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Abstract

Recent large-scale generative models learned on

big data are capable of synthesizing incredible

images yet suffer from limited controllability.

This work offers a new generation paradigm

that allows flexible control of the output im-

age, such as spatial layout and palette, while

maintaining the synthesis quality and model

creativity. With compositionality as the core idea,

we first decompose an image into representative

factors, and then train a diffusion model with

all these factors as the conditions to recompose

the input. At the inference stage, the rich

intermediate representations work as composable

elements, leading to a huge design space (i.e.,

exponentially proportional to the number of

decomposed factors) for customizable content

creation. It is noteworthy that our approach,

which we call Composer, supports various levels

of conditions, such as text description as the

global information, depth map and sketch as

the local guidance, color histogram for low-level

details, etc. Besides improving controllability,

we confirm that Composer serves as a general

framework and facilitates a wide range of classical

generative tasks without retraining. Code and

models will be made available.

1. Introduction

“The infinite use of finite means.”

– Noam Chomsky (Chomsky, 1965)

Generative image models conditioned on text can now
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produce photorealistic and diverse images (Ramesh et al.,

2022; Saharia et al., 2022; Rombach et al., 2021; Yu

et al., 2022; Chang et al., 2023). To further achieve

customized generation, many recent works extend the text-

to-image models by introducing conditions such as segmen-

tation maps (Rombach et al., 2021; Wang et al., 2022b;

Couairon et al., 2022), scene graphs (Yang et al., 2022),

sketches (Voynov et al., 2022), depthmaps (stability.ai,

2022), and inpainting masks (Xie et al., 2022; Wang et al.,

2022a), or by finetuning the pretrained models on a few

subject-specific data (Gal et al., 2022; Mokady et al., 2022;

Ruiz et al., 2022). Nevertheless, these models still provide

only a limited degree of controllability for designers when

it comes to using them for practical applications. For

example, generative models often struggle to accurately

produce images with specifications for semantics, shape,

style, and color all at once, which is common in real-world

design projects.

We argue that the key to controllable image generation

relies not only on conditioning, but even more significantly

on compositionality (Lake et al., 2017). The latter can

exponentially expand the control space by introducing an

enormous number of potential combinations (e.g., a hundred

images with eight representations each yield about 1008

combinations). Similar concepts are explored in the fields

of language and scene understanding (Keysers et al., 2019;

Johnson et al., 2016), where the compositionality is termed

compositional generalization, the skill of recognizing or

generating a potentially infinite number of novel combina-

tions from a limited number of known components.

In this work, we build upon the above idea and present

Composer, a realization of compositional generative models.

By compositional generative models, we refer to generative

models that are capable of seamlessly recombining visual

components to produce new images (Figure 1). Specifically,

we implement Composer as a multi-conditional diffusion

model with a UNet backbone (Nichol et al., 2021). At every

training iteration of Composer, there are two phases: in the

decomposition phase, we break down images in a batch into

individual representations using computer vision algorithms

or pretrained models; whereas in the composition phase, we

optimize Composer so that it can reconstruct these images
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Figure 1. Concept of compositional image synthesis, which first decomposes an image to a set of basic components and then recomposes

a new one with high creativity and controllability. To this end, the components in various formats serve as conditions in the generation

process and allow flexible customization at the inference stage. Best viewed in large size.

from their representation subsets. Despite being trained

with only a reconstruction objective, Composer is capable

of decoding novel images from unseen combinations of

representations that may come from different sources and

potentially incompatible with one another.

While conceptually simple and easy to implement, Com-

poser is surprisingly powerful, enabling encouraging perfor-

mance on both traditional and previously unexplored image

generation and manipulation tasks, including but not limited

to: text-to-image generation, multi-modal conditional image

generation, style transfer, pose transfer, image translation,

virtual try-on, interpolation and image variation from

various directions, image reconfiguration by modifying

sketches, depth or segmentation maps, colorization based

on optional palettes, and more. Moreover, by introducing

an orthogonal representation of masking, Composer is able

to restrict the editable region to a user-specified area for

all the above operations, more flexible than the traditional

inpainting operation, while also preventing modification of

pixels outside this region. Despite being trained in a multi-

task manner, Composer achieves a zero-shot FID of 9.2 in

text-to-image synthesis on the COCO dataset (Lin et al.,

2014) when using only caption as the condition, indicating

its ability to produce high-quality results.

2. Method

Our framework comprises the decomposition phase, where

an image is divided into a set of independent components;

and the composition phase, where the components are

reassembled utilizing a conditional diffusion model. We

first give a brief introduction to diffusion models and the

guidance directions enabled by Composer. Subsequently,

we explain the implementation of image decomposition and

composition in details.

2.1. Diffusion Models

Diffusion models (Ho et al., 2020; Dhariwal & Nichol,

2021; Song & Ermon, 2020; Song et al., 2020b; Nichol

et al., 2021) are a type of generative models that produce

data from Gaussian noise via an iterative denoising process.

Typically, a simple mean-squared error is used as the

denoising objective:

Lsimple = Ex0,c,ǫ,t(‖ǫ− ǫθ(atx0 + σtǫ, c)‖
2

2
), (1)

where x0 are training data with optional conditions c,

t ∼ U(0, 1), ǫ ∼ N (0, I) is the additive Gaussian noise,

at, σt are scalar functions of t, and ǫθ is a diffusion model

with learnable parameters θ. Classifier-free guidance is

most widely employed in recent works (Nichol et al., 2021;

Ramesh et al., 2022; Rombach et al., 2021; Saharia et al.,

2022) for conditional data sampling from a diffusion model,

where the predicted noise is adjusted via:

ǫ̂θ(xt, c) = ωǫθ(xt, c) + (1− ω)ǫθ(xt), (2)

where xt = atx0 + σtǫ, and ω is a guidance weight.

Sampling algorithms such as DDIM (Song et al., 2020a)

and DPM-Solver (Lu et al., 2022a;b; Bao et al., 2022) are

often adopted to speed up the sampling process of diffusion

models. DDIM can also be utilized to deterministically

reverse a sample x0 back to its pure noise latent xT ,

enabling various image editing operations.

Guidance directions: Composer is a diffusion model accept-

ing multiple conditions, which enables various directions

with classifier-free guidance:

ǫ̂θ(xt, c) = ωǫθ(xt, c2) + (1− ω)ǫθ(xt, c1), (3)
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(b) Image interpolations.

(a) Image variations.

Figure 2. (a) Image variation. For each example, the first column shows the source image, while the subsequent four columns are

variations of the source image produced by conditioning Composer on different subsets of its representations. (b) Image interpolation.

On the first row are the results of interpolating all the components between the source image (first column) and the target image (last

column). The remaining rows stand for the results where some components (i.e., listed on the left) of the source image are kept unchanged.

where c1 and c2 are two sets of conditions. Different choices

of c1 and c2 represent different emphasis on conditions.

Conditions within (c2 \ c1) are emphasized with a guidance

weight of ω, those within (c1 \ c2) are suppressed with a

guidance weight of (1− ω), and conditions within c1 ∩ c2
are given a guidance weight of 1.0.

Bidirectional guidance: By reversing an image x0 to its

latent xT using condition c1, and then sampling from xT

using another condition c2, we are able to manipulate the

image in a disentangled manner using Composer, where the

manipulation direction is defined by the difference between

c2 and c1. Similar scheme is also used in (Wallace et al.,

2022). We use this approach in Section 3.2 and Section 3.3.

2.2. Decomposition

We decompose an image into decoupled representations

which capture various aspects of its visual concepts. We use

eight representations in this work, with all of them extracted

on-the-fly during training.

Caption: We directly use title or description information

in image-text training data (e.g., LAION-5B (Schuhmann

et al., 2022)) as image captions. It is also handy to leverage

pretrained image captioning models when annotations are

not available. We represent these captions using their

sentence and word embeddings extracted by the pretrained

CLIP ViT-L/14@336px (Radford et al., 2021) model.

Semantics and style: We use the image embedding extracted

by the pretrained CLIP ViT-L/14@336px (Radford et al.,

2021) model to represent the semantics and style of an

image, similar to unCLIP (Ramesh et al., 2022).

Color: We represent the color statistics of an image using

the smoothed CIELab histogram (Sergeyk, 2016). We

quantize the CIELab color space to 11 hue values, 5

saturation values, and 5 light values, and we use a smoothing

sigma of 10. We find these settings work well empirically.

Sketch: We apply an edge detection model (Su et al., 2021)

followed by a sketch simplification algorithm (Simo-Serra

et al., 2017) to extract the sketch of an image. Sketches

capture local details of images and have less semantics.

Instances: We apply instance segmentation on an image

using the pretrained YOLOv5 (Jocher, 2020) model to

extract its instance masks. Instance segmentation masks

3
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Figure 3. Image reconfiguration. Composer supports reconfiguring an image simply by altering its representations, such as sketch and

segmentation map.

reflect the category and shape information of visual objects.

Depthmap: We use a pretrained monocular depth estimation

model (Ranftl et al., 2022) to extract the depthmap of an

image, which roughly captures the image’s layout.

Intensity: We introduce raw grayscale images as a represen-

tation to force the model to learn a disentangled degree of

freedom for manipulating colors. To introduce randomness,

we uniformly sample from a set of predefined RGB channel

weights to create grayscale images.

Masking: We introduce image masks to enable Composer

to restrict image generation or manipulation to an editable

region. We use a 4-channel representation, where the first 3

channels correspond to the masked RGB image, while the

last channel corresponds to the binary mask.

It is noteworthy that, while the experiments in this paper is

conducted with the eight conditions described above, users

are free to customize their conditions according to their

specific needs.

2.3. Composition

We use diffusion models to recompose images from a

set of representations. Specifically, we leverage the

GLIDE (Nichol et al., 2021) architecture and modify its

conditioning modules. We explore two different mecha-

nisms to condition the model on our representations:

Global conditioning: For global representations including

CLIP sentence embeddings, image embeddings and color

palettes, we project and add them to the timestep embedding.

In addition, we project image embeddings and color palettes

into eight extra tokens and concatenate them with CLIP

word embeddings, which are then used as the context

for cross-attention in GLIDE, similar to unCLIP (Ramesh

et al., 2022). Since conditions are either additive or can be

selectively masked in cross-attention, it is straightforward

to either drop conditions during training and inference, or

to introduce new global conditions.

Localized conditioning: For localized representations in-

cluding sketches, segmentation masks, depthmaps, intensity

images, and masked images, we project them into uniform-

dimensional embeddings with the same spatial size as the

noisy latent xt using stacked convolutional layers. We then

compute the sum of these embeddings and concatenate

the result to xt before feeding it into the UNet. Since

the embeddings are additive, it is easy to accommodate

for missing conditions or to incorporate new localized

conditions.

Joint training strategy: It is essential to devise a joint

training strategy that enables the model to learn to decode

images from a variety of combinations of conditions. We

experiment with several configurations and identify a simple

yet effective configuration, where we use an independent

dropout probability of 0.5 for each condition, a probability

of 0.1 for dropping all conditions, and a probability of

0.1 for retaining all conditions. We use a special dropout

probability of 0.7 for intensity images because they contain

the vast majority of information about the images and may

underweight other conditions during training.

The base diffusion model produces images of 64 × 64
resolution. To generate high-resolution images, we train

two unconditional diffusion models for upsampling to

respectively upscale images from 64 × 64 to 256 × 256
and from 256 × 256 to 1024 × 1024 resolutions. The

architectures of the upsampling models are modified from

unCLIP (Ramesh et al., 2022), where we use more channels

in low-resolution layers and introduce self-attention blocks

to scale up the capacity. We also introduce an optional

prior model (Ramesh et al., 2022) that produces image

embeddings from captions. We find that the prior model is
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(b) Interpolations within the editable region.

(a) Variations within the editable region.

(c) Text-conditional generation within the editable region.

(e) Reconfigurations within the editable region.

(d) Colorizations within the editable region.
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Figure 4. Region-specific image editing. Through introducing a masked image as an additional condition, Composer manages to direct

the manipulation to the region of interest.

capable of improving the diversity of generated images for

certain combinations of conditions.

3. Experiments

3.1. Training Details

We train a 2B parameter base model for conditional image

generation at 64× 64 resolution, a 1.1B parameter model

for upscaling images to 256 × 256 resolution, and a

300M parameter model for further upscaling images to

1024 × 1024 resolution. Additionally, we trained a 1B

parameter prior model for optionally projecting captions

to image embeddings. We use batch sizes of 4096, 1024,

512, and 512 for the prior, base, and two upsampling

models, respectively. We train on a combination of

public datasets, including ImageNet21K (Russakovsky et al.,

2014), WebVision (Li et al., 2017), and a filtered version of

the LAION dataset (Schuhmann et al., 2022) with around

1B images. We eliminate duplicates, low resolution images,

and images potentially contain harmful content from the

LAION dataset. For the base model, we pretrain it with 1M

steps on the full dataset using only image embeddings as the

condition, and then finetune the model on a subset of 60M

examples (excluding LAION images with aesthetic scores

below 7.0) from the original dataset for 200K steps with all

conditions enabled. The prior and upsampling models are

trained for 1M steps on the full dataset.

3.2. Image Manipulation

Variations: Using Composer, we can create new images that

are similar to a given image but vary in certain aspects by

conditioning on a specific subset of its representations. By

carefully selecting combinations of different representations,

we have a high degree of flexibility to control the scope

of image variations (Figure 2a). When more conditions

are incorporated, our approach easily yields more accurate

reconstructions than unCLIP (Ramesh et al., 2022), which

is conditioned solely on image embeddings.
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(b) Style transfer.

(e) Virtual try-on.

(d) Pose transfer.

(a) Palette-based colorization.

(c) Image translation.

“photograph of a zebra” “photo of a tiger” “photo of a bear” “a landscape photo, sunshine, summer”“photograph of zebras”

“a cartoon picture”“3d rendering”“3d rendering” “an artwork of oil painting”“an artwork of oil painting”

color interpolation

style interpolation

Figure 5. Reformulation of traditional image generation tasks using our Composer. Note that the model is directly applied to all tasks

without any retraining, highlighting the potential and flexibility of the proposed compositional generation framework.
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“A fluffy baby sloth with

a knitted hat”

“A pencil drawing of

a cat”

“A realistic photo of

a cactus”

“A photo of a dog

wearing glasses”
“A painting of a cat” “A 3d model of a dog”

“A blue jay holding a

basket of flowers”

“A brightly colored 3d icon

of a fox”

Figure 6. Compositional image generation results produced by Composer. The conditions used to generate each image are presented

below the image. Best viewed in large size.

Interpolations: By traversing in the embedding space of

global representations between two images, we can blend

the two images for variations. Composer further gives us

precise control over which elements to interpolate between

two images and which to keep unchanged, resulting in a

multitude of interpolation directions (Figure 2b).

Reconfigurations: Image reconfiguration (Sun & Wu, 2019)

refers to manipulating an image through direct modification

of one or more of its representations. Composer offers a

variety of options for image reconfiguration (Section 2.1).

Specifically, given an image x, we can obtain its latent xT

by applying DDIM inversion conditioned on a set of its

representations ci; we then apply DDIM sampling starting

from xT conditioned on a modified set of representations cj
to obtain a variant of the image x̂. The variant x̂ is expected

to differ from x along the variation direction defined by the

difference between cj and ci, but they are otherwise similar.

By following this process, we are able to manipulate an

image from diverse directions (Figure 3).

Editable region: By conditioning Composer on a set of

representations c along with a masked image m, it is

possible to restrict the variations within the area defined by

m. Remarkably, editable region is orthogonal to all image

generation and manipulation operations, offering Composer

substantially greater flexibility of image editing than mere

inpainting (Figure 4).

3.3. Reformulation of Traditional Generation Tasks

Many traditional image generation and manipulation tasks

can be reformulated using the Composer architecture.

Below we describe several examples.

Palette-based colorization: There are two methods to

colorize an image x according to palette p using Composer:

one entails conditioning the sampling process on both the

grayscale version of x and p, while the other involves

applying a reconfiguration (Section 2.1) on x in terms

of color palette. We find the latter approach yields more

reasonable and diverse results and we use it in Figure 5a.

Style transfer: Composer roughly disentangles the content

and style representations, which allows us to transfer

the style of image x1 to another image x2 by simply

conditioning on the style representations of x1 and the

content representations of x2. It is also possible to control

the transfer strength by interpolating style representations

between the two images. We show examples in Figure 5b.

Image translation: Image translation refers to the task

of transforming an image to a variant with content kept
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unchanged but style converted to match a target domain. We

use all available representations of an image to depict its

content, with a text description to capture the target domain.

We leverage the reconfiguration approach described in

Section 2.1 to manipulate images (Figure 5c).

Pose transfer: The CLIP embedding of an image captures

its style and semantics, enabling Composer to modify the

pose of an object without compromising its identity. We use

the object’s segmentation map to represent its pose and the

image embedding to capture its semantics, then leverage the

reconfiguration approach described in Section 2.1 to modify

the pose of the object (Figure 5d).

Virtual try-on: Given a garment image x1 and a body image

x2, we can first mask the clothes in x2, and then condition

the sampling process on the masked image m2 along with

the CLIP image embedding of x1 to produce a virtual try-on

result (Figure 5e). Despite moderate quality, the results

demonstrate the possibilities of Composer to cope with

difficult problems with one unified framework.

3.4. Compositional Image Generation

By conditioning Composer on a combination of visual

components from different sources, it is possible to produce

an enormous number of generation results from a limited

set of materials. Figure 6 shows some selected examples.

3.5. Text-to-Image Generation

To further assess Composer’s image generation quality, we

compare its performance with the state-of-the-art text-to-

image generation models on the COCO dataset (Lin et al.,

2014). We use sampling steps of 100, 50, and 20 for the

prior, base, and 64× 64 to 256× 256 upsampling models

respectively and a guidance scale of 3.0 for the prior and

base models. Despite its multi-task training, Composer

achieves an competitive FID score of 9.2 and a CLIP score of

0.28 on COCO, comparable to the best-performing models.

4. Related Work

Diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021;

Dhariwal & Nichol, 2021; Rombach et al., 2021; Nichol

et al., 2021; Ramesh et al., 2022; stability.ai, 2022; Saharia

et al., 2022) are emerging as a successful paradigm for

image generation, outperforming GANs (Xu et al., 2017;

Zhu et al., 2019; Zhang et al., 2021) and comparable to

autoregressive models (Ramesh et al., 2021; Yu et al., 2021;

Esser et al., 2020; Yu et al., 2022; Ding et al., 2021) in

terms of fidelity and diversity. Our method builds on recent

hierarchical diffusion models (Ramesh et al., 2022; Saharia

et al., 2022), where one large diffusion model is used to

produce small-resolution images, followed by two relatively

smaller diffusion models to upscale the image to higher

resolutions. However, unlike these text-to-image models,

our method supports composable conditions and exhibits

better flexibility and controllability.

Many recent works extend pretrained text-to-image dif-

fusion models to achieve multi-modal or customized

generation, typically by introducing conditions such as

inpainting masks (Xie et al., 2022; Wang et al., 2022a),

sketches (Voynov et al., 2022), scene graphs (Yang et al.,

2022), keypoints (Li et al., 2023), segmentation maps (Rom-

bach et al., 2021; Wang et al., 2022b; Couairon et al.,

2022), a composition of multiple text descriptions (Liu et al.,

2022), and depthmaps (stability.ai, 2022), or by finetuning

parameters on a few subject-specific data (Gal et al., 2022;

Mokady et al., 2022; Ruiz et al., 2022). This work is also

related to GAN-based methods that accept a combination

of multiple conditions (Huang et al., 2021). Compared

to these approaches, Composer merits the compositionality

across conditions, enabling a larger control space and greater

flexibility in image generation and manipulations.

5. Conclusion and Discussion

Our decomposition-composition paradigm shows that when

conditions are treated as composable elements rather than

used independently, the control space of generative models

can be greatly expanded. This allows for a broader range

of traditional generative tasks to be reformulated using our

Composer architecture. Moreover, previously unexplored

generative capabilities are revealed, which motivates further

research into various decomposition algorithms that can

achieve increased controllability. In addition, we present

multiple ways to utilize Composer for a range of image

generation and manipulation tasks based on classifier-free

and bidirectional guidance, giving useful references for

future research.

Although we find a simple and empirical configuration

for joint training of multiple conditions in Section 2.3,

the strategy is not perfect, e.g., it may downweight the

single-conditional generation performance. For example,

without access to global embeddings, sketch or depth

based generation usually produces relatively darker images.

Another issue is the conflict of the incompatible conditions.

For instance, text embeddings are often downweighted in

generated results when image and text embeddings with

different semantics are jointly used.

Previous studies (Nichol et al., 2021; Ramesh et al., 2022;

Saharia et al., 2022) highlight the potential risks associated

with image generation models, such as deceptive and harm-

ful content. Composer’s improvements in controllability

further raise this risk. We intend to investigate thoroughly on

how Composer can mitigate the risk of misuse and possibly

creating a filtered version before making the work public.

8



Composer: Creative and Controllable Image Synthesis with Composable Conditions

References

Bao, F., Li, C., Zhu, J., and Zhang, B. Analytic-dpm:

an analytic estimate of the optimal reverse variance in

diffusion probabilistic models. ArXiv, abs/2201.06503,

2022.

Chang, H., Zhang, H., Barber, J., Maschinot, A., Lezama,

J., Jiang, L., Yang, M., Murphy, K. P., Freeman, W. T.,

Rubinstein, M., Li, Y., and Krishnan, D. Muse: Text-

to-image generation via masked generative transformers.

ArXiv, abs/2301.00704, 2023.

Chomsky, N. Aspects of the Theory of Syntax. The MIT

Press, Cambridge, 1965.

Couairon, G., Verbeek, J., Schwenk, H., and Cord, M.

Diffedit: Diffusion-based semantic image editing with

mask guidance. ArXiv, abs/2210.11427, 2022.

Dhariwal, P. and Nichol, A. Diffusion models beat GANs

on image synthesis. ArXiv, abs/2105.05233, 2021.

Ding, M., Yang, Z., Hong, W., Zheng, W., Zhou, C., Yin,

D., Lin, J., Zou, X., Shao, Z., Yang, H., and Tang,

J. CogView: Mastering text-to-image generation via

Transformers. In Neural Information Processing Systems,

2021.

Esser, P., Rombach, R., and Ommer, B. Taming Transform-

ers for high-resolution image synthesis. 2021 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 12868–12878, 2020.

Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano,

A. H., Chechik, G., and Cohen-Or, D. An image is worth

one word: Personalizing text-to-image generation using

textual inversion. ArXiv, abs/2208.01618, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion

probabilistic models. ArXiv, abs/2006.11239, 2020.

Huang, X., Mallya, A., Wang, T.-C., and Liu, M.-Y.

Multimodal conditional image synthesis with product-

of-experts GANs. In European Conference on Computer

Vision, 2021.

Jocher, G. YOLOv5 by Ultralytics, 2020. URL https:

//github.com/ultralytics/yolov5.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L.,

Zitnick, C. L., and Girshick, R. B. Clevr: A diagnostic

dataset for compositional language and elementary visual

reasoning. 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 1988–1997, 2016.

Keysers, D., Schärli, N., Scales, N., Buisman, H., Furrer, D.,

Kashubin, S., Momchev, N., Sinopalnikov, D., Stafiniak,

L., Tihon, T., Tsarkov, D., Wang, X., van Zee, M., and

Bousquet, O. Measuring compositional generalization:

A comprehensive method on realistic data. ArXiv,

abs/1912.09713, 2019.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and

Gershman, S. J. Building machines that learn and think

like people. Behavioral and Brain Sciences, 40, 2017.

Li, W., Wang, L., Li, W., Agustsson, E., and Gool, L. V.

Webvision database: Visual learning and understanding

from web data. ArXiv, abs/1708.02862, 2017.

Li, Y., Liu, H., Wu, Q., Mu, F., Yang, J., Gao, J., Li, C., and

Lee, Y. J. GLIGEN: Open-set grounded text-to-image

generation. ArXiv, abs/2301.07093, 2023.

Lin, T.-Y., Maire, M., Belongie, S. J., Hays, J., Perona, P.,

Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft

COCO: Common objects in context. In European

Conference on Computer Vision, 2014.

Liu, N., Li, S., Du, Y., Torralba, A., and Tenenbaum,

J. B. Compositional visual generation with composable

diffusion models. ArXiv, abs/2206.01714, 2022.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu,

J. DPM-Solver: A fast ODE solver for diffusion

probabilistic model sampling in around 10 steps. ArXiv,

abs/2206.00927, 2022a.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J. DPM-

Solver++: Fast solver for guided sampling of diffusion

probabilistic models. ArXiv, abs/2211.01095, 2022b.

Mokady, R., Hertz, A., Aberman, K., Pritch, Y., and Cohen-

Or, D. Null-text inversion for editing real images using

guided diffusion models. ArXiv, abs/2211.09794, 2022.

Nichol, A. and Dhariwal, P. Improved denoising diffusion

probabilistic models. ArXiv, abs/2102.09672, 2021.

Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin,

P., McGrew, B., Sutskever, I., and Chen, M. GLIDE:

Towards photorealistic image generation and editing

with text-guided diffusion models. In International

Conference on Machine Learning, 2021.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,

Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,

et al. Learning transferable visual models from natural

language supervision. In International Conference on

Machine Learning, pp. 8748–8763. PMLR, 2021.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C.,

Radford, A., Chen, M., and Sutskever, I. Zero-shot text-

to-image generation. ArXiv, abs/2102.12092, 2021.

9

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5


Composer: Creative and Controllable Image Synthesis with Composable Conditions

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,

M. Hierarchical text-conditional image generation with

clip latents. ArXiv, abs/2204.06125, 2022.

Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., and

Koltun, V. Towards robust monocular depth estimation:

Mixing datasets for zero-shot cross-dataset transfer.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 44(3), 2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and

Ommer, B. High-resolution image synthesis with latent

diffusion models. 2022 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pp.

10674–10685, 2021.

Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., and

Aberman, K. DreamBooth: Fine tuning text-to-image

diffusion models for subject-driven generation. ArXiv,

abs/2208.12242, 2022.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,

Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,

M. S., Berg, A. C., and Fei-Fei, L. Imagenet large scale

visual recognition challenge. International Journal of

Computer Vision, 115:211–252, 2014.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J.,

Denton, E. L., Ghasemipour, S. K. S., Ayan, B. K.,

Mahdavi, S. S., Lopes, R. G., Salimans, T., Ho, J., Fleet,

D. J., and Norouzi, M. Photorealistic text-to-image

diffusion models with deep language understanding.

ArXiv, abs/2205.11487, 2022.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C.,

Wightman, R., Cherti, M., Coombes, T., Katta, A., Mullis,

C., Wortsman, M., Schramowski, P., Kundurthy, S.,

Crowson, K., Schmidt, L., Kaczmarczyk, R., and Jitsev,

J. Laion-5b: An open large-scale dataset for training next

generation image-text models. ArXiv, abs/2210.08402,

2022.

Sergeyk. Rayleigh: Search image collections by multiple

color palettes or by image color similarity., 2016. URL

https://github.com/sergeyk/rayleigh.

Simo-Serra, E., Iizuka, S., and Ishikawa, H. Mastering

sketching: Adversarial augmentation for structured pre-

diction. arXiv: Computer Vision and Pattern Recognition,

2017.

Song, J., Meng, C., and Ermon, S. Denoising diffusion

implicit models. ArXiv, abs/2010.02502, 2020a.

Song, Y. and Ermon, S. Improved techniques for training

score-based generative models. ArXiv, abs/2006.09011,

2020.

Song, Y., Sohl-Dickstein, J. N., Kingma, D. P., Kumar,

A., Ermon, S., and Poole, B. Score-based generative

modeling through stochastic differential equations. ArXiv,

abs/2011.13456, 2020b.

stability.ai. Stable diffusion 2.0 release., 2022.

URL https://stability.ai/blog/

stable-diffusion-v2-release.

Su, Z., Liu, W., Yu, Z., Hu, D., Liao, Q., Tian, Q.,
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A. Architecture Details

Prior 64 64 → 256 256 → 1024

Diffusion steps 1000 1000 1000 1000
Noise schedule cosine cosine cosine linear
Sampling steps 100 50 20 10
Sampling variance method dpm-solver dpm-solver dpm-solver dpm-solver
Model size 1B 2B 1.1B 300M
Channels - 512 320 192
Depth - 3 3 2
Channels multiple - 1,2,3,4 1,2,3,5 1,1,2,2,4,4
Heads channels - 64 64 -
Attention resolution - 32,16,8 32,16 -
Dropout - 0.1 0.1 -
Weight decay 6.0e-2 - - -
Batch size 4096 1024 512 512
Iterations 1M 1M 1M 1M
Learning rate 1.1e-4 1.2e-4 1.1e-4 1.0e-4
Adam β2 0.96 0.999 0.999 0.999
Adam ǫ 1.0e-6 1.0e-8 1.0e-8 1.0e-8
EMA decay 0.9999 0.9999 0.9999 0.9999

Table 1. Hyperparameters for Composer. We use DPM-Solver++ (Lu et al., 2022b) as the sampling algorithm for all diffusion models.
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B. Conditioning Modules

Figure 7. Global conditioning module of Composer. For global conditions such as CLIP sentence embeddings, image embeddings, and

color histograms, we project and add them to the timestep embedding. Moreover, we project image embeddings and color palettes into

eight extra tokens and concatenate them with CLIP word embeddings, which are then used as the context input for cross-attention layers.

Figure 8. Local conditioning module of Composer. For local conditions such as segmentation maps, depthmaps, sketches, grayscale

images, and masked images, we project them into uniform-dimensional embeddings with the same spatial size as the noisy image using

stacked convolutional layers. Subsequently, we compute the sum of these embeddings and concatenate the result to the noisy image.
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C. Ablation Study of Different Joint Training Strategies

We conduct user studies to evaluate the performance of four pretrained models trained using different settings on five

generation tasks. We generate 50 samples per task using the same random seed for each model and seek feedback from a

group of participants to identify the best result. Each entry denotes the frequency a participant selected a model as the most

favorable result.

The four settings differ in the dropout strategy. The first three settings use an independent dropout for each condition,

whereas the final setting involves manually designing sampling probabilities for each individual or paired condition. In the

last setting, we hypothesis that the model can learn to produce images from more than two conditions when trained using

only single or pair-wise conditions (Figure 9).

The results (Table 2) show that a simple independent dropout of 0.5 for each condition obtains the best overall performance.

Task Dropout=0.3 Dropout=0.5 Dropout=0.7 Manually Designed

Colorization 0.31 0.45 0.11 0.13
Style transfer 0.31 0.41 0.12 0.16
Text-to-image 0.15 0.33 0.16 0.36
Text-and-spatial composition 0.19 0.23 0.36 0.22
Image-embedding-and-spatial composition 0.14 0.34 0.24 0.28
Overall 0.22 0.352 0.198 0.23

Table 2. Ablation study of differenct joint training strategies of Composer.

Figure 9. Manually designed probabilities for different combinations of conditions.
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D. Additional Samples

Image embedding

Color palette

Depthmap

Sketch

Segmentation map

Output

Figure 10. This figure indicates how Composer resolves conflicting conditions by illustrating extreme cases in which the conditions

come from disparate sources. One of our observations is that Composer typically gives less weight to conditions with fewer details when

conflicts exist, such as segmentation maps in comparison to sketches and depthmaps, and text embeddings versus image embeddings.
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Gray-

scale

Palette

Figure 11. Additional colorization results, visualized at a resolution of 256× 256 to reduce file size.
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Content

Style

Figure 12. Additional style transfer results, visualized at a resolution of 256× 256 to reduce file size.
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E. Failure Cases of Composer

E.1. Some Conditions are Underweighted When Conflicts Exist

Figure 13. When text and sketch, depth are jointly used as the conditions, text conditions are usually underweighted.
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Figure 14. When text and image embedding are jointly used as the conditions, text conditions are usually underweighted.

E.2. Low Quality and Unexpected Results

Figure 15. Colorization usually changes the background colors or the light conditions rather than the subject colors.
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Figure 16. Style and semantics are usually entangled in style transfer.

Figure 17. Composer sometimes produces blurry results, especially when conditions are incompatible with each other.

E.3. A Few Tasks may Benefit from Early Stop
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Figure 18. Taking style transfer as an example, some style transfer results show better consistency with the style input in the early

training stage compared to those outputs from the final training stage.
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