

EFFICIENT FINE-TUNING WITH DECOMPOSED FOUNDATION MODEL

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Fine-tuning billion-scale large language models (LLMs) is challenging due to the
 012 extremely large model size, particularly in memory-constrained scenarios, even
 013 with parameter-efficient fine-tuning (PEFT) and quantization. To address this
 014 challenge, we propose a novel method based on the *decomposition then fine-*
 015 *tuning* (DeFT) paradigm, which effectively decomposes the foundation model and
 016 reduces the number of model parameters during fine-tuning, while retaining model
 017 quality. DeFT introduces a highly efficient layer importance aware search algorithm
 018 for fine-grained model decomposition and successfully repurposes model
 019 decomposition for fine-tuning. Additionally, DeFT can seamlessly integrate with
 020 PEFT and quantization methods to enhance fine-tuning efficiency further. Ex-
 021 tensive experiments on various LLM backbones demonstrate that DeFT achieves
 022 comparable or even better performance than the baseline PEFT and quantization
 023 methods, while improving both memory efficiency and computation efficiency for
 024 fine-tuning. Remarkably, DeFT enables fine-tuning of a 65B model on a consumer
 025 GPU with just 24GB of memory, all without relying on offloading strategies, sav-
 026 ing significant expenses for purchasing or renting high-end GPUs.

1 INTRODUCTION

030 Transformer-based language models have been extensively studied since the proposal of the self-
 031 attention mechanism (Vaswani et al., 2017) and the foundation of the pre-training paradigm (Peters
 032 et al., 2018; Devlin et al., 2019). Following the scaling law (Kaplan et al., 2020), modern large
 033 language models (LLMs) have billions of model parameters for better predictive accuracy (Brown
 034 et al., 2020; Zhang et al., 2022; Touvron et al., 2023). Consequently, full fine-tuning of such large
 035 LLMs is extremely expensive due to the required computing resources and time consumption.

036 To reduce the cost of LLM fine-tuning, researchers have
 037 proposed parameter-efficient fine-tuning (PEFT) tech-
 038 niques, where a large portion of the model parameter is
 039 frozen and only a very small part of the parameters needs
 040 to be updated (Houlsby et al., 2019; Hu et al., 2022;
 041 Li & Liang, 2021; Zaken et al., 2022). These works
 042 achieve competitive predictive accuracy while reducing
 043 memory costs compared with full fine-tuning. To further
 044 cut down memory footprint, researchers propose to incor-
 045 porate quantization into fine-tuning by storing the founda-
 046 tion model in low-bit floating point numbers (*e.g.*, 4-bit).
 047 QLoRA (Dettmers et al., 2023) and LoftQ (Li et al., 2024)
 048 are two representative approaches. Despite the success
 049 of PEFT and quantization-aware fine-tuning in reducing
 050 memory consumption, the foundation model sizes remain
 051 unchanged, and exorbitant memory consumption by tens of billions of model parameters poses con-
 052 siderable challenges to fine-tuning, especially in memory-constraint scenarios (Liao et al., 2023).

053 In this work, we propose a novel method based on the *decomposition then fine-tuning* paradigm
 054 (namely DeFT), which can be flexibly integrated with PEFT and quantization to further improve the
 055 memory efficiency and computation efficiency. DeFT first conducts model decomposition to reduce

Figure 1: Memory cost of fine-tuning a 65B model of different methods.

the number of foundation model parameters and then fine-tunes the decomposed model to accommodate the downstream tasks. To mitigate the decomposition overhead and boost the model quality, DeFT exploits (i) activation-aware singular value decomposition (SVD), by taking advantages of the closed-form property of compression loss in SVD (Eckart & Young, 1936; Wang et al., 2024) to provide a fast evaluation on the reconstruction error; (ii) a highly efficient search algorithm to enable fine-grained decomposition, built on top of our detailed analysis of model decomposition. Furthermore, we optimize DeFT to facilitate usabilities, such as cache mechanisms and selective model loading/quantization. Therefore, DeFT enables fine-tuning a 65B model on a consumer GPU with 24GB of memory, as shown in Figure 1, demonstrating its practical value in memory-constrained scenarios. Additionally, with DeFT, we can save significant expenses for purchasing or renting high-end GPUs. To summarize, our main contributions in this paper are as follows.

- We propose a novel fine-tuning method based on the *decomposition then fine-tuning* paradigm (DeFT). It first introduces a highly efficient layerwise importance aware search algorithm for fine-grained foundation model decomposition, and then fine-tunes the decomposed model.
- DeFT is seamlessly incorporated with representative PEFT and quantitation-aware fine-tuning methods, and extensive experiments are carried out to demonstrate repurposing model decomposition for fine-tuning. DeFT effectively reduces the number of foundation model parameters while achieving comparable or even better performance than the baselines.
- DeFT showcases the memory efficiency and computation efficiency benefits for fine-tuning. Notably, it enables fine-tuning a 65B model on a consumer GPU with 24GB memory without using offloading, saving significant costs associated with buying or renting high-end GPUs.

2 METHODOLOGY

The success of quantization-aware fine-tuning inspires us to explore other model compression techniques to further improve fine-tuning efficiency. To make the compression effective for fine-tuning, two major concerns must be addressed: (i) the overhead of model compression must be small enough to achieve efficiency gains in terms of the end-to-end fine-tuning time cost; (ii) fine-tuning performance degradation needs to be limited to an acceptable range.

To address these two concerns, model decomposition could be an appropriate solution. It is a matrix decomposition technique that can be executed in a one-step process, significantly reducing excessive overhead. Moreover, its mathematical guarantee makes it easy to estimate fine-tuning performance through theoretical compression loss. Singular value decomposition (SVD) has been extensively studied and proven to be a practicable solution for model decomposition (Saha et al., 2023; Yuan et al., 2023; Wang et al., 2024). However, its potential to in fine-tuning remains unexplored. To this end, we propose a novel method, DeFT, that can effectively incorporate model decomposition to reach a graceful balance between fine-tuning performance and efficiency. In this section, we first introduce the workflow of DeFT. After that, we discuss the feasibility of repurposing model decomposition for fine-tuning and elaborate on the technical details of DeFT.

2.1 NOTATIONS AND THE WORKFLOW OF DEFT

The overview of DeFT is shown in Figure 2, and its workflow is particularized as follows: (i) DeFT constructs calibration data from the downstream task dataset. (ii) DeFT collects the input feature X and outlier weighted layer importance for each layer a^l and then obtains the Cholesky decomposition of XX^T , denoted as S . Subsequently, it decomposes WS with SVD, and the inverse of scaling matrix, *i.e.*, S^{-1} , are absorbed into the V matrix, where $W \in \mathbb{R}^{d \times d}$ is a pretrained weight, d is the hidden size of the pretrained model, and $W \simeq W' = U\Sigma V S^{-1}$. (iii) For an LLM with n layers, DeFT searches for the best truncation positions θ_l for each layer l with an efficient layer importance aware algorithm (See [equation 3 - equation 6](#) for more details), and the results are cached on disks. (iv) DeFT loads the truncated singular values, leverages their tail parts, *i.e.*, $A \in \mathbb{R}^{r \times d}$ and $B \in \mathbb{R}^{d \times r}$, to initialize the LoRA module, and utilizes the rest, *i.e.*, $W_u \in \mathbb{R}^{d \times (\theta_l - r)}$ and $W_v \in \mathbb{R}^{(\theta_l - r) \times d}$, to replace the pre-trained weights. (v) Fine-tuning starts. The decomposed foundation model is frozen, and only the LoRA module A^* and B^* is trainable. (vi) After fine-tuning, the weight difference, *i.e.*, the adapter weight compared to the original pre-trained weight, can be obtained by $W_u W_v + B^* A^* - W$.

Figure 2: The overview of DeFT.

2.2 REPURPOSE MODEL DECOMPOSITION FOR FINE-TUNING

Conventional truncated SVD provides mathematical proof for the closed-form solution of the compression loss, *i.e.*, Eckart-Young Theorem (Eckart & Young, 1936), which is a reliable method to directly measure the reconstruction error of a matrix and its low-rank approximation:

$$L = \|W - W'\|_F, \quad (1)$$

where W is a weight matrix, and W' is the low-rank approximation of W . When it comes to model compression, although the vanilla truncated SVD can accomplish the model decomposition, it suffers from significant performance degradation since it does not consider the distribution of inputs and outputs (Yu & Wu, 2023; Yuan et al., 2023).

Recent research regarding SVD in LLM decomposition leverages activation to mitigate reconstruction error brought by outliers (Yuan et al., 2023; Yu & Wu, 2023). Wang et al. (2024) propose a whitening technique to capture data distribution of inputs. It first collects inputs X and then obtains the Cholesky decomposition of XX^T , denoted as S . Subsequently, WS is being decomposed with SVD, where the compression loss L is formulated as the following equation 2 instead of equation 1.

$$L = \|WX - W'X\|_F \quad (2)$$

Moreover, it gives the mathematical proof for the closed-form of the compression loss, *i.e.*, Theorem 1, offering an efficient and reliable way to assess model quality that requires only theoretical calculations of the compression loss L , rather than expensive benchmarking.

Theorem 1. (Wang et al., 2024) *Given an input X and a weight matrix W , let S be the Cholesky decomposition of XX^T and its singular value decomposition results $U\Sigma V^T$ derived from applying SVD to WS . The activation-aware compression loss of truncating the smallest singular values $\{\sigma_{m+1}, \sigma_{m+2}, \dots, \sigma_k\}$ is $L^2 = \|WX - W'X\|_F^2 = \|\sum_{i=m+1}^k \sigma_i u_i v_i^T S^{-1} X\|_F^2 = \sum_{i=m+1}^k (\sigma_i)^2$ and such truncating leads to the lowest loss, where u_i and v_i are the i -th left singular value and right singular value respectively.*

Many existing approaches uniformly compress all the layers under a preset compression rate, overlooking the varying compression sensitivity of different layers (Wang et al., 2024). However, sensitivity differences exist among layers (Geva et al., 2021; Sharma et al., 2023). This inevitably introduces unnecessary reconstruction errors, which could be extremely fatal for fine-tuning. The model reconstruction error could be too large to make fine-tuning converge, preventing it from achieving performance comparable to that of conventional fine-tuning methods.

To repurpose model decomposition for fine-tuning, a fine-grained search for layerwise truncation positions is essential, as models with lower reconstruction errors tend to yield higher accuracy on downstream tasks. To this end, we propose a *decomposition then fine-tuning* (DeFT) method, which models layer importance with layerwise outliers distribution and exploits it for fine-grained foundation model decomposition, reaching a graceful balance between performance and efficiency.

162 2.3 FORMULATION OF FINE-GRAINED DECOMPOSITION
163

164 According to Theorem 1, we can leverage singular values of a certain matrix to compute its corre-
165 sponding reconstruction error under specific truncation positions. Thus we can define the perfor-
166 mance score of layer l through:

$$167 \quad 168 \quad 169 \quad f(\theta_l) = \frac{\sum_{i=0}^{\theta_l} \sigma_i^2}{\sum \sigma_i^2}, \quad (3)$$

170 where $\theta_l \in \mathbb{Z}^+$ denotes the SVD truncation position for layer l , and σ is the singular values of layer
171 l . The larger the performance score is, the less reconstruction error is.

172 To enable fine-grained truncation position configurations, we introduce layerwise outlier distribu-
173 tion (Yin et al., 2024) as a coefficient to balance the memory budget allocation among layers that
174 have different sensitivity to compression. It is proven to be effective in modeling layer sensitivity
175 (Yin et al., 2024) by computing the ratio of outliers in the activations (output features) of an LLM:

$$176 \quad 177 \quad 178 \quad \alpha^l = \frac{\sum_{i=1}^N \sum_{j=1}^M \mathbb{I}(\mathbf{A}_{ij}^l > T \bar{\mathbf{A}}^l)}{M \times N}, \quad (4)$$

179 where α^l represents the outlier weighted importance for layer l ; N and M represent the input and
180 output channel of the pre-trained weight matrix, respectively; \mathbf{A}^l is the absolute values of activation
181 outputs of layer l ; $\bar{\mathbf{A}}^l$ is the mean of \mathbf{A}^l ; $\mathbb{I}(\cdot)$ denotes an indicator function returning 1 if \mathbf{A}_{ij}^l is
182 larger than $\bar{\mathbf{A}}^l$ else 0; and T is a hyperparameter which is set to 5 following (Yin et al., 2024). Then,
183 the truncation position selection problem can be formalized as follows.

184 2.3.1 PROBLEM DEFINITION
185

186 For a large language model, given its layers $l \in \mathbf{L}$, layers’ corresponding performance scorer func-
187 tion f , memory consumption function g , and layer importance α^l , to fit the compressed model into
188 a limited memory \mathcal{B} , the truncation position
189 selection algorithm finds truncation positions
190 for each layer, i.e., θ_l , where it has the maxi-
191 mal weighted sum $\alpha^l f(\theta_l)$ while satisfying the
192 memory constraint and performance function
193 lower-bound constrain:

$$194 \quad 195 \quad 196 \quad \begin{aligned} & \operatorname{argmax}_{\theta} \sum \alpha^l f(\theta_l) \\ & \text{s.t. } \sum g(\theta_l) \leq \mathcal{B} \\ & f(\theta_l) \geq \mathcal{P}_l, \end{aligned} \quad (5)$$

197 where \mathcal{P}_l is the lower bound of performance
198 score at layer l . This optimization problem is
199 a typical integer programming problem with a
200 vast solution space, where the exhaustive search
201 is infeasible. Therefore, we propose an approx-
202 imate algorithm to get a solution that achieves
203 good performance and is efficient.

204 2.4 SOLUTION SPACE
205 OF TRUNCATION POSITIONS SELECTION
206

207 According to equation 3, the objective function is a weighted sum of the performance scores, whose
208 values are located on a hypersurface in a high dimensional space and the constraints define a set of
209 boundaries. To better understand this concept, we visualize the solution space in Figure 3(a) with a
210 simplified objective function including two performance score functions.

211 We visualize performance scores defined by equation 3 in Figure 3(b). For singular values of a
212 specific layer, the square sum of its head part occupies the largest proportion of the total and it
213 showcases the marginal increment when accumulating the tail part, exhibiting a strong long-tail

214 Figure 3: (a) A surface spanned by solutions, i.e.,
215 Cartesian product of θ_1 and θ_2 , where surface
216 represent values of $f(\theta_1) + f(\theta_2)$. (b) Perfor-
217 mance score for each “v-proj” layer (the hidden
218 size is 8192) from LLaMA-65B, which is com-
219 puted by Equation equation 3 and normalized into
220 $[0, 1]$. The Y-axis “Layer position” denotes the i -th
221 transformer block.

216 distribution. This indicates layers can be compressed to a large extent with only small compression
 217 loss. Moreover, from the overview of the performance scores, we can observe the differences among
 218 layers. Such differences strongly suggest that truncation positions should use layerwise selection
 219 rather than a uniform setting.

220 Here is another intuitive observation that can help identify where the optimal solution should be located: the more parameters are preserved, the less reconstruction error of the model is, and too many
 221 preserved parameters could lead to dissatisfaction with the memory budget constraint. Therefore,
 222 the inequation constraint regarding memory budget can be rewritten into an equation constraint.
 223 Since our problem is an integer programming problem, the optimal solution should be located on or
 224 very close to the hyperplane. Based on this, we design an approximate algorithm that starts outside
 225 the feasible domain and stops once entering the feasible domain, *i.e.*, crossing the hyperplane.
 226

228 2.5 SEARCH FOR THE MOST PROFITABLE TRUNCATION

229 Initially, we force performance scores of each
 230 layer $l \in \mathbf{L}$ equal to a very high value, *i.e.*,
 231 0.999. Generally, this leads to dissatisfaction
 232 with the constraint $\sum g(\theta_l) < \mathcal{B}$. Then, the
 233 algorithm works in an iterative manner. In each
 234 iteration, the algorithm evaluates the effect of
 235 truncation position reduction of each layer:
 236

$$\begin{aligned} \text{loss}_l &= (1 + \eta\alpha_l) \frac{\Delta f(\theta_l)}{\Delta g(\theta_l)} \\ &= (1 + \eta\alpha_l) \frac{f(\theta_l) - f(\theta_l - G)}{g(\theta_l) - g(\theta_l - G)}, \end{aligned} \quad (6)$$

242 where η is a coefficient to scale the impact of
 243 layer importance, and G is the granularity that
 244 limits the feasible truncation positions.

245 Figure 4(a) illustrates the mechanism of how
 246 this metric works. It assesses the collaborative
 247 effects of variations in the performance scores
 248 and memory budget consumption. Moreover, it
 249 incorporates outlier weighted layer importance
 250 as a coefficient to penalize compression over
 251 sensitive layers. The larger loss_l is, the more likely the truncation position reduction is to dam-
 252 age the overall performance. In each step, the algorithm selects the move that leads to the minimal
 253 negative effects and applies it. The algorithm stops once it reaches or goes across the hyperplane,
 254 where layers that only have trivial parameter reduction remain the same. A simplified algorithm
 255 demo is presented in Figure 4(b), and [Algorithm 1 in Appendix A](#) outlines the search process.

256 Note that through this approximate algorithm, we can perform the search process within a few
 257 seconds. Besides, the model decomposition can also be finished in a short time. For example, for a
 258 7B model, it takes about 10 minutes for model decomposition, and the decomposition results can be
 259 cached on the local disk and reused later.

260 2.6 MECHANISMS TO FACILITATE USABILITY

262 In addition to leveraging model decomposition to improve efficiency, we further optimize DeFT to
 263 improve its usability on devices that have limited memory resources.

264 **Cache Mechanism** We design a cache mechanism to reduce the overhead of DeFT, [where singular](#)
 265 [vectors are decomposed offline and cached on the disks for reuse](#). That means, for different settings
 266 of compression rates, we do not need to repeat the SVD decomposition process, saving notable
 267 computation cost. The decomposition results are used as input for the search algorithm to find the
 268 best truncation positions. For each start of fine-tuning, DeFT first reads user-defined constraints and
 269 performs the search algorithm, which can be finished within a few seconds or a few minutes. Once

Figure 4: (a) Visualization of the loss. (b) Demo of how the search algorithm works, where the blue line denotes the hyperplane derived by the budget constraint, and the algorithm starts at the black dot and stops at the red dot. These two figures illustrate a simplified scenario, where only two different dimensions are under consideration and the outlier weighted layer importance is ignored.

likely the truncation position reduction is to damage the overall performance. In each step, the algorithm selects the move that leads to the minimal negative effects and applies it. The algorithm stops once it reaches or goes across the hyperplane, where layers that only have trivial parameter reduction remain the same. A simplified algorithm demo is presented in Figure 4(b), and [Algorithm 1 in Appendix A](#) outlines the search process.

Note that through this approximate algorithm, we can perform the search process within a few seconds. Besides, the model decomposition can also be finished in a short time. For example, for a 7B model, it takes about 10 minutes for model decomposition, and the decomposition results can be cached on the local disk and reused later.

270 Table 1: Fine-tuning performance on the arithmetic reasoning tasks. Full FT: full fine-tuning.
271

Models	Methods	#Params	#Trainable	AddSub	SingleEq	MultiArith	SVAMP	GSM8k	Avg.
GPT-3.5 _{175B}	-	-	-	56.40	69.90	83.80	88.10	85.30	76.70
LLaMA-7B	Full FT	6.74B	6.74B	82.04	76.97	79.83	48.40	32.22	63.89
	QLoRA	6.74B	72M	79.66	80.84	78.01	44.93	30.2	62.73
	+DeFT	5.73B	72M	82.28	80.01	76.19	46.63	29.39	62.90
LLaMA-65B	Zero shot	65.29B	0M	2.03	0.98	1.26	1.90	2.20	1.67
	QLoRA	65.29B	357M	85.49	91.20	86.41	71.40	59.04	78.71
	+DeFT	55.49B	357M	90.46	92.39	86.98	75.67	58.70	80.84
LLaMA-2 13B	Zero shot	13.02B	0M	11.14	16.14	9.24	12.00	7.20	11.14
	Full FT	13.02B	13.02B	88.61	91.34	87.39	68.60	53.75	77.94
	QLoRA	13.02B	112M	83.04	89.17	84.87	63.00	48.29	73.67
Qwen-2.5 7B	+DeFT	11.06B	112M	84.3	89.57	83.19	66.20	45.11	73.67
	LoRA	13.02B	112M	86.58	91.34	84.87	69.00	52.77	76.91
	+DeFT	11.06B	112M	87.09	92.52	86.55	67.30	47.31	76.15
LLaMA-3 70B	QLoRA	70.55B	372M	93.67	94.29	92.44	85.30	74.91	88.12
	+DeFT	60.10B	372M	92.15	95.28	91.18	84.50	75.74	87.77
Qwen-3 32B	Full FT	7.62B	7.62B	91.65	93.11	92.02	88.40	78.54	88.74
	QLoRA	7.62B	74M	91.90	95.87	91.60	86.00	72.63	87.60
	+DeFT	6.51B	74M	93.16	95.08	90.34	83.40	70.13	86.42
	LoRA	7.62B	74M	93.42	95.08	92.86	84.70	73.46	87.90
	+DeFT	6.51B	74M	93.16	96.06	93.28	84.70	71.42	87.72
Qwen-3 32B	QLoRA	32.76B	241M	92.66	95.67	93.70	86.60	78.54	89.43
	+DeFT	28.00B	241M	92.15	95.28	94.96	85.10	79.45	89.39

294 the algorithm stops, it dynamically selects the desired singular vectors of each layer according to the
295 search results, and caches them on the disks.

297 **Selective Model Loading/Quantization** Existing practice replaces the original weight with its
298 decomposed one. For LLMs that have over tens of billions of model parameters (*e.g.*, LLaMA-65B),
299 it is impossible to load the whole model into a single device with limited memory even under 4-bit
300 quantization (Dettmers et al., 2023). To bridge this gap, we optimize model loading, preventing the
301 original pre-trained weight from being loaded or quantized in advance, but straightforwardly loading
302 and quantizing its corresponding decomposed singular values. With its help, we can successfully
303 fine-tune a 65B model on a consumer GPU with 24GB of memory.

305 3 EXPERIMENTS

306 3.1 EXPERIMENT SETUPS

309 **Foundation Models and Baselines** Foundation models used in our experiments include the
310 LLaMA family (Touvron et al., 2023), Mistral-7B v0.3 (Jiang et al., 2023) and the Qwen family
311 (Team, 2024; 2025). For performance evaluation, we adopted the widely used LoRA (Hu et al.,
312 2022) and QLoRA (Dettmers et al., 2023) as our baselines to demonstrate DeFT’s effectiveness in
313 combining with such PEFT and quantization methods.

314 **Downstream Tasks** LLMs are commonly employed for generation and reasoning tasks, which
315 can faithfully well reflect the performance of fine-tuning. Therefore, our experiments mainly
316 focus on arithmetic reasoning and summarizing tasks. For the arithmetic reasoning task, we
317 adopted five widely used datasets covering various difficulties: AddSub (Hosseini et al., 2014),
318 SingleEq (Koncel-Kedziorski et al., 2015), MultiArith (Roy & Roth, 2016), SVAMP (Patel et al.,
319 2021), and GSM8k (Cobbe et al., 2021). Sequences were extracted from each dataset and then com-
320 posed into the training dataset that has 10000 sequences. The evaluation was performed after the
321 fine-tuning, covering the test set of each dataset, and we used the pass@1 accuracy as the metric.
322 Besides, we followed Hu et al. (2023) and used the scores obtained by GPT-3.5 text-Davinci-003
323 with Zero-shot Chain-of-Thought (Kojima et al., 2022) as the reference. For the summarizing task,
we adopted XSum (Narayan et al., 2018), which is collected from BBC, covering a wide variety of

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Table 2: Performance comparison on text summarizing tasks

Models	Methods	#Params	#Trainable	Rouge1	Rouge2	RougeL
LLaMA-13B	QLoRA	13.02B	112M	42.62	17.99	34.67
	+DeFT	11.06B	112M	42.99	18.27	34.99
Qwen-3 32B	Zero shot	32.76B	0M	18.60	3.41	13.09
	QLoRA	32.76B	241M	41.86	17.70	33.97
	+DeFT	28.00B	241M	41.39	17.17	33.78

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Figure 5: (a) LLAMA-7B’s fine-tuning performance on arithmetic reasoning tasks with varying LoRA ranks. (b) DeFT’s relative performance against QLoRA under different compression rates.

domains. We use the first 10000 pieces as the training set. The metrics we employed are Rouge scores (Lin, 2004), the most widely used metric to evaluate the similarity between model-generated and manual summaries. For the implementation details, please refer to Appendix C.

3.1.1 OVERALL PERFORMANCE

We report the fine-tuning performance on the downstream tasks in Table 1 and Table 2. Combining DeFT with LoRA/QLoRA achieves comparable or even better performance than LoRA/QLoRA across various pre-trained backbones, which demonstrates the effectiveness of DeFT. Additionally, the performance degradation of LoRA+DeFT compared to full fine-tuning is in an acceptable range. For large models such as LLAMA-65B, Qwen-3 32B and LLAMA-3 70B, we do not report their full fine-tuning results, since we have limited training resources.

Why DeFT Can Outperform LoRA/QLoRA Sometimes? Large, over-parameterized models may have weights that are noisy or contain components that are not essential for a specific downstream task. The SVD process, guided by our activation-aware search, acts as a form of low-rank regularization. It effectively prunes away the singular components that contribute the least to the feature transformations on the downstream task data (as captured by our calibration data). This removes “distracting” or noisy directions in the weight space, leading to a more stable and task-relevant feature representation. Furthermore, DeFT is not a blind compression but a task-adaptive decomposition. By using calibration data from the downstream task and an outlier-aware importance metric, DeFT prioritizes preserving the weight components that are most critical for the target domain. In contrast, the full QLoRA model retains all parameters, including those that might be optimized for general pre-training knowledge but are less relevant or even counter-productive for the fine-tuning task. Therefore, DeFT isn’t just making the model smaller, but making it more “specialized” by concentrating its representational power on the most salient features for the task at hand.

Varying LoRA Ranks We present the performance comparison under different LoRA ranks between QLoRA and DeFT on the reasoning tasks. Specifically, we used LLAMA-7B as the backbone and set the ratio of model parameters of DeFT to 85%. Results are reported in Figure 5(a). Comparing with QLoRA, DeFT consistently achieves competitive or better performance under different LoRA ranks, while benefiting from fewer model parameters.

Varying Compression Rates Figure 5(b) presents DeFT’s relative performance against QLoRA under different compression rates, where the “100%” represents QLoRA’s performance. We can

378
379
380
381
382
383
384
385
386
387

Table 3: Ablation study.

Methods	PPL (Wiki)	PPL (Train)	Scores
DeFT	16.2646	2.5731	62.90
w/ Vanilla Init	16.2646	2.5731	62.52
w/o Importance	15.7393	2.5711 ¹	61.86
w/o Search	14.0243	2.6526	57.60

¹Unaligned comparison due to change of the coefficient

observe a slight performance improvement at a low compression rate. When the compression rate increases, the performance drops, especially for smaller foundation models. However, this phenomenon gets alleviated when scaling up the model size. For LLaMA-65B, DeFT achieves similar fine-tuning performance against QLoRA when preserving 70% foundation model parameters, and its performance drops 2.2% compared to QLoRA when only preserving 55% parameters (For the details, please refer to Appendix D.4).

3.2 IN-DEPTH ANALYSIS OF DEFT

3.2.1 ABLATION STUDY

To validate the effectiveness of each component in DeFT, we carried out an ablation study on the reasoning tasks using LLaMA-7B as the backbone. We preserve 85% model parameters of DeFT and the results are shown in Table 3, where we respectively disabled the LoRA initialization using the tails of the truncated singular values, the outlier weighted layer importance, and the search for layerwise truncation position.

As shown in Table 3, we compared the fine-tuning performance and also the perplexity of the compressed models on the WikiText dataset. We can notice a clear discrepancy between the perplexity and fine-tuning performance, where lower perplexity does not indicate better performance. To explore the correlation between fine-tuning performance and the reconstruction error, we evaluated the reconstruction error by computing the compressed model’s perplexity on the training set. The result is consistent with our presumption, *i.e.*, lower reconstruction error leads to better fine-tuning performance. The ablation study clearly demonstrates the effectiveness of the proposed layerwise importance aware fine-grained compression for fine-tuning.

3.2.2 MODULE SENSITIVITY

DeFT performs a search to determine truncation positions according to equation 6, which considers innate differences among layers. To better illustrate this concept, we explore DeFT which retains 60% of the foundation model parameters of LLaMA-65B (the hidden size is 8192) to showcase the layer difference and how it affects truncation positions. The results are shown in Figure 6. As presented in Figure 6(a) and 6(b), we can observe variations in the component-wise importance and layerwise performance scores, which straightforwardly lead to diverse truncation patterns. For instance, the outlier weighted layer importance of “v_proj” is small for most layers, but “v_proj” in most of the deeper layers has not been decomposed. This is because small changes of the truncation position could lead to dramatic performance score drops for the deeper layers (see Figure 6(b)). DeFT thus selects other components that allow more aggressive truncation positions for decom-

Figure 6: (a) Normalized outlier weighted layer importance (into [0, 1]). (b) Variation of performance score for each “v_proj” layer, where the score is normalized into [0, 1]. (c) Truncation positions of model decomposition. (d) Corresponding performance score to the truncation positions.

432 position. The final truncation positions and their corresponding performance scores are shown in
 433 Figure 6(c) and Figure 6(d), respectively.
 434

435 3.2.3 EFFICIENCY IMPROVEMENT 436

437 One efficiency bottleneck for fine-tuning LLMs with billions of model parameters is data movement.
 438 Reducing memory footprint can significantly improve the utilization of high-bandwidth memory
 439 I/O, curtailing fine-tuning time expense. DeFT improves both the memory efficiency and end-to-end
 440 computation efficiency (including the model decomposition cost and the search cost) for fine-tuning,
 441 as shown in Table 4. Compared with QLoRA, DeFT with a compression rate of 55% reduces 22.4%–
 442 36.1% memory footprint, improves the throughput by 31.6%–50.6%, and reduces 24.0%–33.6%
 443 overall training time under different batch sizes. Furthermore, with a batch size of two, DeFT allows
 444 extremely large LLM fine-tuning on resource-constrained devices. For instance, LLaMA-65B, with
 445 55% of its parameters preserved, can be fine-tuned on an NVIDIA RTX4090 with 24GB memory,
 446 completing the fine-tuning process in about 15.9 hours.
 447

448 Table 4: End-to-end fine-tuning efficiency comparison on LLaMA-65B using an NVIDIA A800.

Method	Batch size	Memory ¹	Throughput ²	Cost ³
Full FT	1	530.0 ⁴	-	-
QLoRA	1	35.95	136.2	950.9
	2	36.34	214.5	637.9
	4	38.76	300.4	478.2
	8	43.62	366.9	410.3
	16	52.72	411.8	383.0
+DeFT	1	22.99 _{↓36.1%}	179.3 _{↑31.6%}	722.5 _{↓24.0%}
	2	23.37 _{↓35.7%}	322.3 _{↑50.3%}	424.5 _{↓33.5%}
	4	25.78 _{↓33.5%}	452.3 _{↑50.6%}	317.6 _{↓33.6%}
	8	33.87 _{↓22.4%}	546.7 _{↑49.0%}	275.3 _{↓32.9%}
	16	40.34 _{↓23.5%}	617.3 _{↑49.9%}	255.5 _{↓33.3%}

461 ¹Gigabytes (GB), ²Tokens/sec, ³Minutes, ⁴Estimated
 462
 463

464 3.2.4 IMPACT OF OUTLIER WEIGHTED LAYER IMPORTANCE 465

466 Here, we use LLaMA-7B with DeFT preserving 85% model parameters to explore the impact of η
 467 on the fine-tuning performance. Results on the arithmetic
 468 reasoning tasks are reported in Table 5. There is a clear
 469 performance gap when enabling the scaling coefficient,
 470 and the performance gradually increases with η getting
 471 larger. This demonstrates the assumption in our motiva-
 472 tion, *i.e.*, evenly compressing all the layers under a preset
 473 compression rate overlooks the varying compression sen-
 474 sitivity of different layers.
 475

476 Table 5: Fine-tuning performance under different η .

η	0	0.1	0.5	1
	61.86	58.84	60.13	62.9

477 3.2.5 INTEGRATION WITH ANOTHER QUANTIZATION METHOD LOFTQ

478 DeFT is a plug-and-play method which can be integrated with PEFT methods (e.g., LoRA) and
 479 quantization methods (e.g., QLoRA) to further improve fine-tuning efficiency while matching their
 480 performance. Our main experiments in Table 1 select LoRA and QLoRA as two representative
 481 methods to combine with DeFT to demonstrate DeFT’s effectiveness. However, DeFT can combine
 482 with other variants of LoRA and QLoRA. Here, we present the results of combining DeFT with
 483 another quantization-based method LoftQ (Li et al., 2024). Specifically, as the open-source codes
 484 of LoftQ currently do not support Qwen models, we use LLaMA-2 13B as the backbone to conduct
 485 the experiments on the arithmetic reasoning tasks (other settings are the same as in Table 1), and
 the results are shown in Table 6. The results reveal that beyond LoRA and QLoRA, DeFT is also
 effective when combining with LoftQ, indicating its good compatibility.

486 Table 6: **Combining DeFT with LoftQ on the arithmetic reasoning tasks using LLaMA-2 13B.**

Methods	AddSub	SingleEq	MultiArith	SVAMP	GSM8k	Avg.
LoftQ	86.58	89.96	85.71	67.80	50.19	76.05
LoftQ + DeFT	87.09	92.32	83.61	67.50	47.23	75.55

491
492

4 RELATED WORKS

493494
495 **Parameter-efficient fine-tuning** PEFT methods can be roughly categorized into the following
496 few types: adapter-based methods (Houlsby et al., 2019; Hu et al., 2023; He et al., 2022), masking-
497 based methods (Guo et al., 2021; Zaken et al., 2022), LoRA-based methods, and Prompt Tun-
498 ing (Li & Liang, 2021; Liu et al., 2022). Among these PEFT methods, LoRA (Hu et al., 2022)
499 proposes to freeze the pre-trained model and only optimize the newly added low-rank matrices.
500 QLoRA (Dettmers et al., 2023) enhances LoRA by quantizing the pre-trained model into 4-bit pre-
501 cision and utilizing paged optimizers to manage memory spikes. Additionally, quantization-aware
502 fine-tuning is receiving more and more attention and proves to be a practical way to incorporate
503 quantization into model fine-tuning (Li et al., 2024; Xu et al., 2024; Guo et al., 2024).
504505 **Model Decomposition for LLM Inference** Considerable efforts have been devoted to studying
506 activation-aware model decomposition. It mitigates reconstruction errors brought by vanilla trun-
507 cated SVD’s failure of capturing data distribution (Yuan et al., 2023; Yu & Wu, 2023; Kaushal et al.,
508 2023; Wang et al., 2024). As for truncation position selection, some propose to adopt uniform set-
509 tings in order to get lower perplexity (Wang et al., 2024), while others try to find the most appropriate
510 configurations for each layer (Yuan et al., 2023; Ji et al., 2024). Despite these considerable efforts
511 of model decomposition for LLM inference, its potential for LLM fine-tuning remains unexplored.
512 In this paper, we propose the first work based on the *decomposition then fine-tuning* paradigm.
513514

5 CONCLUSION

515 In this paper, we introduce a novel method DeFT based on the *decomposition then fine-tuning*
516 paradigm for LLMs. DeFT is empowered with fine-grained foundation model decomposition by
517 an efficient layer importance aware search algorithm. It effectively reduces the number of founda-
518 tion model parameters during fine-tuning while maintaining the model quality. Besides, DeFT is
519 feasible to incorporate with PEFT and quantization. Experimental results show that DeFT achieves
520 comparable performance or even outperforms the baselines on the arithmetic reasoning and sum-
521 marizing tasks, while improving both memory and computation efficiency. Impressively, DeFT enables
522 fine-tuning a 65B model on a consumer GPU without using offloading strategies, demonstrating its
523 significant practical value in memory-constrained scenarios.
524525

REFERENCES

526 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
527 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
528 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
529 Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
530 Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
531 Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners.
532 <https://arxiv.org/abs/2005.14165v4>, May 2020.

533 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
534 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
535 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

536 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient Finetun-
537 ing of Quantized LLMs. *Advances in Neural Information Processing Systems*, 36:10088–10115,
538 December 2023.

540 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
 541 Bidirectional Transformers for Language Understanding. In *Proceedings of the 2019 Conference*
 542 *of the North*, pp. 4171–4186, Minneapolis, Minnesota, 2019. Association for Computational
 543 Linguistics. doi: 10.18653/v1/N19-1423.

544 Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. *Psychometrika*,
 545 1(3):211–218, September 1936. ISSN 1860-0980. doi: 10.1007/BF02288367.

547 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
 548 key-value memories. In *Proceedings of the 2021 Conference on Empirical Methods in Natural*
 549 *Language Processing*, pp. 5484–5495, 2021.

550 Demi Guo, Alexander Rush, and Yoon Kim. Parameter-Efficient Transfer Learning with Diff Pruning.
 551 In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th*
 552 *Annual Meeting of the Association for Computational Linguistics and the 11th International Joint*
 553 *Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 4884–4896, Online,
 554 August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.378.

555 Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix
 556 decomposition for efficient language model finetuning. *ICLR 2024*, 2024.

558 Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
 559 a Unified View of Parameter-Efficient Transfer Learning. In *The Tenth International Conference*
 560 *on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022*, 2022. doi: 10.48550/
 561 arXiv.2110.04366.

562 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
 563 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
 564 In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks*
 565 *Track (Round 2)*.

566 Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
 567 solve arithmetic word problems with verb categorization. In *Proceedings of the 2014 Conference*
 568 *on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 523–533, 2014.

569 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
 570 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-Efficient Transfer Learning for
 571 NLP. In *Proceedings of the 36th International Conference on Machine Learning*, pp. 2790–2799.
 572 PMLR, May 2019.

573 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 574 and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In *ICLR 2022*,
 575 April 2022.

576 Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
 577 Poria, and Roy Lee. LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning
 578 of Large Language Models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings*
 579 *of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 5254–5276,
 580 Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
 581 emnlp-main.319.

582 Yixin Ji, Yang Xiang, Juntao Li, Wei Chen, Zhongyi Liu, Kehai Chen, and Min Zhang. Feature-
 583 based Low-Rank Compression of Large Language Models via Bayesian Optimization, May 2024.

584 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 585 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 586 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
 587 Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

588 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 589 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws for Neural Language
 590 Models, January 2020.

594 Ayush Kaushal, Tejas Vaidhya, and Irina Rish. LORD: Low Rank Decomposition Of Monolingual
 595 Code LLMs For One-Shot Compression, September 2023.
 596

597 Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 598 Language Models are Zero-Shot Reasoners. *Advances in Neural Information Processing Systems*,
 599 35:22199–22213, December 2022.

600 Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas
 601 Ang. Parsing algebraic word problems into equations. *Transactions of the Association for Com-
 602 putational Linguistics*, 3:585–597, 2015.

603 Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing Continuous Prompts for Generation.
 604 In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th
 605 Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
 606 Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 4582–4597, Online,
 607 August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353.

608 Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
 609 Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. In *ICLR*, 2024.

610 Baohtao Liao, Shaomu Tan, and Christof Monz. Make pre-trained model reversible: From parameter
 611 to memory efficient fine-tuning. In *Thirty-seventh Conference on Neural Information Processing
 612 Systems*, 2023.

613 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization
 614 branches out*, pp. 74–81, 2004.

615 Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-Tuning:
 616 Prompt Tuning Can Be Comparable to Fine-tuning Across Scales and Tasks. In Smaranda Mure-
 617 san, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meeting of the
 618 Association for Computational Linguistics (Volume 2: Short Papers)*, pp. 61–68, Dublin, Ireland,
 619 May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.8.

620 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *7th International
 621 Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019*.
 622 OpenReview.net, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.

623 Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don't give me the details, just the summary!
 624 topic-aware convolutional neural networks for extreme summarization. *ArXiv*, abs/1808.08745,
 625 2018.

626 Arkil Patel, Satwik Bhattacharya, and Navin Goyal. Are nlp models really able to solve simple math
 627 word problems? *arXiv preprint arXiv:2103.07191*, 2021.

628 Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
 629 and Luke Zettlemoyer. Deep Contextualized Word Representations. In Marilyn Walker, Heng Ji,
 630 and Amanda Stent (eds.), *Proceedings of the 2018 Conference of the North American Chapter of
 631 the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
 632 Papers)*, pp. 2227–2237, New Orleans, Louisiana, June 2018. Association for Computational
 633 Linguistics. doi: 10.18653/v1/N18-1202.

634 Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
 635 Fusion: Non-Destructive Task Composition for Transfer Learning. In Paola Merlo, Jorg Tie-
 636 demann, and Reut Tsarfaty (eds.), *Proceedings of the 16th Conference of the European Chapter of
 637 the Association for Computational Linguistics: Main Volume*, pp. 487–503, Online, April 2021.
 Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.39.

638 Subhro Roy and Dan Roth. Solving general arithmetic word problems. *arXiv preprint
 639 arXiv:1608.01413*, 2016.

640 Rajarshi Saha, Varun Srivastava, and Mert Pilanci. Matrix Compression via Randomized Low Rank
 641 and Low Precision Factorization. *Advances in Neural Information Processing Systems*, 36:18828–
 642 18872, December 2023.

648 Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The Truth is in There: Improving Reasoning
 649 in Language Models with Layer-Selective Rank Reduction, December 2023.
 650

651 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.
 652
 653

654 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.
 655

656 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 657 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
 658 mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation
 659 Language Models, February 2023.
 660

661 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 662 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Proceedings of the 31st Inter-
 663 national Conference on Neural Information Processing Systems*, NIPS'17, pp. 6000–6010, Red
 664 Hook, NY, USA, December 2017. Curran Associates Inc. ISBN 978-1-5108-6096-4.
 665

666 Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. SVD-LLM: Truncation-aware Singular Value
 667 Decomposition for Large Language Model Compression, April 2024.
 668

669 Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen, Xi-
 670 aopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
 671 models. In *ICLR*, 2024.

672 Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal,
 673 Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, and Shiwei Liu. Outlier
 674 Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity,
 675 May 2024.
 676

677 Hao Yu and Jianxin Wu. Compressing Transformers: Features Are Low-Rank, but Weights Are
 678 Not! *Proceedings of the AAAI Conference on Artificial Intelligence*, 37(9):11007–11015, June
 679 2023. ISSN 2374-3468. doi: 10.1609/aaai.v37i9.26304.
 680

681 Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. ASVD:
 682 Activation-aware Singular Value Decomposition for Compressing Large Language Models, De-
 683 cember 2023.
 684

685 Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. BitFit: Simple Parameter-efficient Fine-
 686 tuning for Transformer-based Masked Language-models. In *Proceedings of the 60th Annual
 687 Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, ACL 2022,
 688 Dublin, Ireland, May 22-27, 2022, pp. 1–9. Association for Computational Linguistics, 2022.
 689 doi: 10.18653/V1/2022.ACL-SHORT.1. URL <https://doi.org/10.18653/v1/2022.acl-short.1>.
 690

691 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
 692 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
 693 Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
 694 OPT: Open Pre-trained Transformer Language Models, June 2022.
 695

696

697 A DISCLOSE OF LLM USAGE

698 We only use LLMs to polish our writing, *e.g.*, grammar checking. We do not use LLMs to directly
 699 generate the content of this paper.
 700

702 **B LAYER IMPORTANCE AWARE TRUNCATION POSITION SEARCH**
703 **ALGORITHM**
704

705 Given Layer set L , memory budget \mathcal{B} , granularity G , layer importance weights α_l , performance
706 score function f , memory function g , and scaling coefficient η , Algorithm 1 starts with initializing
707 the truncation positions θ_l to the smallest value such that the performance score $f(\theta_l)$ is at least
708 0.999 (cf. Line 1). Then the loop continues until the total memory consumption of all layers is
709 within the budget \mathcal{B} (cf. Line 2). For each layer, it computes the loss if the truncation positions
710 are reduced by granularity G . The loss combines the change in performance score and memory,
711 weighted by the layer importance (cf. Line 3-11). Subsequently, it selects the layer l^* whose truncation
712 reduction causes the least performance loss per memory saved (cf. Line 12), and reduces the
713 truncation position for layer l^* by G (cf. Line 13). Finally, it returns the final truncation positions θ
714 (cf. Line 16).

715

716 **Algorithm 1** Layer Importance Aware Truncation Position Search

717 **Require:** Layers L , memory budget \mathcal{B} , granularity G , layer importance weights α_l , performance
718 score function f , memory function g , scaling coefficient η
719 **Ensure:** Truncation positions θ_l for all $l \in L$
720 1: Initialize $\theta_l \leftarrow \operatorname{argmax}_r \{f(r) \geq 0.999\}$ for all $l \in L$
721 2: **while** $\sum_{l \in L} g(\theta_l) > \mathcal{B}$ **do**
722 3: **for** each layer $l \in L$ **do**
723 4: **if** $\theta_l - G \geq 0$ **then**
724 5: $\Delta f_l \leftarrow f(\theta_l) - f(\theta_l - G)$
725 6: $\Delta g_l \leftarrow g(\theta_l) - g(\theta_l - G)$
726 7: $\text{loss}_l \leftarrow (1 + \eta \alpha_l) \cdot \frac{\Delta f_l}{\Delta g_l}$
727 8: **else**
728 9: $\text{loss}_l \leftarrow \infty$
729 10: **end if**
730 11: **end for**
731 12: $l^* \leftarrow \operatorname{argmin}_{l \in L} \text{loss}_l$
732 13: $\theta_{l^*} \leftarrow \theta_{l^*} - G$
733 14: **end while**
734 15:
735 16: **return** θ

736

737 **C IMPLEMENTATION DETAILS**

738 To ensure fair and reproducible experiments, all the baseline implementation and model fine-tuning
739 are based on the publicly available codebases *Huggingface Transformers*⁵ and *Huggingface PEFT*⁶.
740 The evaluation procedure is adopted from the publicly available evaluation suite (Hu et al., 2023).

741 **Hyperparameters** For LoRA, QLoRA and DeFT, we selected the learning rate from {1e-4, 3e-4,
742 5e-4}, and set the batch size to 16, the LoRA rank r to 32 with a coefficient of 16. We used the
743 AdamW (Loshchilov & Hutter, 2019) optimizer with default configurations, where beta1 was set to
744 0.9 and beta2 to 0.999. For full fine-tuning, the learning rate was selected from {5e-6, 1e-5, 2e-5,
745 5e-5}, and other settings remained the same. For DeFT, we adopted $\eta = 1$ from $\eta \in \{0, 0.1, 0.5,$
746 $1.0\}$, and T in layer importance modeling was set to 5 following Yin et al. (2024). Models were
747 evaluated on the test set after 3 epochs of fine-tuning. To make the best use of NVIDIA hardware⁷,
748 we set the granularity G to 32. Additionally, the calibration data for DeFT contains 256 samples.

749
750 **Model Loading/Quantization Optimization in DeFT** For model loading in existing model com-
751 pression techniques, the Huggingface Transformers library first loads all model weights into the

752 ⁵<https://github.com/huggingface/transformers>

753 ⁶<https://github.com/huggingface/peft>

754 ⁷<https://docs.nvidia.com/cuda/cublas/index.html#tensor-core-usage>

CPU memory and then calls the quantizer to do the quantization. Then it substitutes pre-trained weights with compressed weights. This is impractical for GPUs that have limited memory, *e.g.*, loading LLaMA-65B on an NVIDIA RTX4090 (24GB).

To mitigate the gap, we further optimize this part in DeFT. With modifying the Huggingface Transformers library, DeFT uses its search results to prevent corresponding weights from being processed in advance. It can directly load and quantize the decomposed weights, *i.e.*, singular vectors, and thus successfully loads LLaMA-65B on an NVIDIA RTX4090.

Prompts and Training Examples Supervised fine-tuning engaged in this paper adopted two kinds of prompts. For the arithmetic reasoning tasks, we adopted the prompt format from Alpaca:

Below is an instruction that describes a task. Write a response that appropriately completes the request.
 #### Instruction: {instruction}
 #### Response: {response}

LLMs fine-tuned with arithmetic reasoning datasets are trained to learn how to use chain-of-thoughts to perform reasoning. Here is an example from the training data:

Below is an instruction that describes a task. Write a response that appropriately completes the request.
 #### Instruction:
 Wyatt's mother gave him \$74 to go to the store. Wyatt bought 5 loaves of bread and 4 cartons of orange juice. Each loaf of bread cost \$5 and each carton of orange juice cost \$2. How much money does Wyatt have left?
 #### Response:
 Step 1: Find the total cost of the bread by multiplying the cost per loaf by the number of loaves: 5 loaves x \$5/loaf = \$25.
 Step 2: Find the total cost of the orange juice by multiplying the cost per carton by the number of cartons: 4 cartons x \$2/carton = \$8.
 Step 3: Find the total cost of the items by adding the cost of the bread and the cost of the orange juice: \$25 + \$8 = \$33.
 Step 4: Subtract the total cost of the items from the amount of money Wyatt started with: \$74 - \$33 = \$41.
 Therefore, Wyatt has \$41 left.

For the text summarizing tasks, we adopted a straightforward prompt to fine-tune LLMs to complete this downstream task, which is listed as follows:

original text: {text}
 summary: {summary}

Here is an example from the training data:

original text: Veronica Vanessa Chango-Alverez, 31, was killed and another man injured when an Audi A3 struck them in Streatham High Road at 05:30 GMT on Saturday. Ten minutes before the crash the car was in London Road, Croydon, when a Volkswagen Passat collided with a tree. Police want to trace Nathan Davis, 27, who they say has links to the Audi. The car was abandoned at the scene. Ms Chango-Alverez died from multiple injuries, a post-mortem examination found. No arrests have been made as yet, police said. Ms Chango-Alverez was staying at her mother's home in Streatham High Road. She was born in Ecuador and had lived in London for 13 years, BBC London reporter Gareth Furby said. At the

810 Table 7: More experimental results on the arithmetic reasoning tasks.
811

Models	Methods	#Params	#Trainable	AddSub	SingleEq	MultiArith	SVAMP	GSM8k	Avg.
OPT-6.7B	Full FT	6.66B	6.66B	58.73	55.51	55.88	28.00	11.68	41.96
	QLoRA	6.66B	75M	58.48	55.32	50.84	26.50	13.12	40.85
	+DeFT	6.17B	75M	57.98	53.74	51.68	28.30	12.21	40.99
LLaMA-13B	Full FT	13.02B	13.02B	85.06	85.43	79.41	62.90	43.22	71.20
	QLoRA	13.02B	112M	82.03	84.05	78.43	57.97	41.57	68.81
	+DeFT	11.06B	112M	87.43	87.99	79.41	60.30	38.41	70.71
LLaMA-33B	QLoRA	32.53B	218M	86.08	90.49	85.01	65.30	53.05	75.98
	+DeFT	27.65B	218M	89.20	91.27	83.75	67.10	51.10	76.49
Mistral-7B v0.3	Zero shot	7.25B	0M	79.24	74.80	64.29	66.90	47.23	66.49
	Full FT	7.25B	7.25B	89.11	92.72	87.82	69.90	54.06	78.72
	QLoRA	7.25B	75M	88.61	94.29	88.66	70.30	54.44	79.26
	+DeFT	6.20B	75M	88.86	93.11	86.13	67.70	53.90	77.94
LoRA	7.25B	75M	89.62	92.91	87.82	69.90	52.99	78.65	
	+DeFT	6.20B	75M	86.33	93.70	87.39	68.30	55.57	78.26

825

826

827 time of the crash, she was on her way to work in a hotel. The remains of the bus
 828 stop, which was extensively damaged in the crash, have been removed. Flowers
 829 have been left at the site in tribute to the victim. A statement from her brother
 830 Kevin Raul Chango-Alverez said: "My family has had its heart torn out, at this
 831 Christmas time, we will never be the same again. "On Friday night we were to-
 832 gether as a family with Veronica meeting her newly born nephew and preparing
 833 for Christmas. "I last saw her alive as she left to go to work on Saturday morn-
 834 ing, but moments later I was holding her hand as she passed away in the street."
 835 Describing the crash as "horrific" Det Insp Gordon Wallace, said: "The family
 836 are devastated. The memory of this senseless death will be with them each time
 837 they leave their home. "The driver fled the scene abandoning the grey Audi, which
 838 was extensively damaged. "We are looking to speak to Mr Nathan Davis in rela-
 839 tion to this collision." The 51-year-old man injured at the bus stop remains in a
 840 critical condition in hospital while the condition of the 29-year-old driver of the
 841 Volkswagen is now stable.

841

842 summary: A man with links to a car that was involved in a fatal bus stop crash in
 843 south London is being sought by police.

844

845 Models are fine-tuned based on the ground-truth, i.e., “{response}” and “{summary}”.

846

D ADDITIONAL EXPERIMENTAL RESULTS

847

D.1 ADDITIONAL RESULTS OF FINE-TUNING PERFORMANCE

848

849 In this section, we present additional experimental results of different pre-trained backbones on
 850 the arithmetic reasoning tasks, as detailed in Table 7. It is shown that DeFT consistently delivers
 851 competitive performance alongside QLoRA across various pretrained backbones, e.g., OPT, LLaMA
 852 and Mistral. This consistency further underscores the effectiveness of DeFT.

853

854 Beyond the arithmetic reasoning tasks, here we present additional results on another more challeng-
 855 ing task MATH (Hendrycks et al.). We conduct the experiments using two different models, i.e.,
 856 LLaMA-2 13B and Qwen-2.5 7B. We fine-tune the model on the training data for three epochs and
 857 evaluate on the MATH-500 test set. The accuracy@1 results are shown in Table 8. These results
 858 further demonstrate DeFT’s effectiveness even on such challenging tasks.

859

860 Table 8: Fine-tuning performance on the MATH task.

Method	LLaMA-2 13B	Qwen-2.5 7B
QLoRA	4.80	36.3
QLoRA + DeFT	6.80	36.0

861
862
863

864 D.2 ADDITIONAL RESULTS OF FINE-TUNING EFFICIENCY
865

866 Here, we present the end-to-end fine-tuning efficiency (including the model decomposition and
867 search cost) comparison on LLaMA-33B using a single NVIDIA RTX4090 GPU, where the ratio of the preserved model parameters of DeFT is set to 75%. The results are presented in Table 9.
868 Compared with QLoRA, DeFT achieves up to 19.6%, 49.0% and 32.4% improvements in terms of
869 memory efficiency, throughput and end-to-end training time, respectively, consistently demonstrat-
870 ing the efficiency benefits of DeFT.
871

872 Table 9: End-to-end Fine-tuning efficiency comparison on LLaMA-33B using a single NVIDIA
873 RTX4090 GPU.

Method	Batch Size	Memory ¹	Throughput ²	Cost ³
QLoRA	1	19.45	146.5	884.2
	2	20.56	245.1	558.1
	4	22.54	350.9	409.5
+DeFT	1	16.59 _{↓14.7%}	218.3 _{↑49.0%}	597.3 _{↓32.4%}
	2	16.54 _{↓19.6%}	351.1 _{↑43.2%}	393.2 _{↓29.5%}
	4	19.26 _{↓14.6%}	488.8 _{↑39.3%}	311.6 _{↓31.4%}

872 ¹Gigabytes (GB), ²Tokens/sec, ³Minutes
873

884 D.3 IMPACT OF THE CALIBRATION DATA SIZE
885

886 Activation-aware singular value decomposition methods usually require calibration data to capture
887 activation information and reduce decomposition errors. Existing practice tends to construct cal-
888 ibration data out of the pre-training dataset since it seeks to retain generation quality on general
889 tasks. However, for DeFT, we aim to repurpose model decomposition for fine-tuning. Therefore,
890 we construct calibration data from the downstream tasks. To explore how this affects the fine-tuning
891 performance, we use DeFT preserving 85% model parameters on LLaMA-7B to investigate the fine-
892 tuning performance under different sizes of calibration data. The results are reported in Table 10.
893 We notice that with a calibration data size of 256, DeFT achieves the highest score. Therefore, we
894 adopted this in our experiments.

895 Table 10: Fine-tuning performance under different calibration data sizes.

#Calibration	32	64	128	256
Avg. Score	62.64	61.10	61.88	62.90

900 Additionally, we investigate the impact of different calibration data subsets on the final performance.
901 Specifically, we use Qwen-2.5 7B as the backbone and randomly select the calibration data with
902 three different random seeds. We present the average performance on the arithmetic reasoning tasks,
903 as shown in Table 11. The results reveal that the performance of DeFT is sensitive to the calibration
904 data subset, which is reasonable since the quality of the selected calibration data has an important
905 impact on the model decomposition. For our experiments in this paper, we have fixed the random
906 seed for calibration data selection to eliminate the impact of this factor.

907 Table 11: Fine-tuning performance under different calibration data subsets.

Random seed	42	43	44
Avg. Score	86.42	85.65	87.11

912 D.4 RESULTS OF 65B MODEL VARYING COMPRESSION RATES
913

914 Figure 7 presents the performance of DeFT across different preserved model parameters on LLaMA-
915 65B. DeFT outperforms QLoRA when the compression rate is smaller, *i.e.*, more preserved model
916 parameters (85% and 75%). When the model is aggressively compressed, *e.g.*, only preserving 55%
917 model parameters, there is an inevitable performance drop, but the drop range is acceptable, *i.e.*,
918 2.2%. These results demonstrate the strong performance-efficiency trade-off of DeFT.

Figure 7: Performance of DeFT across different preserved model parameters on LLaMA-65B.

D.5 COMPARISON WITH ADAPTER-TUNING METHODS

Here, we compare DeFT with existing widely-used adapter-tuning methods (Houlsby et al., 2019; Pfeiffer et al., 2021). In more detail, we present the performance comparison on the reasoning tasks and text summarizing tasks using LLaMA-7B and LLaMA-13B as the backbones. For the adapter-tuning baselines, we kept the batch size to 16 and conducted a grid search for the learning rate and learning rate scheduler settings from $\{1e-6, 2e-6, 5e-6, 1e-5, 2e-5\}$ and $\{\text{constant, cosine}\}$. Other fine-tuning and evaluation procedures are kept the same for a fair comparison. The results are reported in Table 12. We can see that DeFT significantly outperforms the adapter-tuning methods, especially on the summarizing tasks.

Table 12: Performance comparison with adapter-tuning methods, where scores for reasoning tasks are the average pass@1 accuracy and scores for summarizing tasks are RougeL.

Task	Model	Full FT	Series [*]	Parallel [*]	QLoRA	DeFT
Reasoning	7B	63.98	60.64	62.53	62.73	62.90
	13B	71.20	70.50	65.60	68.81	70.71
Summarizing	7B	34.28	25.53	25.98	33.53	34.03
	13B	35.29	26.37	26.88	34.67	34.99

^{*} Adapter-based tuning.

D.6 PERFORMANCE STABILITY

With model parameters reduced, the decomposed models inevitably suffer from increasing reconstruction error, making their fine-tuning performance less stable, especially for smaller models. We conducted repeated experiments on the reasoning tasks under three different random seeds and computed the standard deviations of the average scores, which are reported in Table 13. For LLaMA-7B/33B, the standard deviations of the average scores increase with the reduction of the model parameters. However, such phenomena are mitigated when it comes to LLaMA-65B. This is because, for smaller foundation models, the reconstruction error could be relatively too large to be compensated, whereas for larger models, the same level of error becomes relatively small due to greater parameter redundancy.

Table 13: Standard deviations of scores on the reasoning tasks

DeFT	LLaMA-7B	LLaMA-33B	LLaMA-65B
85%	0.52	0.93	0.32
80%	0.68	1.74	0.41
75%	1.09	2.27	0.49
70%	2.27	2.31	0.51

972 Table 14: Performance of full fine-tuning DeFT on the reasoning tasks with Qwen-2.5 7B.
973

DeFT	AddSub	SingleEq	MultiArith	SVAMP	GSM8k
+ LoRA	93.16	96.06	93.28	84.70	71.42
+ Full FT	85.82	90.55	87.39	72.70	57.24

977
978 D.7 PERFORMANCE OF INCORPORATING DEFT WITH FULL FINE-TUNING
979980 In addition to combining DeFT with PEFT and quantization methods, one may consider whether
981 DeFT can be combined with full fine-tuning, *i.e.*, directly fine-tuning the decomposed model. To
982 answer this question, we explore the performance of full fine-tuning DeFT on the reasoning tasks
983 using Qwen-2.5 7B as the backbone, and the results are shown in Table 14. It can be observed that
984 DeFT + LoRA significantly outperforms DeFT + Full fine-tuning.985 There are two reasons for this phenomenon. The first one is the inconsistent optimization objective
986 between model decomposition and fine-tuning. For model decomposition, we aim to minimize the
987 compression loss $\|WX - W'X\|_F$, where W is the original pre-trained weight, W' is its low-
988 rank approximation, which is reconstructed based on the decomposed weights, and X is the input.
989 However, for LLM fine-tuning, the goal is to use the downstream task-specific data to maximize the
990 probability of the model to predict the right next token, typically by minimizing the cross-entropy
991 loss. Therefore, if directly fine-tuning the decomposed weights, the fine-tuned weight may no longer
992 be the low-rank approximation of the original weight. Instead, by applying LoRA fine-tuning to
993 the decomposed model, we can keep the decomposed weights frozen and only update the LoRA
994 modules. As such, the decomposed weights are still an approximation to the original weights. The
995 second reason is also mentioned in the work of SVD-LLM (Wang et al., 2024): the derivatives of
996 the decomposed weights are interdependent during the fine-tuning process, where optimization of
997 one matrix may interfere with the optimization of the other, leading to a performance drop. Due to
998 these two reasons, we cannot achieve satisfactory performance by full fine-tuning DeFT.
9991000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025