Cholesky decomposition of X X7, denoted as S. Subsequently, WS is being decomposed with
SVD, where the compression loss L is formulated as the following equation 2]instead of equation [I]

L=|WX-WX|F)

Moreover, it gives the mathematical proof for the closed-form of the compression loss, i.e., Theo-
rem [I] offering an efficient and reliable way to assess model quality that requires only theoretical
calculations of the compression loss L, rather than expensive benchmarking.

Theorem 1. (Wang et al.| [2024) Given an input X and a weight matrix W, let S be the Cholesky
decomposition of X X and its singular value decomposition results USV T derived from applying
SVD to W'S. The activation-aware compression loss of truncating the smallest singular values is
L= WX -WX|% = | X oiwiv] STUX % = Y0, 11 (09)? and such truncating leads
to the lowest loss.

Many existing approaches uniformly compress all the layers under a preset compression rate, over-
looking the varying compression sensitivity of different layers (Wang et al., 2024). However, sensi-
tivity differences exist among layers (Geva et al., 2021; [Sharma et al., [2023)). This inevitably intro-
duces unnecessary reconstruction errors, which could be extremely fatal for fine-tuning. The model
reconstruction error could be too large to make fine-tuning converge, preventing it from achieving
performance comparable to that of conventional fine-tuning methods.

To repurpose model decomposition for fine-tuning, a fine-grained search for layerwise truncation
positions is essential, as models with lower reconstruction errors tend to yield higher accuracy on
downstream tasks. To this end, we propose a decomposition then fine-tuning (DeFT) method, which
models layer importance with layerwise outliers distribution and exploits it for fine-grained founda-
tion model decomposition, reaching a graceful balance between performance and efficiency.

2.3 FORMULATION OF FINE-GRAINED DECOMPOSITION

According to Theorem [T} we can leverage singular values of a certain matrix to compute its corre-
sponding reconstruction error under specific truncation positions. Thus we can define the perfor-

Under review as a conference paper at ICLR 2026

mance score of layer [through:

0, o2
i) = K=o

where 0, € Z* denotes the SVD truncation position for layer [, and o is the singular values of layer
l. The larger the performance score is, the less reconstruction error is.

3)

To enable fine-grained truncation position configurations, we introduce layerwise outlier distribu-
tion (Yin et al.l [2024) as a coefficient to balance the memory budget allocation among layers that
have different sensitivity to compression. It is proven to be effective in modeling layer sensitivity
(Yin et al.;[2024) by computing the ratio of outliers in the activations (output features) of an LLM:
N M 1 Al
ol = Doim1 i1 H(Aij >TA") @)
M x N ’

where o represents the outlier weighted importance for layer /; N and M represent the input and
output channel of the pre-trained weight matrix, respectively; A' is the absolute values of activation
outputs of layer /; A! is the mean of A!; I(-) denotes an indicator function returning 1 if Aéj is

larger than A’ else 0; and 7" is a hyperparameter which is set to 5 following (Yin et al., [2024). Then,
the truncation position selection problem can be formalized as follows.

2.3.1 PROBLEM DEFINITION

For a large language model, given its layers [€ L, layers’ corresponding performance scorer func-
tion f, memory consumption function g, and layer importance o, to fit the compressed model into
a limited memory B3, the truncation position selection algorithm finds truncation positions for each
layer, i.e., 0;, where it has the maximal weighted sum o/ f(6;) while satisfying the memory constraint
and performance function lower-bound constrain:

argznax Z ol f(6y)

s.t. Zg(@l) <B ®)
f(6) =P,

where P; is the lower bound of performance score at layer [. This optimization problem is a
typical integer programming problem with a

vast solution space, where the exhaustive search surface spanned by Solutions
is infeasible. Therefore, we propose an approx-
imate algorithm to get a solution that achieves
good performance and is efficient.

el
©

o
©

°
9

o
o

2.4 SOLUTION SPACE
OF TRUNCATION POSITIONS SELECTION

Performance Scores
B
S
Layer Position

o
n

According to equation |3} the objective function
is a weighted sum of the performance scores, O oot vaies
whose values are located on a hypersurface in a @ ®

high dimensional space and the constraints de-
fine a set of boundaries. To better understand
this concept, we visualize the solution space in
Figure[3(a) with a simplified objective function
including two performance score functions.

Figure 3: (a) A surface spanned by solutions, i.e.,
Cartesian product of ¢, and 05, where surface rep-
resent values of f(01) 4+ f(62). (b) Performance
score for each “v_proj” layer (the hidden size is
We visualize performance scores defined 8192) from LLaMA-65B, which is computed by
by equation [3]in Figure [3{b). For singular val- Equation equation[3|and normalized into [0, 1].
ues of a specific layer, the square sum of its

head part occupies the largest proportion of the total and it showcases the marginal increment when
accumulating the tail part, exhibiting a strong long-tail distribution. This indicates layers can be
compressed to a large extent with only small compression loss. Moreover, from the overview of the
performance scores, we can observe the differences among layers. Such differences strongly suggest
that truncation positions should use layerwise selection rather than a uniform setting.

Under review as a conference paper at ICLR 2026

Here is another intuitive observation that can help identify where the optimal solution should be lo-
cated: the more parameters are preserved, the less reconstruction error of the model is, and too many
preserved parameters could lead to dissatisfaction with the memory budget constraint. Therefore,
the inequation constraint regarding memory budget can be rewritten into an equation constraint.
Since our problem is an integer programming problem, the optimal solution should be located on or
very close to the hyperplane. Based on this, we design an approximate algorithm that starts outside
the feasible domain and stops once entering the feasible domain, i.e., crossing the hyperplane.

2.5 SEARCH FOR THE MOST PROFITABLE TRUNCATION

Initially, we force performance scores of each
layer [€ L equal to a very high value, i.e.,
0.999. Generally, this leads to dissatisfaction
with the constraint) g(6;) < B. Then, the al-
gorithm works in an iterative manner. In each
iteration, the algorithm evaluates the effect of
truncation position reduction of each layer:

Illustrati f S h Algorith
Visualization of Loss 10096 ustration of Search Algorthm
L S N p
>.0. <

. =
Ry <>

600

loss; = (1 + nay) AJ(r)
Ag(r) ©) n
_ f(r) = f(r—G) 200 400 600 BO0 1000
— (1 + nal)m7 (a) (b)

where 7) is a coefficient to scale the impact of
layer importance, and G is the granularity that
limits the feasible truncation positions.

Figure [{a) illustrates the mechanism of how
this metric works. It assesses the collaborative
effects of variations in the performance scores
and memory budget consumption. Moreover, it

Figure 4: (a) Visualization of the loss. (b) Demo
of how the search algorithm works, where the blue
line denotes the hyperplane derived by the bud-
get constraint, and the algorithm starts at the black
dot and stops at the red dot. These two figures il-
lustrate a simplified scenario, where only two dif-
ferent dimensions are under consideration and the
outlier weighted layer importance is ignored.

incorporates outlier weighted layer importance
as a coefficient to penalize compression over
sensitive layers. The larger loss; is, the more likely the truncation position reduction is to dam-
age the overall performance. In each step, the algorithm selects the move that leads to the minimal
negative effects and applies it. The algorithm stops once it reaches or goes across the hyperplane,
where layers that only have trivial parameter reduction remain the same. A simplified algorithm
demo is presented in Figure @{b).

Note that through this approximate algorithm, we can perform the search process within a few
seconds. Besides, the model decomposition can also be finished in a short time. For example, for a
7B model, it takes about 10 minutes for model decomposition, and the decomposition results can be
cached on the local disk and reused later.

2.6 MECHANISMS TO FACILITATE USABILITY

In addition to leveraging model decomposition to improve efficiency, we further optimize DeFT to
improve its usability on devices that have limited memory resources.

Cache Mechanism We design a cache mechanism to reduce the overhead of DeFT, where singular
vectors are decomposed in advance. For each start of fine-tuning, DeFT first reads user-defined
constraints and performs the search algorithm. Once the algorithm stops, it dynamically selects the
desired singular vectors of each layer according to the search results, and caches them on the disks.

Selective Model Loading/Quantization Existing practice replaces the original weight with its
decomposed one. For LLMs that have over tens of billions of model parameters (e.g., LLaMA-65B),
it is impossible to load the whole model into a single device with limited memory even under 4-bit
quantization (Dettmers et al.}[2023)). To bridge this gap, we optimize model loading, preventing the
original pre-trained weight from being loaded or quantized in advance, but straightforwardly loading

Under review as a conference paper at ICLR 2026

Models \ Methods #Params #Trainable \ AddSub SingleEq MultiArith SVAMP GSMS8k Avg.
GPT-351758 | - - - | 5640 69.90 83.80 88.10 8530 7670
| FullFT 674B 674B | 8204 7697 79.83 4840 3222 63.89

LLaMA-7B | GloRA 6.74B 72M 79.66 80.84 78.01 4493 302 6273
+DeFT 573B 72M 8228 80.01 76.19 46.63 2939 62.90

| Zeroshot 6529B OM | 203 0.98 126 1.90 220 1.67

LLaMA-65B | ‘o1 RA 6529B 357M 8549 91.20 86.41 7140 5904 7871
+DeFT 5549B 357M 90.46 9239 86.98 7567 5870 80.84

Zeroshot 13.02B OM .14 16.14 9.24 1200 720 1114

Full FT 13.02B 13.02B 88.61 91.34 87.39 68.60 5375 177.94

LLaMA-2 13B | QLoRA 13.02B 112M 83.04 89.17 84.87 63.00 4829 73.67
+DeFT 11.06B 112M 84.3 89.57 83.19 6620 45.11 73.67

LoRA 13.02B 112M 86.58 91.34 84.87 69.00 5277 7691

+DeFT 11.06B 112M 87.09 92.52 86.55 6730 4731 76.15

QLoRA 7055B 372M 93.67 9429 92.44 8530 7491 88.12

LLaMA-3 708 ‘ +DeFT 60.10B 372M 9215 9528 9118 8450 7574 8777
| FulFT 7.62B 7.62B | 9165 93.11 92.02 8840 7854 88.74

bsop | QRA 7628 74m 9190 9587 91.60 8600 7263 87.60
Qwen-2. +DeFT 6.51B 74M 93.16 95.08 90.34 8340 70.13 86.42
LoRA 7.62B 74M 9342 95.08 92.86 8470 7346 87.90

+DeFT 6.51B 74M 93.16 96.06 93.28 8470 7142 8772

Owen3xp | QLORA 3276B 24IM 9266 9567 93.70 86.60 7854 89.43
+DeFT 28.00B 241M 9215 95.8 94.96 8510 79.45 89.39

Table 1: Fine-tuning performance on the arithmetic reasoning tasks. Full FT: full fine-tuning.

and quantizing its corresponding decomposed singular values. With its help, we can successfully
fine-tune a 65B model on a consumer GPU with 24GB of memory.

3 EXPERIMENTS

3.1 EXPERIMENT SETUPS

Foundation Models and Baselines Foundation models used in our experiments include the
LLaMA family (Touvron et al., [2023), Mistral-7B v0.3 (Jiang et al.l [2023) and the Qwen fam-
ily (Team, 2024; 2025). For performance evaluation, we adopted the widely used LoRA (Hu et al.,
2022) and QLoRA (Dettmers et al.| [2023) as our baselines to demonstrate DeFT’s effectiveness in
combining with such PEFT and quantization methods.

Downstream Tasks LLMs are commonly employed for generation and reasoning tasks, which
can faithfully well reflect the performance of fine-tuning. Therefore, our experiments mainly
focus on arithmetic reasoning and summarizing tasks. For the arithmetic reasoning task, we
adopted five widely used datasets covering various difficulties: AddSub (Hosseini et al.| [2014)),
SingleEq (Koncel-Kedziorski et al., 2015]), MultiArith (Roy & Roth, 2016), SVAMP (Patel et al.,
2021)), and GSM8k (Cobbe et al.,2021)). Sequences were extracted from each dataset and then com-
posed into the training dataset that has 10000 sequences. The evaluation was performed after the
fine-tuning, covering the test set of each dataset, and we used the pass@1 accuracy as the metric.
Besides, we followed Hu et al.|(2023) and used the scores obtained by GPT-3.5 text-Davinci-003
with Zero-shot Chain-of-Thought (Kojima et al.,|2022) as the reference. For the summarizing task,
we adopted XSum (Narayan et al., [2018), which is collected from BBC, covering a wide variety of
domains. We use the first 10000 pieces as the training set. The metrics we employed are Rouge
scores (Lin} 2004), the most widely used metric to evaluate the similarity between model-generated
and manual summaries. For the implementation details, please refer to Appendix [B]

3.1.1 OVERALL PERFORMANCE

We report the fine-tuning performance on the downstream tasks in Table [T]and Table 2] Combining
DeFT with LoRA/QLoRA achieves comparable or even better performance than LoORA/QLoRA

Under review as a conference paper at ICLR 2026

QLoRA 32.76B 24IM ‘ 41.86 17.70 33.97

+DeFT 28.00B 241M 41.39 17.17 33.78

Models | Methods ~ #Params #Trainable | Rougel Rouge2 RougeL
QLoRA 13.02B 112M 42.62 17.99 34.67
LLaMA-13B ‘ +DeFT 11068 112M ‘ 4299 1827 3499
| Zeroshot 32.76B OM | 18.60 3.41 13.09
Qwen-3 32B ‘
Table 2: Performance comparison on text summarizing tasks

75 °
LoRA]
w70/ QLo 2 1.0 W= \:Q
o == DefT o
S E
& 651 \g 0.91
o o} LLaMA-7B
[®)] a
© 601 o Qwen-2.5 7B
g 2081 —m— [LaMA-13B
< 551 o
7} == | LaMA-65B
50+ ‘ ‘ ‘ : ‘ ‘ * 0.7 = ; ‘ ; w
8 16 32 64 128 256 512 "'100% 85% 80% 75% 70%
LoRA Ranks Preserved Model Parameters
(a) (b)

Figure 5: (a) LLaMA-7B’s fine-tuning performance on arithmetic reasoning tasks with varying
LoRA ranks. (b) DeFT’s relative performance against QLoRA under different compression rates.

across various pre-trained backbones, which demonstrates the effectiveness of DeFT. Additionally,
the performance degradation of LORA+DeFT compared to full fine-tuning is in an acceptable range.
For large models such as LLaMA-65B, Qwen-3 32B and LLaMA-3 70B, we do not report their full
fine-tuning results, since we have limited training resources.

Varying LoRA Ranks We present the performance comparison under different LoRA ranks be-
tween QLoRA and DeFT on the reasoning tasks. Specifically, we used LLaMA-7B as the backbone
and set the ratio of model parameters of DeFT to 85%. Results are reported in Figure [5[(a). Com-
paring with QLoRA, DeFT consistently achieves competitive or better performance under different
LoRA ranks, while benefiting from fewer model parameters.

Varying Compression Rates Figure [5(b) presents DeFT’s relative performance against QLoRA
under different compression rates, where the “100%” represents QLoRA’s performance. We can
observe a slight performance improvement at a low compression rate. When the compression rate
increases, the performance drops, especially for smaller foundation models. However, this phe-
nomenon gets alleviated when scaling up the model size. For LLaMA-65B, DeFT achieves similar
fine-tuning performance against QLoRA when preserving 70% foundation model parameters, and
its performance drops 2.2% compared to QLoRA when only preserving 55% parameters (For the
details, see Appendix[C.4).

3.2 IN-DEPTH ANALYSIS OF DEFT
3.2.1 ABLATION STUDY

To validate the effectiveness of each component in DeFT, we carried out an ablation study on the
reasoning tasks using LLaMA-7B as the backbone. We preserve 85% model parameters of DeFT
and the results are shown in Table [3] where we respectively disabled the LoRA initialization using
the tails of the truncated singular values, the outlier weighted layer importance, and the search for
layerwise truncation position.

As shown in Table[3] we compared the fine-tuning performance and also the perplexity of the com-
pressed models on the Wikitext dataset. We can notice a clear discrepancy between the perplexity
and fine-tuning performance, where lower perplexity does not indicate better performance. To ex-
plore the correlation between fine-tuning performance and the reconstruction error, we evaluated
the reconstruction error by computing the compressed model’s perplexity on the training set. The

Under review as a conference paper at ICLR 2026

Methods PPL (Wiki) PPL (Train) Scores

DeFT 16.2646 2.5731 62.90

w/ Vanilla Init 16.2646 2.5731 62.52
w/o Importance 15.7393 25714 61.86
w/o Search 14.0243 2.6526 57.60

'Unaligned comparison due to change of the coefficient

Table 3: Ablation study.

result is consistent with our presumption, i.e., lower reconstruction error leads to better fine-tuning
performance. The ablation study clearly demonstrates the effectiveness of the proposed layerwise
importance aware fine-grained compression for fine-tuning.

3.2.2 MODULE SENSITIVITY

DeFT performs a search to determine truncation positions according to equation[6 which considers
innate differences among layers. To better illustrate this concept, we explore DeFT which retains
60% of the foundation model parameters of LLaMA-65B (the hidden size is 8192) to showcase
the layer difference and how it affects truncation positions. The results are shown in Figure [6

70
7
60

-
o
g
)

As presented in Figure [6(a) and [f[b), we can
observe variations in the component-wise im-
portance and layerwise performance scores,
which straightforwardly lead to diverse trunca-
tion patterns. For instance, the outlier weighted
layer importance of “v_proj” is small for most
layers, but “v_proj” in most of the deeper lay-
ers has not been decomposed. This is be-

o
@
o

® ©

o
o

‘\ 40

)

o
S
e © o o
N

Layer Position

Performance Scores
&

o
IS

—
)

- L J : 10

Outlier Weighted Layer Importance

g
o
o
W

60 80 0 2048 4096 6144 8192

0 20 40
Layer Index Top-k Singular Values
(a) (b)

cause small changes of the truncation position ;"‘-"w""‘n LTS
. 5000 - <4
could lead to dramatic performance score drops %, [Zoso
for the deeper layers (see Figure [6(b)). DeFT 2% ~™ ko _
8 . |50 q_proj = up_proj

thus selects other components that allow more 53] & . Kproj <gate_proj

. 2 /, T, P T > v proj edown_proj
aggressive truncation positions for decomposi- ~ §z00) 55 . Boen l .

. . I . 2 . , |2 -, g P oo, N
tion. The ﬁnal truncation positions and thqlr " 1000 €06 -«.:-{# =
corresponding performance scores are shown in ol " e
Figure[6|c) and Figure [f[d), respectively. o Laye(;“fndex o & 3@ Laye(;;}jndex o e

3.2.3 EFFICIENCY IMPROVEMENT Figure 6: (a) Normalized outlier weighted layer

importance (into [0, 1]). (b) Variation of perfor-
mance score for each “v_proj” layer, where the
score is normalized into [0, 1]. (c) Truncation po-
sitions of model decomposition. (d) Correspond-
ing performance score to the truncation positions.

One efficiency bottleneck for fine-tuning LLMs
with billions of model parameters is data
movement. Reducing memory footprint can
significantly improve the utilization of high-
bandwidth memory I/O, curtailing fine-tuning
time expense. DeFT improves both the mem-
ory efficiency and end-to-end computation efficiency (including the model decomposition cost and
the search cost) for fine-tuning, as shown in Table [/} Compared with QLoRA, DeFT with a com-
pression rate of 55% reduces 22.4%-36.1% memory footprint, improves the throughput by 31.6%-
50.6%, and reduces 24.0%-33.6% overall training time under different batch sizes. Furthermore,
with a batch size of two, DeFT allows extremely large LLM fine-tuning on resource-constrained
devices. For instance, LLaMA-65B, with 55% of its parameters preserved, can be fine-tuned on an
NVIDIA RTX4090 with 24GB memory, completing the fine-tuning process in about 15.9 hours.

3.3 IMPACT OF OUTLIER WEIGHTED LAYER IMPORTANCE

Here, we use LLaMA-7B with DeFT preserving 85% model parameters to explore the impact of n
on the fine-tuning performance. Results on the arithmetic reasoning tasks are reported in Table [5

Under review as a conference paper at ICLR 2026

Method ‘ Batch size Memor Throughputﬂ Cosﬂ

FullFT | 1 530.0f1] -
1 35.95 136.2 950.9
2 36.34 214.5 637.9
QLoRA 4 38.76 300.4 478.2
8 43.62 366.9 410.3
16 52.72 411.8 383.0
1 22995519 17931316% 722.5,00.0%
2 23373579, 322.3450.3% 424.5335%
+DeFT 4 2578¢355% 452'3T50-6% 317'6¢3346%
8 33.87¢22_4% 546.7@19_0% 275'3¢32~9%
16 40.34 9359 617.3449.0% 255.533.3%

!Gigabytes (GB), 2Tokens/sec, *Minutes, “Estimated
Table 4: End-to-end fine-tuning efficiency comparison on LLaMA-65B using an NVIDIA A800.

There is a clear performance gap when enabling the scal-

. - . | 0 0.1 0.5 1
ing coefficient, and the performance gradually increases

with) getting larger. This demonstrates the assumption in | 61.86 58.84 60.13 629

our motivation, i.e., evenly compressing all the layers un- Taple 5: Fine-tuning performance un-
der a preset compression rate overlooks the varying com- der different n.
pression sensitivity of different layers.

4 RELATED WORKS

Parameter-efficient fine-tuning PEFT methods can be roughly categorized into the following
few types: adapter-based methods (Houlsby et al.;,|2019; Hu et al., 2023} |He et al.,|2022), masking-
based methods (Guo et al.l 2021; |[Zaken et al., 2022), LoRA-based methods, and Prompt Tun-
ing (L1 & Liang, 2021} [Liu et al., 2022). Among these PEFT methods, LoRA (Hu et al., [2022)
proposes to freeze the pre-trained model and only optimize the newly added low-rank matrices.
QLoRA (Dettmers et al., [2023)) enhances LoRA by quantizing the pre-trained model into 4-bit pre-
cision and utilizing paged optimizers to manage memory spikes. Additionally, quantization-aware
fine-tuning is receiving more and more attention and proves to be a practical way to incorporate
quantization into model fine-tuning (Li et al., 2024; Xu et al., [2024} |Guo et al., 2024)).

Model Decomposition for LLM Inference Considerable efforts have been devoted to studying
activation-aware model decomposition. It mitigates reconstruction errors brought by vanilla trun-
cated SVD’s failure of capturing data distribution (Yuan et al.,|2023;|Yu & Wu, 2023} |Kaushal et al.,
2023 [Wang et al.| 2024). As for truncation position selection, some propose to adopt uniform set-
tings in order to get lower perplexity (Wang et al.,2024)), while others try to find the most appropriate
configurations for each layer (Yuan et al.l 2023} Ji et al., [2024). Despite these considerable efforts
of model decomposition for LLM inference, its potential for LLM fine-tuning remains unexplored.
In this paper, we propose the first work based on the decomposition then fine-tuning paradigm.

5 CONCLUSION

In this paper, we introduce a novel method DeFT based on the decomposition then fine-tuning
paradigm for LLMs. DeFT is empowered with fine-grained foundation model decomposition by
an efficient layer importance aware search algorithm. It effectively reduces the number of founda-
tion model parameters during fine-tuning while maintaining the model quality. Besides, DeFT is
feasible to incorporate with PEFT and quantization. Experimental results show that DeFT achieves
comparable performance or even outperforms the baselines on the arithmetic reasoning and summa-
rizing tasks, while improving both memory and computation efficiency. Impressively, DeFT enables
fine-tuning a 65B model on a consumer GPU without using offloading strategies, demonstrating its
significant practical value in memory-constrained scenarios.

Under review as a conference paper at ICLR 2026

REFERENCES

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners.
https://arxiv.org/abs/2005.14165v4, May 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient Finetun-
ing of Quantized LLMs. Advances in Neural Information Processing Systems, 36:10088-10115,
December 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Confer-
ence of the North, pp. 4171-4186, Minneapolis, Minnesota, 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1423.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211-218, September 1936. ISSN 1860-0980. doi: 10.1007/BF02288367.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 5484-5495, 2021.

Demi Guo, Alexander Rush, and Yoon Kim. Parameter-Efficient Transfer Learning with Diff Prun-
ing. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4884-4896, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.378.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. Lg-lora: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. ICLR 2024, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a Unified View of Parameter-Efficient Transfer Learning. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022, 2022. doi: 10.48550/
arXiv.2110.04366.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 523-533, 2014.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-Efficient Transfer Learning for
NLP. In Proceedings of the 36th International Conference on Machine Learning, pp. 2790-2799.
PMLR, May 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In ICLR 2022,
April 2022.

Zhiqgiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning
of Large Language Models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 5254-5276,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.319.

10

Under review as a conference paper at ICLR 2026

Yixin Ji, Yang Xiang, Juntao Li, Wei Chen, Zhongyi Liu, Kehai Chen, and Min Zhang. Feature-
based Low-Rank Compression of Large Language Models via Bayesian Optimization, May 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws for Neural Language
Models, January 2020.

Ayush Kaushal, Tejas Vaidhya, and Irina Rish. LORD: Low Rank Decomposition Of Monolingual
Code LLMs For One-Shot Compression, September 2023.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
Language Models are Zero-Shot Reasoners. Advances in Neural Information Processing Systems,
35:22199-22213, December 2022.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas
Ang. Parsing algebraic word problems into equations. Transactions of the Association for Com-
putational Linguistics, 3:585-597, 2015.

Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing Continuous Prompts for Generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582-4597, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353.

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. In /CLR, 2024.

Baohao Liao, Shaomu Tan, and Christof Monz. Make pre-trained model reversible: From parameter
to memory efficient fine-tuning. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74-81, 2004.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-Tuning:
Prompt Tuning Can Be Comparable to Fine-tuning Across Scales and Tasks. In Smaranda Mure-
san, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 61-68, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.8.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL |https://openreview.net/forum?id=Bkg6RiCqg¥Y 7l

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization. ArXiv, abs/1808.08745,
2018.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. Deep Contextualized Word Representations. In Marilyn Walker, Heng Ji,
and Amanda Stent (eds.), Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pp. 2227-2237, New Orleans, Louisiana, June 2018. Association for Computational
Linguistics. doi: 10.18653/v1/N18-1202.

11

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=Bkg6RiCqY7

Under review as a conference paper at ICLR 2026

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
Fusion: Non-Destructive Task Composition for Transfer Learning. In Paola Merlo, Jorg Tiede-
mann, and Reut Tsarfaty (eds.), Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume, pp. 487-503, Online, April 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.39.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint
arXiv:1608.01413, 2016.

Rajarshi Saha, Varun Srivastava, and Mert Pilanci. Matrix Compression via Randomized Low Rank
and Low Precision Factorization. Advances in Neural Information Processing Systems, 36:18828—
18872, December 2023.

Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The Truth is in There: Improving Reasoning
in Language Models with Layer-Selective Rank Reduction, December 2023.

Qwen Team. Qwen?2.5: A party of foundation models, September 2024. URL https://gwenlm.
github.io/blog/gwen2.5/.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation
Language Models, February 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, pp. 6000-6010, Red
Hook, NY, USA, December 2017. Curran Associates Inc. ISBN 978-1-5108-6096-4.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. SVD-LLM: Truncation-aware Singular Value
Decomposition for Large Language Model Compression, April 2024.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen, Xi-
aopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
models. In ICLR, 2024.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal,
Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, and Shiwei Liu. Outlier
Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity,
May 2024.

Hao Yu and Jianxin Wu. Compressing Transformers: Features Are Low-Rank, but Weights Are
Not! Proceedings of the AAAI Conference on Artificial Intelligence, 37(9):11007-11015, June
2023. ISSN 2374-3468. doi: 10.1609/aaai.v37i9.26304.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. ASVD:
Activation-aware Singular Value Decomposition for Compressing Large Language Models, De-
cember 2023.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. BitFit: Simple Parameter-efficient Fine-
tuning for Transformer-based Masked Language-models. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pp. 1-9. Association for Computational Linguistics, 2022.
doi: 10.18653/V1/2022.ACL-SHORT.1. URL https://doi.org/10.18653/v1/2022.
acl-short.1.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
OPT: Open Pre-trained Transformer Language Models, June 2022.

12

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2505.09388
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1

Under review as a conference paper at ICLR 2026

A DISCLOSE OF LLM USAGE

We only use LLMs to polish our writing, e.g., grammar checking. We do not use LLMs to directly
generate the content of this paper.

B IMPLEMENTATION DETAILS

To ensure fair and reproducible experiments, all the baseline implementation and model fine-tunin
are based on the publicly available codebases Huggingface Transformerf] and Huggingface PEF
The evaluation procedure is adopted from the publicly available evaluation suite (Hu et al.| [2023]).

Hyperparameters For LoRA, QLoRA and DeFT, we selected the learning rate from {1e-4, 3e-4,
Se-4}, and set the batch size to 16, the LoRA rank r to 32 with a coefficient of 16. We used the
AdamW (Loshchilov & Hutter, 2019) optimizer with default configurations, where betal was set to
0.9 and beta2 to 0.999. For full fine-tuning, the learning rate was selected from {5e-6, le-5, 2e-5,
5e-5}, and other settings remained the same. For DeFT, we adopted n = 1 from n € {0, 0.1, 0.5,
1.0}, and T in layer importance modeling was set to 5 following |Yin et al.| (2024). Models were
evaluated on the test set after 3 epochs of fine-tuning. To make the best use of NVIDIA hardwareﬂ
we set the granularity G to 32. Additionally, the calibration data for DeFT contains 256 samples.

Model Loading/Quantization Optimization in DeFT For model loading in existing model com-
pression techniques, the Huggingface Transformers library first loads all model weights into the
CPU memory and then calls the quantizer to do the quantization. Then it substitutes pre-trained
weights with compressed weights. This is impractical for GPUs that have limited memory, e.g.,
loading LLaMA-65B on an NVIDIA RTX4090 (24GB).

To mitigate the gap, we further optimize this part in DeFT. With modifying the Huggingface Trans-
formers library, DeFT uses its search results to prevent corresponding weights from being processed
in advance. It can directly load and quantize the decomposed weights, i.e., singular vectors, and thus
successfully loads LLaMA-65B on an NVIDIA RTX4090.

Prompts and Training Examples Supervised fine-tuning engaged in this paper adopted two kinds
of prompts. For the arithmetic reasoning tasks, we adopted the prompt format from Alpaca:

Below is an instruction that describes a task. Write a response that appropriately completes the
request.

#H Instruction: {instruction}

it Response: {response}

LLMs fine-tuned with arithmetic reasoning datasets are trained to learn how to use chain-of-thoughts
to perform reasoning. Here is an example from the training data:

Below is an instruction that describes a task. Write a response that appropriately
completes the request.

Instruction:

Wyatt’s mother gave him $74 to go to the store. Wyatt bought 5 loaves of bread
and 4 cartons of orange juice. Each loaf of bread cost $5 and each carton of
orange juice cost $2. How much money does Wyatt have left?

Response:

Step 1: Find the total cost of the bread by multiplying the cost per loaf by the
number of loaves: 5 loaves x $5/loaf = $25.

Shttps://github.com/huggingface/transformers
Shttps://github.com/huggingface/peft
"https://docs.nvidia.com/cuda/cublas/index.html#tensor-core-usage

13

Under review as a conference paper at ICLR 2026

Step 2: Find the total cost of the orange juice by multiplying the cost per carton
by the number of cartons: 4 cartons x $2/carton = $8.

Step 3: Find the total cost of the items by adding the cost of the bread and the cost
of the orange juice: $25 + $8 = $33.

Step 4: Subtract the total cost of the items from the amount of money Wyatt started
with: $74 - $33 = $41.

Therefore, Wyatt has $41 left.

For the text summarizing tasks, we adopted a straightforward prompt to fine-tune LLMs to complete
this downstream task, which is listed as follows:

original text: {text}

summary: {summary}

Here is an example from the training data:

original text: Veronica Vanessa Chango-Alverez, 31, was killed and another man
injured when an Audi A3 struck them in Streatham High Road at 05:30 GMT
on Saturday. Ten minutes before the crash the car was in London Road, Croydon,
when a Volkswagen Passat collided with a tree. Police want to trace Nathan Davis,
27, who they say has links to the Audi. The car was abandoned at the scene. Ms
Chango-Alverez died from multiple injuries, a post-mortem examination found.
No arrests have been made as yet, police said. Ms Chango-Alverez was staying
at her mother’s home in Streatham High Road. She was born in Ecuador and had
lived in London for 13 years, BBC London reporter Gareth Furby said. At the
time of the crash, she was on her way to work in a hotel. The remains of the bus
stop, which was extensively damaged in the crash, have been removed. Flowers
have been left at the site in tribute to the victim. A statement from her brother
Kevin Raul Chango-Alverez said: "My family has had its heart torn out, at this
Christmas time, we will never be the same again. ”On Friday night we were to-
gether as a family with Veronica meeting her newly born nephew and preparing
for Christmas. "I last saw her alive as she left to go to work on Saturday morn-
ing, but moments later I was holding her hand as she passed away in the street.”
Describing the crash as “horrific” Det Insp Gordon Wallace, said: “The family
are devastated. The memory of this senseless death will be with them each time
they leave their home. “The driver fled the scene abandoning the grey Audi, which
was extensively damaged. ”We are looking to speak to Mr Nathan Davis in rela-
tion to this collision.” The 51-year-old man injured at the bus stop remains in a
critical condition in hospital while the condition of the 29-year-old driver of the
Volkswagen is now stable.

summary: A man with links to a car that was involved in a fatal bus stop crash in
south London is being sought by police.

Models are fine-tuned based on the ground-truth, i.e., “{response}” and “{summary}”.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ADDITIONAL RESULTS OF FINE-TUNING PERFORMANCE

In this section, we present additional experimental results of different pre-trained backbones on
the arithmetic reasoning tasks, as detailed in Table [6] It is shown that DeFT consistently delivers
competitive performance alongside QLoRA across various pretrained backbones, e.g., OPT, LLaMA
and Mistral. This consistency further underscores the effectiveness of DeFT.

14

Under review as a conference paper at ICLR 2026

Models \ Methods ~ #Params #Trainable \ AddSub SingleEq MultiArith SVAMP GSM8k Avg.
| FullFT 666B 666B | 5873 5551 55.88 2800 1168 41.96

OPT-6.78 | QLORA 6.66B 75M 5848 5532 50.84 2650 13.12 4085
+DeFT 6.17B 75M 5798 5374 51.68 2830 1221 40.99

| FullFT 13.02B 13.02B | 8506 8543 79.41 6290 4322 71.20

LLaMA-13B | gloRA 13.02B 112M 8203 84.05 7843 5797 4157 688l
+DeFT 11068 112M 8743 87.99 79.41 60.30 3841 7071

LaMa33p | QLORA 32538 218M 86.08 90.49 85.01 6530 5305 7598
: +DeFT 27.65B 218M 8920 91.27 83.75 6710 5110 76.49
Zetoshot 7.25B OM 7924 74.80 64.29 6690 4723 66.49

Ful FT 725B 7.25B 80.11 9272 87.82 69.90 5406 7872

Mistral- 7B v0.3 | QLoRA 725B 75M 88.61 94.29 88.66 7030 5444 7926
+DeFT 620B 75M 88.86 93.11 86.13 6770 5390 77.94

| LoRA 725B 75M 89.62 9291 87.82 69.90 5299 78.65

+DeFT 620B 75M 8633 93.70 87.39 68.30 5557 78.26

Table 6: More experimental results on the arithmetic reasoning tasks.

C.2 ADDITIONAL RESULTS OF FINE-TUNING EFFICIENCY

Here, we present the end-to-end fine-tuning efficiency (including the model decomposition and
search cost) comparison on LLaMA-33B using a single NVIDIA RTX4090 GPU, where the ratio of
the preserved model parameters of DeFT is set to 75%. Compared with QLoRA, DeFT achieves up
to 19.6%, 49.0% and 32.4% improvements in terms of memory efficiency, throughput and end-to-
end training time, respectively, consistently demonstrating the efficiency benefits of DeFT.

Method ‘ Batch Size Memoryﬂ Throughpuﬂ Cosﬂ

1 19.45 146.5 884.2
QLoRA 2 20.56 245.1 558.1

4 22.54 350.9 409.5

1 16.59 1479, 218.3449.0% 597.3)32.4%
+DeFT 2 16'54l19.6% 351'1T43-2% 393.2J{29_5%

4 19.26 1469 488.843939% 311.6 31 4%

!Gigabytes (GB), >Tokens/sec, *Minutes
Table 7: End-to-end Fine-tuning efficiency comparison on LLaMA-33B using a single NVIDIA
RTX4090 GPU.

C.3 IMPACT OF THE CALIBRATION DATA SIZE

Activation-aware singular value decomposition methods usually require calibration data to capture
activation information and reduce decomposition errors. Existing practice tends to construct cal-
ibration data out of the pre-training dataset since it seeks to retain generation quality on general
tasks. However, for DeFT, we aim to repurpose model decomposition for fine-tuning. Therefore,
we construct calibration data from the downstream tasks. To explore how this affects the fine-tuning
performance, we use DeFT preserving 85% model parameters on LLaMA-7B to investigate the
fine-tuning performance under different sizes of calibration data. The results are reported in Table[S]
We notice that with a calibration data size of 256, DeFT achieves the highest score. Therefore, we
adopted this in our experiments.

#Calibration | 32 64 128 256

Score | 62.64 61.10 61.88 62.90
Table 8: Fine-tuning performance under different calibration data sizes.

15

Under review as a conference paper at ICLR 2026

—=— DeFT
QLoRA

80/ -Nsi
78.17

(0]

(®]

&

€781

:g 76.56

8280.84

72— ; ; ;
85% 75% 65% 55%
Preserved Model Parameters

Figure 7: Performance of DeFT across different preserved model parameters on LLaMA-65B.

C.4 RESULTS OF 65B MODEL VARYING COMPRESSION RATES

Figure[7|presents the performance of DeFT across different preserved model parameters on LLaMA-
65B. DeFT outperforms QLoRA when the compression rate is smaller, i.e., more preserved model
parameters (85% and 75%). When the model is aggressively compressed, e.g., only preserving 55%
model parameters, there is an inevitable performance drop, but the drop range is acceptable, i.e.,
2.2%. These results demonstrate the strong performance-efficiency trade-off of DeFT.

C.5 COMPARISON WITH ADAPTER-TUNING METHODS

Here, we compare DeFT with existing widely-used adapter-tuning methods (Houlsby et al., 2019
Pfeiffer et al) |2021). In more detail, we present the performance comparison on the reasoning
tasks and text summarizing tasks using LLaMA-7B and LLaMA-13B as the backbones. For the
adapter-tuning baselines, we kept the batch size to 16 and conducted a grid search for the learning
rate and learning rate scheduler settings from {1e-6, 2e-6, 5e-6, le-5, 2e-5} and {constant, cosine}.
Other fine-tuning and evaluation procedures are kept the same for a fair comparison. The results are
reported in Table[9] We can see that DeFT significantly outperforms the adapter-tuning methods,
especially on the summarizing tasks.

Task Model Full FT Series® Parallel” QLoRA DeFT

7B 6398 60.64 6253 62.73 62.90
13B 7120 70.50 65.60 68.81 70.71

7B 3428 2553 25098 33.53 34.03
13B 3529 2637 26.88 34.67 34.99

* Adapter-based tuning.
Table 9: Performance comparison with adapter-tuning methods, where scores for reasoning tasks
are the average pass@ 1 accuracy and scores for summarizing tasks are RougeL.

Reasoning

Summarizing

C.6 PERFORMANCE STABILITY

With model parameters reduced, the decomposed models inevitably suffer from increasing recon-
struction error, making their fine-tuning performance less stable, especially for smaller models. We
conducted repeated experiments on the reasoning tasks under three different random seeds and com-
puted the standard deviations of the average scores, which are reported in Table [I0] For LLaMA-
7B/33B, the standard deviations of the average scores increase with the reduction of the model
parameters. However, such phenomena are mitigated when it comes to LLaMA-65B. This is be-
cause, for smaller foundation models, the reconstruction error could be relatively too large to be
compensated, whereas for larger models, the same level of error becomes relatively small due to
greater parameter redundancy.

16

Under review as a conference paper at ICLR 2026

DeFT LLaMA-7B LLaMA-33B LLaMA-65B

85% 0.52 0.93 0.32
80% 0.68 1.74 0.41
75% 1.09 227 0.49
70% 2.27 2.31 0.51

Table 10: Standard deviations of scores on the reasoning tasks

DeFT AddSub SingleEq MultiArith SVAMP GSMS8k
+ LoRA 93.16 96.06 93.28 84.70 71.42
+Full FT 85.82 90.55 87.39 72.70 57.24

Table 11: Performance of full fine-tuning DeFT on the reasoning tasks with Qwen-2.5 7B.

C.7 PERFORMANCE OF INCORPORATING DEFT WITH FULL FINE-TUNING

In addition to combining DeFT with PEFT and quantization methods, one may consider whether
DeFT can be combined with full fine-tuning, i.e.,, directly fine-tuning the decomposed model. To
answer this question, we explore the performance of full fine-tuning DeFT on the reasoning tasks
using Qwen-2.5 7B as the backbone, and the results are shown in Table @ It can be observed that
DeFT + LoRA significantly outperforms DeFT + Full fine-tuning.

There are two reasons for this phenomenon. The first one is the inconsistent optimization objective
between model decomposition and fine-tuning. For model decomposition, we aim to minimize the
compression loss ||[WX — W'X| p, where W is the original pre-trained weight, W’ is its low-
rank approximation, which is reconstructed based on the decomposed weights, and X is the input.
However, for LLM fine-tuning, the goal is to use the downstream task-specific data to maximize the
probability of the model to predict the right next token, typically by minimizing the cross-entropy
loss. Therefore, if directly fine-tuning the decomposed weights, the fine-tuned weight may no longer
be the low-rank approximation of the original weight. Instead, by applying LoRA fine-tuning to
the decomposed model, we can keep the decomposed weights frozen and only update the LoRA
modules. As such, the decomposed weights are still an approximation to the original weights. The
second reason is also mentioned in the work of SVD-LLM (Wang et al.| [2024): the derivatives of
the decomposed weights are interdependent during the fine-tuning process, where optimization of
one matrix may interfere with the optimization of the other, leading to a performance drop. Due to
these two reasons, we cannot achieve satisfactory performance by full fine-tuning DeFT.

17

	Introduction
	Methodology
	The Workflow of Our Proposed DeFT
	Repurpose Model Decomposition for Fine-tuning
	Formulation of Fine-grained Decomposition
	Problem Definition

	Solution Space of Truncation Positions Selection
	Search for the Most Profitable Truncation
	Mechanisms to Facilitate Usability

	Experiments
	Experiment Setups
	Overall Performance

	In-depth Analysis of DeFT
	Ablation Study
	Module Sensitivity
	Efficiency Improvement

	Impact of Outlier Weighted Layer Importance

	Related Works
	Conclusion
	Disclose of LLM Usage
	Implementation Details
	Additional Experimental Results
	Additional Results of Fine-tuning Performance
	Additional Results of Fine-tuning Efficiency
	Impact of the Calibration Data Size
	Results of 65B model varying compression rates
	Comparison with Adapter-Tuning Methods
	Performance Stability
	Performance of incorporating DeFT with Full Fine-tuning

